JP2005118841A - Plate shape control method and plate rolling mill - Google Patents

Plate shape control method and plate rolling mill Download PDF

Info

Publication number
JP2005118841A
JP2005118841A JP2003358393A JP2003358393A JP2005118841A JP 2005118841 A JP2005118841 A JP 2005118841A JP 2003358393 A JP2003358393 A JP 2003358393A JP 2003358393 A JP2003358393 A JP 2003358393A JP 2005118841 A JP2005118841 A JP 2005118841A
Authority
JP
Japan
Prior art keywords
plate
rolling
plate shape
shape control
backup roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003358393A
Other languages
Japanese (ja)
Other versions
JP3930846B2 (en
Inventor
Kenji Yamada
健二 山田
Shigeru Ogawa
茂 小川
Shiyuuichi Jikumaru
修一 軸丸
Koichiro Takeshita
幸一郎 竹下
Maki Kobayashi
真樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003358393A priority Critical patent/JP3930846B2/en
Publication of JP2005118841A publication Critical patent/JP2005118841A/en
Application granted granted Critical
Publication of JP3930846B2 publication Critical patent/JP3930846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plate shape control method by a split backup roll type plate rolling mill by which the dimensions and the shape of a plate is controlled in high accuracy and stable rolling operation is realized. <P>SOLUTION: In the plate shape control method, the plate shape when a plate is rolled is estimated in a split backup roll type plate rolling mill 8 based on the loads and the positions of reduction of split backup rolls 21-27, and 51-57 measured when the plate is rolled, and a plate shape controller is controlled so as to obtain the target plate shape based on the result of the estimation. The positions of both edges in the width direction of a work S to be rolled under the rolling are measured or estimated, and the positions of reduction of the split backup rolls 21-27, and 51-57 are controlled based on the measured values or the estimated values. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、圧延機における板形状制御方法、特に少なくとも上下いずれかのロールアセンブリーが、軸方向に3分割以上に分割した分割バックアップロールによってワークロールを支持する機構を有する分割バックアップロール型板圧延機を用いた板形状制御方法および板圧延機に関する。   The present invention relates to a plate shape control method in a rolling mill, in particular, a split backup roll type plate rolling in which at least one of the upper and lower roll assemblies has a mechanism for supporting a work roll by a divided backup roll divided into three or more in the axial direction. The present invention relates to a plate shape control method using a mill and a plate rolling machine.

最近、分割バックアップロールの荷重分布を測定し、圧延材とワークロール間の荷重分布を推定し、これにより圧延後の板クラウン・板形状を高精度で推定し得る分割バックアップロール型板圧延機が注目されている(例えば、特許文献1参照)。   Recently, there has been a split backup roll type plate rolling mill that can measure the load distribution of the split backup roll and estimate the load distribution between the rolled material and the work roll. It is attracting attention (see, for example, Patent Document 1).

また、上記板圧延機おいて、高精度で板形状を制御する方法が提案されている。この板形状制御方法は、前記板圧延機において各分割バックアップロールの測定荷重から推定される圧延材〜ワークロール間の幅方向荷重分布が所望の値となるように幅方向板厚板分布・形状制御装置を制御する(例えば、特許文献2参照)。
特開平5−69010号公報(第3頁、図1および図3) 特開平6−262228号公報(第2頁、第3頁、図1および図2)
Moreover, in the said plate rolling machine, the method of controlling a plate shape with high precision is proposed. In this plate shape control method, the width direction plate thickness plate distribution and shape so that the width direction load distribution between the rolled material and the work roll estimated from the measured load of each divided backup roll in the plate rolling machine becomes a desired value. A control apparatus is controlled (for example, refer patent document 2).
Japanese Patent Laid-Open No. 5-69010 (page 3, FIGS. 1 and 3) JP-A-6-262228 (2nd page, 3rd page, FIG. 1 and FIG. 2)

