JP2005118642A - Water treatment method and apparatus, and ejector for water treatment - Google Patents

Water treatment method and apparatus, and ejector for water treatment Download PDF

Info

Publication number
JP2005118642A
JP2005118642A JP2003354576A JP2003354576A JP2005118642A JP 2005118642 A JP2005118642 A JP 2005118642A JP 2003354576 A JP2003354576 A JP 2003354576A JP 2003354576 A JP2003354576 A JP 2003354576A JP 2005118642 A JP2005118642 A JP 2005118642A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
ejector
ozone
water
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003354576A
Other languages
Japanese (ja)
Inventor
Hideyoshi Katsumata
英麗 勝又
Shingo Shibata
真吾 柴田
Itaru Takeda
至 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2003354576A priority Critical patent/JP2005118642A/en
Publication of JP2005118642A publication Critical patent/JP2005118642A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To further improve the generation efficiency of a hydroxy radical in accelerated oxidation treatment combining hydrogen peroxide with ozone treatment in comparison with conventional ones. <P>SOLUTION: Hydrogen peroxide is injected together with ozone by an ejector 4 for injecting the ozone to water to be treated. When hydrogen peroxide is injected into the upstream side of the ejector 4, the injected hydrogen peroxide reacts with organic substances to be consumed before it reaches the ejector 4, thereby a mixing ratio of hydrogen peroxide to ozone becomes inaccurate. When hydrogen peroxide is injected into the downstream side of the ejector 4, ozone injected before the hydrogen peroxide reacts with the organic substances to be consumed before it reacts with the hydrogen peroxide, thereby the above mixing ratio becomes inaccurate. As hydrogen peroxide is injected together with ozone by the ejector 4, their independent consumption can be avoided. As a result, the above mixing ratio becomes accurate and the proper mixing ratio can be obtained. Both hydrogen peroxide and ozone are vigorously agitated in the ejector 4. Thereby hydroxyl radicals are generated efficiently. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、オゾンを使用する水処理方法及び装置並びにその水処理に使用されるエジェクタに関し、更に詳しくは、過酸化水素を併用する促進酸化処理による水処理方法及び装置並びにその水処理に使用されるエジェクタに関する。   The present invention relates to a water treatment method and apparatus using ozone and an ejector used for the water treatment, and more specifically, a water treatment method and apparatus by accelerated oxidation treatment using hydrogen peroxide together with the water treatment and the water treatment thereof. Related to the ejector.

近年、オゾン単独で処理困難な物質(COD,ダイオキシン類などの難分解性成分)が含まれる排水(最終処分場浸出水、焼却炉排ガス洗浄排水等)が多数ある。このような処理困難な物質を含有する有機排水の処理方法としては、オゾン処理に過酸化水素を組み合わせた促進酸化処理の実用化が進んでいる。   In recent years, there are many wastewaters (final disposal site leachate, incinerator exhaust gas cleaning wastewater, etc.) containing substances that are difficult to treat with ozone alone (hardly decomposable components such as COD and dioxins). As a method for treating organic wastewater containing such difficult-to-treat substances, accelerated oxidation treatment combining hydrogen peroxide with ozone treatment has been put into practical use.

オゾン処理に過酸化水素を組み合わせた促進酸化処理では、オゾンより酸化力が大きいヒドロキシラジカルが生成し、これによって処理困難な物質も効率的に分解される。水処理システムとしては、エジェクタを用いて被処理水にオゾンを注入するものが高効率とされており、そのエジェクタの上流側又は下流側で過酸化水素を注入するのが通例である(特許文献1,2参照)   In the accelerated oxidation treatment in which hydrogen peroxide is combined with ozone treatment, hydroxy radicals having an oxidizing power greater than that of ozone are generated, thereby efficiently decomposing substances that are difficult to treat. As a water treatment system, one that injects ozone into water to be treated using an ejector is considered to be highly efficient, and hydrogen peroxide is usually injected upstream or downstream of the ejector (Patent Document). 1 and 2)

特開2002−11485号公報JP 2002-11485 A

特開2002−79247号公報JP 2002-79247 A

このような促進酸化処理では、できるだけ多くのヒドロキシラジカルを生成することが要求される。ところが、これまでの促進酸化処理では、オゾン注入量と過酸化水素注入量から推定される量よりも少ないヒドロキシラジカルしか生成されないことが判明した。   Such accelerated oxidation treatment requires the generation of as many hydroxy radicals as possible. However, it has been found that the accelerated oxidation treatment so far generates fewer hydroxy radicals than the amount estimated from the ozone injection amount and the hydrogen peroxide injection amount.

なお、出願人はダイオキシン類の低減を目的とした高性能の促進酸化処理システムやプール水の処理を目的とした小型の促進酸化処理システムの納入を終えているが、いずれのシステムでも、過酸化水素の注入は、エジェクタの上流側に配置された気液分離反応槽で行っている。   The applicant has already delivered a high-performance accelerated oxidation treatment system aimed at reducing dioxins and a small accelerated oxidation treatment system aimed at treating pool water. Hydrogen is injected in a gas-liquid separation reaction tank disposed upstream of the ejector.

