JP2005118304A - Acceleration pulse wave measuring apparatus - Google Patents

Acceleration pulse wave measuring apparatus Download PDF

Info

Publication number
JP2005118304A
JP2005118304A JP2003356751A JP2003356751A JP2005118304A JP 2005118304 A JP2005118304 A JP 2005118304A JP 2003356751 A JP2003356751 A JP 2003356751A JP 2003356751 A JP2003356751 A JP 2003356751A JP 2005118304 A JP2005118304 A JP 2005118304A
Authority
JP
Japan
Prior art keywords
blood vessel
moving speed
pulse wave
calculating
acceleration pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003356751A
Other languages
Japanese (ja)
Other versions
JP4357260B2 (en
Inventor
Takashi Hagiwara
尚 萩原
Yoshinao Sorinaka
由直 反中
Yoshinobu Watanabe
良信 渡辺
Takao Suzuki
隆夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003356751A priority Critical patent/JP4357260B2/en
Publication of JP2005118304A publication Critical patent/JP2005118304A/en
Application granted granted Critical
Publication of JP4357260B2 publication Critical patent/JP4357260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure an acceleration pulse wave at arteries other than peripheral arteries and superficial arteries. <P>SOLUTION: A pulse signal from a transmission part 1 is converted to an ultrasonic wave by a probe 2 and emitted to a subject. An echo signal from a blood vessel wall reflected within the subject is converted to an electric signal by a probe. A moving speed calculation part 4 calculates the moving speed of the blood vessel wall due to a heartbeat by analyzing an ultrasonic echo signal, and an acceleration pulse wave calculation part 5 calculates the acceleration pulse wave by performing the time differential of the moving speed of the blood vessel wall. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、医療用器具の分野において加速度脈波を測定する装置に関する。   The present invention relates to an apparatus for measuring an acceleration pulse wave in the field of medical instruments.

加速度脈波は、心臓の拍動機能と血管の弾性特性の関数であり、例えば下記の特許文献1に示されるように、近年、循環器系の診断や、血管の老化度合いの評価、動脈硬化度合いの評価などの評価尺度パラメータとして重要視されてきている。加速度脈波は、脈波を検出し、その波形を時間に関して2回微分することで得られる。また、脈波を検出する方法としては、光電脈波法、カフ内圧脈波法がある。
特開2002−238867号公報(要約書)
The acceleration pulse wave is a function of the pulsation function of the heart and the elastic characteristics of the blood vessel. It has been regarded as important as an evaluation scale parameter such as evaluation of degree. The acceleration pulse wave is obtained by detecting the pulse wave and differentiating the waveform twice with respect to time. As a method for detecting a pulse wave, there are a photoelectric pulse wave method and a cuff internal pressure pulse wave method.
JP 2002-238867 A (abstract)

しかしながら、前記従来の方法のうち、光電脈波法は、光の透過量の変化を検出するものであるため、測定部位が指先などの末梢の組織に限定されてしまうという問題があった。また、カフ内圧脈波法は、圧力センサーを動脈に押しつけて動脈圧を直接測定するため、測定部位は表在性の動脈に限定されるという問題があった。一方、循環器系の診断を正確に行うには、末梢動脈、表在性動脈以外の動脈の加速度脈波の検出が必要である。   However, among the conventional methods, the photoelectric pulse wave method detects a change in the amount of transmitted light, and thus has a problem that the measurement site is limited to peripheral tissues such as fingertips. In addition, the intracuff pressure pulse wave method directly measures the arterial pressure by pressing the pressure sensor against the artery, so that the measurement site is limited to the superficial artery. On the other hand, in order to accurately diagnose the circulatory system, it is necessary to detect acceleration pulse waves of arteries other than peripheral arteries and superficial arteries.

本発明は、上記の問題点に鑑みてなされたものであり、末梢動脈、表在性動脈以外の動脈における加速度脈波を測定可能な加速度脈波装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide an acceleration pulse wave device capable of measuring an acceleration pulse wave in an artery other than a peripheral artery and a superficial artery.