板圧延の場合、圧延前の圧延材は長手方向に幅変動やキャンバー(横曲がり)が発生しており、圧延中に圧延材両側のエッジ位置は大きく変化する。この結果、圧延材のエッジと圧延材エッジの直上(または直下)に位置する分割バックアップロールのエッジとの位置関係、例えば図3に示す分割バックアップロール21、27の圧下有効幅(圧延材Sの両エッジと分割バックアップロール21、27のエッジとの間の水平距離)δw、δdが常に変動している。このような場合、分割バックアップロール21、27の荷重は、圧下有効幅δw、δdの影響を顕著に受ける。このため、上記従来の板形状制御方法では、圧延荷重分布推定および目標荷重値の決定に少なからず誤差を生じ、所望の寸法、形状を得られず、特に板エッジ近傍の板形状や板厚が不良となるおそれがあった。   In the case of plate rolling, the rolled material before rolling undergoes width variation and camber (lateral bending) in the longitudinal direction, and the edge positions on both sides of the rolled material change greatly during rolling. As a result, the positional relationship between the edge of the rolled material and the edge of the divided backup roll located immediately above (or directly below) the rolled material edge, for example, the effective rolling reduction width of the divided backup rolls 21 and 27 shown in FIG. Horizontal distances (δw, δd) between both edges and the edges of the divided backup rolls 21, 27 are constantly changing. In such a case, the loads of the divided backup rolls 21 and 27 are significantly affected by the effective rolling reduction widths δw and δd. For this reason, in the conventional plate shape control method, there are not a few errors in estimating the rolling load distribution and determining the target load value, and the desired dimensions and shape cannot be obtained. There was a risk of failure.

本発明は、上記問題点を解消することを課題とし、高精度の寸法、形状制御および圧延操業の安定化を図ることが可能な分割バックアップロール型板圧延機による板形状制御方法および板圧延機を提供するものである。   An object of the present invention is to eliminate the above-mentioned problems, and to provide a plate shape control method and a plate rolling machine using a split backup roll type plate rolling machine capable of achieving high-precision size and shape control and stabilization of rolling operation. Is to provide.

本発明の板形状制御方法は、少なくとも上、下いずれか一方のロールアセンブリーが軸方向に3分割以上に分割された分割バックアップロールによって上、下ワークロールを支持する機構を有し、各分割バックアップロールはそれぞれ独立した荷重測定装置を配備し、さらに板形状制御装置を備えた板圧延機で、板圧延時に測定した各分割バックアップロールの荷重および圧下位置に基づいて板圧延時の板形状を推定し、推定結果に基づいて目標形状となるように該板形状制御装置を制御する板形制御方法において、圧延中の圧延材の幅方向両エッジ位置を測定または推定し、この測定値または推定値に基づき各分割バックアップロールの圧下位置を制御することを特徴としている。   The plate shape control method of the present invention has a mechanism for supporting the upper and lower work rolls by a divided backup roll in which at least one of the upper and lower roll assemblies is divided into three or more parts in the axial direction. Each backup roll is equipped with an independent load measuring device and a plate rolling machine equipped with a plate shape control device, and the plate shape at the time of plate rolling is determined based on the load and rolling position of each divided backup roll measured at the time of plate rolling. In the plate shape control method for controlling the plate shape control device so as to obtain a target shape based on the estimation result, the width direction both edge positions of the rolled material being rolled are measured or estimated, and this measured value or estimated It is characterized by controlling the reduction position of each divided backup roll based on the value.

本発明の板圧延機は、上記板形状制御方法を実施するための圧延機であって、板両エッジの板幅方向の位置をそれぞれ測定する板両エッジ測定装置、または板幅測定装置および板片エッジの板幅方向の位置を測定する板片エッジ測定装置を、前記圧延機の入側または出側の少なくとも一方に設けたことを特徴としている。   The plate rolling machine of the present invention is a rolling mill for carrying out the above plate shape control method, and measures both the plate edge measuring device or the plate width measuring device and the plate for measuring the positions of the plate edges in the plate width direction. A plate piece edge measuring device for measuring the position of one edge in the plate width direction is provided on at least one of the entrance side and the exit side of the rolling mill.

本発明では、圧延材の幅方向両エッジ位置の測定値または推定値に基づき各分割バックアップロールの圧下位置を制御するので、高精度の寸法、形状制御および圧延操業の安定化を図ることができる。   In the present invention, since the rolling position of each divided backup roll is controlled based on the measured value or estimated value of the width direction both edge positions of the rolled material, high-precision dimension and shape control and stabilization of the rolling operation can be achieved. .

図1および図2は本発明の実施の形態を示すもので、図1は板形状制御方法を実施する板圧延機の側面図であり、図2は上ワークロールおよび分割バックアップロールの配置を示す平面図である。   1 and 2 show an embodiment of the present invention. FIG. 1 is a side view of a plate rolling machine for carrying out a plate shape control method, and FIG. 2 shows an arrangement of upper work rolls and divided backup rolls. It is a top view.