本発明の目的は、オゾン処理に過酸化水素を組み合わせた促進酸化処理において、ヒドロキシラジカルの生成効率を従来より高めることができる水処理方法及び装置並びに水処理用エジェクタを提供することにある。   An object of the present invention is to provide a water treatment method and apparatus, and a water treatment ejector that can increase the production efficiency of hydroxy radicals in the accelerated oxidation treatment in which hydrogen peroxide is combined with ozone treatment.

前述したとおり、オゾン注入にエジェクタを用いる促進酸化処理システムでは、エジェクタの上流側又は下流側で過酸化水素の注入が行われる。具体的には、エジェクタの上流側又は下流側のタンクで注入が行われる。なぜなら、配管での注入は水圧のために困難であり、ポンプによる強制注入も気泡が侵入して難しいため、タンクで注入を行わざるを得ないからである。本発明者はこのような過酸化水素の注入ポイントについて詳細な検討を行った結果、ヒドロキシラジカルが最も効率よく生成する注入ポイント、及び実装置で容易に注入可能となる注入装置に関し、次のような知見を得た。   As described above, in the accelerated oxidation processing system that uses an ejector for ozone injection, hydrogen peroxide is injected upstream or downstream of the ejector. Specifically, the injection is performed in a tank upstream or downstream of the ejector. This is because the injection through the pipe is difficult due to the water pressure, and the forced injection by the pump is also difficult due to the invasion of bubbles, so the injection must be performed in the tank. As a result of detailed examination of such an injection point of hydrogen peroxide, the present inventor relates to an injection point at which hydroxy radicals are most efficiently generated, and an injection device that can be easily injected with an actual device as follows. I got a good knowledge.

オゾンも過酸化水素も単独で酸化力を有し、被処理水中の有機物質と反応して消費される。このため、エジェクタの上流側のタンクで過酸化水素を注入する場合は、注入された過酸化水素がエジェクタに至るまでの間に被処理水中の有機物質と反応して消費されてしまう。反対に、エジェクタの下流側のタンクで過酸化水素を注入する場合は、エジェクタで注入されたオゾンが過酸化水素注入ポイントに至るまでの間に被処理水中の有機物質と反応して消費されてしまう。その結果、いずれの場合も、オゾンに対する過酸化水素の混合比率が不正確になる。   Ozone and hydrogen peroxide alone have oxidizing power and are consumed by reacting with organic substances in the water to be treated. For this reason, when hydrogen peroxide is injected in the tank on the upstream side of the ejector, the injected hydrogen peroxide reacts with the organic substance in the water to be treated before reaching the ejector and is consumed. On the other hand, when hydrogen peroxide is injected in the tank on the downstream side of the ejector, the ozone injected by the ejector is consumed by reacting with organic substances in the treated water before reaching the hydrogen peroxide injection point. End up. As a result, in any case, the mixing ratio of hydrogen peroxide to ozone becomes inaccurate.

促進酸化処理におけるヒドロキシラジカルの生成では、オゾンに対する過酸化水素の混合比率が重要であり、過酸化水素が少なすぎる場合も多すぎる場合もヒドロキシラジカル量は減少する。即ち、過酸化水素は、ヒドロキシラジカルの生成源であると同時に、ヒドロキシラジカルにより消費されるラジカルスカベンジャーでもある。このため、過酸化水素が少なすぎる場合にヒドロキシラジカル量が減少するのは勿論のこと、多すぎる場合もヒドロキシラジカルが余剰の過酸化水素と反応するためにヒドロキシラジカル量が減少し、その結果として、オゾンに対する過酸化水素の混合比率には最適値が存在することになるのである。   In the generation of hydroxy radicals in the accelerated oxidation treatment, the mixing ratio of hydrogen peroxide to ozone is important, and the amount of hydroxy radicals is reduced when hydrogen peroxide is too little or too much. That is, hydrogen peroxide is a radical scavenger consumed by hydroxy radicals as well as a source of hydroxy radicals. For this reason, when the amount of hydrogen peroxide is too small, the amount of hydroxy radicals is reduced. In addition, when the amount is too much, the amount of hydroxy radicals decreases due to the reaction of the hydroxyl radicals with excess hydrogen peroxide. There is an optimum value for the mixing ratio of hydrogen peroxide to ozone.

これらの理由のため、オゾンと過酸化水素の注入形態としては、両者の無効消費がなく最適比率の確保が容易な同時注入が効果的となり、その同時注入ポイントとしては、負圧による吸い込みが行われるエジェクタが効率的であることが判明した。ちなみに、エジェクタの上流側又は下流側のタンクで過酸化水素の注入を行う従来の促進酸化処理の場合は、注入されたオゾンや過酸化水素が混合するまでに無効消費されるため、最適比率が得られず、ヒドロキシラジカルの生成量の減少が避けられないことになる。   For these reasons, ozone and hydrogen peroxide are effectively injected by simultaneous injection with no ineffective consumption of both and easy to ensure the optimum ratio, and the negative injection is the simultaneous injection point. The ejector found to be efficient. By the way, in the case of the conventional accelerated oxidation process in which hydrogen peroxide is injected in the upstream or downstream tank of the ejector, the injected ozone and hydrogen peroxide are ineffectively consumed until they are mixed. It cannot be obtained, and a decrease in the amount of hydroxy radicals produced is inevitable.

本発明の水処理方法及び装置並びに水処理用エジェクタは、かかる知見を基礎として完成されたものであり、その水処理方法は、エジェクタを用いて被処理水にオゾンを注入する水処理方法において、オゾンを注入するエジェクタにより、前記被処理水に過酸化水素を注入するものである。   The water treatment method and apparatus and the water treatment ejector of the present invention have been completed based on such knowledge, and the water treatment method is a water treatment method for injecting ozone into water to be treated using an ejector. Hydrogen peroxide is injected into the water to be treated by an ejector for injecting ozone.

また、本発明の水処理装置は、被処理水を加圧してエジェクタに流通させる被処理水流通系統と、前記エジェクタにオゾンを供給するオゾン供給系統と、前記エジェクタに過酸化水素を供給する過酸化水素供給系統とを具備するものである。   Further, the water treatment apparatus of the present invention includes a treated water distribution system that pressurizes treated water and distributes the treated water to an ejector, an ozone supply system that supplies ozone to the ejector, and a hydrogen supply system that supplies hydrogen peroxide to the ejector. And a hydrogen oxide supply system.

また、本発明の水処理用エジェクタは、被処理水にオゾンを注入するために使用するエジェクタであり、負圧混合部に2以上の注入剤吸い込み口を有するものである。   Moreover, the ejector for water treatment of this invention is an ejector used in order to inject | pour ozone into to-be-processed water, and has two or more injection agent suction ports in a negative pressure mixing part.

ここで、2以上の注入剤吸い込み口のうちの少なくとも一つはオゾン吸い込み口であり、別の少なくとも一つは過酸化水素吸い込み口である。   Here, at least one of the two or more injection agent suction ports is an ozone suction port, and at least one other is a hydrogen peroxide suction port.

本発明では、オゾンを注入するエジェクタで過酸化水素が同時注入される。エジェクタでは、吸い込み注入が行われるので、過酸化水素の同時注入も技術的には容易であり、エジェクタでの同時注入では両者の攪拌が十分に行われる利点もある。このようなエジェクタでの同時注入と十分な攪拌とにより、オゾンや過酸化水素の無効消費が抑制され、両者の有効利用と混合比率の正確な管理の結果、ヒドロキシラジカルの生成効率が上がる。   In the present invention, hydrogen peroxide is simultaneously injected by an ejector for injecting ozone. In the ejector, since the suction injection is performed, simultaneous injection of hydrogen peroxide is technically easy, and the simultaneous injection with the ejector has an advantage that both of them are sufficiently stirred. Such simultaneous injection and sufficient agitation in the ejector suppresses ineffective consumption of ozone and hydrogen peroxide. As a result of effective use of both and accurate management of the mixing ratio, the production efficiency of hydroxy radicals increases.

また、エジェクタでの注入は、ポンプによる押し込みではなく吸い込みであるので、水圧が高い配管へ注入を行わなくてもよく、高出力ポンプが不要になる。また、過酸化水素は放置していると気泡が発生し、押し込みの場合はこの気泡でエア噛みが起こるので、実装置では配管への押し込み注入は困難であるが、エジェクタでの注入では問題がない。   Further, since the injection by the ejector is not the push-in by the pump but the suction, it is not necessary to inject into the pipe having a high water pressure, and a high-power pump is not necessary. Also, if hydrogen peroxide is left unattended, bubbles are generated, and in the case of pushing in, air bubbles are generated by these bubbles, so it is difficult to push and inject into the pipe with the actual device, but there is a problem with injection with the ejector. Absent.

オゾンの注入量は0.1〜3000mg/Lが好ましく、最終処分場浸出水のダイオキシン類分解目的の場合は50〜300mg/Lが好ましい。これが少な過ぎると処理効果が不十分となり、多過ぎる場合は経済性が悪化する。   The amount of ozone injected is preferably 0.1 to 3000 mg / L, and 50 to 300 mg / L is preferable for the purpose of decomposing dioxins in the final disposal site leachate. If the amount is too small, the treatment effect is insufficient, and if it is too large, the economic efficiency is deteriorated.

オゾンに対する過酸化水素の混合比率は0.05〜10の範囲内で選択するのが好ましく、ダイオキシン類を対象とする場合は0.05〜1の範囲内で選択するのが好ましい。この範囲内に存在する最適比率に対して、混合比率が小さ過ぎても大き過ぎてもヒドロキシラジカルの生成効率が低下することは前述したとおりである。なお、最適比率に関しては、被処理水の水質、対象物質により固有の最適比率が存在するので、ラボテストによりその被処理水に合った最適比率を見つけ出し、設計を行うことにより、その最適比率か実現される。   The mixing ratio of hydrogen peroxide to ozone is preferably selected within the range of 0.05 to 10, and when dioxins are targeted, it is preferably selected within the range of 0.05 to 1. As described above, if the mixing ratio is too small or too large with respect to the optimum ratio existing in this range, the production efficiency of hydroxy radicals is lowered. As for the optimum ratio, there is an optimum ratio specific to the quality of the water to be treated and the target substance, so the optimum ratio suitable for the water to be treated is found and designed by lab tests. Is done.

使用するオゾンガスとしては、同じオゾン注入率の場合、高い方がガス量が少なくてすみ、水へのオゾンの溶解効率が向上するので、オゾン濃度が120g/Nm3 以上の高濃度オゾンガスが好ましい。ガス量が少ない場合は、エジェクタによる過酸化水素の吸い込みも安定する。 As the ozone gas to be used, a higher concentration ozone gas having an ozone concentration of 120 g / Nm 3 or more is preferable because the higher the ozone injection rate, the lower the gas amount and the better the ozone dissolution efficiency in water. When the amount of gas is small, the suction of hydrogen peroxide by the ejector is also stable.

本発明の水処理方法は、オゾン処理に過酸化水素を組み合わせた促進酸化処理において、オゾンを注入するエジェクタで過酸化水素を同時的に注入することにより、ヒドロキシラジカルの生成効率を従来より高めることができ、処理効率を高めることができる。   According to the water treatment method of the present invention, in the accelerated oxidation treatment in which hydrogen peroxide is combined with ozone treatment, the hydrogen radical is simultaneously injected by an ejector for injecting ozone, thereby improving the generation efficiency of hydroxy radicals. Processing efficiency can be increased.

本発明の水処理装置は、被処理水を加圧してエジェクタに流通させる被処理水流通系統と、前記エジェクタにオゾンを供給するオゾン供給系統と、前記エジェクタに過酸化水素を供給する過酸化水素供給系統とを具備し、エジェクタでオゾンと過酸化水素を同時的に注入することにより、ヒドロキシラジカルの生成効率を従来より高めることができ、処理効率を高めることができる。   The water treatment apparatus of the present invention includes a treated water circulation system that pressurizes treated water and circulates it to an ejector, an ozone supply system that supplies ozone to the ejector, and a hydrogen peroxide that supplies hydrogen peroxide to the ejector. By supplying ozone and hydrogen peroxide at the same time with an ejector, the generation efficiency of hydroxy radicals can be increased as compared with the conventional method, and the processing efficiency can be increased.

本発明の水処理用エジェクタは、負圧混合部に2以上の注入剤吸い込み口を有することにより、オゾンと過酸化水素の同時的な注入を可能にしている。これにより、ヒドロキシラジカルの生成効率を従来より高めることができ、処理効率を高めることができる。   The ejector for water treatment of the present invention has two or more injection agent suction ports in the negative pressure mixing section, thereby enabling simultaneous injection of ozone and hydrogen peroxide. Thereby, the production | generation efficiency of a hydroxyl radical can be improved conventionally, and processing efficiency can be improved.

以下に本発明の実施形態を図面に基づいて説明する。図1は本発明の一実施形態を示す水処理装置の構成図、図2は同水処理装置に使用されたエジェクタの断面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a water treatment apparatus showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view of an ejector used in the water treatment apparatus.

本実施形態では、ダイオキシン類などの難分解性有害物質を含む被処理水をオゾン、過酸化水素及び紫外線照射により処理する3元系の促進酸化処理システムである。その被処理水は、図1に示すように、先ず気液分離反応槽1に導入される。気液分離反応槽1は堰2により上流部と下流部に分離されており、被処理水は気液分離槽1の下流部に導入される。   In this embodiment, it is a ternary accelerated oxidation treatment system that treats water to be treated containing a hardly decomposable harmful substance such as dioxins with ozone, hydrogen peroxide, and ultraviolet irradiation. The treated water is first introduced into the gas-liquid separation reaction tank 1 as shown in FIG. The gas-liquid separation reaction tank 1 is separated into an upstream part and a downstream part by a weir 2, and water to be treated is introduced into the downstream part of the gas-liquid separation tank 1.

気液分離槽1の下流部に導入された被処理水は、循環ポンプ3により加圧されてスリーブ状のエジェクタ4に送られる。エジェクタ4は、図2に示すように、入側から出側へかけて連設された、先絞りの絞り部41、ストレートな負圧混合部42及びスロート部43、並びに先拡がりの拡大部44を有しており、負圧混合部42で、二つの吸い込み部45,46を通して外部の気体や液体を吸い込むことができ、また、吸い込んだ流体を、絞り部41を通ってきた被処理水に十分に混合させることができる構成になっている。   The water to be treated introduced into the downstream portion of the gas-liquid separation tank 1 is pressurized by the circulation pump 3 and sent to the sleeve-like ejector 4. As shown in FIG. 2, the ejector 4 includes a front throttle part 41, a straight negative pressure mixing part 42 and a throat part 43, and a forward widening part 44, which are connected from the inlet side to the outlet side. The negative pressure mixing part 42 can suck external gas and liquid through the two suction parts 45, 46, and the sucked fluid is fed into the water to be treated that has passed through the throttle part 41. It has a structure that can be mixed sufficiently.

二つの吸い込み部45,46は、負圧混合部42を挟む対称2位置に、負圧混合部42に連通するように、エジェクタ4を半径方向に貫通して設けられている。一方の吸い込み部45はオゾン吸い込み部であり、オゾン発生装置8と接続されている。他方の吸い込み部46は過酸化水素の吸い込み部であり、過酸化水素注入装置9と接続されている。いずれの吸い込み部も配管と接続するための口金がねじ込まれる口金装着部を兼ねている。   The two suction portions 45 and 46 are provided through the ejector 4 in the radial direction so as to communicate with the negative pressure mixing portion 42 at two symmetrical positions sandwiching the negative pressure mixing portion 42. One suction part 45 is an ozone suction part and is connected to the ozone generator 8. The other suction portion 46 is a suction portion for hydrogen peroxide, and is connected to the hydrogen peroxide injection device 9. Each suction part also serves as a base mounting part into which a base for connecting to the pipe is screwed.

エジェクタ4に送られた被処理水は、その負圧混合部42を通過するときにオゾン及び過酸化水素を同時注入される。エジェクタ4を通過した被処理水は、次にUV反応塔10に送られる。UV反応塔10は紫外線ランプ11を内蔵しており、当該反応塔を下から上へ長手方向に通過する被処理水に紫外線を照射する。UV反応塔10を通過した被処理水は、気液分離槽1の上流部に戻される。そして、この被処理水が気液分離槽1の上流部から処理水として抜き出される。   The water to be treated sent to the ejector 4 is simultaneously injected with ozone and hydrogen peroxide when passing through the negative pressure mixing section 42. The treated water that has passed through the ejector 4 is then sent to the UV reaction tower 10. The UV reaction tower 10 has a built-in ultraviolet lamp 11, and irradiates the water to be treated that passes through the reaction tower from the bottom to the top in the longitudinal direction. The treated water that has passed through the UV reaction tower 10 is returned to the upstream portion of the gas-liquid separation tank 1. And this to-be-processed water is extracted from the upstream part of the gas-liquid separation tank 1 as treated water.

本実施形態では、被処理水がエジェクタ4を通過するときに、オゾン発生装置8で発生したオゾンガスがその被処理水に注入される。また、過酸化水素注入装置9により過酸化水素が同時注入される。オゾンと過酸化水素が共存することにより、非常に反応性に富むヒドロキシラジカル(OH・)が生成される(化学式1)。   In the present embodiment, when the water to be treated passes through the ejector 4, ozone gas generated by the ozone generator 8 is injected into the water to be treated. Further, hydrogen peroxide is simultaneously injected by the hydrogen peroxide injection device 9. By the coexistence of ozone and hydrogen peroxide, a highly reactive hydroxy radical (OH.) Is generated (Chemical Formula 1).

Figure 2005118642
Figure 2005118642

エジェクタ4の上流側で過酸化水素を注入する場合、注入された過酸化水素がエジェクタ4に到達までに単独で有機物質やその還元正物質等と反応して消費されるため、オゾンに対する過酸化水素の混合比率が不正確になる。エジェクタ4の下流側で過酸化水素を注入する場合は、先に注入されたオゾンが過酸化水素と反応を始めるまでの間に単独で有機物質やその還元正物質等と反応して消費されるため、やはりオゾンに対する過酸化水素の混合比率が不正確になる。しかるに、エジェクタ4でオゾンと同時に過酸化水素が注入されることにより、それぞれの単独消費が避けられるため、前記混合比率が正確になり、適正比率が得られる。また、エジェクタ4内で両者が強力に攪拌される。これらのため、ヒドロキシラジカルが効率的に生成される。   When hydrogen peroxide is injected on the upstream side of the ejector 4, the injected hydrogen peroxide is consumed by reacting with an organic substance or its reduced positive substance alone before reaching the ejector 4. The mixing ratio of hydrogen becomes inaccurate. When hydrogen peroxide is injected on the downstream side of the ejector 4, the previously injected ozone is consumed by reacting with an organic substance or its reduced positive substance alone until it starts reacting with hydrogen peroxide. Therefore, the mixing ratio of hydrogen peroxide to ozone is still inaccurate. However, when hydrogen peroxide is injected simultaneously with ozone by the ejector 4, each individual consumption is avoided, so that the mixing ratio becomes accurate and an appropriate ratio is obtained. Further, both of them are vigorously stirred in the ejector 4. For these reasons, hydroxy radicals are efficiently generated.

生成されたヒドロキシラジカルは、被処理水中の有機物資(RH)と反応して有機ラジカル(R・)を生成する。生成した有機ラジカル(R・)はオゾンとの反応により酸化生成物となる。かくして、被処理水中の有機物質がヒドロキシラジカルにより分解処理される(化学式2)。多量のヒドロキシラジカルが生成されることにより、有機物質の分解効率が上がる。   The produced hydroxy radical reacts with an organic substance (RH) in the water to be treated to produce an organic radical (R.). The generated organic radical (R.) becomes an oxidation product by reaction with ozone. Thus, the organic substance in the water to be treated is decomposed by hydroxy radicals (Chemical Formula 2). Generation of a large amount of hydroxy radicals increases the decomposition efficiency of organic substances.

Figure 2005118642
Figure 2005118642

促進酸化処理では、被処理水のpHが処理効率に影響を及ぼすとされている。即ち、化学式3のとおり、被処理水中の炭酸イオンはpH9以上で解離により重炭酸イオンとなる。炭酸イオンも重炭酸イオンも、ラジカルにより消費されるラジカルスカベンジャーであるが、反応速度は炭酸イオンよりも重炭酸イオンの方が約10倍速い。このため、pHを9より小さくして重炭酸イオンの生成を抑え、ラジカルの消費を抑えることが望まれる。即ち、ラジカルの消費抑制の点からは、pHは9より小さいことが望まれる。   In the accelerated oxidation treatment, the pH of the water to be treated is said to affect the treatment efficiency. That is, as shown in Chemical Formula 3, carbonate ions in the water to be treated become bicarbonate ions by dissociation at pH 9 or higher. Both carbonate and bicarbonate ions are radical scavengers consumed by radicals, but the reaction rate is about 10 times faster for bicarbonate ions than for carbonate ions. For this reason, it is desired to make the pH lower than 9 to suppress the formation of bicarbonate ions and suppress the consumption of radicals. That is, from the viewpoint of suppressing radical consumption, the pH is preferably smaller than 9.

Figure 2005118642
Figure 2005118642

一方、化学式1中の(1)式で示される過酸化水素の解離はアルカリ域で進み、酸性域では進行しない。このため、ラジカル生成の点からはアルカリ域、即ちpH7以上が好ましいということになる。このような事情から、オゾンに過酸化水素を組み合わせた促進酸化処理での被処理水のpHは、一般には6.5〜8に管理するのが好ましいとされている。   On the other hand, the dissociation of hydrogen peroxide represented by the formula (1) in Chemical Formula 1 proceeds in the alkaline region and does not proceed in the acidic region. For this reason, from the viewpoint of radical generation, the alkali range, that is, pH 7 or higher is preferable. Under such circumstances, it is generally preferred that the pH of water to be treated in the accelerated oxidation treatment in which hydrogen peroxide is combined with ozone is preferably controlled to 6.5 to 8.

ところが、エジェクタ4でオゾンと過酸化水素を同時注入する場合は、被処理水のpHが処理効率に影響を及ぼしにくいことが、本発明者による実験から確かめられている。その理由は定かでないが、一応次のようなことが推測される。ヒドロキシラジカルの生成、消費の反応速度は非常に速い。オゾン、過酸化水素及び被処理水が同一点で出会い、強制混合を受けると、pHの影響が出る前に反応が終了してしまうことが推測される。   However, when ozone and hydrogen peroxide are simultaneously injected by the ejector 4, it has been confirmed from experiments by the present inventors that the pH of the water to be treated hardly affects the treatment efficiency. The reason is not clear, but the following is presumed. The reaction rate of production and consumption of hydroxy radicals is very fast. If ozone, hydrogen peroxide, and water to be treated meet at the same point and subjected to forced mixing, it is presumed that the reaction ends before the influence of pH appears.

次に、比較試験結果を示し、本発明の効果を明らかにする。図3は試験装置の構成図、図4〜図6は試験結果を示すグラフである。   Next, comparative test results will be shown to clarify the effects of the present invention. FIG. 3 is a block diagram of the test apparatus, and FIGS. 4 to 6 are graphs showing the test results.

試験装置では、貯水タンク12内の被処理水が循環ポンプ13によりエジェクタ14、反応塔15を介して貯水タンク12に循環する閉ループが形成されている。そして、本試験では、オゾンをエジェクタ14により毎分、被処理水1リットル当たり2mg注入する。過酸化水素は、エジェクタ14より上流側のA点、エジェクタ14内のB点、反応塔15より更に下流側のC点、貯水タンク12内のD点で注入する。過酸化水素の注入量は毎分、被処理水1リットル当たり0.2mgであり、オゾンに対する過酸化水素の注入比率は0.1である。   In the test apparatus, a closed loop is formed in which the water to be treated in the water storage tank 12 is circulated to the water storage tank 12 through the ejector 14 and the reaction tower 15 by the circulation pump 13. In this test, ozone is injected by the ejector 14 at a rate of 2 mg per liter of water to be treated every minute. Hydrogen peroxide is injected at point A upstream from the ejector 14, point B in the ejector 14, point C further downstream from the reaction tower 15, and point D in the water storage tank 12. The injection amount of hydrogen peroxide is 0.2 mg per liter of water to be treated per minute, and the injection ratio of hydrogen peroxide to ozone is 0.1.

試験は被処理水を閉ループに循環させながら実施した。そして処理時間0、60、120、240分でサンプリングポートより被処理水を抜き取り、被処理水中のTOCを測定した。また、試験中、排オゾンガス濃度モニターにより排オゾン量を測定し、オゾンの吸収効率を測定した。   The test was conducted while circulating the water to be treated in a closed loop. And the to-be-processed water was extracted from the sampling port in processing time 0, 60, 120, and 240 minutes, and TOC in to-be-processed water was measured. Further, during the test, the amount of exhausted ozone was measured with an exhausted ozone gas concentration monitor, and the ozone absorption efficiency was measured.

