JP2005118760A - Apparatus for generating saturated gas - Google Patents

Apparatus for generating saturated gas Download PDF

Info

Publication number
JP2005118760A
JP2005118760A JP2003359678A JP2003359678A JP2005118760A JP 2005118760 A JP2005118760 A JP 2005118760A JP 2003359678 A JP2003359678 A JP 2003359678A JP 2003359678 A JP2003359678 A JP 2003359678A JP 2005118760 A JP2005118760 A JP 2005118760A
Authority
JP
Japan
Prior art keywords
temperature
water
air
gas
saturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003359678A
Other languages
Japanese (ja)
Other versions
JP4291879B2 (en
Inventor
Hiroshi Okuda
浩史 奥田
Akira Mizugaki
朗 水柿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Espec Corp
Original Assignee
Espec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Espec Corp filed Critical Espec Corp
Priority to JP2003359678A priority Critical patent/JP4291879B2/en
Publication of JP2005118760A publication Critical patent/JP2005118760A/en
Application granted granted Critical
Publication of JP4291879B2 publication Critical patent/JP4291879B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Air Humidification (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for generating saturated gas, which is constituted so that the water put in a vessel is heated by a heating means, a gas is then put in the vessel, dispersed in the hot water and brought into contact with the hot water and the hot water-contacted gas is withdrawn from the vessel as the gas containing saturated steam of the objective temperature, thereby the saturated gas having a precise dew point can be obtained. <P>SOLUTION: This apparatus for generating saturated air is provided with a saturation tank 1, an intermediate mesh 4 arranged at the vertically intermediate position of the saturation tank 1, a second heating unit 5 and a heating unit 2 arranged respectively in the upper and lower sections 1a and 1b and a water replenishing pipe 13. The water in the lower section 1b is heated by the heating unit 2 to the temperature higher than the temperature t<SB>2</SB>of the objective saturated air which is to heated by the second heating unit 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、容器に入れられた水を加熱手段で加熱すると共に前記容器に気体を入れて該気体を前記水の中に分散させ前記水と接触させて前記気体を目的とする温度の飽和水蒸気含有気体にして前記容器から取り出すようにした飽和気体発生装置に関する。   In the present invention, the water contained in the container is heated by the heating means, and the gas is put into the container, the gas is dispersed in the water, and the water is brought into contact with the water to bring the gas into a saturated steam at a target temperature. The present invention relates to a saturated gas generator that is made into a contained gas and taken out from the container.

従来の飽和気体発生装置としては、例えば、60℃の一定温度の水が入れられている恒温槽の水槽内に1段の飽和槽を入れると共に水槽内に熱交換器を入れ、供給する気体をまず熱交換器に通して水槽の水によって60℃まで予熱し、飽和槽の上部に設けた温度検出用の熱接点によって上部の温度を検出してその温度が60℃になるように制御されるヒータを飽和槽の下部に設置し、60℃に加熱した気体を飽和槽の下部から入れて槽内の水と接触させつつ上昇させ、その過程で水から蒸発した水蒸気を取り込んで飽和空気にし、飽和槽の上部から目的とする60℃の飽和空気を取り出すようにした飽和気体発生装置が示されている(特許文献1参照)。この従来例の装置では、気体を予熱して飽和槽に入れると共に飽和槽の上部温度を目的とする60℃に制御することにより、ほぼ60℃の露点を持つ飽和空気が得られたとされている。
実公平6−34819号公報(第1図及び関連説明)
As a conventional saturated gas generator, for example, a one-stage saturated tank is placed in a constant temperature bath in which water at a constant temperature of 60 ° C. is placed, and a heat exchanger is placed in the water tank, and the supplied gas is First, the water is passed through a heat exchanger and preheated to 60 ° C. with water in the water tank, and the temperature of the upper part is detected by a temperature detection hot contact provided at the upper part of the saturation tank so that the temperature is controlled to 60 ° C. A heater is installed in the lower part of the saturation tank, and a gas heated to 60 ° C. is introduced from the lower part of the saturation tank while being brought into contact with the water in the tank. In the process, water vapor evaporated from the water is taken into saturated air, There is shown a saturated gas generator in which target saturated air at 60 ° C. is taken out from the upper part of the saturation tank (see Patent Document 1). In this conventional apparatus, saturated air having a dew point of approximately 60 ° C. was obtained by preheating the gas and putting it in the saturation bath and controlling the upper temperature of the saturation bath to the target 60 ° C. .
No. 6-34819 (Fig. 1 and related explanation)

一方、このような飽和空気発生装置では、空気が水蒸気を取り込んで送り出されるため、飽和槽内の水位が低下するので、この特許文献では図示されていないが、通常飽和槽内に水面制御によって自動的に水が補給されるようになっている。この水は加熱されるように飽和槽の下方位置から入れられるが、水が入れられると、その部分の水温が下がると共に、対流と気泡が水を浮上させるエアーリフト力とによって飽和槽内では水が循環しているためにその影響が飽和槽の全体に及ぶので、温度を検出している飽和槽内の上部でも水温が設定温度より下がる傾向になる。その結果、飽和空気の露点温度が下がり、その精度が悪くなるという問題がある。   On the other hand, in such a saturated air generator, since air is taken in and sent out from the water vapor, the water level in the saturation tank is lowered. Therefore, although not shown in this patent document, it is usually automatically controlled by water level control in the saturation tank. Water is being replenished. This water is introduced from the lower position of the saturation tank so that it is heated. When water is added, the water temperature of the portion decreases, and in the saturation tank, the convection and the air lift force that bubbles raise the water Since the influence of the water circulates on the entire saturation tank, the water temperature tends to drop below the set temperature even in the upper part of the saturation tank where the temperature is detected. As a result, there is a problem that the dew point temperature of the saturated air is lowered and the accuracy is deteriorated.

又、前記の如く空気が水から水蒸気を吸収して飽和空気になるので、蒸発して水蒸気になる水の周辺の水は水蒸気に潜熱を供給するために温度低下する。そのため、上部の温度を検出して制御するようにしていても、ヒーターの位置と検出部の位置との距離が大きいこととこの間での水の蒸発状態にばらつきがあること等により、飽和槽の上部でも潜熱による水温低下の影響が避けられない。その結果、この点でも露点温度が不正確になるという問題がある。   Further, as described above, since air absorbs water vapor from water and becomes saturated air, the water around the water that evaporates and becomes water vapor decreases in temperature to supply latent heat to the water vapor. Therefore, even if the temperature of the upper part is detected and controlled, due to the large distance between the position of the heater and the position of the detection unit and the variation in the evaporation state of water between them, Even at the top, the effect of a drop in water temperature due to latent heat is inevitable. As a result, there is also a problem that the dew point temperature is inaccurate at this point.

なお、前記の如く取り入れる気体を60℃に予熱していて、飽和槽に入ったときの気体の温度は水と同じ60℃になっていても、その温度で水から蒸発した水蒸気を取り入れることになるので、上記の如く、周辺の水が水蒸気の蒸発潜熱を放出することになってその温度が低下し、結局露点温度に影響してその精度が悪くなる。   Even if the gas to be taken in is preheated to 60 ° C. as described above and the temperature of the gas when entering the saturation tank is 60 ° C. which is the same as that of water, water vapor evaporated from water at that temperature is taken in. Therefore, as described above, the surrounding water releases the latent heat of vaporization of the water vapor, so that the temperature is lowered and eventually the dew point temperature is affected and the accuracy is deteriorated.

そこで本発明は、従来技術における上記問題を解決し、精度の良い露点温度の飽和気体が得られる飽和気体発生装置を提供することを課題とする。   Then, this invention makes it a subject to solve the said problem in a prior art, and to provide the saturated gas generator which can obtain the saturated gas of a dew point temperature with sufficient precision.

本発明は上記課題を解決するために、請求項1の発明は、容器に入れられた水を加熱手段で加熱すると共に前記容器に気体を入れて該気体を前記水の中に分散させ前記水と接触させて前記気体を目的とする温度の飽和水蒸気含有気体にして前記容器から取り出すようにした飽和気体発生装置において、
前記容器の上下方向の中間位置に前記気体の通過を制限するように設けられた多孔性部材と、前記容器のうちの前記多孔性部材の上側部分に前記気体を前記目的とする温度にするように設けられた熱交換手段と、を有し、前記加熱手段は前記容器のうちの前記多孔性部材の下側部分に設けられていることを特徴とする。
In order to solve the above-mentioned problems, the present invention is characterized in that the water in a container is heated by a heating means and a gas is put into the container to disperse the gas in the water. In a saturated gas generator in which the gas is brought into a saturated water vapor-containing gas at a target temperature and brought out of the container by contacting with the gas,
A porous member provided to restrict the passage of the gas at an intermediate position in the vertical direction of the container, and the gas is set to the target temperature in an upper portion of the porous member of the container. A heat exchanging means provided in the container, wherein the heating means is provided in a lower portion of the porous member of the container.

請求項2の発明は、上記に加えて、前記加熱手段は前記気体を前記目的とする温度より高い温度であって前記熱交換手段で前記目的とする温度に復元可能な範囲の温度まで加熱可能であることを特徴とする。   According to a second aspect of the present invention, in addition to the above, the heating means can heat the gas to a temperature that is higher than the target temperature and can be restored to the target temperature by the heat exchange means. It is characterized by being.

請求項3の発明は、請求項1又は2の発明の特徴に加えて、前記気体を前記容器に入れる前に前記気体に前記飽和水蒸気の潜熱分までの熱量を供給して前記気体を前記目的とする温度より高い温度に加熱可能にする予熱手段を設けたことを特徴とする。   According to a third aspect of the present invention, in addition to the features of the first or second aspect of the present invention, before the gas is put into the container, the gas is supplied with an amount of heat up to the latent heat of the saturated water vapor, and the gas is used for the purpose. Preheating means is provided that enables heating to a temperature higher than the above temperature.