板圧延機8は、主圧下装置17および主荷重測定装置18がハウジング9に設けられている。ハウジング9内に上インナーハウジング15および下インナーハウジング45が設けられている。上インナーハウジング15は、主圧下装置17により昇降可能に配されている。   In the plate rolling machine 8, a main reduction device 17 and a main load measuring device 18 are provided in the housing 9. An upper inner housing 15 and a lower inner housing 45 are provided in the housing 9. The upper inner housing 15 is disposed so as to be movable up and down by a main pressure reducing device 17.

上インナーハウジング15に、上ロールアセンブリー10が設けられている。上ロールアセンブリー10には分割バックアップロール21〜27が配され、上ワークロール13を支持している。また、各々の分割バックアップロール21〜27には独立した荷重測定装置321〜327が配備されている。図中301〜307は、各分割バックアップロール21〜27に独立に配した圧下装置の例である。図2に示すように、3個の入側分割バックアップロール22、24、26と4個の出側分割バックアップロール21、23、25、27とがロール軸方向に交互に配置されている。   An upper roll assembly 10 is provided in the upper inner housing 15. The upper roll assembly 10 is provided with divided backup rolls 21 to 27 and supports the upper work roll 13. In addition, independent load measuring devices 321 to 327 are provided for the respective divided backup rolls 21 to 27. In the figure, reference numerals 301 to 307 are examples of a reduction device arranged independently on each of the divided backup rolls 21 to 27. As shown in FIG. 2, three entrance-side split backup rolls 22, 24, 26 and four exit-side split backup rolls 21, 23, 25, 27 are alternately arranged in the roll axis direction.

下インナーハウジング45にも、同様に下ロールアセンブリー40が設けられ、下ワークロール43を支持している。下ロールアセンブリー40は、分割バックアップロール51〜57、圧下装置601〜607、および荷重測定装置621〜627を備えている。入側分割バックアップロール52、54、56と出側分割バックアップロール51、53、55、57の配置は、上インナーハウジング15のものと同じである。また、上分割バックアップロール21〜27と下分割バックアップロール51〜57とは上下対称となっている。   Similarly, a lower roll assembly 40 is provided in the lower inner housing 45 to support the lower work roll 43. The lower roll assembly 40 includes divided backup rolls 51 to 57, reduction devices 601 to 607, and load measuring devices 621 to 627. The arrangement of the inlet side divided backup rolls 52, 54, 56 and the outlet side divided backup rolls 51, 53, 55, 57 is the same as that of the upper inner housing 15. The upper divided backup rolls 21 to 27 and the lower divided backup rolls 51 to 57 are vertically symmetric.

圧延機入側に、両エッジ位置測定装置70が配置されている。圧延機が板幅測定装置を備えている場合は、片エッジ位置測定装置であってもよい。また、これらエッジ位置測定装置を、圧延機出側に設けてもよい。   Both edge position measuring devices 70 are arranged on the entrance side of the rolling mill. When the rolling mill includes a sheet width measuring device, a single edge position measuring device may be used. Moreover, you may provide these edge position measuring apparatuses in the rolling mill delivery side.

板圧延機8はまた、分割バックアップロール21〜27、51〜57の圧下パターン制御機構やワークロールベンダー等をアクチュエータとする板形状制御装置(いずれも図示しない)を有する。板形状制御装置には、各荷重測定装置321〜327、621〜627および両エッジ位置測定装置70の測定値が入力される。また、各分割バックアップロール圧下装置301〜307、601〜607は板形状制御装置からの指令に基づいて作動する。   The plate rolling machine 8 also has a plate shape control device (none of which is shown in the figure) that uses the reduction pattern control mechanism of the divided backup rolls 21 to 27 and 51 to 57, a work roll bender, or the like as an actuator. Measurement values of the load measuring devices 321 to 327 and 621 to 627 and the edge position measuring device 70 are input to the plate shape control device. Moreover, each division | segmentation backup roll reduction device 301-307, 601-607 operate | moves based on the command from a plate shape control apparatus.