過酸化水素を前記A〜D点で注入した場合のオゾン吸収効率を示したのが図4である。また、各注入形態におけるTOCの経時的変化を示したのが図5である。両図から分かるように、オゾン吸収効率、処理効率ともに、エジェクタ14内(B点)での同時注入が高い値となる。   FIG. 4 shows the ozone absorption efficiency when hydrogen peroxide is injected at the points A to D. FIG. 5 shows the change in TOC over time in each injection mode. As can be seen from both figures, the simultaneous injection in the ejector 14 (point B) is a high value for both ozone absorption efficiency and treatment efficiency.

また、エジェクタ14内(B点)での注入(同時注入)、貯水タンク12内(D点)での注入について、被処理水のpHの影響を示したのが図5(a)(b)である。同時注入はタンク注入と比べて被処理水のpHの影響を殆ど受けないことが分かる。   In addition, FIGS. 5A and 5B show the influence of the pH of the water to be treated on injection (simultaneous injection) in the ejector 14 (point B) and injection in the water storage tank 12 (point D). It is. It can be seen that the simultaneous injection is hardly affected by the pH of the water to be treated as compared with the tank injection.

前述の実施形態では、オゾン吸い込み口45と過酸化水素吸い込み口46を軸方向の同じ位置に設けたが、同じ負圧部内であれば軸方向で変位させて設けることもできる。また、周方向においても、必ずしも中心線を挟む対称位置に設ける必要はない。   In the above-described embodiment, the ozone suction port 45 and the hydrogen peroxide suction port 46 are provided at the same position in the axial direction. However, the ozone suction port 45 and the hydrogen peroxide suction port 46 may be displaced in the axial direction as long as they are within the same negative pressure portion. Also in the circumferential direction, it is not always necessary to provide a symmetrical position across the center line.

本発明の一実施形態を示す水処理装置の構成図である。It is a block diagram of the water treatment apparatus which shows one Embodiment of this invention. 同水処理装置に使用されたエジェクタの断面図である。It is sectional drawing of the ejector used for the water treatment apparatus. 試験装置の構成図である。It is a block diagram of a test apparatus. 過酸化水素の注入ポイントがオゾン吸収効率に及ぼす影響を示すグラフである。It is a graph which shows the influence which the injection | pouring point of hydrogen peroxide has on ozone absorption efficiency. 過酸化水素の注入ポイントが処理効率に及ぼす影響を示すグラフである。It is a graph which shows the influence which the injection | pouring point of hydrogen peroxide has on process efficiency. 被処理水のpHが処理効率に及ぼす影響を、同時注入とタンク注入の場合について示すグラフである。It is a graph which shows the influence which pH of to-be-processed water has on processing efficiency about the case of simultaneous injection and tank injection.

符号の説明Explanation of symbols

1 気液分離反応槽
2 堰
3 循環ポンプ
4 エジェクタ
42 負圧混合部
45 オゾン吸い込み部
46 過酸化水素吸い込み部
8 オゾン発生装置
9 過酸化水素注入装置
10 UV反応塔
11 紫外線ランプ
DESCRIPTION OF SYMBOLS 1 Gas-liquid separation reaction tank 2 Weir 3 Circulation pump 4 Ejector 42 Negative pressure mixing part 45 Ozone suction part 46 Hydrogen peroxide suction part 8 Ozone generator 9 Hydrogen peroxide injection apparatus 10 UV reaction tower 11 UV lamp

Claims (4)

エジェクタを用いて被処理水にオゾンを注入する水処理方法において、オゾンを注入するエジェクタにより、前記被処理水に過酸化水素を注入することを特徴とする水処理方法。   A water treatment method for injecting ozone into water to be treated using an ejector, wherein water is injected into the water to be treated by an ejector for injecting ozone. 被処理水を加圧してエジェクタに流通させる被処理水流通系統と、前記エジェクタにオゾンを供給するオゾン供給系統と、前記エジェクタに過酸化水素を供給する過酸化水素供給系統とを具備することを特徴とする水処理装置。   A treated water distribution system for pressurizing the treated water to flow to the ejector, an ozone supply system for supplying ozone to the ejector, and a hydrogen peroxide supply system for supplying hydrogen peroxide to the ejector. A water treatment device characterized. 被処理水にオゾンを注入するために使用するエジェクタであり、負圧混合部に2以上の注入剤吸い込み口を有することを特徴とする水処理用エジェクタ。   A water treatment ejector, which is an ejector used for injecting ozone into water to be treated, and has two or more injecting agent suction ports in a negative pressure mixing section. 2以上の注入剤吸い込み口のうちのうちの少なくとも一つはオゾン吸い込み口であり、別の少なくとも一つは過酸化水素吸い込み口である請求項3に記載の水処理用エジェクタ。   4. The water treatment ejector according to claim 3, wherein at least one of the two or more injection agent suction ports is an ozone suction port, and at least one other is a hydrogen peroxide suction port.
JP2003354576A 2003-10-15 2003-10-15 Water treatment method and apparatus, and ejector for water treatment Pending JP2005118642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003354576A JP2005118642A (en) 2003-10-15 2003-10-15 Water treatment method and apparatus, and ejector for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003354576A JP2005118642A (en) 2003-10-15 2003-10-15 Water treatment method and apparatus, and ejector for water treatment

Publications (1)

Publication Number Publication Date
JP2005118642A true JP2005118642A (en) 2005-05-12

Family

ID=34612443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003354576A Pending JP2005118642A (en) 2003-10-15 2003-10-15 Water treatment method and apparatus, and ejector for water treatment

Country Status (1)

Country Link
JP (1) JP2005118642A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200461827Y1 (en) 2010-05-03 2012-08-07 고공삼 Apparatus for cleaning waste water
WO2020136982A1 (en) * 2018-12-28 2020-07-02 日本碍子株式会社 Sterilizing water, sterilizing water production method and sterilized object production method
JP2020532416A (en) * 2017-09-01 2020-11-12 ソムニオ グローバル ホールディングス,エルエルシー Free radical generator and how to use it
CN113307416A (en) * 2021-06-29 2021-08-27 洛阳永宁有色科技有限公司 Multifunctional sewage treatment tank

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657497U (en) * 1993-01-18 1994-08-09 株式会社田村金属製作所 Cleaning water manufacturing equipment for sterilization and deodorization of food
US5364537A (en) * 1991-01-16 1994-11-15 Otv (Omnium De Traitements Et De Valorisation) Process for the oxidation of organic micropollutants in water using the O3 /H2 O2 combination
JPH11290878A (en) * 1998-02-16 1999-10-26 Japan Organo Co Ltd Control method for removing toc component
JP2000084574A (en) * 1998-09-16 2000-03-28 Nomura Micro Sci Co Ltd Water treatment and its apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364537A (en) * 1991-01-16 1994-11-15 Otv (Omnium De Traitements Et De Valorisation) Process for the oxidation of organic micropollutants in water using the O3 /H2 O2 combination
JPH0657497U (en) * 1993-01-18 1994-08-09 株式会社田村金属製作所 Cleaning water manufacturing equipment for sterilization and deodorization of food
JPH11290878A (en) * 1998-02-16 1999-10-26 Japan Organo Co Ltd Control method for removing toc component
JP2000084574A (en) * 1998-09-16 2000-03-28 Nomura Micro Sci Co Ltd Water treatment and its apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200461827Y1 (en) 2010-05-03 2012-08-07 고공삼 Apparatus for cleaning waste water
JP2020532416A (en) * 2017-09-01 2020-11-12 ソムニオ グローバル ホールディングス,エルエルシー Free radical generator and how to use it
WO2020136982A1 (en) * 2018-12-28 2020-07-02 日本碍子株式会社 Sterilizing water, sterilizing water production method and sterilized object production method
JPWO2020136982A1 (en) * 2018-12-28 2021-11-04 日本碍子株式会社 Sterilized water, sterilized water manufacturing method and sterilized object manufacturing method
CN113307416A (en) * 2021-06-29 2021-08-27 洛阳永宁有色科技有限公司 Multifunctional sewage treatment tank

Similar Documents

Publication Publication Date Title
US20070287917A1 (en) Method for Collapsing Microbubbles
US20090250396A1 (en) Drainage water-treating method and drainage water-treating apparatus
JP2009056364A (en) Piping type water treatment apparatus
KR101308686B1 (en) Method and apparatus for treating water containing surfactant
JP4684064B2 (en) Accelerated oxidized water treatment method and apparatus
JP2006341229A (en) Advanced treating method of cyanide compound-containing drain
KR200192932Y1 (en) Clean water device of advanced oxidation process
JP2005118642A (en) Water treatment method and apparatus, and ejector for water treatment
JP4287775B2 (en) Industrial wastewater treatment method and apparatus
JP2004174325A (en) Water treatment apparatus and water treatment method
KR100687704B1 (en) An Ozone transfusion device and method for water treatment
KR102052039B1 (en) Apparatus for purifying water based on electro-peroxone reaction
JP2003266088A (en) Ozone accelerated oxidation water treatment system together using ultraviolet rays
JP2010188306A (en) Method for decomposing dioxane
JP4242315B2 (en) Wastewater treatment equipment
JP4040788B2 (en) Waste water treatment method and apparatus
JP2000237774A (en) Ozone/ultraviolet ray separated circulation device
JP3697933B2 (en) Water treatment method and apparatus using ozone
JP4417587B2 (en) Accelerated oxidation treatment equipment
JP2008272761A (en) Accelerated oxidation treatment apparatus
JP2002126730A (en) Apparatus and method for treating wastewater
JP2004249277A (en) Water treating method and apparatus therefor
JP2001029966A (en) Method and apparatus for treating organic wastewater containing endocrine disturbing substance or carcinogen
JP2008093558A (en) Water treatment method and water treatment apparatus
JP2008149270A (en) Ozone reaction apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630