本発明は上記目的を達成するために、生体内に超音波パルスを送信し、生体血管壁からの超音波エコーを受信して超音波エコー信号に変換する超音波送受信手段と、
前記超音波送受信手段により生成された超音波エコー信号を解析し、心拍による血管壁の移動速度を算出する血管壁移動速度算出手段と、
前記血管壁移動速度算出手段により算出された血管壁移動速度の時間微分を行い加速度脈波を算出する加速度脈波算出手段とを、
有する構成とした。
この構成により、生体内深部に存在する血管壁の移動加速度が検出可能となり、加速度脈波の測定が可能となる。
In order to achieve the above object, the present invention transmits ultrasonic pulses into a living body, receives ultrasonic echoes from the blood vessel wall of the living body, and converts them into ultrasonic echo signals;
Analyzing the ultrasound echo signal generated by the ultrasound transmitting / receiving means, and calculating the blood vessel wall moving speed calculating means for calculating the moving speed of the blood vessel wall due to the heartbeat;
An acceleration pulse wave calculating means for performing time differentiation of the blood vessel wall moving speed calculated by the blood vessel wall moving speed calculating means and calculating an acceleration pulse wave;
It was set as the structure which has.
With this configuration, it is possible to detect the movement acceleration of the blood vessel wall existing deep in the living body, and to measure the acceleration pulse wave.

また本発明は、前記血管壁移動速度算出手段は、
血管の外壁の移動速度を算出する第1の血管壁移動速度算出手段と、
血管の内壁の移動速度を算出する第2の血管壁移動速度算出手段と、
前記第1、第2の血管壁移動速度算出手段によりそれぞれ算出された外壁の血管壁移動速度と内壁の血管壁移動速度との差分を計算し、血管径の変化速度を求める差分計算手段とを有し、
前記加速度脈波算出手段は、前記差分計算手段からの出力の時間微分を行い加速度脈波を算出する構成とした。
この構成により、血管の直径変化の加速度が測定可能であり、また、血管が並進運動をしている場合でも正確な加速度脈波を測定することができる。
In the present invention, the blood vessel wall moving speed calculating means includes:
First blood vessel wall moving speed calculating means for calculating the moving speed of the outer wall of the blood vessel;
Second blood vessel wall moving speed calculating means for calculating the moving speed of the inner wall of the blood vessel;
Difference calculating means for calculating a difference between the blood vessel wall moving speed of the outer wall and the blood vessel wall moving speed of the inner wall calculated by the first and second blood vessel wall moving speed calculating means, respectively, and calculating a blood vessel diameter changing speed; Have
The acceleration pulse wave calculating means is configured to calculate the acceleration pulse wave by performing time differentiation of the output from the difference calculating means.
With this configuration, the acceleration of the change in the diameter of the blood vessel can be measured, and an accurate acceleration pulse wave can be measured even when the blood vessel is in translation.

また本発明は、前記血管壁移動速度算出手段は、
血管の外壁の移動速度を算出する第1の血管壁移動速度算出手段と、
血管の内壁の移動速度を算出する第2の血管壁移動速度算出手段とを有し、
前記加速度脈波算出手段は、
前記第1の血管壁移動速度算出手段により算出された外壁の血管壁移動速度の時間微分を算出する第1の時間微分手段と、
前記第2の血管壁移動速度算出手段により算出された内壁の血管壁移動速度の時間微分を算出する第2の時間微分手段と、
前記第1の時間微分手段からの出力と第2の時間微分手段からの出力との差を算出することで加速度脈波を算出する差分手段とを有する構成とした。
この構成により、血管の直径の加速度が測定可能であり、また、血管が並進運動をしている場合でも正確な加速度脈波を測定することができる。
In the present invention, the blood vessel wall moving speed calculating means includes:
First blood vessel wall moving speed calculating means for calculating the moving speed of the outer wall of the blood vessel;
Second blood vessel wall moving speed calculating means for calculating the moving speed of the inner wall of the blood vessel,
The acceleration pulse wave calculating means includes
First time differentiating means for calculating a time derivative of the blood vessel wall moving speed of the outer wall calculated by the first blood vessel wall moving speed calculating means;
Second time differentiating means for calculating a time derivative of the blood vessel wall moving speed of the inner wall calculated by the second blood vessel wall moving speed calculating means;
Difference means for calculating an acceleration pulse wave by calculating a difference between an output from the first time differentiating means and an output from the second time differentiating means is provided.
With this configuration, the acceleration of the diameter of the blood vessel can be measured, and an accurate acceleration pulse wave can be measured even when the blood vessel is in translation.