なお、上記板圧延機8は上、下とも各分割バックアップロール21〜27、51〜57に圧下装置301〜307、601〜607および、荷重測定装置321〜327、621〜627を装備するものであったが、上、下の何れか片側に両装置が装備されていればよい。分割バックアップロールは、軸方向に3分割以上であればよく、入側、出側で対向するように配置されていてもよい。また、上、下の何れか片側のバックアップロールは非分割バックアップロールであってもよい。   In addition, the said plate rolling machine 8 equips each division | segmentation backup roll 21-27, 51-57 with the rolling down apparatus 301-307, 601-607 and the load measuring apparatus 321-327, 621-627 on the upper and lower sides. However, it is sufficient that both devices are equipped on either one of the upper and lower sides. The division | segmentation backup roll should just be divided into 3 or more to an axial direction, and may be arrange | positioned so that it may oppose on the entrance side and the exit side. Further, the backup roll on either one of the upper and lower sides may be a non-split backup roll.

以上のように構成された板圧延機8において、板形状を次のように制御する。
圧延中に、各荷重測定装置321〜327、621〜627で各分割バックアップロール21〜27、51〜57に作用する荷重を、両エッジ位置測定装置70で圧延材Sの幅方向両エッジ位置を測定する。両エッジ位置測定装置70とワークロール13、43間が離れている場合には、板速度等を用いてエッジ位置測定時刻と圧延時刻の時間差の補正などを行うことが望ましい。なお、圧延材Sのエッジ位置の測定値の代わりにを推定値を用いてもよい。この場合には、圧延前の板幅、キャンバー形状、サイドガイドの設定位置などから圧延材Sのエッジ位置を推定する。
In the plate rolling machine 8 configured as described above, the plate shape is controlled as follows.
During rolling, loads acting on the divided backup rolls 21 to 27 and 51 to 57 by the load measuring devices 321 to 327 and 621 to 627 are obtained, and both edge positions in the width direction of the rolled material S are obtained by the both edge position measuring device 70. taking measurement. When both the edge position measuring device 70 and the work rolls 13 and 43 are separated from each other, it is desirable to correct a time difference between the edge position measuring time and the rolling time by using a plate speed or the like. Note that an estimated value may be used instead of the measured value of the edge position of the rolled material S. In this case, the edge position of the rolled material S is estimated from the plate width before rolling, the camber shape, the setting position of the side guide, and the like.

圧延材の両エッジ位置の測定値または推定値に基づき、各分割バックアップロールの圧下位置を次のように制御する。   Based on the measured value or estimated value of both edge positions of the rolled material, the reduction position of each divided backup roll is controlled as follows.

第i分割バックアップロールに作用する荷重をq、その位置に対応する圧延材〜ワークロール間荷重をpとし、ワークロール軸心たわみの変形マトリクスをK ij、分割バックアップロール系の変形マトリクスをK ij、ロールクラウンの型式で表現したワークロールプロフィルをC 、分割バックアップロールプロフィルをC 、ワークロール軸心たわみをy とすると、分割バックアップロールとワークロールの適合条件より、式(1)が得られる。
=K ij+C +C (1)
なお、本明細書の数式では、同添字の繰り返しがある場合にはアインシュタインの総和規約を用いて表現する。また、K ijは第j分割バックアップロールに単位荷重が負荷された時の第i分割バックアップロールの変位を表す影響係数マトリクスであるが、ここでは、ハウジングの変数およびワークロール〜分割バックアップロールの接触による両ロールの偏平変形を含めた変形マトリクスとしている。
Load the q i which acts on the i split backup rolls, a load-rolled material - work roll corresponding to the position and p i, deformation matrix for K W ij of the work roll axis deflection, divided backup roll system deformation matrix Is expressed as K B ij , and the work roll profile expressed in roll crown type is C W i Assuming that the split backup roll profile is C B i and the work roll axis deflection is y W i , Equation (1) is obtained from the matching conditions of the split backup roll and the work roll.
y W i = K B ij q j + C W i + C B i (1)
In addition, in the mathematical expression of this specification, when there is repetition of the subscript, it is expressed using Einstein's sum rules. K B ij is an influence coefficient matrix representing the displacement of the i-th divided backup roll when a unit load is applied to the j-th divided backup roll. Here, the housing variables and the work rolls to the divided backup rolls are divided. The deformation matrix includes the flat deformation of both rolls due to contact.

一方、ワークロールたわみは、変形マトリクスK ijおよび圧延材〜ワークロール間に作用する圧延荷重分布pを用いて、式(2)で表される。
=K ij(p−q) (2)
On the other hand, the work roll deflection is expressed by Expression (2) using the deformation matrix K W ij and the rolling load distribution p i acting between the rolled material and the work roll.
y W i = K W ij ( p j -q j) (2)

式(1)、式(2)よりy を消去し、整理すると圧延荷重分布pを求める式(3)が得られる。
=q+[K−1 ij(K jk+C +C )(3)
上記の右辺で、[K−1 ijはK ijの逆マトリクスであり、K jkとともに予め計算できる量である。また、C およびC も測定あるいは推定可能な量であるので、本発明の圧延機によってqの測定値が得られれば式(3)により圧延材〜ワークロール間の圧延荷重分布pは直ちに計算することが可能である。
Equation (1), erases the y W i from the equation (2), Equation (3) is obtained to determine the a to organize rolling force distribution p i.
p i = q i + [K W ] −1 ij (K B jk q k + C W j + C B j ) (3)
In the above right side, [K W ] −1 ij is an inverse matrix of K W ij and is a quantity that can be calculated in advance together with K B jk . Further, since C B j and C W j are also quantities that can be measured or estimated, if the measured value of q i is obtained by the rolling mill of the present invention, the rolling load distribution between the rolled material and the work rolls can be calculated by the equation (3) p i can be calculated immediately.

ところで、単位幅当たりの圧延荷重p は、一般に、入側板厚H、出側板厚h、変形抵抗k、摩擦係数μ、入側張力σ、出側張力σの関数であり、式(4)で与えられる。
=p(H,h,k,μ,σ,σ) (4)
以上の要因の内、圧延材の板幅方向の位置によって大きく変動し、しかも圧延荷重分布に大きな影響を与える可能性のあるものは、入側張力、出側張力であり、これらは板形状を表現する伸び歪差Δεと圧延材のヤング率Eを通じて張力フィードバック効果と呼ばれる次のような関係を有することが判っている。
By the way, the rolling load p * i per unit width is generally a function of the entry side plate thickness H, the exit side plate thickness h, the deformation resistance k, the friction coefficient μ, the entry side tension σ 0 , and the exit side tension σ 1. It is given by (4).
p * i = p * (H, h, k, μ, σ 0 , σ 1 ) (4)
Among the above factors, the entry side tension and the exit side tension vary greatly depending on the position of the rolled material in the sheet width direction and may have a significant effect on the rolling load distribution. It is known that the following relationship called the tension feedback effect is obtained through the elongation strain difference Δε expressed and the Young's modulus E of the rolled material.

σ=σ −EΔε (5)
σ=σ −EΔε (6)
ここで、σ 、σ は平均張力であり、式(5)、(6)中の伸び歪差Δεは、板幅方向に積分した時に零となるように相対値のみを取り出している。
σ 0 = σ * 0 −EΔε (5)
σ 1 = σ * 1− EΔε (6)
Here, σ * 0 and σ * 1 are average tensions, and only the relative value is extracted so that the elongation strain difference Δε in the equations (5) and (6) becomes zero when integrated in the plate width direction. Yes.

式(5)、(6)を式(4)に代入することにより式(7)を得る。
=p(H,h,k,μ,σ ,σ ,Δε) (7)
式(7)右辺括弧内のΔε以外の全ての因子は既知か、あるいは推定可能な量であるので圧延荷重pを分割バックアップロール荷重q(測定値)から演算し、さらに式(7)を逆算することによって、伸び歪差Δεを演算算出することができる。その際、圧延材エッジの直上(または直下)に位置する分割バックアップロール(i=wおよびi=d)においては、図4に示すように圧延荷重pとpが同値の場合でも圧下有効幅δw、δdに応じて単位幅当たりの圧延荷重p 、p が変化するため、測定もしくは推定した圧延材の両エッジ位置から圧下有効幅δw、δdを算出した上で式(8)、(9)によりp 、p を演算算出する。
=p/δw (8)
=p/δd (9)
その他の分割バックアップロール(i≠w、d)については各分割バックアップロールの胴長wを用いて式(10)で演算算出する。
=p/w (10)
伸び歪差Δε、即ち、現在の板形状が演算算出されれば、これを所望の板形状とするべく板形状制御装置を操作すればよい。例えば、所望の板形状に相当する伸び歪差Δεoptを式(7)に代入して目標とすべき単位幅当たりの圧延荷重分布p*opt を求め、さらに式(8)〜式(10)を逆算して所望の板形状に相当する圧延荷重分布popt を算出しておき、これと現在の圧延荷重分布pの差分を解消するべく式(11)により各分割バックアップロールの圧下位置の操作量δuを演算算出し、これに基づいて板形状制御装置を操作する。
By substituting Equations (5) and (6) into Equation (4), Equation (7) is obtained.
p * i = p * (H, h, k, μ, σ * 0 , σ * 1 , Δε) (7)
Since all the factors other than Δε in the right parenthesis in Equation (7) are known or can be estimated, the rolling load p i is calculated from the divided backup roll load q i (measured value), and then Equation (7) Can be calculated by calculating the elongation strain difference Δε. At that time, in the divided backup roll (i = w and i = d) located immediately above (or directly below) the rolled material edge, even if the rolling loads p w and p d are the same as shown in FIG. Since the rolling loads p * w and p * d per unit width change according to the widths δw and δd, the rolling reduction effective widths δw and δd are calculated from both edge positions of the measured or estimated rolled material, and then the equation (8 ) And (9), p * w and p * d are calculated.
p * w = p w / δw (8)
p * d = p d / δd (9)
Other resolving backup roll (i ≠ w, d) computes calculated by equation (10) using the torso length w i of each divided backup rolls for.
p * i = p i / w i (10)
If the elongation strain difference Δε, that is, the current plate shape is calculated and calculated, the plate shape control device may be operated to make this a desired plate shape. For example, the elongation strain difference Δε opt corresponding to the desired plate shape is substituted into the equation (7) to obtain the rolling load distribution p * opt i per unit width, and further the equations (8) to (10 ) calculated back to the advance by calculating the rolling force distribution p opt i corresponding to the desired plate shape, which the pressure of the split backup rolls by the formula (11) in order to eliminate the difference between the current rolling force distribution p i The operation amount δu i of the position is calculated and calculated, and the plate shape control device is operated based on this.

δu=F(δp) (11)
ここで、δpは、所望の板形状に相当する圧延荷重分布popt と現在の圧延荷重分布pの差分であり、式(12)で求められる。
δp=popt −p (12)
以上の手順を実行するためのフローチャート例を図5に示す。
δu i = F (δp i ) (11)
Here, δp i is the difference between the rolling load distribution p opt i corresponding to the desired plate shape and the current rolling load distribution p i , and is obtained by Expression (12).
δp i = p opt i −p i (12)
FIG. 5 shows an example of a flowchart for executing the above procedure.

図4に示したように、圧延材エッジの直上(または直下)に位置する分割バックアップロール(i=wおよびi=d)では、分割バックアップロール荷重q、qと圧延荷重p、pの作用する位置がワークロール13の胴長方向に異なるため、前述した式(2)、式(3)に代えて下記の式(2’)、式(3’)を用いることが望ましい。
=KWe ij−K ij (2’)
=[KWe−1 ij{(K jk+K jk)q+C +C } (3’)
ここで、KWe ijは圧延荷重p、pの作用位置を考慮したワークロールたわみ変形マトリクスであり、[KWe−1 ijはその逆マトリクスである。図3、図4から明らかなように、圧延荷重p、pの作用位置は圧延材の両エッジ位置の測定値もしくは推定値から容易に求められ、変形マトリクスKWe ijおよびその逆マトリクス[KWe−1 ijを算出することができる。
As shown in FIG. 4, in the divided backup rolls (i = w and i = d) located immediately above (or directly below) the rolled material edge, the divided backup roll loads q w and q d and the rolling loads p w and p Since the position where d acts differs in the body length direction of the work roll 13, it is desirable to use the following formulas (2 ′) and (3 ′) instead of the above-described formulas (2) and (3).
y W i = K We ij p j -K W ij q j (2 ')
p i = [K We ] −1 ij {(K W jk + K B jk ) q k + C W j + C B j } (3 ′)
Here, K We ij is a work roll deflection deformation matrix in consideration of the working positions of the rolling loads p w and p d , and [K We ] −1 ij is an inverse matrix thereof. As apparent from FIGS. 3 and 4, the operation positions of the rolling loads p w and p d can be easily obtained from measured values or estimated values of both edge positions of the rolled material, and the deformation matrix K We ij and its inverse matrix [ K We ] −1 ij can be calculated.

また、本発明により圧延材の幅方向板厚分布の制御も為し得ることは、例えば特許文献2の第6頁、第7頁を参照すれば、容易に想到できる。   Further, the fact that the thickness distribution in the width direction of the rolled material can be controlled by the present invention can be easily conceived by referring to, for example, pages 6 and 7 of Patent Document 2.

本発明の方法を実施する上、下分割バックアップロールを備えた板圧延機を示す側面図である。It is a side view which shows the plate rolling machine provided with the upper division | segmentation backup roll while enforcing the method of this invention. 図1に示す板圧延機の分割バックアップロールの配置を示す平面図である。It is a top view which shows arrangement | positioning of the division | segmentation backup roll of the plate rolling machine shown in FIG. 圧延材のエッジと圧延材エッジの直上に位置する分割バックアップロールのエッジとの位置関係を説明する模式図である。It is a schematic diagram explaining the positional relationship of the edge of a rolling material, and the edge of the division | segmentation backup roll located just above a rolling material edge. ワークロール〜分割バックアップロール間に作用する荷重q,q,q,ワークロール〜圧延材間に作用する圧延荷重p,p,p,および単位幅当たりの圧延荷重p ,p ,p の関係を説明する模式図である。Loads q w , q i , q d acting between the work roll and the divided backup roll, rolling loads p w , p i , p d acting between the work roll and the rolled material, and a rolling load p * w per unit width , P * i , p * d . 本発明の方法を実施するための手順を例示したフローチャート図である。It is the flowchart figure which illustrated the procedure for implementing the method of this invention.

符号の説明Explanation of symbols

8 分割バックアップロール型板圧延機
9 ハウジング 10、40 ロールアセンブリー
13、43 ワークロール 15、45 インナーハウジング
17 主圧下装置 18 主荷重測定装置
21〜27 上分割バックアップロール
301〜307 上分割バックアップロール圧下装置
321〜327 上分割バックアップロール荷重測定装置
51〜57 下分割バックアップロール
601〜607 下分割バックアップロール圧下装置
621〜627 下分割バックアップロール荷重測定装置
70 圧延材エッジ位置測定装置
S 圧延材
8 Split backup roll type plate rolling machine 9 Housing 10, 40 Roll assembly 13, 43 Work roll 15, 45 Inner housing 17 Main reduction device 18 Main load measuring device
21-27 Upper division backup roll 301-307 Upper division backup roll reduction device 321-327 Upper division backup roll load measuring device 51-57 Lower division backup roll 601-607 Lower division backup roll reduction device 621-627 Lower division backup roll load Measuring device 70 Rolled material edge position measuring device S Rolled material

Claims (2)

少なくとも上、下いずれか一方のロールアセンブリーが軸方向に3分割以上に分割された分割バックアップロールによって上、下ワークロールを支持する機構を有し、各分割バックアップロールはそれぞれ独立した荷重測定装置を配備し、さらに板形状制御装置を備えた板圧延機で、板圧延時に測定した各分割バックアップロールの荷重および圧下位置に基づいて板圧延時の板形状を推定し、推定結果に基づいて目標形状となるように該板形状制御装置を制御する板形制御方法において、圧延中の圧延材の幅方向両エッジ位置を測定または推定し、この測定値または推定値に基づき各分割バックアップロールの圧下位置を制御することを特徴とする板圧延機における板形状制御方法。 At least one of the upper and lower roll assemblies has a mechanism for supporting the upper and lower work rolls by a divided backup roll divided into three or more in the axial direction, and each divided backup roll has an independent load measuring device. In addition, a plate rolling machine equipped with a plate shape control device is used to estimate the plate shape during plate rolling based on the load and reduction position of each divided backup roll measured during plate rolling, and the target based on the estimation result In the plate shape control method for controlling the plate shape control device so as to have a shape, both edge positions in the width direction of the rolled material being rolled are measured or estimated, and the rolling of each divided backup roll is reduced based on the measured value or the estimated value. A plate shape control method in a plate rolling machine, wherein the position is controlled. 請求項1に記載した板形状制御方法を実施するための圧延機であって、板両エッジの板幅方向の位置をそれぞれ測定する板両エッジ測定装置、または板幅測定装置および板片エッジの板幅方向の位置を測定する板片エッジ測定装置を、前記圧延機の入側または出側の少なくとも一方に設けたことを特徴とする板圧延機。 A rolling mill for carrying out the plate shape control method according to claim 1, wherein both the plate edge measuring device and the plate width measuring device for measuring the positions of the plate edges in the plate width direction, respectively A plate rolling machine characterized in that a plate edge measuring device for measuring a position in the plate width direction is provided on at least one of an entrance side and an exit side of the rolling mill.
JP2003358393A 2003-10-17 2003-10-17 Sheet shape control method and sheet rolling machine Expired - Fee Related JP3930846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003358393A JP3930846B2 (en) 2003-10-17 2003-10-17 Sheet shape control method and sheet rolling machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003358393A JP3930846B2 (en) 2003-10-17 2003-10-17 Sheet shape control method and sheet rolling machine

Publications (2)

Publication Number Publication Date
JP2005118841A true JP2005118841A (en) 2005-05-12
JP3930846B2 JP3930846B2 (en) 2007-06-13

Family

ID=34614979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003358393A Expired - Fee Related JP3930846B2 (en) 2003-10-17 2003-10-17 Sheet shape control method and sheet rolling machine

Country Status (1)

Country Link
JP (1) JP3930846B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136914A (en) * 2007-12-10 2009-06-25 Nippon Steel Corp Plate rolling method and plate mill
JP2010120048A (en) * 2008-11-19 2010-06-03 Nippon Steel Corp Method of identifying deformation characteristic of rolling mill under main pressure
CN103341499A (en) * 2013-06-14 2013-10-09 武汉钢铁(集团)公司 Device for tracing and detecting interior plate blank head position of fixed width machine
WO2014104224A1 (en) 2012-12-26 2014-07-03 Nakajima Toshihiro PGC-1β-PROTEIN-FUNCTION REGULATOR, MITOCHONDRIA-FUNCTION REGULATOR, ANTI-OBESITY AGENT, AND SCREENING METHOD THEREFOR

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136914A (en) * 2007-12-10 2009-06-25 Nippon Steel Corp Plate rolling method and plate mill
JP2010120048A (en) * 2008-11-19 2010-06-03 Nippon Steel Corp Method of identifying deformation characteristic of rolling mill under main pressure
WO2014104224A1 (en) 2012-12-26 2014-07-03 Nakajima Toshihiro PGC-1β-PROTEIN-FUNCTION REGULATOR, MITOCHONDRIA-FUNCTION REGULATOR, ANTI-OBESITY AGENT, AND SCREENING METHOD THEREFOR
CN103341499A (en) * 2013-06-14 2013-10-09 武汉钢铁(集团)公司 Device for tracing and detecting interior plate blank head position of fixed width machine

Also Published As

Publication number Publication date
JP3930846B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
US20190047028A1 (en) Rolling mill and rolling mill adjustment method
JP4847111B2 (en) Multistage rolling mill and control method of multistage rolling mill
JPWO2004082860A1 (en) Rolling method and rolling apparatus for metal sheet
JPH06304632A (en) Rolling mill and rolling method
JP3930846B2 (en) Sheet shape control method and sheet rolling machine
JPH04167910A (en) Method and apparatus for controlling rolling mill
JP4742857B2 (en) Metal rolling mill and rolling method
JP4267609B2 (en) Rolling method and rolling apparatus for metal sheet
JP2007190579A (en) Method and equipment for rolling metallic sheet
JP6760252B2 (en) Roller control device and control method
JP4568156B2 (en) Method for identifying roll profile of sheet rolling mill
JP4214069B2 (en) Rolling method and rolling apparatus for metal sheet
WO2019221297A1 (en) Rolling mill and setting method for rolling mill
JP2009000742A (en) Method of controlling plate thickness difference in plate width direction in hot strip mill
JP3938635B2 (en) Sheet shape control method in sheet rolling
JP2016215241A (en) Rolling controller and rolling control method
JPH0813367B2 (en) Plate rolling machine
JP2006082118A (en) Method and apparatus for rolling metallic sheet
JP2005118842A (en) Method for identifying deformation property of rolling mill
KR100417517B1 (en) Camber control method of plate pass mill
JP2550267B2 (en) Camber control method in plate rolling
JP7314921B2 (en) Method for controlling meandering of hot-rolled steel strip, meandering control device, and hot rolling equipment
JPH01180708A (en) Multistage rolling mill
JP6562010B2 (en) Control device and control method for rolling mill
JP2005118844A (en) Method for adjusting work roll position and rolling mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees