JP2005119125A - Laminate - Google Patents

Laminate Download PDF

Info

Publication number
JP2005119125A
JP2005119125A JP2003356446A JP2003356446A JP2005119125A JP 2005119125 A JP2005119125 A JP 2005119125A JP 2003356446 A JP2003356446 A JP 2003356446A JP 2003356446 A JP2003356446 A JP 2003356446A JP 2005119125 A JP2005119125 A JP 2005119125A
Authority
JP
Japan
Prior art keywords
resin layer
bioplastic
laminate
polyolefin resin
chlorinated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003356446A
Other languages
Japanese (ja)
Other versions
JP4357259B2 (en
Inventor
Hideki Kuwata
秀樹 桑田
Kenichi Gomi
賢一 五味
Yuichi Kouura
勇一 香浦
Shuji Yamaguchi
秋司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITTO PACK KK
Unitika Ltd
Original Assignee
NITTO PACK KK
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITTO PACK KK, Unitika Ltd filed Critical NITTO PACK KK
Priority to JP2003356446A priority Critical patent/JP4357259B2/en
Publication of JP2005119125A publication Critical patent/JP2005119125A/en
Application granted granted Critical
Publication of JP4357259B2 publication Critical patent/JP4357259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminate containing a bioplastic resin having practical strength industrially and inexpensively while corresponding to environmental resources. <P>SOLUTION: In this laminate including at least one bioplastic resin layer and at least one polyolefinic resin layer extruded under a molten state, a chlorinated polyolefinic resin layer is provided between the bioplastic resin layer and the polyolefinic resin layer. The bioplastic resin layer comprises a polylactic acid resin layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、食品をはじめとして、医薬品、日用品、コスメティックスなどの包装材料として有用な実用性能と環境資源対応に優れた積層体に関するものである。   The present invention relates to a laminate excellent in practical performance and environmental resource useful as a packaging material for foods, medicines, daily necessities, cosmetics and the like.

ポリ乳酸に代表される、植物・生物を原料とするバイオプラスチックは、石油を原料とするいわゆる普通のプラスチックと異なり、地球環境保護の見地から好ましい。すなわち、バイオプラスチックは原料に再生可能な植物・生物資源を利用するため、これを利用すると、枯渇する石油資源からの脱却を図ることが出来る。   Unlike so-called ordinary plastics that use petroleum as a raw material, bioplastics represented by polylactic acid are preferable from the viewpoint of protecting the global environment. In other words, since bioplastic uses renewable plant and biological resources as raw materials, it can be used to escape from exhausted petroleum resources.

しかしながらバイオプラスチックは柔軟性や強度などの実用性能に劣るため、ポリエチレンフィルムやポリ塩化ビニルフィルムなどに代表されるプラスチックフィルムの用途、例えば食品、医薬品、日用品などの包装用材料の用途には適していない。   However, since bioplastics are inferior in practical performance such as flexibility and strength, they are suitable for plastic film applications such as polyethylene film and polyvinyl chloride film, for example, packaging materials such as foods, pharmaceuticals, and daily necessities. Absent.

たとえば、ポリ乳酸フィルムは柔軟性や低融点性に劣り、通常のヒートシール方式で接着しても接着強度が出ないため、ポリ乳酸フィルムから包装袋を作製する方法として、溶断シール方式が主流となっている。しかし、それでも包装袋の強度が不十分であり、軽量物用の包装袋への利用に限られている。そこで、特許文献1には、ポリ乳酸に可塑剤を添加した組成物が開示されている。しかしながらこのような改質されたポリ乳酸系樹脂であっても、包装袋としたときの強度がまだ不十分であり、軽量物の包装用途に限られる。したがって重量物を包装する為にはかなりの樹脂層厚みが必要となり、省資源の見地から好ましくなくなる。また、バイオプラスチックはポリオレフィンなどの汎用樹脂と比較して生産性がかなり劣り、樹脂層の厚みを増せば相当のコスト高となってしまう。   For example, polylactic acid film is inferior in flexibility and low melting point, and adhesive strength does not come out even if it is bonded by a normal heat seal method. It has become. However, the strength of the packaging bag is still insufficient, and it is limited to use for lightweight packaging bags. Therefore, Patent Document 1 discloses a composition in which a plasticizer is added to polylactic acid. However, even such a modified polylactic acid-based resin still has insufficient strength when used as a packaging bag, and is limited to lightweight packaging applications. Accordingly, a considerable thickness of the resin layer is required for packaging heavy objects, which is not preferable from the viewpoint of resource saving. In addition, bioplastics are considerably inferior in productivity as compared to general-purpose resins such as polyolefin, and if the thickness of the resin layer is increased, the cost becomes considerably high.

一方、包装袋に強度を付与するために、シーラント材として一般のポリオレフィン系樹脂層を設けるという手法がある。すなわち、1)基材フィルムに接着剤を塗布した後、ポリエチレンなどのシーラントフィルムを貼り合わせ、ラミネート加工を行うという手法や、2)基材フィルムに接着剤を塗布後、ポリエチレンなどの樹脂を溶融押出しラミネート加工を行う手法がある。しかし、これらの手法は、基材フィルムに接着剤を塗布し、オレフィン樹脂層を貼り合わせた後に、接着剤の硬化反応を促すためエージング処理という熱処理(一般的には40℃で3〜4日間)を施さなければならず、大容量の室内を効率よく加熱するための熱源が石油資源にたよる現状では、環境資源にとって好ましいとは言えないものであった。
特開平4−335060号公報
On the other hand, in order to give strength to the packaging bag, there is a method of providing a general polyolefin resin layer as a sealant material. That is, 1) After applying an adhesive to the base film, a method of laminating a sealant film such as polyethylene and laminating, or 2) After applying the adhesive to the base film, melt a resin such as polyethylene There is a method of performing extrusion laminating. However, these methods apply an heat treatment (generally at 40 ° C. for 3 to 4 days) to promote the curing reaction of the adhesive after applying the adhesive to the base film and bonding the olefin resin layer together. In the present situation where the heat source for efficiently heating the large-capacity room depends on the petroleum resource, it cannot be said that it is preferable for the environmental resource.
JP-A-4-335060

本発明の課題は、環境資源に対応しつつ、実用的な強度を兼ね備えたバイオプラスチック樹脂を含む積層体を工業的にかつ安価に提供することにある。   The subject of this invention is providing the laminated body containing the bioplastic resin which has practical intensity | strength, corresponding to an environmental resource industrially and cheaply.

本発明者らは上記問題点を解決するために検討を行った結果、バイオプラスチック樹脂層とポリオレフィン系樹脂層との間に特定の層を設けることにより、上記問題を解決し、実用性能に優れた積層体が得られることを見い出し、本発明に至った。すなわち本発明は、少なくとも一層のバイオプラスチック樹脂層と、少なくとも一層の溶融押し出しされたポリオレフィン系樹脂層とを含む積層体であって、バイオプラスチック樹脂層とポリオレフィン系樹脂層との層間に塩素化ポリオレフィン系樹脂層を有することを特徴とする積層体を要旨とするものである。   As a result of investigations to solve the above problems, the present inventors have solved the above problems by providing a specific layer between the bioplastic resin layer and the polyolefin resin layer, and are excellent in practical performance. It was found that a laminated body was obtained, and the present invention was achieved. That is, the present invention relates to a laminate comprising at least one bioplastic resin layer and at least one melt-extruded polyolefin resin layer, wherein the chlorinated polyolefin is interposed between the bioplastic resin layer and the polyolefin resin layer. The gist of the laminate is characterized by having a resin layer.

本発明によれば、食品をはじめとして、医薬品、日用品、コスメティックスなどの包装材料として有用な実用性能と環境資源対応に優れた積層体を工業的にかつ安価に提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the laminated body excellent in practical performance and environmental resource use useful as packaging materials, such as foodstuffs, a pharmaceutical, daily necessities, and cosmetics, can be provided industrially and cheaply.

以下、本発明について詳細に説明する。本発明において用いられるバイオプラスチック樹脂とは、主原料が植物・生物を原料として生成された高分子樹脂のことを指す。すなわち、植物由来ではトウモロコシ等の乳酸から生成されるポリ乳酸などが、また、微生物由来ではポリ(3−ヒドロキシブチレート)、ポリ(3−ヒドロキシブチレート−コ−ヒドロキシバリレート)などが、さらに生物由来ではキトサンなどが挙げられる。このような樹脂の中でも、耐熱性、力学的特性、透明性などの実用性能や、樹脂重合などの生産性、コストなどの観点から、ポリ乳酸、またはポリ乳酸とその他樹脂との複合物が好ましい。   Hereinafter, the present invention will be described in detail. The bioplastic resin used in the present invention refers to a polymer resin whose main raw material is produced from plants and organisms. That is, polylactic acid produced from lactic acid such as corn is derived from plants, and poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-hydroxyvalerate) and the like are further derived from microorganisms. Examples of biological sources include chitosan. Among these resins, polylactic acid or a composite of polylactic acid and other resins is preferable from the viewpoint of practical performance such as heat resistance, mechanical properties, transparency, productivity such as resin polymerization, and cost. .

バイオプラスチック樹脂層の厚みとしては、7〜250μmが好ましい。7μm未満であると積層体の強度が低下することがある。また250μmを超えると積層体の腰が硬くなり、取り扱い性が低下することがある。   The thickness of the bioplastic resin layer is preferably 7 to 250 μm. If the thickness is less than 7 μm, the strength of the laminate may decrease. On the other hand, if it exceeds 250 μm, the laminated body becomes stiff and the handling property may be lowered.

バイオプラスチック樹脂層の製造方法としては、通常のフィルム製造方法が挙げられる。バイオプラスチック樹脂層は、延伸処理、特に二軸延伸処理しておくことが、強度の点から好ましい。   As a manufacturing method of a bioplastic resin layer, a normal film manufacturing method is mentioned. The bioplastic resin layer is preferably stretched, particularly biaxially stretched, from the viewpoint of strength.

本発明に用いられるポリオレフィン系樹脂とは、溶融押出し可能なポリオレフィンであればよく、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、アイオノマー樹脂、エチレン−アクリル酸・メタクリル酸共重合体、エチレン−アクリル酸・メタクリル酸エステル共重合体、酸変性ポリエチレン・ポリプロピレン系樹脂等の単独もしくはこれらの混合物が挙げられる。本発明に用いられるポリオレフィン系樹脂には、必要に応じて、その他樹脂、架橋剤、スリップ剤、酸化防止剤、紫外線吸収剤、加水分解防止剤、顔料、染料、難燃剤などを添加してもよい。   The polyolefin resin used in the present invention may be any polyolefin that can be melt-extruded, such as low density polyethylene, medium density polyethylene, high density polyethylene, linear polyethylene, polypropylene, ethylene-vinyl acetate copolymer, Examples thereof include ionomer resins, ethylene-acrylic acid / methacrylic acid copolymers, ethylene-acrylic acid / methacrylic acid ester copolymers, acid-modified polyethylene / polypropylene resins, or a mixture thereof. If necessary, other resins, crosslinking agents, slip agents, antioxidants, UV absorbers, hydrolysis inhibitors, pigments, dyes, flame retardants, etc. may be added to the polyolefin resin used in the present invention. Good.

本発明に用いられる塩素化ポリオレフィン系樹脂は、塩素含有率が10〜80質量%であることが好ましい。塩素化ポリオレフィン系樹脂の塩素化含有率が10質量%未満であると有機溶剤に対する溶解性が低下しやすくなり好ましくない。また80質量%を超えるとポリオレフィン系樹脂に対する密着性が低下するため好ましくない。塩素化ポリオレフィン系樹脂の具体例としては、塩素化ポリエチレン、塩素化ポリプロピレン、塩素化エチレン−プロピレン共重合体、塩素化エチレン−酢酸ビニル共重合体、酸変性ポリエチレン・ポリプロピレン系樹脂、塩素化ポリエチレン・ポリプロピレン変性ポリウレタン樹脂等の単独もしくはこれらの混合物が挙げられる。本発明に用いられる塩素化ポリオレフィン系樹脂には、バイオプラスチック樹脂層との密着性をより向上させるために、モノイソイアネート、ジイソシマネート、ポリイソシアネート樹脂等架橋剤を添加することが好ましい。さらに、塩素化ポリオレフィン系樹脂には、必要に応じて、その他樹脂、架橋剤、スリップ剤、酸化防止剤、紫外線吸収剤、加水分解防止剤、顔料、染料、難燃剤などを添加してもよい。   The chlorinated polyolefin resin used in the present invention preferably has a chlorine content of 10 to 80% by mass. When the chlorinated polyolefin resin has a chlorination content of less than 10% by mass, the solubility in organic solvents tends to decrease, such being undesirable. On the other hand, if it exceeds 80% by mass, the adhesion to the polyolefin resin is lowered, which is not preferable. Specific examples of the chlorinated polyolefin resin include chlorinated polyethylene, chlorinated polypropylene, chlorinated ethylene-propylene copolymer, chlorinated ethylene-vinyl acetate copolymer, acid-modified polyethylene / polypropylene resin, chlorinated polyethylene / Examples thereof include a polypropylene-modified polyurethane resin alone or a mixture thereof. In order to further improve the adhesion to the bioplastic resin layer, it is preferable to add a cross-linking agent such as monoisoianate, diisosiminate, or polyisocyanate resin to the chlorinated polyolefin resin used in the present invention. Furthermore, other resins, crosslinking agents, slip agents, antioxidants, ultraviolet absorbers, hydrolysis inhibitors, pigments, dyes, flame retardants, and the like may be added to the chlorinated polyolefin resin as necessary. .

本発明の積層体は、バイオプラスチック樹脂層にヒートシール性などの実用性能を付与するためにポリオレフィン系樹脂層が設けられ、またバイオプラスチック樹脂層とポリオレフィン系樹脂層との層間密着性を向上させるために塩素化系樹脂層が形成されたものである。塩素化ポリオレフィン系樹脂層を形成する方法は公知の方式を用いることが出来る。例えばバイオプラスチック樹脂層に、グラビア、オフセット方式などで塩素化ポリオレフィン系樹脂溶液を塗布する方法が挙げられる。バイオプラスチック樹脂層に印刷を施すのであれば、印刷工程の最後に印刷面に塩素化ポリオレフィン系樹脂溶液を塗布すると、一工程で済まされるため好ましい。塩素化ポリオレフィン系樹脂層の塗布量は、0.1〜5g/m2の範囲であることが好ましい。塗布量が0.1g/m2を下回るとバイオプラスチック樹脂層との密着性が低下するため好ましくない。また、5g/m2を超えるとグラビア、オフセット方式などの塗布工程で塗布ムラや生産性が低下するといった加工適性が低下するため好ましくない。 The laminate of the present invention is provided with a polyolefin resin layer in order to impart practical performance such as heat sealability to the bioplastic resin layer, and improves the interlayer adhesion between the bioplastic resin layer and the polyolefin resin layer. Therefore, a chlorinated resin layer is formed. A known method can be used as a method of forming the chlorinated polyolefin resin layer. For example, a method of applying a chlorinated polyolefin resin solution to the bioplastic resin layer by gravure, offset method or the like can be mentioned. If printing is performed on the bioplastic resin layer, it is preferable to apply a chlorinated polyolefin-based resin solution to the printing surface at the end of the printing process because the process is completed in one process. The coating amount of the chlorinated polyolefin resin layer is preferably in the range of 0.1-5 g / m 2. When the coating amount is less than 0.1 g / m 2 , the adhesiveness with the bioplastic resin layer is lowered, which is not preferable. On the other hand, if it exceeds 5 g / m 2 , processing suitability such as coating unevenness and productivity decreases in a coating process such as gravure and offset method is not preferable.

本発明の積層体において、ポリオレフィン系樹脂層を形成する方法としては、上記のようにして形成されたバイオプラスチック樹脂層上の塩素化ポリオレフィン系樹脂層面に、ポリオレフィン系樹脂層を積層する方法が挙げられる。具体的な積層方法として、公知の溶融押出しコーティング方法を用いることが出来る。この溶融押出しコーティング方法は、樹脂層の厚みを20μm以下に比較的自在に操れることから、シーラントフィルムを貼り合せるラミネート方法よりも好ましい方法である。すなわち、シーラントフィルムの厚みは一般的には20μm以上であるため、シーラントフィルムを使用した積層体では、バイオプラスチック樹脂層が占める質量構成比が低下し、好ましいものでなくなる。しかし、ポリオレフィン系樹脂を溶融押出しコーティング方法により積層した場合は、ポリオレフィン系樹脂層を薄く設定できるので、積層体に占めるバイオプラスチック樹脂層の質量構成比を高めることが可能となり、その構成比を50質量%以上とすることができる。   In the laminate of the present invention, the method for forming the polyolefin resin layer includes a method of laminating the polyolefin resin layer on the chlorinated polyolefin resin layer surface on the bioplastic resin layer formed as described above. It is done. As a specific lamination method, a known melt extrusion coating method can be used. This melt extrusion coating method is more preferable than the laminating method in which a sealant film is bonded because the thickness of the resin layer can be relatively freely controlled to 20 μm or less. That is, since the thickness of the sealant film is generally 20 μm or more, in the laminate using the sealant film, the mass composition ratio occupied by the bioplastic resin layer is lowered, which is not preferable. However, when the polyolefin resin is laminated by the melt extrusion coating method, the polyolefin resin layer can be set thin, so that the mass composition ratio of the bioplastic resin layer in the laminate can be increased. It can be made into the mass% or more.

本発明の積層体は、単位面積当たりの質量が5〜50g/m2であることが好ましい。5g/m2で未満であると積層体として実用性能を持たせることができなくなる。また50g/m2を超えると省資源化という観点から好ましいものでなくなる。 The laminate of the present invention, it is preferable mass per unit area is 5 to 50 g / m 2. When it is less than 5 g / m 2 , it becomes impossible to give practical performance as a laminate. On the other hand , if it exceeds 50 g / m 2 , it is not preferable from the viewpoint of resource saving.

以下実施例により本発明を説明する。なお、実施例及び比較例の評価に用いた実用性能の測定方法は、次の通りである。   The following examples illustrate the invention. In addition, the measuring method of practical performance used for evaluation of an Example and a comparative example is as follows.

〔ヒートシール強力〕
ポリオレフィン系樹脂層面同士が最内になるようにして、180℃、0.5秒、1×105Paの条件で積層体をヒートシールした。ヒートシールされた部位をMDに15mm×100mmの短冊状に切り出し、20℃、65%RHの雰囲気下で一昼夜調湿を行った後、島津社製オートグラフにて非シール部を上下のチャック部にて固定し、シール部の破断強力を測定した。
[Strong heat seal]
The laminate was heat-sealed under the conditions of 180 ° C., 0.5 seconds, and 1 × 10 5 Pa so that the polyolefin resin layer surfaces were in the innermost part. The heat-sealed part was cut into a 15 mm × 100 mm strip in MD, and after humidity adjustment was performed overnight at 20 ° C. and 65% RH, the non-sealed part was placed on the upper and lower chuck parts using an autograph made by Shimadzu. The fracture strength of the seal part was measured.

〔引張強度〕
積層体を150mm×10mmの短冊状にそれぞれMD、TDに切り出し、20℃、65%RHの雰囲気下で一昼夜調湿を行った後、島津社製オートグラフにて端部を上下のチャック部にて固定し、ラミネート組成物の破断強力を測定した。
[Tensile strength]
The laminate is cut into MD and TD in 150 mm x 10 mm strips, and is conditioned for 14 days in an atmosphere of 20 ° C and 65% RH. And the breaking strength of the laminate composition was measured.

〔回転ドラム耐性試験〕
積層体を100mm×100mmに切り出し後、ポリオレフィン系樹脂層面同士が最内になるように四角ヒートシールして、水50gを充填した袋を作成し、20℃、65%RHの雰囲気下で一昼夜調湿を行った。1辺が300mm、幅が200mmであり、内面にクラフト紙が貼り付けられた六角回転ドラムに、上記袋を3個入れ、回転速度8回/分の条件で5分間ドラムを回転させた。破袋の有無を観察し、次のように評価した。
○:破袋した個数が0個。
△:破袋した個数が1〜2個。
×:破袋した個数が3個。
[Rotating drum resistance test]
After cutting out the laminate to 100 mm x 100 mm, square heat-sealing so that the polyolefin resin layer surfaces are in the innermost part, creating a bag filled with 50 g of water, and adjusting all day and night in an atmosphere of 20 ° C and 65% RH Wet was done. Three bags were placed in a hexagonal rotating drum having a side of 300 mm and a width of 200 mm and craft paper affixed to the inner surface, and the drum was rotated for 5 minutes at a rotational speed of 8 times / minute. The presence or absence of broken bags was observed and evaluated as follows.
○: The number of broken bags is zero.
Δ: The number of broken bags is 1-2.
X: The number of broken bags is three.

実施例1〜8
バイオプラスチック樹脂層としてポリ乳酸二軸延伸フィルム(ユニチカ社製 テラマックTF、密度1.27g/cm3、厚み15μm、25μm)を用い、これに塩素化ポリオレフィン系樹脂(大日本インキ化学工業社製 AC2050プライマー)100質量部と、ポリイソシアネート樹脂(大日本インキ化学工業社製 CVLハードナー#10)5質量部と、溶剤(大日本インキ化学工業社製 TAFNo10レジューサー)50質量部とからなる溶液を乾燥後の塗布量が1.0g/m2になるようにグラビアコーティングした。ポリオレフィン系樹脂としてポリプロピレン樹脂(日本ポリケム社製 ノバテックPP FL25HA、密度0.90g/cm3)を用い、これを押出機で290℃で溶融しTダイより押出し、塩素化ポリオレフィン系樹脂塗布面上に積層し、次いで、冷却ドラムで急冷して積層体を得た。なおポリオレフィン系樹脂層の厚みは、押出機の吐出量を調整することによって制御した。得られた積層体の実用性能を表1に示した。
Examples 1-8
Polylactic acid biaxially stretched film (Terramac TF manufactured by Unitika Ltd., density 1.27 g / cm 3 , thickness 15 μm, 25 μm) was used as the bioplastic resin layer, and chlorinated polyolefin resin (AC2050 manufactured by Dainippon Ink & Chemicals, Inc.) was used. Primer) 100 parts by weight, polyisocyanate resin (Dainippon Ink & Chemicals CVL Hardener # 10) 5 parts by weight and solvent (Dainippon Ink & Chemicals TAFNo10 reducer) 50 parts by weight Gravure coating was performed so that the subsequent coating amount was 1.0 g / m 2 . Polypropylene resin (Novatec PP FL25HA manufactured by Nippon Polychem Co., Ltd., density 0.90 g / cm 3 ) is used as the polyolefin resin, melted at 290 ° C. with an extruder, and extruded from a T-die, on the chlorinated polyolefin resin coating surface. Lamination was followed by quenching with a cooling drum to obtain a laminate. The thickness of the polyolefin resin layer was controlled by adjusting the discharge amount of the extruder. The practical performance of the obtained laminate is shown in Table 1.

比較例1〜2
ポリオレフィン系樹脂としてポリプロピレン樹脂(日本ポリケム社製 ノバテックPP FL25HA、密度0.90g/cm3)を用い、これを押出機で290℃で溶融しTダイより押出し、ポリ乳酸二軸延伸フィルム(ユニチカ社製 テラマックTF、密度1.27g/cm3、厚み15μm、25μm)に積層し、次いで、冷却ドラムで急冷して積層体を得た。なおポリオレフィン系樹脂層の厚みは、押出機の吐出量を調整することによって制御した。得られた積層体の実用性能を表1に示した。
Comparative Examples 1-2
Polypropylene resin (Novatec PP FL25HA manufactured by Nippon Polychem Co., Ltd., density 0.90 g / cm 3 ) was used as the polyolefin resin, melted at 290 ° C. with an extruder, extruded from a T die, and polylactic acid biaxially stretched film (Unitika Ltd.) Manufactured Terramac TF, density 1.27 g / cm 3 , thickness 15 μm, 25 μm), and then rapidly cooled with a cooling drum to obtain a laminate. The thickness of the polyolefin resin layer was controlled by adjusting the discharge amount of the extruder. The practical performance of the obtained laminate is shown in Table 1.

比較例3〜4
バイオプラスチック樹脂層としてポリ乳酸二軸延伸フィルム(ユニチカ社製 テラマックTF、密度1.27g/cm3、厚み15μm、25μm)を用い、これにポリウレタン系接着剤(東洋モートン社製 TM329/CAT−8B)を、塗布量が2.0g/m2になるようにグラビアコーティングした。次に、直鎖状低密度ポリエチレンフィルム(二村化学工業社製 太閤FL LL−XMT、密度0.92g/cm3)をドライラミネート方式にてポリ乳酸二軸延伸フィルムに貼り合せた後、40℃の室温にて3日間エージング処理を実施し積層体を得た。得られた積層体の実用性能を表1に示した。
Comparative Examples 3-4
Polylactic acid biaxially stretched film (Terramac TF manufactured by Unitika Ltd., density 1.27 g / cm 3 , thickness 15 μm, 25 μm) was used as the bioplastic resin layer, and polyurethane adhesive (TM329 / CAT-8B manufactured by Toyo Morton Co., Ltd.) was used for this. ) Was gravure coated so that the coating amount was 2.0 g / m 2 . Next, after bonding a linear low density polyethylene film (Taiko FL LL-XMT, density 0.92 g / cm 3 , manufactured by Nimura Chemical Co., Ltd.) to the polylactic acid biaxially stretched film by a dry laminating method, 40 ° C. Aged for 3 days at room temperature to obtain a laminate. The practical performance of the obtained laminate is shown in Table 1.

比較例5〜6
ポリ乳酸二軸延伸フィルム(ユニチカ社製 テラマックTF)、及びポリ乳酸無延伸フィルム(ユニチカ社製 テラマックJI、密度1.34g/cm3)それぞれ単独の実用性能を表1に示した。
Comparative Examples 5-6
The practical performance of each of the polylactic acid biaxially stretched film (Terramac TF manufactured by Unitika Ltd.) and the polylactic acid non-stretched film (Terramac JI manufactured by Unitika Ltd., density 1.34 g / cm 3 ) is shown in Table 1.

Figure 2005119125
Figure 2005119125

Claims (3)

少なくとも一層のバイオプラスチック樹脂層と、少なくとも一層の溶融押し出しされたポリオレフィン系樹脂層とを含む積層体であって、バイオプラスチック樹脂層とポリオレフィン系樹脂層との層間に塩素化ポリオレフィン系樹脂層を有することを特徴とする積層体。 A laminate comprising at least one bioplastic resin layer and at least one melt-extruded polyolefin resin layer, and having a chlorinated polyolefin resin layer between the bioplastic resin layer and the polyolefin resin layer A laminate characterized by the above. バイオプラスチック樹脂層が、ポリ乳酸系樹脂層であることを特徴とする請求項1に記載の積層体。 The laminate according to claim 1, wherein the bioplastic resin layer is a polylactic acid resin layer. バイオプラスチック樹脂層の質量構成比が、全質量に対し50質量%以上であることを特徴とする請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, wherein the mass composition ratio of the bioplastic resin layer is 50 mass% or more based on the total mass.
JP2003356446A 2003-10-16 2003-10-16 Laminated body Expired - Lifetime JP4357259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003356446A JP4357259B2 (en) 2003-10-16 2003-10-16 Laminated body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003356446A JP4357259B2 (en) 2003-10-16 2003-10-16 Laminated body

Publications (2)

Publication Number Publication Date
JP2005119125A true JP2005119125A (en) 2005-05-12
JP4357259B2 JP4357259B2 (en) 2009-11-04

Family

ID=34613690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003356446A Expired - Lifetime JP4357259B2 (en) 2003-10-16 2003-10-16 Laminated body

Country Status (1)

Country Link
JP (1) JP4357259B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010471A1 (en) * 2006-07-19 2008-01-24 Mitsubishi Plastics, Inc. Laminated sheet material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010471A1 (en) * 2006-07-19 2008-01-24 Mitsubishi Plastics, Inc. Laminated sheet material
JP2008044356A (en) * 2006-07-19 2008-02-28 Mitsubishi Plastics Ind Ltd Laminated sheet material
CN101489788B (en) * 2006-07-19 2012-07-04 三菱树脂株式会社 Laminated sheet material

Also Published As

Publication number Publication date
JP4357259B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
KR102579398B1 (en) Anti-fog copolyester heat sealing resin that can be extruded
JP4000422B2 (en) Easy-to-break film
WO2000018829A1 (en) Thermoplastic resin film and label sheet comprising the same
KR20070106722A (en) Breathable, heat-sealable composite polymeric film
JP2021066107A (en) Resin film, laminate and bag
JP5804339B2 (en) Anti-fogging multilayer film, laminate using the same, and packaging material
US20210339925A1 (en) High-barrier recyclable film
JP3895010B2 (en) Resin composition and laminate thereof
JP2022084741A (en) Low-adsorptivity laminate for hand cutting and opening, and packaging material and package using the laminate
JP2007332204A (en) Biodegradable adhesive film
JP2510407B2 (en) Laminated structure
JP4357259B2 (en) Laminated body
JP2008265155A (en) Laminated body, and its manufacturing method
JP4418161B2 (en) Heat-sealable polylactic acid-based biaxially stretched film
JP6769212B2 (en) Packaging materials for water-containing contents and their manufacturing methods
JPWO2015046131A1 (en) Anti-fogging multilayer film, laminate using the same, and packaging material
US10029445B2 (en) Environmentally friendly composite foils
JP5050833B2 (en) Laminated body
JP4922880B2 (en) Antifouling film for wallpaper
JP2003080655A (en) Heat-shrinkable film
JP2006193178A (en) Packaging bag easy to tear with hand
US20220388748A1 (en) Thermoformable film for barrier packaging and methods of forming the same
US20230110933A1 (en) Polymeric film tube
JP3583180B2 (en) Method for producing multilayer film
WO2014104237A1 (en) Gas-barrier laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4357259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250