また本発明は、前記血管壁移動速度算出手段及び前記加速度脈波算出手段を複数有し、プロセッサが前記複数の前記血管壁移動速度算出手段及び前記加速度脈波算出手段の各々の出力に基づいて複数箇所の加速度脈波の波形を解析する構成とした。
この構成により、生体内深部に存在する複数箇所の血管壁の移動加速度が検出可能となり、加速度脈波の測定が可能となる。
Further, the present invention includes a plurality of the blood vessel wall moving speed calculating means and the acceleration pulse wave calculating means, and the processor is based on outputs of the plurality of blood vessel wall moving speed calculating means and the acceleration pulse wave calculating means. It was set as the structure which analyzes the waveform of the acceleration pulse wave of several places.
With this configuration, it is possible to detect the movement acceleration of a plurality of blood vessel walls existing deep in the living body, and to measure the acceleration pulse wave.

以上説明したように本発明によれば、超音波エコーを用いて加速度脈波を測定するので、光の透過量の測定が困難な大きな組織中の動脈や、圧力センサーを押しつけることが困難な深部の動脈の加速度脈波の測定が可能となる。   As described above, according to the present invention, an acceleration pulse wave is measured using an ultrasonic echo, so that an artery in a large tissue where it is difficult to measure the amount of transmitted light or a deep part where it is difficult to press a pressure sensor. The acceleration pulse wave of the artery can be measured.

以下、本発明の実施の形態について、図面を参照して説明する。
<第1の実施の形態>
図1は、本発明の第1の実施の形態に係る加速度脈波測定装置のブロック図を示している。送信部1は、定められた時間間隔で送信パルス信号を生成し、送信部1からのパルス信号は、プローブ2により超音波に変換され、図示しない被検体に照射される。超音波を照射する被検体部位には加速度脈波を測定したい血管壁が含まれている。プローブ2は親水性のゲルなどを用いて被検体(体表面)に密着させる。被検体内で反射した血管壁(血管の体表面側の壁=外壁、体表面から遠い側の壁=内壁)からのエコー信号は、プローブ2にて電気信号に変換され、受信部3に入力される。受信部3は入力された血管壁からのエコー信号を増幅し、ディジタル信号に変換する。
Embodiments of the present invention will be described below with reference to the drawings.
<First Embodiment>
FIG. 1 shows a block diagram of an acceleration pulse wave measuring apparatus according to the first embodiment of the present invention. The transmission unit 1 generates a transmission pulse signal at a predetermined time interval, and the pulse signal from the transmission unit 1 is converted into an ultrasonic wave by the probe 2 and irradiated to a subject (not shown). A subject site irradiated with ultrasonic waves includes a blood vessel wall for which an acceleration pulse wave is desired to be measured. The probe 2 is brought into close contact with the subject (body surface) using a hydrophilic gel or the like. An echo signal from a blood vessel wall (wall on the body surface side of the blood vessel = outer wall, wall on the side farther from the body surface = inner wall) reflected in the subject is converted into an electric signal by the probe 2 and input to the receiving unit 3 Is done. The receiving unit 3 amplifies the input echo signal from the blood vessel wall and converts it into a digital signal.

ディジタル化された血管壁からのエコー信号は移動速度算出部4に入力され、移動速度算出部4は各送信パルスに対するエコー信号波形が、互いにどの程度ずれているか(ズレ量)を演算し、図2(a)に示すように送信パルスの時間間隔における移動距離を算出する。送信パルスの時間間隔における移動距離(=単位時間当りの移動距離=移動速度)は、加速度脈波算出部5により微分演算されて、図2(b)に示すように単位時間あたりの加速度に変換され、その時間波形が波形表示部6にて表示される。なお、ディジタル信号を演算する移動速度算出部4、加速度脈波算出部5は、1つ若しくは複数のプロセッサにて実現することも可能である。   The digitized echo signal from the blood vessel wall is input to the movement speed calculation unit 4, and the movement speed calculation unit 4 calculates how much the echo signal waveforms with respect to each transmission pulse are shifted from each other (deviation amount). As shown in 2 (a), the movement distance in the time interval of the transmission pulse is calculated. The moving distance in the time interval of the transmission pulse (= moving distance per unit time = moving speed) is differentiated by the acceleration pulse wave calculation unit 5 and converted into acceleration per unit time as shown in FIG. The time waveform is displayed on the waveform display unit 6. Note that the moving speed calculation unit 4 and the acceleration pulse wave calculation unit 5 that calculate digital signals can also be realized by one or a plurality of processors.

移動速度算出部4での演算について説明する。
・時刻T1で発生させた送信パルスに対する受信エコー信号をe1(x)
・時刻T2で発生させた送信パルスに対する受信エコー信号をe2(x)
とする。ここで、xはエコー反射体のプローブ表面からの距離を表す。注目する血管壁が、時刻T1で距離x0の位置にあったとすると、時刻T2において、どの程度血管壁が移動したかを知るために、受信エコー信号e1(x)とe2(x)の相関計算を次式(1)により行う。
The calculation in the movement speed calculation unit 4 will be described.
The received echo signal for the transmission pulse generated at time T 1 is e 1 (x)
The reception echo signal for the transmission pulse generated at time T 2 is e 2 (x)
And Here, x represents the distance of the echo reflector from the probe surface. Assuming that the blood vessel wall of interest is at a position of distance x 0 at time T 1 , in order to know how much the blood vessel wall has moved at time T 2 , received echo signals e 1 (x) and e 2 ( The correlation calculation of x) is performed by the following equation (1).

Figure 2005118304
Figure 2005118304

ここで、aは積分区間を決めるもので、超音波の送信波長程度とするのがよい。R12を最大にするδをδ12とすると、δ12が、時刻T1、T2間での血管壁の移動量となり、その移動速度v12は、
12=δ12/(T2−T1) …(2)
Here, a determines the integration interval, and is preferably about the transmission wavelength of the ultrasonic wave. Assuming that δ that maximizes R 12 is δ 12 , δ 12 is the amount of movement of the blood vessel wall between times T 1 and T 2 , and the moving speed v 12 is
v 12 = δ 12 / (T 2 −T 1 ) (2)

次に加速度脈波算出部5の演算について説明する。時刻T1、T2間での移動速度をv12、時刻T2、T3間での移動速度をv23とすると、平均的には時刻(T1+T2)/2での速度をv12、時刻(T2+T3)/2での速度をv23とみなせるので、その間の平均加速度α2は、単位時間あたりの速度変化として、
α2=(v23−v12)/(T3−T1)/2 …(3)
で計算できる。
Next, the calculation of the acceleration pulse wave calculation unit 5 will be described. If the moving speed between times T 1 and T 2 is v 12 , and the moving speed between times T 2 and T 3 is v 23 , the average speed at time (T 1 + T 2 ) / 2 is v. 12. Since the speed at time (T 2 + T 3 ) / 2 can be regarded as v 23 , the average acceleration α 2 during that time is expressed as a speed change per unit time.
α 2 = (v 23 −v 12 ) / (T 3 −T 1 ) / 2 (3)
It can be calculated with

以上のように、本発明の第1の実施の形態に係る加速度脈波測定装置によれば、超音波エコーを用いて血管壁の所定時間差での移動距離を測定し、さらに時間微分することで、血管壁の加速度すなわち加速度脈波が測定可能となる。また、超音波エコーを用いた計測であるため、光の透過量の測定が困難な大きな組織中の動脈や、圧力センサーを押しつけることが困難な深部の動脈の加速度脈波を測定することが可能となる。   As described above, according to the acceleration pulse wave measuring apparatus according to the first embodiment of the present invention, the moving distance at a predetermined time difference of the blood vessel wall is measured using ultrasonic echoes, and further time-differentiated. The acceleration of the blood vessel wall, that is, the acceleration pulse wave can be measured. In addition, because it uses ultrasonic echoes, it is possible to measure the acceleration pulse wave of arteries in large tissues where it is difficult to measure the amount of light transmitted or deep arteries where it is difficult to press the pressure sensor. It becomes.

<第2の実施の形態>
図3は、本発明の第2の実施の形態に係る加速度脈波測定装置のブロック図を示している。第1の実施の形態の構成要素と異なるものは、位相検波部10と移動速度算出部11のみであるので、この2つの構成要素のみ詳細な説明をする。
<Second Embodiment>
FIG. 3 shows a block diagram of an acceleration pulse wave measuring apparatus according to the second embodiment of the present invention. Since only the phase detection unit 10 and the moving speed calculation unit 11 are different from the components of the first embodiment, only these two components will be described in detail.

位相検波部10は、受信部3からのエコー信号に対し、超音波のキャリア周波数を持ち、互いに90°位相のずれた正弦波を乗算し、ローパスフィルタ処理するもので、エコー信号を複素ベースバンド信号E(x)に変換する。エコー信号を複素ベースバンド信号とすることで、エコー信号の移動量(ズレ量)は、複素ベースバンド信号の位相差として表される。   The phase detection unit 10 multiplies the echo signal from the reception unit 3 by sine waves having an ultrasonic carrier frequency and 90 ° out of phase with each other, and performs low-pass filter processing. Convert to signal E (x). By making the echo signal a complex baseband signal, the movement amount (deviation amount) of the echo signal is expressed as a phase difference of the complex baseband signal.

移動速度算出部11は、複素ベースバンド信号の位相差を計算することで、速度を算出する。時刻T1で発生させた送信パルスに対する受信エコー信号の複素ベースバンド信号をE1(x)、時刻T2で発生させた送信パルスに対する受信エコー信号の複素ベースバンド信号をE2(x)とする。注目する血管壁が、時刻T1で距離x0の位置にあったとすると、時刻T2における移動量Δは、
Δ=angle(E2(x0)*conj(E1(x0)) …(4)
で計算される。ここで、conj(C)は複素数Cの共役複素を表し、angle(C)は複素数Cの位相角を表す。また、x0近傍のデータを用い、複素乗算結果を平均化した後、アークタンジエント計算をすることで、演算結果をより安定させることが可能である。
The moving speed calculation unit 11 calculates the speed by calculating the phase difference of the complex baseband signal. The complex baseband signal of the received echo signal for the transmission pulse generated at time T 1 is E 1 (x), and the complex baseband signal of the received echo signal for the transmission pulse generated at time T 2 is E 2 (x). To do. If the blood vessel wall of interest is located at a distance x 0 at time T 1 , the movement amount Δ at time T 2 is
Δ = angle (E 2 (x 0 ) * conj (E 1 (x 0 )) (4)
Calculated by Here, conj (C) represents the complex complex of the complex number C, and angle (C) represents the phase angle of the complex number C. In addition, it is possible to further stabilize the calculation result by performing arctangent calculation after averaging the complex multiplication results using data in the vicinity of x 0 .

以上のように、本発明の第2の実施の形態に係る加速度脈波測定装置によれば、移動速度算出部における演算に相関関数の演算を含まないため演算処理の簡素化が可能で、より小型の加速度脈波測定装置の実現が可能となる。   As described above, according to the acceleration pulse wave measuring apparatus according to the second embodiment of the present invention, the calculation in the movement speed calculation unit does not include the calculation of the correlation function, so that the calculation process can be simplified. A small acceleration pulse wave measuring device can be realized.

<第3の実施の形態>
図4は、本発明の第3の実施の形態に係る加速度脈波測定装置のブロック図を示している。第1の実施の形態の構成要素と異なるものは、移動速度算出部20及び減算器21のみである。図5に、注目する血管34と超音波走査線37の関係を示す。図5において超音波の送受を行なうプローブ2は、被検体の体表31を介して被検体内に超音波送受信を行う。超音波走査線37が血管外壁32と交差する位置を外壁着目点35、超音波走査線37が血管内壁33と交差する位置を内壁着目点36とする。
<Third Embodiment>
FIG. 4 shows a block diagram of an acceleration pulse wave measuring apparatus according to the third embodiment of the present invention. Only the moving speed calculation unit 20 and the subtracter 21 are different from the components of the first embodiment. FIG. 5 shows the relationship between the blood vessel 34 of interest and the ultrasonic scanning line 37. In FIG. 5, the probe 2 that transmits and receives ultrasonic waves transmits and receives ultrasonic waves in the subject via the body surface 31 of the subject. A position where the ultrasonic scanning line 37 intersects the blood vessel outer wall 32 is defined as an outer wall focus point 35, and a position where the ultrasonic scanning line 37 intersects the blood vessel inner wall 33 is defined as an inner wall focus point 36.

移動速度算出部20は、外壁着目点35と、内壁着目点36での移動速度を求め、差分計算手段として機能する減算器21ヘ出力する。減算器21は血管外壁32の移動速度と血管内壁33の移動速度の差分を計算し、加速度脈波算出部5に出力する。これにより、加速度脈波算出部5は血管外壁32と血管内壁33の速度差を計算するので、より正確に血管34の直径変化を算出することが可能となり、正確な加速度脈波の測定が可能となる。なお、加速度脈波算出部5が血管外壁32、血管内壁33の血管壁移動速度の時間微分を算出し、これらの差を算出することで加速度脈波を算出するようにしてもよい。   The moving speed calculation unit 20 obtains moving speeds at the outer wall focused point 35 and the inner wall focused point 36 and outputs the moving speed to the subtractor 21 that functions as a difference calculating unit. The subtractor 21 calculates the difference between the moving speed of the blood vessel outer wall 32 and the moving speed of the blood vessel inner wall 33 and outputs the difference to the acceleration pulse wave calculation unit 5. As a result, the acceleration pulse wave calculation unit 5 calculates the speed difference between the blood vessel outer wall 32 and the blood vessel inner wall 33, so that the diameter change of the blood vessel 34 can be calculated more accurately, and the accurate acceleration pulse wave can be measured. It becomes. The acceleration pulse wave calculation unit 5 may calculate the time differential of the blood vessel wall moving speed of the blood vessel outer wall 32 and the blood vessel inner wall 33, and calculate the difference between them to calculate the acceleration pulse wave.

<第4の実施の形態>
図6は、本発明の第4の実施の形態に係る加速度脈波測定装置のブロック図を示している。第1の実施の形態の構成要素と異なるものは、移動速度算出部40、加速度脈波算出部41、プロセッサ42が設けられている点である。
<Fourth embodiment>
FIG. 6 shows a block diagram of an acceleration pulse wave measuring apparatus according to the fourth embodiment of the present invention. The difference from the constituent elements of the first embodiment is that a moving speed calculation unit 40, an acceleration pulse wave calculation unit 41, and a processor 42 are provided.

移動速度算出部40は、複数の血管の血管壁での移動速度を求め、加速度脈波算出部41ヘ出力する。加速度脈波算出部41は複数の移動速度波形を時間微分し、複数の加速度脈波波形を算出する。プロセッサ42は、複数の加速度脈波波形から各波形の形状分析を行うなどの処理を施し、操作者により選択された波形を波形表示部6にて表示する。これにより、複数箇所の加速度脈波波形の比較が可能となり、病変の早期発見が可能となる。また、波形解析をプロセッサ42が行うことでより的確な波形診断が可能となる。なお、移動速度算出部40、加速度脈波算出部41、プロセッサ42の演算をすべて1つのプロセッサにて行うことも可能である。   The movement speed calculation unit 40 obtains the movement speed of the plurality of blood vessels on the blood vessel wall and outputs the movement speed to the acceleration pulse wave calculation unit 41. The acceleration pulse wave calculation unit 41 time-differentiates a plurality of movement velocity waveforms, and calculates a plurality of acceleration pulse wave waveforms. The processor 42 performs processing such as analyzing the shape of each waveform from a plurality of acceleration pulse wave waveforms, and displays the waveform selected by the operator on the waveform display unit 6. As a result, it is possible to compare acceleration pulse wave waveforms at a plurality of locations, and early detection of lesions is possible. Further, the waveform analysis is performed by the processor 42, thereby enabling more accurate waveform diagnosis. It should be noted that the movement speed calculation unit 40, acceleration pulse wave calculation unit 41, and processor 42 can all be performed by one processor.

本発明によれば、超音波エコーを用いて加速度脈波を測定するので、光の透過量の測定が困難な大きな組織中の動脈や、圧力センサーを押しつけることが困難な深部の動脈の加速度脈波の測定が可能となるので、本発明は医療や医療用器具の製造分野などで有用である。   According to the present invention, since the acceleration pulse wave is measured using an ultrasonic echo, the acceleration pulse of an artery in a large tissue where it is difficult to measure the amount of transmitted light or a deep artery where it is difficult to press the pressure sensor. Since the wave can be measured, the present invention is useful in the medical and medical device manufacturing fields.

本発明の第1の実施の形態に係る加速度脈波測定装置のブロック図1 is a block diagram of an acceleration pulse wave measuring apparatus according to a first embodiment of the present invention. (a)本発明の第1の実施の形態に係る速度波形を示した波形図 (b)本発明の第1の実施の形態に係る加速度脈波を示した波形図(A) Waveform diagram showing velocity waveform according to the first embodiment of the present invention (b) Waveform diagram showing acceleration pulse wave according to the first embodiment of the present invention 本発明の第2の実施の形態に係る加速度脈波測定装置のブロック図Block diagram of acceleration pulse wave measuring apparatus according to the second embodiment of the present invention 本発明の第3の実施の形態に係る加速度脈波測定装置のブロック図Block diagram of an acceleration pulse wave measuring apparatus according to a third embodiment of the present invention 本発明の第3の実施の形態に係る超音波走査線と血管壁の位置を示した説明図Explanatory drawing which showed the position of the ultrasonic scanning line and blood vessel wall which concern on the 3rd Embodiment of this invention 本発明の第4の実施の形態に係る加速度脈波測定装置のブロック図Block diagram of an acceleration pulse wave measuring apparatus according to a fourth embodiment of the present invention

符号の説明Explanation of symbols

1 送信部
2 プローブ
3 受信部
4、11、20、40 移動速度算出部(血管移動速度算出手段)
5、41 加速度脈波算出部(加速度脈波算出手段)
6 波形表示部
10 位相検波部
21 減算器(差分計算手段)
31 体表
32 血管外壁
33 血管内壁
34 血管
35 外壁着目点
36 内壁着目点
37 超音波走査線
42 プロセッサ
DESCRIPTION OF SYMBOLS 1 Transmission part 2 Probe 3 Reception part 4, 11, 20, 40 Movement speed calculation part (blood vessel movement speed calculation means)
5, 41 Acceleration pulse wave calculation unit (acceleration pulse wave calculation means)
6 Waveform display section 10 Phase detection section 21 Subtractor (difference calculation means)
31 Body surface 32 Blood vessel outer wall 33 Blood vessel inner wall 34 Blood vessel 35 Outer wall focus point 36 Inner wall focus point 37 Ultrasound scanning line 42 Processor

Claims (4)

生体内に超音波パルスを送信し、生体血管壁からの超音波エコーを受信して超音波エコー信号に変換する超音波送受信手段と、
前記超音波送受信手段により生成された超音波エコー信号を解析し、心拍による血管壁の移動速度を算出する血管壁移動速度算出手段と、
前記血管壁移動速度算出手段により算出された血管壁移動速度の時間微分を行い加速度脈波を算出する加速度脈波算出手段とを、
有する加速度脈波測定装置。
An ultrasonic transmission / reception means for transmitting an ultrasonic pulse into a living body, receiving an ultrasonic echo from a biological blood vessel wall, and converting the ultrasonic echo signal into an ultrasonic echo signal;
Analyzing the ultrasound echo signal generated by the ultrasound transmitting / receiving means, and calculating the blood vessel wall moving speed calculating means for calculating the moving speed of the blood vessel wall due to the heartbeat;
An acceleration pulse wave calculating means for performing time differentiation of the blood vessel wall moving speed calculated by the blood vessel wall moving speed calculating means and calculating an acceleration pulse wave;
Acceleration pulse wave measuring device.
前記血管壁移動速度算出手段は、
血管の外壁の移動速度を算出する第1の血管壁移動速度算出手段と、
血管の内壁の移動速度を算出する第2の血管壁移動速度算出手段と、
前記第1、第2の血管壁移動速度算出手段によりそれぞれ算出された外壁の血管壁移動速度と内壁の血管壁移動速度との差分を計算し、血管径の変化速度を求める差分計算手段とを有し、
前記加速度脈波算出手段は、前記差分計算手段からの出力の時間微分を行い加速度脈波を算出するよう構成されている請求項1に記載の加速度脈波測定装置。
The blood vessel wall moving speed calculating means includes
First blood vessel wall moving speed calculating means for calculating the moving speed of the outer wall of the blood vessel;
Second blood vessel wall moving speed calculating means for calculating the moving speed of the inner wall of the blood vessel;
Difference calculating means for calculating a difference between the blood vessel wall moving speed of the outer wall and the blood vessel wall moving speed of the inner wall calculated by the first and second blood vessel wall moving speed calculating means, respectively, and calculating a blood vessel diameter changing speed; Have
The acceleration pulse wave measuring device according to claim 1, wherein the acceleration pulse wave calculating unit is configured to calculate an acceleration pulse wave by performing time differentiation of an output from the difference calculating unit.
前記血管壁移動速度算出手段は、
血管の外壁の移動速度を算出する第1の血管壁移動速度算出手段と、
血管の内壁の移動速度を算出する第2の血管壁移動速度算出手段とを有し、
前記加速度脈波算出手段は、
前記第1の血管壁移動速度算出手段により算出された外壁の血管壁移動速度の時間微分を算出する第1の時間微分手段と、
前記第2の血管壁移動速度算出手段により算出された内壁の血管壁移動速度の時間微分を算出する第2の時間微分手段と、
前記第1の時間微分手段からの出力と第2の時間微分手段からの出力との差を算出することで加速度脈波を算出する差分手段とを有する請求項1に記載の加速度脈波測定装置。
The blood vessel wall moving speed calculating means includes
First blood vessel wall moving speed calculating means for calculating the moving speed of the outer wall of the blood vessel;
Second blood vessel wall moving speed calculating means for calculating the moving speed of the inner wall of the blood vessel,
The acceleration pulse wave calculating means includes
First time differentiating means for calculating a time derivative of the blood vessel wall moving speed of the outer wall calculated by the first blood vessel wall moving speed calculating means;
Second time differentiating means for calculating a time derivative of the blood vessel wall moving speed of the inner wall calculated by the second blood vessel wall moving speed calculating means;
The acceleration pulse wave measuring device according to claim 1, further comprising a difference unit that calculates an acceleration pulse wave by calculating a difference between an output from the first time differentiating unit and an output from the second time differentiating unit. .
前記血管壁移動速度算出手段及び前記加速度脈波算出手段を複数有し、プロセッサが前記複数の前記血管壁移動速度算出手段及び前記加速度脈波算出手段の各々の出力に基づいて複数箇所の加速度脈波の波形を解析するよう構成されている請求項1から3のいずれか1つに記載の加速度脈波測定装置。
A plurality of the vascular wall moving speed calculating means and the acceleration pulse wave calculating means are provided, and the processor has a plurality of acceleration pulsations based on outputs of the vascular wall moving speed calculating means and the acceleration pulse wave calculating means. The acceleration pulse wave measuring device according to any one of claims 1 to 3, wherein the device is configured to analyze a wave waveform.
JP2003356751A 2003-10-16 2003-10-16 Acceleration pulse wave measuring device Expired - Fee Related JP4357260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003356751A JP4357260B2 (en) 2003-10-16 2003-10-16 Acceleration pulse wave measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003356751A JP4357260B2 (en) 2003-10-16 2003-10-16 Acceleration pulse wave measuring device