以上の如く本発明によれば、請求項1の発明においては、容器の上下方向の中間位置に気体の通過を制限するように多孔性部材を設け、容器のうちの多孔性部材の上側部分に気体を目的とする温度にするように熱交換手段を設け、加熱手段を多孔性部材の下側部分に設けているので、容器の中では、多孔性部材を介して上下に熱交換手段の加熱又は冷却部分と加熱手段の加熱部分とがあって、これらにより、下側で水を加熱した後、上側でその水を更に加熱又は冷却することができる。   As described above, according to the present invention, in the first aspect of the present invention, the porous member is provided at the middle position in the vertical direction of the container so as to restrict the passage of gas, and the upper part of the porous member in the container is provided. Since the heat exchange means is provided so that the gas reaches the target temperature and the heating means is provided in the lower part of the porous member, the heat exchange means is heated up and down through the porous member in the container. Alternatively, there is a cooling part and a heating part of the heating means, which can heat or cool the water further on the upper side after heating the water on the lower side.

一方、気体は水の中に分散されて入れられるので、小気泡となって浮力によって上昇して多孔性部材の位置に到達する。このとき、この気体の通過を制限するように、即ち、例えば気泡の大きさとの関係で多孔性部材の孔を適当な寸法にすることにより、小気泡の多くが多孔性部材の多孔を形成する線材等の部材に当たって上昇を一時的に制限される。その結果、容器の下方部分において、加熱されて対流するために上昇したり浮上する多数の小気泡のリフト力によって上昇する水が、多孔性部材の位置でその上昇を制限されるので、水は多孔性部材の下側部分だけで流動することになる。そして、下側部分の水が均一化され、温度分布が良くなるように加熱手段で加熱される。   On the other hand, since the gas is dispersed and put in water, it becomes small bubbles and rises by buoyancy to reach the position of the porous member. At this time, in order to restrict the passage of the gas, that is, by setting the pores of the porous member to an appropriate size in relation to the size of the bubbles, for example, many of the small bubbles form the porosity of the porous member. The rise is temporarily restricted when hitting a member such as a wire. As a result, in the lower part of the container, the water that rises due to the lifting force of a large number of small bubbles that rise or rise due to heating and convection is restricted from rising at the position of the porous member. It flows only in the lower part of the porous member. And it heats with a heating means so that the water of a lower part is equalized and temperature distribution becomes good.

その結果、多孔性部材の上側部分では、熱交換手段による水の加熱又は冷却により、下側部分とは独立して上側部分だけで対流が生じ、水の温度が均一化される。   As a result, in the upper part of the porous member, convection occurs only in the upper part independently of the lower part due to heating or cooling of the water by the heat exchange means, and the temperature of the water is made uniform.

このような状態において、気体を飽和水蒸気含有気体にするために容器内の水を蒸発させると、それによって水が不足するため、不足した水が補給される。この補給水は、通常、常温水で下方部分に補給されるため、下側部分の水温を急変させる。しかし、上記の如く多孔性部材の上下で独立的に水が対流するので、下側部分への水補給による温度乱れの上方への影響が防止される。そして上方では、熱交換手段により、気体を目的とする温度にする機能が維持される。その結果、水の補給があったような場合でも、精度良く目的とする温度の飽和気体を得ることができる。   In such a state, if the water in the container is evaporated in order to make the gas into a saturated water vapor-containing gas, the water is insufficient thereby, so that the insufficient water is replenished. Since this replenishing water is normally replenished to the lower part with normal temperature water, the water temperature of the lower part is suddenly changed. However, since water convects independently above and below the porous member as described above, the upward influence of temperature disturbance due to water supply to the lower portion is prevented. Above, the function of bringing the gas to the target temperature is maintained by the heat exchange means. As a result, even when water is replenished, a saturated gas having a target temperature can be obtained with high accuracy.

請求項2の発明においては、加熱手段が水を目的とする温度より高い温度まで加熱可能なように構成するので、多孔性部材の下側部分では、入れられた気体を目的とする温度より高い温度の飽和気体にすることができる。この気体が上側部分に入ると、上側部分は熱交換手段によって気体を目的とする温度にするように水がその温度になっているので、その温度に対して過飽和な水蒸気分を含んでいる気体は、過飽和分の水蒸気を水に放出することになる。この水中への水蒸気の放出では、直接水蒸気に接触している水が水蒸気を凝縮させることになるので、容易に且つ確実に気体から水蒸気の過飽和分を除去することができる。その結果、極めて精度良く気体を目的とする温度の飽和気体にすることができる。   In the invention of claim 2, since the heating means is configured to be able to heat to a temperature higher than the target temperature of water, the lower part of the porous member is higher than the target temperature of the gas contained It can be a saturated gas at temperature. When this gas enters the upper part, water is at that temperature so that the upper part is brought to the target temperature by the heat exchanging means, so the gas containing water vapor supersaturated with respect to that temperature Will release supersaturated water vapor into the water. In this release of water vapor into the water, water in direct contact with the water vapor condenses the water vapor, so that the supersaturated water vapor can be easily and reliably removed from the gas. As a result, it is possible to make the gas a saturated gas having a target temperature with extremely high accuracy.

請求項3の発明においては、請求項1又は2の発明に加えて、予熱手段を設けて、目的とする温度の飽和水蒸気含有気体にされるもとになる気体として例えば通常空気を容器に入れる前に、通常空気に飽和水蒸気の潜熱分までの熱量を供給して前記気体を前記目的とする温度より高い温度に加熱可能にするので、人の操作又は自動運転によって予熱手段を作動させることにより、目的とする温度が例えば50℃程度までの温度のときには、潜熱分程度の熱量で通常空気を目的とする温度より十分高い温度まで予熱してから容器に入れ、これを水の中に分散させ、水と接触させた後容器から取り出すことができる。   In the invention of claim 3, in addition to the invention of claim 1 or 2, a preheating means is provided and, for example, normal air is put into the container as a gas to be made into a saturated steam-containing gas at a target temperature. Before, the amount of heat up to the latent heat of saturated water vapor is supplied to normal air so that the gas can be heated to a temperature higher than the target temperature, so by operating the preheating means by human operation or automatic operation When the target temperature is up to about 50 ° C., for example, the air is preheated to a temperature sufficiently higher than the target temperature with the amount of heat of the latent heat, and is then placed in a container and dispersed in water. After contact with water, it can be removed from the container.

この場合、飽和水蒸気の潜熱分はその全熱量の大部分を占めるので、この熱量を供給されて予熱された通常空気は、目的とする温度である飽和水蒸気の温度まで加熱されている飽和水よりも相当程度高い温度まで上昇した昇温空気になる。そして、加熱手段によって水が目的とする温度又はこれより高い温度に加熱されているときに、このような昇温空気がその水と接触すると、その水の一部分が蒸発するときに、温度の高い昇温空気から水側に蒸発のために必要な潜熱が供給される。   In this case, since the latent heat of saturated water vapor occupies most of the total amount of heat, normal air that has been supplied with this heat and preheated is saturated water that has been heated to the temperature of saturated water vapor, which is the target temperature. However, the temperature rises to a considerably high temperature. And when water is heated to the target temperature or higher by the heating means, when such heated air comes into contact with the water, the temperature is high when a part of the water evaporates. The latent heat required for evaporation is supplied from the heated air to the water side.

その結果、加熱された水の一部分が蒸発するときにその周辺の水が潜熱分という大きな熱量を失うことがなくなり、水の急激な温度低下が防止され、加熱手段で温度調整されている水の温度が乱されることなく維持される。その結果、多孔性部材の下側部分の水の温度精度が良くなり,それによって、上側部分において、一層精度良く目的とする温度の飽和空気を得ることができる。   As a result, when a part of the heated water evaporates, the surrounding water does not lose a large amount of heat of latent heat, and a rapid temperature drop of the water is prevented, and the water whose temperature is adjusted by the heating means The temperature is maintained without being disturbed. As a result, the temperature accuracy of the water in the lower part of the porous member is improved, so that saturated air at the target temperature can be obtained more accurately in the upper part.

一方、目的とする温度が60℃程度を超えると、空気の含有する飽和水蒸気量が急激に多くなるので、多量になった飽和水蒸気量の潜熱分を予熱手段のみによって供給しようとすると、その熱量が多大になって気体の予熱温度が高くなり過ぎ、予熱手段が大型化したり気体の高温化により装置の取扱性が悪くなる等の問題が生ずるため、予熱手段では潜熱量より少ない熱量で気体を加熱することになる。   On the other hand, when the target temperature exceeds about 60 ° C., the amount of saturated water vapor contained in the air increases abruptly. However, the preheating temperature becomes too high and the preheating means becomes larger and the handling of the equipment becomes worse due to the high temperature of the gas. Will be heated.

しかしこの場合にも、気体を目的とする温度より相当程度高温にすることになるので、容器に入れられた水の蒸発を促進し、気体を速く飽和気体に到達させ、容器内での気液接触時間を短縮し、容器を小型化することができる。   However, even in this case, since the temperature of the gas is considerably higher than the target temperature, the evaporation of water contained in the container is promoted, the gas reaches the saturated gas quickly, and the gas-liquid in the container A contact time can be shortened and a container can be reduced in size.

図1は本発明を適用した飽和気体発生装置としての飽和空気発生装置の構成例を示す。
飽和空気発生装置は、容器である飽和槽1に水面Lまで入れられた水を加熱手段である加熱装置2で加熱すると共に、飽和槽1に気体としての空気を供給する空気供給管3から空気を入れてこれを水の中に分散させ、水と接触させ、水中を上昇する空気を目的とする温度である飽和温度t2 の飽和水蒸気含有気体である温度t2 の飽和空気A2 にして、飽和槽1から取り出すようにした装置であり、多孔性部材としての中間メッシュ4及び熱交換手段としての第2加熱装置5を有する。
FIG. 1 shows a configuration example of a saturated air generator as a saturated gas generator to which the present invention is applied.
The saturated air generating apparatus heats water, which is put up to the water surface L in a saturation tank 1 that is a container, with a heating apparatus 2 that is a heating means, and also supplies air as gas to the saturation tank 1 from an air supply pipe 3. This is dispersed in water, brought into contact with water, and the air rising in the water is made into saturated air A 2 at temperature t 2 , which is a saturated water vapor-containing gas at saturation temperature t 2 , which is the target temperature. The apparatus is designed to be taken out from the saturation tank 1 and has an intermediate mesh 4 as a porous member and a second heating device 5 as a heat exchange means.

このような飽和空気発生装置は、通常の構成部分として、その底部として底11から入れられた空気を飽和槽1の横断面の全体に均一的に分散させ小気泡にして送出する微細メッシュ12、水補給管13及び給水弁14、水面センサ15、このセンサ信号によって水面をレベルLの近傍の範囲に維持するように給水弁14を制御する水位制御器16、水面から発生する気泡を消滅させるための破泡メッシュ17、上部である上端板18から飽和空気A2 を取り出すための出口管19、等を備えている。 Such a saturated air generating apparatus has a fine mesh 12 as a normal component part, in which air introduced from the bottom 11 as a bottom part is uniformly dispersed over the entire cross section of the saturation tank 1 to be sent as small bubbles, Water supply pipe 13, water supply valve 14, water surface sensor 15, water level controller 16 for controlling water supply valve 14 so as to maintain the water surface in the vicinity of level L by this sensor signal, in order to eliminate bubbles generated from the water surface And the outlet pipe 19 for taking out the saturated air A 2 from the upper end plate 18 which is the upper part.

中間メッシュ4は、飽和槽1の上下方向の中間位置L1 として上下の中心位置より少し上方の高さ位置に、入れられた空気が小気泡になって浮力によって上昇するときにその通過を制限するように設けられていている。即ち、中間メッシュ4は、上昇する小気泡のうちの相当部分のものがその網目線に当たり、これに引っかかった後通過するように形成されている。このような網目寸法は、微細メッシュ12によって形成される小気泡の大きさ、供給空気の量や圧力、飽和槽の寸法、網目の線径、等の諸条件によって定められ、例えば1mm角程度の大きさにされる。 Intermediate mesh 4 is limited to the height of a little above the center position in the vertical, the passage when the air was put rises by buoyancy become small bubbles as the intermediate position L 1 of the vertical saturator 1 It is provided to do. That is, the intermediate mesh 4 is formed such that a substantial part of the rising small bubbles hits the mesh line and passes after being caught by the mesh. Such a mesh size is determined by various conditions such as the size of small bubbles formed by the fine mesh 12, the amount and pressure of supply air, the size of the saturation tank, the wire diameter of the mesh, and the like, for example, about 1 mm square. Sized.

なお、多孔性部材としては、このようなメッシュに代えて、ハニカム、ラッシリング、ガラスビーズ等の薄い層からなり泡の一時的停止機能又は熱容量と通気性とを備えた構造のものであってもよい。   As the porous member, instead of such a mesh, it is composed of a thin layer of honeycomb, lashing, glass beads or the like, and has a structure having a temporary foam stop function or a heat capacity and air permeability. Also good.

第2加熱装置5は、第2加熱器51、温度センサ52及び温度調節器53を備えている。第2加熱器51は飽和槽1の中間メッシュ4の上側部分である上部区画1aに設けられていて、水を目的とする温度である温度t2 にするように、温度センサ52及び温度調節器53によって制御されている。 The second heating device 5 includes a second heater 51, a temperature sensor 52, and a temperature regulator 53. The second heater 51 is provided in the upper compartment 1a which is the upper portion of the intermediate mesh 4 of saturator 1, water to a temperature t 2 which is the temperature for the purpose of temperature sensor 52 and the temperature controller 53.

加熱装置2は、加熱器21、温度センサ22及び温度調節器23を備えている。加熱装置のうちの加熱部分である加熱器21は飽和槽1の中間メッシュ4の下側部分である下部区画1bに設けられていて、温度センサ22及び温度調節器23によって制御されている。そして本例では、水をt2 より高い温度t3 まで加熱可能にされている。このt3 は、第2加熱器51でt2 まで復元可能な範囲の温度であり、通常t2 より温度差が5℃程度以内の高い温度にされる。 The heating device 2 includes a heater 21, a temperature sensor 22, and a temperature controller 23. A heater 21 which is a heating portion of the heating device is provided in a lower section 1 b which is a lower portion of the intermediate mesh 4 of the saturation tank 1 and is controlled by a temperature sensor 22 and a temperature regulator 23. In this example, water can be heated to a temperature t 3 higher than t 2 . This t 3 is a temperature within a range that can be restored to t 2 by the second heater 51, and is usually set to a temperature higher than the temperature difference of about 5 ° C. from t 2 .

以上のような飽和空気発生装置は次のように運転され、その作用効果を発揮する。
飽和槽1には水が入れられていて、水位制御器16で水位がLになるように調整されている。通常湿り空気の外気からなる空気が空気供給管3から送られて飽和槽1に底11から入れられると、微細メッシュ12の通過抵抗によって空気はその下の全面に広がり、メッシュ12を均一的に通過し、小気泡となって上昇する。一方、飽和槽1の下部区画1bの水は、温度センサ22によってその部分の温度が検出され、本例ではt2 を50℃としてt3 =t2 +3〜4℃=53〜54℃程度になるように加熱器21で加熱されている。
The saturated air generator as described above is operated as follows and exhibits its effects.
The saturation tank 1 is filled with water, and the water level controller 16 adjusts the water level to L. When air consisting of outside air of normal humid air is sent from the air supply pipe 3 and put into the saturation tank 1 from the bottom 11, the air spreads over the entire surface by the passage resistance of the fine mesh 12, and the mesh 12 is uniformly distributed. Passes and rises as small bubbles. On the other hand, the temperature of the water in the lower section 1b of the saturation tank 1 is detected by the temperature sensor 22, and in this example, t 2 is 50 ° C. and t 3 = t 2 + 3-4 ° C. = 53-54 ° C. It is heated with the heater 21 so that it may become.

そして、小気泡が上昇する過程で常時水と接触し、気泡内の水蒸気圧と気泡を囲っている周辺の水の温度に対応した飽和水蒸気圧との差によって気泡面で水が蒸発し、蒸発潜熱を放出した周辺の水が温度降下すると共に、蒸発した水蒸気を取り込んだ気泡内の空気の湿り度が大きくなり、最終的には、気泡内の空気はその周辺の水温の飽和水蒸気で満たされた飽和空気になる。その結果、t2 より高いt3 まで加熱された水は、t2 より1〜2℃程度高い温度になり、小気泡からなる空気は、ほぼその温度の飽和空気になる。 In the process of ascending the small bubbles, water constantly contacts the water, and the water vapor evaporates on the bubble surface due to the difference between the water vapor pressure in the bubbles and the saturated water vapor pressure corresponding to the temperature of the surrounding water surrounding the bubbles. The temperature of the surrounding water that released the latent heat dropped, and the air in the bubbles that took in the evaporated water vapor increased in humidity, and eventually the air in the bubbles was filled with saturated water vapor at the surrounding water temperature. Becomes saturated air. As a result, water that has been heated to a t 3 than t 2 becomes about 1 to 2 ° C. than t 2 higher temperatures, the air consisting of small bubbles, it becomes almost saturated air at that temperature.

このt2 より高い温度の飽和空気の小気泡は、飽和槽1の下部区画1bを上昇して中間メッシュ4に到達し、その相当部分が中間メッシュの網目線に当たって引っ掛かり、通過が制限された状態になる。即ち、図2(a)に示す如く、小気泡pは、中間メッシュ4の網目線41に当たったときに、網目線の支持力と上下の浮力差による力とを受けて丸に近い形状から偏平な形状に変形するが、その表面張力や粘性等によって一時的に網目線41に引っ掛かってこれを覆い、浮上してくる後続の他の小気泡と合体して浮力を増した後メッシュ4を通過することになる。この場合、小気泡のサイズが網目のサイズより大きいときには、同図(b)に示す如く、網目線41の四辺で安定的に支持される率が高く、小さいときには、同図(c)のように網目41の交点近傍で支持される可能性がある。 The small bubbles of saturated air having a temperature higher than t 2 ascend the lower section 1b of the saturation tank 1 and reach the intermediate mesh 4, and the corresponding portion hits the mesh of the intermediate mesh and is restricted from passing. become. That is, as shown in FIG. 2A, when the small bubble p hits the mesh line 41 of the intermediate mesh 4, it receives a support force of the mesh line and a force due to a difference in buoyancy between the upper and lower sides, and has a shape close to a circle. Although it deforms into a flat shape, the mesh 4 is temporarily caught by the mesh line 41 due to its surface tension, viscosity, etc., and this is combined with other subsequent small bubbles that rise to increase the buoyancy. Will pass. In this case, when the size of the small bubbles is larger than the size of the mesh, as shown in FIG. 4B, the rate of stable support at the four sides of the mesh line 41 is high, and when the size is small, as shown in FIG. May be supported near the intersection of the mesh 41.

このような現象は、中間メッシュの網目の大きさや小気泡の寸法や中間メッシュの深さ位置等によって変わってくるが、大体において気泡の相当部分が中間メッシュ4で一度停止した後ここを通過する。そして、中間メッシュ4は全体的に気泡で覆われ、気泡が順次入れ代わって中間メッシュを通過して行くことになる。その結果、対流をするように上昇して来た水や多数の小気泡のエアーリフト力で浮上搬送されてきた水が中間メッシュ4の部分を自由に通過できなくなり、結局、加熱器21による加熱に伴う水の対流は、ほぼ下部区画1b内での現象で止まり、その区画内の水温を均一化させる効果を発生させるだけになる。その結果、上部の第2加熱器51の加熱による水の対流も、上部区画1a内だけで行われることになる。このような現象の生ずる基本になる中間メッシュでの小気泡の停滞現象は、発明者等の実験によって確認されている。   Such a phenomenon varies depending on the mesh size of the intermediate mesh, the size of the small bubbles, the depth position of the intermediate mesh, and the like, but in general, a substantial part of the bubbles once stop at the intermediate mesh 4 and pass through here. . Then, the intermediate mesh 4 is entirely covered with air bubbles, and the air bubbles are sequentially replaced and pass through the intermediate mesh. As a result, the water that has risen to convection and the water that has been lifted and conveyed by the air lift force of a large number of small bubbles cannot freely pass through the portion of the intermediate mesh 4, and eventually heated by the heater 21. The convection of water accompanying is stopped almost by the phenomenon in the lower section 1b, and only the effect of making the water temperature in the section uniform is generated. As a result, convection of water due to heating of the upper second heater 51 is also performed only in the upper section 1a. The stagnation phenomenon of small bubbles in the intermediate mesh that is the basis of such a phenomenon has been confirmed by experiments by the inventors.

中間メッシュ4を通過した空気は、温度t2 より1〜2℃高い温度の飽和空気になっているので、水温がt2 になっている上部区画1aに入ると、その中の水と接触して温度がt2 まで下がる。その結果、1〜2℃だけ過飽和な空気になり、過飽和分の小量の水蒸気の熱が水に移動して水蒸気が凝縮し、丁度目的とする温度t2 の飽和蒸気になる。その結果、精度良く目的とする露点温度の飽和空気を得ることができる。この飽和空気は、破泡メッシュ17で破泡されてミスト分を除去された後、完全な飽和空気A2 となって出口管19から取り出される。 Air passing through the intermediate mesh 4, since become than the temperature t 2 1 to 2 ° C. higher temperature saturated air, upon entering the upper compartment 1a the water temperature is in the t 2, contact with water therein temperature Te drops to t 2. As a result, the air becomes supersaturated by 1 to 2 ° C., the heat of a small amount of supersaturated water vapor moves to the water, and the water vapor condenses to become saturated steam at the target temperature t 2 . As a result, it is possible to obtain saturated air having the desired dew point temperature with high accuracy. This saturated air is bubbled by the bubble breaking mesh 17 to remove the mist, and then is completely saturated air A 2 and taken out from the outlet pipe 19.

この場合、気泡と水とを接触させて飽和蒸気圧の差によって気泡中に水蒸気を完全に飽和させるのは難しいが、過飽和状態から過飽和分の水蒸気を直接接着している水で凝縮させて飽和状態にするのは極めて容易である。又、中間メッシュ4が微小孔で形成されていて、これを通過した空気は微細化されるので、水との接触面積が大きくなって熱交換作用が極めて良好になる。発明者等は、本発明を適用して中間メッシュ4を設けた飽和気体発生装置と中間メッシュのない従来の装置との比較試験をして次の結果を得た:
第2加熱器51の設定温度t2s 50℃ 80℃ 発生した飽和空気温度t2a 中間メッシュ4有(本発明適用) 49.8℃ 79.9℃ 中間メッシュ4無(従来のもの) 49.0℃ 78.8℃
従って、以上の如く精度良く目的とする温度の飽和空気を得ることができる。なお、上部区画1aで過飽和分の小量の水蒸気を凝縮させるためには、この区画の水の熱を取る必要があるが、t2 が常温より十分高く例えば50℃以上のようなときには、飽和槽1の周囲からの放熱があるため、上記の熱量は自然に放出される。従って、本例では、熱交換手段として第2加熱器51を設けて、ごく小量の加熱量で上部区画1aをt2 =50℃に維持するように制御している。
In this case, it is difficult to completely saturate the water vapor in the bubble due to the difference in saturated vapor pressure by bringing the bubble into contact with water, but it is saturated by condensing the supersaturated water vapor from the supersaturated state with the water directly adhered. It is very easy to get into the state. Moreover, since the intermediate mesh 4 is formed with micropores and the air that has passed through it is made finer, the contact area with water becomes larger and the heat exchange action becomes extremely good. The inventors applied the present invention to a comparative test between a saturated gas generator provided with an intermediate mesh 4 and a conventional device without an intermediate mesh, and obtained the following results:
Set temperature t 2 s of second heater 51 50 ° C. 80 ° C. Saturated air temperature generated t 2 a Intermediate mesh 4 present (application of the present invention) 49.8 ° C. 79.9 ° C. No intermediate mesh 4 (conventional) 49.0 ° C. 78.8 ° C.
Therefore, saturated air having the target temperature can be obtained with high accuracy as described above. In order to condense a small amount of supersaturated water vapor in the upper compartment 1a, it is necessary to take the heat of the water in this compartment. However, when t 2 is sufficiently higher than room temperature, for example, 50 ° C. or higher, Since there is heat radiation from the periphery of the tank 1, the amount of heat is released naturally. Thus, in this embodiment, as the heat exchange means is provided a second heater 51 is controlled to maintain the upper section 1a to t 2 = 50 ° C. in a very small amount of heat quantity.

以上のように、本例の装置では、加熱器2で下部区画1bをt2 より3〜4℃程度高いt3 まで加熱してその中の空気をt2 より1〜2℃程度高い温度の飽和空気にしてほぼ空気だけを上部区画1aに上げ、上部区画1 aでt2 まで戻して精度良くt2 の飽和空気を得るようにしているが、t3 をt2 よりどの程度高い温度に設定するかは、上部区画1 aでt2 まで戻すことが可能であり、且つ戻す温度ができるだけ小さくエネルギー消費の無駄がないと共にt2 の精度が良くなるように、実際の装置において運転結果等によって定められる。 As described above, in the apparatus of this embodiment, the heater 2 in the lower compartment 1b of the air therein was heated from t 2 to 3 to 4 ° C. higher by about t 3 t 2 from 1 to 2 ° C. of about elevated temperature almost exclusively air in the saturated air raised to upper compartment 1a, but back in the upper compartment 1 a to t 2 so as to obtain the saturated air of accurately t 2, a t 3 to what extent a temperature higher than t 2 Whether it is set or not can be returned to t 2 in the upper section 1 a, and the operating temperature or the like in the actual apparatus so that the temperature to be returned is as small as possible and there is no waste of energy consumption and the accuracy of t 2 is improved. Determined by.

なお、飽和空気発生装置が常温に近い程度以下のt2 条件で使用されるようなときには、熱交換手段としては、加熱器に代えて冷却器が設けられることになる。この場合、本装置が冷凍機の蒸発器を持つような環境試験装置に使用されるときには、その冷凍機の冷熱を利用することができる。 Note that when the saturated air generator is used under a t 2 condition that is less than or equal to room temperature, a cooler is provided as the heat exchange means instead of the heater. In this case, when the apparatus is used in an environmental test apparatus having a refrigerator evaporator, the cold energy of the refrigerator can be used.

このようにして飽和空気を連続製造すると、飽和槽1内の水が蒸発して飽和空気によって持ち出されるので、飽和槽1の水面Lが下降し、給水弁14が開き、水面Lが回復するまで飽和槽1内に水が自動的に補給される。この水は通常20℃程度の常温水であるため、水が補給されると槽内が急冷されて槽内の温度状態が乱れるが、本発明により、中間メッシュ4を設けると共にその上下部分1a、1bにそれぞれ第2加熱器5及び加熱器2を設けているので、前記の如く水の対流がそれぞれの区画で独立的に行われることになり、水の温度乱れは下部区画1bで止まり、上部区画1aには殆どその影響が及ばない。   When saturated air is continuously produced in this way, the water in the saturation tank 1 is evaporated and taken out by the saturated air, so that the water surface L of the saturation tank 1 is lowered, the water supply valve 14 is opened, and the water surface L is recovered. Water is automatically supplied into the saturation tank 1. Since this water is usually room temperature water of about 20 ° C., when the water is replenished, the inside of the tank is rapidly cooled and the temperature inside the tank is disturbed, but according to the present invention, the intermediate mesh 4 is provided and its upper and lower parts 1a, Since the second heater 5 and the heater 2 are respectively provided in 1b, convection of water is performed independently in each section as described above, and the temperature turbulence of water stops in the lower section 1b, The section 1a is hardly affected.

その結果、一時的に下部区画1bから上部区画1aに上がってくる空気の過飽和状態が変化したりt2 以下の温度の飽和空気になっていても、上部区画1a内の温度がt2 になっているので、最終的に取り出される空気はほぼ完全に温度t2 の飽和空気の状態に維持されている。 As a result, temporarily be made from the lower compartment 1b to the saturated air temperature supersaturated state or t 2 following the change of the air coming up to the top section 1a, the temperature in the upper compartment 1a becomes t 2 since it is, the air finally taken is maintained substantially entirely in the temperature t 2 of saturated air conditions.

なお、下部区画1bの温度は、実際の装置では、この水補給時の状態も含めて適当な値に設定される。又、以上ではt3 をt2 より高くする例について説明したが、下部区画1bの温度を仮にt2 と同じ温度に設定したとしても、中間メッシュ4の装備と上下部分の独立の加熱器による加熱との組合せにより、水補給時の温度乱れを防止し、最終的に得られる空気の飽和空気の精度低下を防止することができる。 In the actual apparatus, the temperature of the lower section 1b is set to an appropriate value including the state at the time of water supply. In the above, an example in which t 3 is set higher than t 2 has been described. However, even if the temperature of the lower section 1b is set to the same temperature as t 2 , the intermediate mesh 4 is provided and the upper and lower parts are independently heated. By combining with heating, it is possible to prevent temperature disturbance at the time of water replenishment, and to prevent deterioration in the accuracy of saturated air in the finally obtained air.

又、以上では、多孔性部材が網目状のメッシュである場合について説明したが、このようなメッシュに代えて、ハニカム、ラッシリング、ガラスビーズ等の薄い層の充填部材を設けても同様の効果がある。即ち、このような部材も多孔性部材であるため、空気の通過部分の寸法を適当に定めることにより、小気泡の一時停止機能や通過時の抵抗付与機能を有し、その通過を制限することができる。更に、このような部材は一定の熱容量を持つので、小量の水が往復通過するときに、その水の熱的影響を緩和することができる。   Further, the case where the porous member is a mesh-like mesh has been described above, but the same effect can be obtained by providing a thin layer filling member such as a honeycomb, lashing, or glass beads instead of such a mesh. There is. That is, since such a member is also a porous member, it has a function of temporarily stopping small bubbles and a function of imparting resistance during passage by appropriately determining the size of the passage portion of the air, and restricting the passage thereof. Can do. Furthermore, since such a member has a constant heat capacity, when a small amount of water passes back and forth, the thermal effect of the water can be mitigated.

図3は本発明を適用した飽和空気発生装置の他の例を示す。
本例の装置は、気体として装置の外から取り入れる温度t1 の通常空気A1 を飽和槽1に入れる前にこの空気に温度t2 の飽和水蒸気の潜熱分までの熱量を供給してこの空気を目的とする温度であるt2 より高い所定の温度t4 まで加熱可能にする予熱手段としての予熱装置6を有する。この場合、t2 が50℃程度であれば、t4 は、温度t2 の飽和空気の飽和水蒸気の潜熱rで構成される潜熱分Rに近い範囲内の熱量として潜熱分Rを通常空気A1 に供給し、通常空気A1 がそれによって加熱されて上昇した温度t4 にされる。
FIG. 3 shows another example of a saturated air generator to which the present invention is applied.
In the apparatus of this example, before the normal air A 1 having a temperature t 1 taken in from the outside of the apparatus as a gas is put into the saturation tank 1, the air is supplied with a quantity of heat up to the latent heat of saturated steam at the temperature t 2. a preheating device 6 as preheating means for allowing heated to a temperature t 4 predetermined higher t 2 is the temperature for the purpose of. In this case, if t 2 is about 50 ° C., t 4 is defined as the amount of heat in the range close to the latent heat component R constituted by the latent heat component r of the saturated water vapor of the saturated air at the temperature t 2. 1 and the normal air A 1 is heated thereby to the elevated temperature t 4 .

このような予熱装置6は、本例では、通常空気A1 を予熱する予熱器61、これに前記潜熱分Rに相当する電力
W=RJ−−−−−(1)
を供給可能な電力調節器62、等で構成されている。Jは熱量と電力との換算係数である。
In this example, the preheating device 6 includes a preheater 61 that preheats the normal air A 1, and electric power corresponding to the latent heat component R W = RJ ----- (1)
It is comprised with the power regulator 62 etc. which can supply. J is a conversion coefficient between the amount of heat and electric power.

予熱装置6の電力調節器62は操作盤8に設けられていて、人が操作することはより、予熱器61に供給する電力を調節できるようになっている。又本例の装置には、必要なだけ飽和空気を製造するために、通常空気A1 の流量として質量流量Gを調節可能な調節弁7及び操作器71が設けられている。操作器71も操作盤8に設けられている。 The power regulator 62 of the preheating device 6 is provided on the operation panel 8 so that the power supplied to the preheater 61 can be adjusted by a human operation. In addition, the apparatus of this example is provided with a control valve 7 and an operating device 71 capable of adjusting the mass flow rate G as the flow rate of the normal air A 1 in order to produce as much saturated air as necessary. An operation device 71 is also provided on the operation panel 8.

図4は通常空気A1 及び飽和空気A2 の流量及び保有熱量の構成を示す。
図においてg1 、g2 、h1 、h2 、hw、r、ha1 、ha2 、δh1 、及びδha1 はそれぞれ、A1 及びA2 の水蒸気流量、それぞれの水蒸気の全熱量、飽和槽1内の飽和水の熱量、h2 のうちの潜熱、A1 及びA2 の乾燥空気の熱量、A1 の水蒸気の吸熱量、及び乾燥空気の吸熱量である。
FIG. 4 shows the configuration of the flow rates and the retained heat amounts of normal air A 1 and saturated air A 2 .
In the figure, g 1 , g 2 , h 1 , h 2 , hw, r, ha 1 , ha 2 , δh 1 , and δha 1 are the water vapor flow rates of A 1 and A 2 , the total heat amount of each water vapor, and saturation, respectively. heat of saturated water in the tank 1, the latent heat of h 2, heat of dry air of a 1 and a 2, heat absorption amount of water vapor in a 1, and an endothermic quantity of dry air.

図示の如く、水蒸気流量g1 と乾燥空気流量(G−g1 )とを含む流量Gの通常空気A1 は、飽和槽1内で流量g2 の水蒸気が加えられて流量(G+g2 )の飽和空気A2 になる。熱量としては、A1 は、これに温度t2 、流量g2 の水蒸気が加えられると共に、t1 からt2 まで昇温し、Q1 だけ熱量の増加したA2 になる。 As shown in the figure, normal air A 1 having a flow rate G including a water vapor flow rate g 1 and a dry air flow rate (G-g 1 ) is added to the flow rate g 2 in the saturation tank 1 to obtain a flow rate (G + g 2 ). It becomes saturated air a 2. The heat, A 1, This temperature t 2, with the water vapor flow rate g 2 is added, the temperature was raised from t 1 to t 2, it becomes increased A 2 of heat only Q 1.

この熱量Q1 は、図示の如く、
1 =g2 r+g2 hw+g1 δh1 +(G−g1 )δha1 −−(2)
である。この中で
2 r=R−−−−(3)
は前記潜熱分Rに相当し、後述する如くQ1 のうちの大部分を占める。本例では前記の如くこのR=g2 rからなる熱量を予熱装置6によって通常空気A1 に供給可能にする。
The amount of heat Q 1 is
Q 1 = g 2 r + g 2 hw + g 1 δh 1 + (G−g 1 ) δha 1 −− (2)
It is. Among g 2 r = R ---- (3 )
Corresponds to the latent heat component R and occupies most of Q 1 as will be described later. In this example, as described above, the heat amount of R = g 2 r can be supplied to the normal air A 1 by the preheating device 6.

R=g2 rを求めるためには、Gと湿り空気線図等からg1 、g2 を求めると共に、飽和蒸気表又は線図からrを得る。g1 、g2 については、A1 及びA2 の空気の絶対湿度をそれぞれx1 及びx2 とすると、それらが、
1 =x1 (G−g1
1 +g2 =x2 (G−g1
の関係になっていて、これらの式から、
2 =G(x2 −x1 )/(1+x1 )−−−−(4)
が得られる。
In order to obtain R = g 2 r, g 1 and g 2 are obtained from G and a wet air diagram, and r is obtained from a saturated steam table or a diagram. For g 1 and g 2 , if the absolute humidity of the air of A 1 and A 2 is x 1 and x 2 , respectively,
g 1 = x 1 (G−g 1 )
g 1 + g 2 = x 2 (G−g 1 )
From these formulas,
g 2 = G (x 2 -x 1) / (1 + x 1) ---- (4)
Is obtained.

この場合、通常空気A1 が例えば温度20℃、相対湿度50%程度の通常の外気であり、そのx1 がx2 に対して十分小さければ、これを省略するかもしくは簡略化して、
2 ≒Gx2 −−−−(5)
2 ≒KGx2 −−−−(5)´
として簡単に求めることができる。Kは0.9程度にされる。この場合のR≒Grx2 もしくはR≒KGrx2 は、潜熱分Rに近い範囲内の熱量ということになる。
In this case, if the normal air A 1 is normal outside air having a temperature of about 20 ° C. and a relative humidity of about 50%, for example, if the x 1 is sufficiently small with respect to x 2 , this is omitted or simplified.
g 2 ≒ Gx 2 ----- (5)
g 2 ≒ KGx 2 ---- (5) '
Can be easily obtained. K is set to about 0.9. In this case, R≈Grx 2 or R≈KGrx 2 is the amount of heat within a range close to the latent heat component R.

以上により、電力調節器62で通常空気A1 に供給する潜熱分Rに相当する電力Wを、
W=RJ=GrJ(x2 −x1 )/(1+x1 )−−−(6)
又は、
W≒Gx2 rJ もしくは W≒KGx2 rJ−−−(7)
として定めることができる。ここで、Gは操作器71を操作するときにその目盛りから分かり、r及びx2 は、飽和空気A2 の温度t2 であり第2加熱器51を制御する温度調節器53の設定温度t2 から得られる。又、x1 は、通常空気A1 の温度t1 及び相対湿度ψ1 を測定することにより、もしくは直接絶対湿度x1 を測定することによって得られる。
As described above, the power W corresponding to the latent heat R supplied to the normal air A 1 by the power regulator 62 is
W = RJ = GrJ (x 2 −x 1 ) / (1 + x 1 ) −−− (6)
Or
W ≒ Gx 2 rJ or W ≒ KGx 2 rJ --- (7 )
Can be determined as Here, G is understood from the scale when operating the operation device 71, and r and x 2 are the temperature t 2 of the saturated air A 2 and the set temperature t of the temperature controller 53 that controls the second heater 51. Obtained from 2 . Further, x 1 is usually obtained by measuring the temperature t 1 and the relative humidity ψ 1 of the air A 1 or directly measuring the absolute humidity x 1 .

この場合、飽和空気発生装置の実際の使用においては、上記G、t2 、又は必要に応じてt1 及びψ1 もしくはx1 をパラメータとしてWを求めた表やカープを予め作成しておき、それらを見てWを定め、電力調節器62を計算したWに合わせて運転することになる。なお、制御装置及びG、t1 、t2 等の検出器を設けて、検出データからWを計算させ、電力調節器62の出力が計算したWになるように自動運転させることも可能である。 In this case, in actual use of the saturated air generator, a table or a carp in which W is obtained using G, t 2 , or t 1 and ψ 1 or x 1 as parameters, if necessary, is prepared in advance. W is determined by looking at them, and the power regulator 62 is operated according to the calculated W. It is also possible to provide a control device and detectors such as G, t 1 , t 2, etc., calculate W from the detected data, and automatically operate so that the output of the power regulator 62 becomes the calculated W. .

以上のような予熱装置6を備えた飽和空気発生装置の予熱装置関連部分は次のように運転され、その作用効果を発揮する。
空気供給管3の空気流量を調整するための調節弁7は、操作盤8に設けられている操作器71により、目的とする流量として例えばG=50g/min の湿り空気を流すように調整される。この空気としては、例えば温度t1 =20℃、相対湿度ψ1 =50%程度の原料となる通常空気A1 が供給され、予熱装置6の電力調節器62は予熱器61に電力Wが供給され、A1 が潜熱分Rの供給を受けて加熱される。このときのWは、上記t2 =50℃及びG=50g/min からx1 を含む式(6)によって計算された値又は式(7)によって概算された値にされる。
The preheater-related part of the saturated air generator provided with the preheater 6 as described above is operated as follows and exhibits its effects.
The adjustment valve 7 for adjusting the air flow rate of the air supply pipe 3 is adjusted by an operating device 71 provided on the operation panel 8 so as to flow, for example, humid air of G = 50 g / min as a target flow rate. The As this air, for example, normal air A 1 which is a raw material having a temperature t 1 = 20 ° C. and a relative humidity ψ 1 = 50% is supplied, and the power regulator 62 of the preheating device 6 supplies power W to the preheater 61. A 1 receives the supply of latent heat R and is heated. At this time, W is set to a value calculated by the equation (6) including x 1 from the above t 2 = 50 ° C. and G = 50 g / min or a value estimated by the equation (7).

このWは、前記の如く表等で与えられているが、これを上記のG、t1 、t2 等の条件の一例から計算すると、G=50g/min =3kg/hr、x2 =0.086kg/kgDA、r=2383KJ/kg 、x1 =0.008kg/kgDAから、式(6)により、R=553.3KJ/h、W=153w、式(7)により、R=614.8KJ/h、W=170w又はR=0.9×614.8=553.3KJ/h、W=0.9×170=153w、として得ることができる。 This W is given in the table as described above, and when this is calculated from an example of the conditions such as G, t 1 , t 2 etc., G = 50 g / min = 3 kg / hr, x 2 = 0. 0.086 kg / kgDA, r = 2383 KJ / kg, x 1 = 0.008 kg / kgDA, from equation (6), R = 553.3 KJ / h, W = 153 w, from equation (7), R = 614.8 KJ / H, W = 170w or R = 0.9 × 614.8 = 553.3 KJ / h, W = 0.9 × 170 = 153 w.

このような電力が供給されるように電力調節された予熱器61を通常空気A1 が通過すると、A1 に上記の電力Wによって潜熱分Rが与えられてA1 が昇温し、前記の所定温度である温度t4 の昇温空気A4 になる。このときのt4 は、
4 =(R/GCp)+t1 −−−−(8)
により計算される。Cpは昇温過程における空気の平均的定圧比熱であり、約1J/g・℃である。従って、前記R、G、及びt1 から、t4 は、式(6)又は(7)により、t4 =204℃又は225℃もしくは204℃となる。
If the preheater 61 power adjustment as such power is supplied normally air A 1 passes, and latent heat R is given by the above power W to A 1 A 1 is raised, the The temperature-up air A 4 has a predetermined temperature t 4 . At this time t 4 is
t 4 = (R / GCp) + t 1 −−−− (8)
Is calculated by Cp is the average constant pressure specific heat of air in the temperature raising process, and is about 1 J / g · ° C. Therefore, from R, G, and t 1 , t 4 becomes t 4 = 204 ° C. or 225 ° C. or 204 ° C. according to the equation (6) or (7).

このように十分高い温度t4 に加熱された昇温空気A4 が飽和槽1の底11からこの例ではt3 =51〜52℃に温度調整されている水中に放出されると、温度t4 の空気が水と接触してその一部分を蒸発させて水蒸気として取り込むと共に水との比重差によって上昇し、微細メッシュ12によって小気泡に分断され、更に水と熱交換して水を蒸発させつつ浮上する。しかし、昇温空気A4 は潜熱分Rの熱量を与えられているだけであるため、式(2)におけるR=g2 r以外の部分の熱量を水を介して加熱器21から取り入れて、最終的に、51〜52℃の飽和空気の小気泡になり、中間メッシュ4を通過して上部区画1aに入り、以下図1の装置と同様に処理される。 When the heated air A 4 heated to the sufficiently high temperature t 4 is discharged from the bottom 11 of the saturation tank 1 into the water whose temperature is adjusted to t 3 = 51 to 52 ° C. in this example, the temperature t 4 While the air of 4 is brought into contact with water to evaporate a part thereof and take in as water vapor, it rises due to the difference in specific gravity with water, is divided into small bubbles by the fine mesh 12, and further heat exchanges with water to evaporate the water. Surface. However, since the heated air A 4 is only given the amount of heat of the latent heat component R, the amount of heat other than R = g 2 r in the equation (2) is taken from the heater 21 through water, Finally, it becomes small bubbles of saturated air at 51 to 52 ° C., passes through the intermediate mesh 4 and enters the upper section 1a, and is processed in the same manner as the apparatus of FIG.

このような飽和空気の生成過程において、昇温空気A4 が潜熱分Rを保有する温度になっているため、飽和槽1の下部区画1bの水は、その一部分を蒸発させるために必要になる潜熱分である大きな熱量を失うことがなく、温度20℃の通常空気A1 を温度51〜52℃まで昇温させるための顕熱分だけを通常空気A1 に与えればよくなるので、水の急激な温度低下が防止され、下部区画1bの温度制御性が良くなり、結局上部区画1aでの温度制御性を一層良くすることができる。 In such a process of generating saturated air, since the temperature rising air A 4 is at a temperature at which the latent heat component R is retained, the water in the lower section 1 b of the saturation tank 1 is necessary to evaporate a part thereof. Without losing a large amount of heat, which is a latent heat component, it is only necessary to give the normal air A 1 only the sensible heat for raising the temperature of the normal air A 1 at a temperature of 20 ° C. to a temperature of 51 to 52 ° C. Therefore, the temperature controllability of the lower section 1b is improved, and eventually the temperature controllability in the upper section 1a can be further improved.

又、飽和槽1内に昇温空気A4 が入れられるため、この温度の高い空気が水と接触することによって水を容易に蒸発させ、入れられた空気を飽和空気に近い状態に早く到達させることができる。 Further, since the temperature rising air A 4 is put into the saturation tank 1, the high temperature air comes into contact with the water to easily evaporate the water, and the introduced air quickly reaches the state close to the saturated air. be able to.

図5は、以上のような導入空気の飽和槽内における温度及び湿度の変化状態を模擬的に示す。図において、実線は、本発明を適用して導入空気に潜熱分までの熱量を供給して飽和温度t2 より十分高い温度に予熱した場合を示し、二点鎖線は、仮に図1に示す構造の同じ寸法の飽和槽1を使用して従来技術のように導入空気を飽和温度t2 まで予熱した場合を示す。 FIG. 5 schematically shows changes in temperature and humidity in the saturation tank of the introduced air as described above. In the figure, the solid line shows the case where the present invention is applied to supply the heat quantity up to the latent heat to the introduced air and preheated to a temperature sufficiently higher than the saturation temperature t 2 , and the two-dot chain line is the structure shown in FIG. The case where the introduced air is preheated to the saturation temperature t 2 as in the prior art using the saturation tank 1 having the same dimensions as shown in FIG.

図示の如く、本発明を適用すると、導入空気温度と飽和温度t2 との間に相当の温度差があるため、上記のように分圧差に加えて水を直接加熱蒸発させる効果が生じて、導入空気の飽和度が速く上昇するため、最終的に飽和槽1の出口では飽和度100%の飽和空気に到達するが、従来技術を適用したときには、導入空気の加熱までは必要でないとしても、分圧差のみによって水蒸気が供給されるため、湿度上昇が遅く図1のような小形の同じ大きさの飽和槽では最終的に飽和度が100%に到達しないことになる。 As shown in the figure, when the present invention is applied, since there is a considerable temperature difference between the introduction air temperature and the saturation temperature t 2 , the effect of directly heating and evaporating water in addition to the partial pressure difference occurs as described above. Since the saturation of the introduction air rises quickly, it finally reaches the saturation air of 100% saturation at the outlet of the saturation tank 1, but when the conventional technology is applied, even if heating to the introduction air is not necessary, Since the water vapor is supplied only by the partial pressure difference, the humidity rises slowly, and the saturation level of the small size of the saturated tank as shown in FIG. 1 does not finally reach 100%.

又、導入空気は水を蒸発させて飽和度を上げて行くので、導入空気の気泡の周辺にあって蒸発潜熱を供給する水の部分が温度を下げて水蒸気を供給するため、導入空気も飽和温度t2 より僅かに温度降下するが、本発明を適用した場合には、温度降下量が微小であると共に温度降下する時期も遅れるため、この点でも飽和空気への到達が促進される。 Also, since the introduced air evaporates water and raises the degree of saturation, the portion of the water that supplies the latent heat of vaporization around the bubbles of the introduced air lowers the temperature and supplies water vapor, so the introduced air is also saturated. Although the temperature drops slightly from the temperature t 2 , when the present invention is applied, the temperature drop amount is very small and the time when the temperature drops is delayed.

図6は本発明を適用した飽和空気発生装置の他の例を示す。
本例の装置では、予熱手段である予熱装置6が、気体を予熱する前記予熱器61、気体の流量Gを出力する流量出力手段として本例では質量流量の調節弁7を操作する前記操作器71及びその流量出力部72、この出力部72が出力した流量Gと目的とする温度t2 とを取り入れてGとt2 とを含む条件から熱量である潜熱分Rを計算してRから気体である通常空気A1 の予熱後の温度t4 を計算する計算手段としての計算部63、温度t4 を検出する温度センサ64、温度センサ64で検出した検出温度t4 pが計算部63が計算した予熱後の温度である予熱後設定温度t4 sになるように予熱器61の加熱量としての電力Wを制御する制御手段としての電力調節器62の電力設定部62a、等で構成されている。
FIG. 6 shows another example of a saturated air generator to which the present invention is applied.
In the apparatus of this example, the preheating device 6 which is preheating means is the preheater 61 for preheating the gas, and the operating device for operating the mass flow rate adjusting valve 7 in this example as the flow rate output means for outputting the gas flow rate G. 71 and its flow rate output unit 72, the flow rate G output from this output unit 72 and the target temperature t 2 are taken in, and the latent heat component R, which is the amount of heat, is calculated from the conditions including G and t 2. calculator 63 as an ordinary calculation means for calculating the temperature t 4 after preheating of the air a 1 is a temperature sensor 64 for detecting the temperature t 4, the detected temperature t 4 p detected by the temperature sensor 64 is calculated 63 the power regulator 62 of the power setting section 62a as a control means for controlling the power W of the calculated amount of heat the preheater 61 so that after the preheating the temperature set temperature t 4 s after preheating, is constituted by such ing.

操作器71は、調節弁7に開度信号を与えて、その信号に対応して調節弁7を通過する空気流量を定めるようになっている。その中に組み込まれている流量出力部72は,この開度信号によって対応する空気流量を計算部63に出力する。生成させようとする飽和空気の目的とする温度t2 は、通常、変更可能な設定温度として操作盤8に設定部81を設けてここで設定されるので、計算部63に取り入れる温度t2 は設定部81から送信される。 The operation device 71 gives an opening degree signal to the control valve 7 and determines the air flow rate passing through the control valve 7 in response to the signal. The flow rate output unit 72 incorporated therein outputs the corresponding air flow rate to the calculation unit 63 by this opening degree signal. The target temperature t 2 of the saturated air to be generated is normally set here by providing the setting unit 81 in the operation panel 8 as a changeable set temperature, so the temperature t 2 taken into the calculation unit 63 is It is transmitted from the setting unit 81.

計算部63では、Gとt2 とを含む条件からR及びt4 を計算するが、この計算はこれまで説明したような方法で行われる。この場合、Gとt2 から得られるx2 だけで式(6)又は(7)によりRを計算してもよい。又、通常空気A1 の温度及び湿度条件は通常R及びt4 の計算に大きな影響を及ぼさないので、これを例えば前記の如く温度20℃、相対湿度50%のように一定の値として計算部63に予め入力しておき、G、t2 にこのA1 の条件を加えて式(6)でRを計算し、式(8)でt4 を計算するようにしてもよい。又、通常t1 及びψは測定されるので、その測定値を入力するようにしてもよい。なお、計算部63は、このような計算をするための飽和蒸気表や湿り空気線図の必要データ部分を保有するように構成されている。 The calculation unit 63 calculates R and t 4 from the condition including G and t 2, and this calculation is performed by the method described so far. In this case, R may be calculated by equation (6) or (7) using only x 2 obtained from G and t 2 . In addition, since the temperature and humidity conditions of the normal air A 1 usually do not greatly affect the calculation of R and t 4 , for example, as described above, the calculation unit assumes a constant value such as a temperature of 20 ° C. and a relative humidity of 50%. 63 may be input in advance, and the condition of A 1 may be added to G and t 2 , R may be calculated using equation (6), and t 4 may be calculated using equation (8). Further, since t 1 and ψ are usually measured, the measured values may be input. The calculation unit 63 is configured to hold a necessary data portion of a saturated steam table and a wet air diagram for performing such calculation.

このような図6の飽和空気発生装置によれば、自動的に潜熱量を供給できるので、図3の装置に較べて、運転操作が容易になって省力化を図ることができる。又、昇温空気A4 の温度を制御するので、温度の異常な上昇を防止することが可能になる。なお、計算部63でRから電力Wまでを計算し、前記の如くその電力を供給又は制御するようにしてもよく、その場合でも運転操作を容易にすることができる。 According to the saturated air generating apparatus of FIG. 6 as described above, the amount of latent heat can be automatically supplied. Therefore, compared with the apparatus of FIG. 3, the operation operation is facilitated and labor saving can be achieved. Further, since the temperature of the temperature raising air A 4 is controlled, it is possible to prevent an abnormal temperature rise. Note that the calculation unit 63 may calculate R to electric power W and supply or control the electric power as described above. Even in this case, the driving operation can be facilitated.

図7は飽和空気の温度に対する絶対湿度x2 の変化状態を示す。
図示の如く、飽和空気の温度が50℃〜60℃程度を超えるとx2 が急激に大きくなる。そして、前式(5)、(5)´、(7)に示すように、x2 はほぼ潜熱分Rに対応した値になるので、上記飽和温度を超えるとRの値が大きくなり過ぎて、そのRで空気を予熱すると、昇温空気の温度t3 が異常に高くなる。例えばt2 が80℃になると、t3 が1000℃を超えるようになり、予熱器31が大型化したり、飽和槽1に入る空気の高温化によって装置の取扱性が悪くなる等の問題が生ずる。
FIG. 7 shows a change state of the absolute humidity x 2 with respect to the temperature of the saturated air.
As shown in the figure, when the temperature of the saturated air exceeds about 50 ° C. to 60 ° C., x 2 rapidly increases. And, as shown in the previous equations (5), (5) ′, (7), x 2 has a value corresponding to the latent heat component R. Therefore, when the saturation temperature is exceeded, the value of R becomes too large. When the air is preheated with R, the temperature t 3 of the heated air becomes abnormally high. For example, when t 2 becomes 80 ° C., t 3 exceeds 1000 ° C., and the preheater 31 becomes large, or the temperature of the air entering the saturation tank 1 becomes high, resulting in poor handling of the apparatus. .

従って、飽和温度t2 が60℃程度を超えるような条件で使用することがある飽和空気発生装置では、潜熱分R以下の熱量で空気を予熱することになる。即ち、例えば、予熱器31の最大能力をt2 が60℃のときのRまで熱交換可能なものにして、t2 が80℃のような飽和空気A2 を作るようなときには、通常空気A1 を予熱器31の最大予熱能力で予熱する。 Therefore, in a saturated air generator that may be used under conditions where the saturation temperature t 2 exceeds about 60 ° C., the air is preheated with a heat quantity equal to or less than the latent heat component R. That is, for example, when the maximum capacity of the preheater 31 can be exchanged up to R when t 2 is 60 ° C., and when the saturated air A 2 having t 2 of 80 ° C. is produced, the normal air A 1 is preheated with the maximum preheating capacity of the preheater 31.

しかし、通常空気A1 をこのようにR以下の熱量で予熱する場合でも、飽和槽1内において、水の潜熱負担率を低減すると共に、顕熱負荷をマイナスにして加熱器2での熱交換性を良くし、従来の装置よりも水の蒸発を大幅に促進させ、加熱器2を小容量のものにすると共に、飽和槽1の熱交換距離を短くしてその小型化を図ることができる。なお、例えば飽和温度t2 が50℃程度の場合でも、t2 より高い所定の温度として、潜熱負荷を低減させ顕熱負荷を負にすることによる効果が得られる程度の温度で、潜熱分Rで加熱したときのt3 よりは低いが、通常空気A1 を100℃〜150℃程度の中間温度t3 ´に予熱することも可能である。その場合でも、従来の装置よりも小形で露点精度の良い飽和空気を得ることができる。 However, even when the normal air A 1 is preheated with a heat quantity of R or less in this way, in the saturation tank 1, the latent heat burden ratio of water is reduced, and the heat exchange in the heater 2 is made with a negative sensible heat load. It is possible to reduce the size of the saturation tank 1 by shortening the heat exchange distance of the saturation tank 1 while improving the performance and greatly promoting the evaporation of water as compared with the conventional apparatus, making the heater 2 small. . For example, even when the saturation temperature t 2 is about 50 ° C., the latent heat component R is a temperature at which the effect of reducing the latent heat load and making the sensible heat load negative is obtained as a predetermined temperature higher than t 2. It is possible to preheat the air A 1 to an intermediate temperature t 3 ′ of about 100 ° C. to 150 ° C., although it is lower than t 3 when heated at. Even in such a case, it is possible to obtain saturated air that is smaller than conventional devices and has high dew point accuracy.

なお以上では、飽和気体発生装置が飽和空気を発生させる場合について説明したが、本発明は、必要に応じて、例えば窒素のような不活性ガスや他の気体を飽和水蒸気を含有した飽和気体にすることができる。   In the above, the case where the saturated gas generator generates saturated air has been described. However, the present invention can convert an inert gas such as nitrogen or another gas into a saturated gas containing saturated water vapor as necessary. can do.

本発明は、正確な露点温度の飽和空気を生成させる技術に関し、特に、湿度センサ校正用等に用いられ分流法、2温度法、2圧力法もしくは2温度2圧力法によって精密湿度条件を実現する精密湿度発生装置として、又、燃料電池駆動装置や試験装置に使用される燃料ガスや酸化剤ガスの加湿装置として好都合に利用される。   The present invention relates to a technique for generating saturated air having an accurate dew point temperature. In particular, the present invention is used for humidity sensor calibration and the like, and realizes a precise humidity condition by a shunt method, a two-temperature method, a two-pressure method, or a two-temperature two-pressure method. It is advantageously used as a precision humidity generator, and as a humidifier for fuel gas and oxidant gas used in fuel cell drive devices and test devices.

本発明を適用した飽和空気発生装置の全体構成の一例を示す説明図である。It is explanatory drawing which shows an example of the whole structure of the saturated air generator to which this invention is applied. (a)乃至(c)は、上記装置の中間メッシュ部分における気泡の状態を例示した説明図である。(A) thru | or (c) is explanatory drawing which illustrated the state of the bubble in the intermediate | middle mesh part of the said apparatus. 本発明を適用した飽和空気発生装置の他の例を示す説明図である。It is explanatory drawing which shows the other example of the saturated air generator to which this invention is applied. 通常空気及び飽和空気の流量及び保有熱量の状態を示す説明図である。It is explanatory drawing which shows the flow of normal air and saturated air, and the state of retained heat. (a)及び(b)は導入空気の温度及び湿度の変化状態を示す曲線図である。(A) And (b) is a curve figure which shows the change state of the temperature and humidity of introduction air. 本発明を適用した飽和空気発生装置の更に他の例を示す説明図である。It is explanatory drawing which shows the further another example of the saturated air generator to which this invention is applied. 飽和空気の温度と絶対湿度との関係を示す曲線図である。It is a curve figure which shows the relationship between the temperature of saturated air, and absolute humidity.

符号の説明Explanation of symbols

1 飽和槽(容器)
1a 上部区画(上側部分)
1b 下部区画(下側部分)
2 加熱装置(加熱手段)
4 中間メッシュ(多孔性部材)
5 第2加熱装置(熱交換手段)
6 予熱装置(予熱手段)
21 加熱器(加熱手段)
51 第2加熱器(熱交換手段)
61 予熱器(予熱手段)
Z 上下方向
1 中間位置
1 Saturation tank (container)
1a Upper section (upper part)
1b Lower section (lower part)
2 Heating device (heating means)
4 Intermediate mesh (porous member)
5 Second heating device (heat exchange means)
6 Preheating device (preheating means)
21 Heater (heating means)
51 Second heater (heat exchange means)
61 Preheater (Preheating means)
Z Vertical direction L 1 Intermediate position

Claims (3)

容器に入れられた水を加熱手段で加熱すると共に前記容器に気体を入れて該気体を前記水の中に分散させ前記水と接触させて前記気体を目的とする温度の飽和水蒸気含有気体にして前記容器から取り出すようにした飽和気体発生装置において、
前記容器の上下方向の中間位置に前記気体の通過を制限するように設けられた多孔性部材と、前記容器のうちの前記多孔性部材の上側部分に前記気体を前記目的とする温度にするように設けられた熱交換手段と、を有し、前記加熱手段は前記容器のうちの前記多孔性部材の下側部分に設けられていることを特徴とする飽和気体発生装置。
The water contained in the container is heated by a heating means, and a gas is put into the container to disperse the gas in the water, and the gas is brought into contact with the water to make the gas a saturated steam-containing gas at a target temperature. In the saturated gas generator adapted to be removed from the container,
A porous member provided to restrict the passage of the gas at an intermediate position in the vertical direction of the container, and the gas is set to the target temperature in an upper portion of the porous member of the container. A saturated gas generator, wherein the heating means is provided in a lower portion of the porous member of the container.
前記加熱手段は前記気体を前記目的とする温度より高い温度であって前記熱交換手段で前記目的とする温度に復元可能な範囲の温度まで加熱可能であることを特徴とする請求項1に記載の飽和気体発生装置。   The said heating means can heat the said gas to a temperature that is higher than the target temperature and that can be restored to the target temperature by the heat exchanging means. Saturated gas generator. 前記気体を前記容器に入れる前に前記気体に前記飽和水蒸気の潜熱分までの熱量を供給して前記気体を前記目的とする温度より高い温度に加熱可能にする予熱手段を設けたことを特徴とする請求項1又は2に記載の飽和気体発生装置。

Before the gas is put into the container, preheating means is provided to supply the gas with an amount of heat up to the latent heat of the saturated water vapor so that the gas can be heated to a temperature higher than the target temperature. The saturated gas generator according to claim 1 or 2.

JP2003359678A 2003-10-20 2003-10-20 Saturated gas generator Expired - Lifetime JP4291879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003359678A JP4291879B2 (en) 2003-10-20 2003-10-20 Saturated gas generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003359678A JP4291879B2 (en) 2003-10-20 2003-10-20 Saturated gas generator

Publications (2)

Publication Number Publication Date
JP2005118760A true JP2005118760A (en) 2005-05-12
JP4291879B2 JP4291879B2 (en) 2009-07-08

Family

ID=34615825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003359678A Expired - Lifetime JP4291879B2 (en) 2003-10-20 2003-10-20 Saturated gas generator

Country Status (1)

Country Link
JP (1) JP4291879B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240141A (en) * 2006-02-10 2007-09-20 Haruo Tsuchimoto Humidity control method, humidity control device and garbage treatment device having the same
JP2008190741A (en) * 2007-02-01 2008-08-21 Mitsubishi Heavy Ind Ltd Humidifier and fuel cell system
JP2012037137A (en) * 2010-08-06 2012-02-23 Daiichi Kagaku:Kk Saturated air generating device
CH707162A1 (en) * 2012-11-06 2014-05-15 Condair Ag Evaporation apparatus.
JP2014185829A (en) * 2013-03-25 2014-10-02 Espec Corp Humidifier and environment testing device
CN105571978A (en) * 2015-12-18 2016-05-11 东南大学 Water steam oversaturation atmosphere creating method and oversaturation degree measuring method and device
JP2018138893A (en) * 2017-02-24 2018-09-06 スガ試験機株式会社 Spray corrosion tester
JP2019023555A (en) * 2017-07-19 2019-02-14 バイス ウンベルトテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Humidifier and air conditioning method
JP2019132445A (en) * 2018-01-29 2019-08-08 公立大学法人大阪市立大学 Humidity generation device
KR102141300B1 (en) * 2019-02-27 2020-08-05 (주)규원테크 Cogeneration system using solid fuel
US20210372978A1 (en) * 2019-03-08 2021-12-02 Ball Wave Inc. System, method and program for calibrating moisture sensor
CN114047226A (en) * 2021-11-02 2022-02-15 中国航空工业集团公司北京长城计量测试技术研究所 Gas dew point generating device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240141A (en) * 2006-02-10 2007-09-20 Haruo Tsuchimoto Humidity control method, humidity control device and garbage treatment device having the same
JP2008190741A (en) * 2007-02-01 2008-08-21 Mitsubishi Heavy Ind Ltd Humidifier and fuel cell system
JP2012037137A (en) * 2010-08-06 2012-02-23 Daiichi Kagaku:Kk Saturated air generating device
CH707162A1 (en) * 2012-11-06 2014-05-15 Condair Ag Evaporation apparatus.
JP2014185829A (en) * 2013-03-25 2014-10-02 Espec Corp Humidifier and environment testing device
CN105571978A (en) * 2015-12-18 2016-05-11 东南大学 Water steam oversaturation atmosphere creating method and oversaturation degree measuring method and device
JP2018138893A (en) * 2017-02-24 2018-09-06 スガ試験機株式会社 Spray corrosion tester
JP2019023555A (en) * 2017-07-19 2019-02-14 バイス ウンベルトテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Humidifier and air conditioning method
JP2019132445A (en) * 2018-01-29 2019-08-08 公立大学法人大阪市立大学 Humidity generation device
JP7055345B2 (en) 2018-01-29 2022-04-18 公立大学法人大阪 Humidity generator
KR102141300B1 (en) * 2019-02-27 2020-08-05 (주)규원테크 Cogeneration system using solid fuel
US20210372978A1 (en) * 2019-03-08 2021-12-02 Ball Wave Inc. System, method and program for calibrating moisture sensor
US11982659B2 (en) * 2019-03-08 2024-05-14 Ball Wave Inc. System, method and program for calibrating moisture sensor
CN114047226A (en) * 2021-11-02 2022-02-15 中国航空工业集团公司北京长城计量测试技术研究所 Gas dew point generating device

Also Published As

Publication number Publication date
JP4291879B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP4291879B2 (en) Saturated gas generator
KR102129219B1 (en) Substrate processing apparatus and substrate processing method
RU2008129256A (en) METHOD FOR COOLING CONTROL COOLING CONTROL DEVICE AND COOLING WATER QUANTITY CALCULATION DEVICE
JP3826072B2 (en) Liquid material vaporizer
RU2013148795A (en) WARM WATER SUPPLY DEVICE AND METHOD OF WARM WATER SUPPLY
RU2762073C2 (en) Method and device for manufacturing steel sheet with black coating
JP4057034B2 (en) Regenerative heat supply device and regenerative heat supply system using the same
JP2008075943A (en) Humidifier
JP4388785B2 (en) Saturated gas generator
KR101610359B1 (en) UNIFORM MOISTURE SUPPLY DEVICE OF annealing furnace for decarbonization AND NITRIFICATION OF ELECTRICAL STEEL SHEET
JP4540315B2 (en) Cryogenic liquid heating method and apparatus
JP4615870B2 (en) Humidification gas supply system
JP4470740B2 (en) Hot water heater
Oueslati et al. Performance study of humidification–dehumidification system operating on the principle of an airlift pump with tunable height
KR102358349B1 (en) Thermo-hygrostat in which the humidifier in which the temperature disturbance is minimized is included
JP4698987B2 (en) Humidified gas supply system and method for supplying the same
CN116066811A (en) Film coating furnace vapor system and control method for supplying vapor to film coating furnace
JP2005203324A5 (en)
TW202210636A (en) Steam-type basic oxygen furnace slag stabilization device including a water tank, a stacking plate, and a steam pipe
JP2005019212A (en) Humidity control apparatus of humidification fuel gas in fuel cell
JPH02216826A (en) Manufacturing device of semiconductor device
JP2003042487A (en) Method of adjusting steam generating quantity and steam generating device
JP2008004393A (en) Drop removing device
KR100621740B1 (en) Self-Level Control Unit for Desalination Plant
JP2022175142A (en) Water level regulating system of absorption type chiller-heater with cooling tower

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090404

R150 Certificate of patent or registration of utility model

Ref document number: 4291879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term