Publications (2)

Publication Number Publication Date
JP2005118304A true JP2005118304A (en) 2005-05-12
JP4357260B2 JP4357260B2 (en) 2009-11-04

Family

ID=34613891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003356751A Expired - Fee Related JP4357260B2 (en) 2003-10-16 2003-10-16 Acceleration pulse wave measuring device

Country Status (1)

Country Link
JP (1) JP4357260B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768586B1 (en) * 2007-07-20 2007-10-18 (주)락싸 Vascular function analyzer
JP2011217822A (en) * 2010-04-06 2011-11-04 Seiko Epson Corp Device and method for measuring pulse wave
WO2017170991A1 (en) * 2016-03-31 2017-10-05 国立大学法人東北大学 Vascular disease determination device and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102600935B1 (en) * 2023-05-08 2023-11-10 주식회사 엣지케어 Pulse wave velocity measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768586B1 (en) * 2007-07-20 2007-10-18 (주)락싸 Vascular function analyzer
JP2011217822A (en) * 2010-04-06 2011-11-04 Seiko Epson Corp Device and method for measuring pulse wave
WO2017170991A1 (en) * 2016-03-31 2017-10-05 国立大学法人東北大学 Vascular disease determination device and program

Also Published As

Publication number Publication date
JP4357260B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
US7850609B2 (en) Ultrasound diagnostic apparatus
US20100130866A1 (en) Method for determining flow and flow volume through a vessel
JPH1133024A (en) Doppler ultrasonograph
JP4602906B2 (en) Ultrasonic diagnostic equipment
JP2003010183A (en) Ultrasonograph
JPWO2007108359A1 (en) Ultrasonic diagnostic equipment
US20070213614A1 (en) Ultrasonic diagnostic apparatus
EP3840660B1 (en) Systems and method for performing pulse wave velocity measurements
JPWO2004103185A1 (en) Ultrasonic diagnostic equipment
JP2007006914A (en) Ultrasonograph
JP2009039277A (en) Ultrasonic diagnostic apparatus
JP2003126090A (en) In vivo signal measurement device and ultrasonic diagnostic system
JP4357260B2 (en) Acceleration pulse wave measuring device
JP2005034543A (en) Monitoring device for blood flow condition
JP3578680B2 (en) Ultrasound diagnostic equipment
JP5295684B2 (en) Ultrasonic diagnostic apparatus and diagnostic parameter automatic measurement method
CN115844452A (en) Pulse wave detection method, device and storage medium
JP2007090003A (en) Ultrasonic diagnostic apparatus and controlling method thereof
CN114025672B (en) Ultrasonic imaging equipment and detection method for endometrial peristalsis
JP2003235820A (en) Hemodynamics measuring instrument
JP2004222754A (en) Ultrasonograph
JP2008212746A (en) Ultrasonic diagnostic apparatus
WO2013161228A1 (en) Ultrasonic diagnostic device and ultrasonic diagnostic device control method
JP2005081081A (en) Doppler ultrasonograph and diagnostic parameter measurement method
JPH05317311A (en) Ultrasonic doppler diagnosing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees