JP2005116376A - Electrode and its manufacturing method, and secondary battery - Google Patents

Electrode and its manufacturing method, and secondary battery Download PDF

Info

Publication number
JP2005116376A
JP2005116376A JP2003350170A JP2003350170A JP2005116376A JP 2005116376 A JP2005116376 A JP 2005116376A JP 2003350170 A JP2003350170 A JP 2003350170A JP 2003350170 A JP2003350170 A JP 2003350170A JP 2005116376 A JP2005116376 A JP 2005116376A
Authority
JP
Japan
Prior art keywords
active material
electrode active
material layer
electrode
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003350170A
Other languages
Japanese (ja)
Inventor
Tsutomu Oshima
勤 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Tochigi Ltd
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Tochigi Ltd, NEC Tokin Corp filed Critical NEC Tokin Tochigi Ltd
Priority to JP2003350170A priority Critical patent/JP2005116376A/en
Priority to CNB2004100852351A priority patent/CN1279634C/en
Publication of JP2005116376A publication Critical patent/JP2005116376A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for a secondary battery in which there is no fracture in a pressurization process and the work efficiency in a winding and turning process is improved and its manufacturing method, and a secondary battery using the electrode. <P>SOLUTION: When an electrode active material layer is formed on both sides of a current collector 1, the length of an electrode active material layer 2a formed on a first face arranged at opposed positions through the current collector 1 is made longer than the electrode active material layer 2b formed on a second face, and the distance d<SB>1</SB>, d<SB>2</SB>in the longitudinal direction of the current collector between the end parts of the two electrode active material layers arranged at the opposed positions are respectively made 1-5 mm and 5-100 mm. Therefore, when applying pressurization for reducing the gap of the electrode active material layers, concentration of pressure on a specific part of the current collector is eliminated and defect by fracture can be reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主にリチウムイオン二次電池などの非水電解液二次電池に用いられる電極、及びその製造方法、並びにその電極を構成要素とする二次電池に関するものである。   The present invention relates to an electrode mainly used for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, a manufacturing method thereof, and a secondary battery including the electrode as a constituent element.

携帯電話、ノート型パーソナルコンピュータに代表される携帯用通信端末には、小型の電源としての二次電池が必須である。しかも機器全体の小型化軽量化への要求は、ますます増加する傾向にあり、これに対応するために、二次電池も小型、高性能のものが開発、実用化されている。   A secondary battery as a small power source is indispensable for a portable communication terminal represented by a mobile phone or a notebook personal computer. In addition, the demand for downsizing and weight reduction of the entire device tends to increase, and in order to meet this demand, secondary batteries with small size and high performance have been developed and put into practical use.

リチウムイオン電池は、これまでの二次電池の中で、最も高電圧かつ高エネルギー密度が実現できることが期待されていて、現在においても、なお、特性改善や小型化に関する検討が盛んに進められている。   Lithium-ion batteries are expected to achieve the highest voltage and energy density among the secondary batteries so far, and even now, studies on improving characteristics and downsizing are actively promoted. Yes.

リチウムイオン二次電池は、その主要な構成要素として、導電体からなるシート状の集電体に、正極電極活物質層、負極電極活物質層を形成した正極電極及び負極電極、正負の電極の間に介在するセパレータ、電解液を有する。現在、実用に供されているリチウムイオン二次電池においては、正極には電極活物質として、リチウムコバルト酸化物を主成分とする粉末、負極には電極活物質として、炭素系材料の粉末が用いられている。また、セパレータには、ポリエチレン、ポリプロピレンなどの高分子材料からなる多孔質フィルムが用いられている。   A lithium ion secondary battery has, as main components, a positive electrode active material layer, a negative electrode active material layer, a positive electrode and a negative electrode, and a positive and negative electrode formed on a sheet-like current collector made of a conductor. It has an intervening separator and electrolyte. In lithium ion secondary batteries currently in practical use, the positive electrode uses an electrode active material, a powder mainly composed of lithium cobalt oxide, and the negative electrode uses a carbon-based material powder as an electrode active material. It has been. In addition, a porous film made of a polymer material such as polyethylene or polypropylene is used for the separator.

図2は、正極電極及び負極電極を、セパレータを介在させて重ねて巻き回した構成の例を示す斜視図である。図2において、4aは正極電極、4bは負極電極、6aは正極電流取出タブ、6bは負極電流取出タブ、5はセパレータ、7は巻回素子である。   FIG. 2 is a perspective view showing an example of a configuration in which a positive electrode and a negative electrode are overlapped and wound with a separator interposed therebetween. In FIG. 2, 4a is a positive electrode, 4b is a negative electrode, 6a is a positive current extraction tab, 6b is a negative current extraction tab, 5 is a separator, and 7 is a winding element.

この例においては、まず、集電体として帯状の導電体を準備し、正負の電極活物質層(図示せず)を集電体表面に形成して正極電極4a及び負極電極4bを作製する。そして、正極電極及び負極電極の間にセパレータ5を介在させ、扁平形状に巻き回して巻回素子7とするものである。   In this example, first, a strip-shaped conductor is prepared as a current collector, and positive and negative electrode active material layers (not shown) are formed on the current collector surface to produce a positive electrode 4a and a negative electrode 4b. Then, the separator 5 is interposed between the positive electrode and the negative electrode, and is wound into a flat shape to form a winding element 7.

前記のように、リチウムイオン二次電池は、エネルギー密度が高いという特長を有するが、近年の電子機器の発達に伴い、さらにエネルギー密度を高くすることが要求されている。このためには、前記の電極活物質層の増加などが必要となるが、単なる増加では、電池の大型化を招来するので、電極活物質層の空隙率を減少することが行われている。   As described above, the lithium ion secondary battery has a feature of high energy density. However, with the recent development of electronic devices, it is required to further increase the energy density. For this purpose, it is necessary to increase the electrode active material layer. However, a simple increase leads to an increase in the size of the battery. Therefore, the porosity of the electrode active material layer is reduced.

電極活物質層を形成する方法は、電極活物質の粉末と、バインダとなる高分子材料、高分子材料を溶解する溶媒を混合したペーストを、集電体表面に塗布し、乾燥により溶媒を除去するのが一般的である。そして、乾燥後の電極活物質層は、溶媒を除去した分だけの空隙を有するので、空隙率を減少するためには、ロールなどを用いて加圧するのが効果的である。   The electrode active material layer is formed by applying a paste containing a mixture of electrode active material powder, a polymer material to be a binder, and a solvent for dissolving the polymer material to the surface of the current collector, and removing the solvent by drying. It is common to do. And since the electrode active material layer after drying has a space | gap as much as the part which removed the solvent, in order to reduce a porosity, it is effective to pressurize using a roll etc.

ところが、一方で、電極を巻き回す工程における作業効率向上などのため、電極表面には巻き始め部分などに、電極活物質層を形成しない部分を設けることが行われていて、集電体両面に設けられた二つの電極活物質層の形成開始端が一致すると、電極活物質層から伝播される圧力が集中し、この部分で集電体が破断することがあり、製造コストを押し上げる要因となる。   However, on the other hand, in order to improve the working efficiency in the process of winding the electrode, the electrode surface is provided with a portion where the electrode active material layer is not formed, such as a winding start portion, on both sides of the current collector. If the formation start ends of the two electrode active material layers provided coincide with each other, the pressure propagated from the electrode active material layer is concentrated, and the current collector may break at this portion, which increases the manufacturing cost. .

このような破断を未然に防止するために、集電体を介して対向する二つの電極活物質層の形成開始端及び形成終了端を偏倚させて配置することが行われている。このような方法によれば、加圧の際に電極活物質層を介して集電体に加わる圧力が、狭い範囲に集中することがないので、前記の破断防止には一定の効果を発現する。   In order to prevent such breakage, the formation start end and the formation end end of the two electrode active material layers facing each other through the current collector are arranged to be biased. According to such a method, the pressure applied to the current collector through the electrode active material layer at the time of pressurization does not concentrate in a narrow range, so that a certain effect is exhibited in preventing the breakage. .

特許文献1には、集電用芯材の一面に、活物質を間欠的に塗着し、乾燥固化させて電極合剤部を形成し、集電用芯材の他面に、塗布開始位置を一面における電極合剤部の塗布終端部から塗布始端部寄りに1〜5mm離れた位置に、塗布終端位置を一面における電極合剤部の塗布始端部から未塗布側に1〜5mm離れた位置に設定した状態で活物質を間欠的に塗着し、乾燥固化させて電極合剤部を形成し、電極合剤部の始端と未塗布部の境界が反対側の面の電極合剤部の終端部に対向し、この合剤塗布終端部で集電用芯材がバックアップされるようにする技術が開示されている。   In Patent Document 1, an active material is intermittently applied to one surface of a current collecting core material, dried and solidified to form an electrode mixture portion, and an application start position is formed on the other surface of the current collecting core material. At a position 1-5 mm away from the application end portion of the electrode mixture portion on one side and closer to the application start end portion, and at a position 1-5 mm away from the application start end portion of the electrode mixture portion on one side to the non-application side The active material is intermittently applied in a state set to be dried and solidified to form an electrode mixture portion, and the boundary between the electrode mixture portion on the opposite side is the boundary between the starting end of the electrode mixture portion and the uncoated portion. A technique is disclosed in which the current collecting core is backed up at the mixture application terminal portion facing the terminal portion.

図3は、特許文献1に開示されている、従来技術による電極の断面の模式図である。図3において、8は集電体、9aは一面に形成された電極活物質層、9bは他面に形成された電極活物質層、10a、10bは、盛り上がり部、11は電極である。盛り上がり部10a、10bは、電極活物質層を形成するためのペーストの塗布に用いるダイ内部の、塗布開始時の圧力増加によって不可避的に生じるものである。   FIG. 3 is a schematic diagram of a cross section of an electrode according to the prior art disclosed in Patent Document 1. As shown in FIG. In FIG. 3, 8 is a current collector, 9a is an electrode active material layer formed on one surface, 9b is an electrode active material layer formed on the other surface, 10a and 10b are raised portions, and 11 is an electrode. The raised portions 10a and 10b are inevitably generated due to an increase in pressure at the start of application inside the die used for applying the paste for forming the electrode active material layer.

また、d3は、集電体を介して対向する電極活物質層の形成開始端と形成終了端の距離、即ち、偏倚量である。なお、図3における矢印はペーストを塗布する際の集電体の移動方向を示し、図3における上下の面でそれぞれ逆方向に塗布する。 D 3 is the distance between the formation start end and the formation end end of the electrode active material layers facing each other through the current collector, that is, the amount of deviation. In addition, the arrow in FIG. 3 shows the moving direction of the electrical power collector at the time of apply | coating a paste, and is apply | coated to the up-and-down surface in FIG.

そして、特許文献1に開示されている技術によっても、加圧工程における不良低減には、ある程度の効果が認められる。しかしながら、図3のように、電極活物質層の形成位置を同一方向に1〜5mm偏倚させただけでは、電極活物質層9bが、端部で必要以上に厚くなり、材料を必要以上に使用してしまったり、これに伴い、局所的な正極と負極のバランスの不整合が生じたりするという不具合が生じる。   Even with the technique disclosed in Patent Document 1, a certain degree of effect is recognized in reducing defects in the pressurizing process. However, as shown in FIG. 3, the electrode active material layer 9b becomes unnecessarily thick at the end portion and the material is used more than necessary only by shifting the formation position of the electrode active material layer in the same direction by 1 to 5 mm. As a result, there is a problem that a local mismatch of the balance between the positive electrode and the negative electrode occurs.

また、電極活物質層を形成しない部分を設けるのは、前記のように電極を巻き回す工程の効率向上にも寄与するものであるが、特許文献1に開示されているように、端部の偏倚量を両方とも1〜5mmとしたのでは、特に図2に示した巻回素子のように、折り返し部を有する場合、電極活物質層を形成しない部分の長さが不足し、その効果を十分に発現できないことがある。   In addition, providing the portion where the electrode active material layer is not formed contributes to improving the efficiency of the process of winding the electrode as described above, but as disclosed in Patent Document 1, When both of the deviation amounts are 1 to 5 mm, particularly when the folded element has a folded portion as shown in FIG. 2, the length of the portion where the electrode active material layer is not formed is insufficient. It may not be fully expressed.

特開2002−134102号公報JP 2002-134102 A

従って、本発明の課題は、加圧工程での破断がなく、巻き回し工程の作業効率が向上した、二次電池用の電極とその製造方法、並びに前記電極を用いた二次電池を提供することにある。   Accordingly, an object of the present invention is to provide an electrode for a secondary battery, a method for manufacturing the same, and a secondary battery using the electrode, in which there is no breakage in the pressurizing process and the working efficiency of the winding process is improved. There is.

本発明は、前記の課題を解決するため、集電体の両面における電極活物質層の配置を再検討した結果なされたものである。   The present invention has been made as a result of reexamining the arrangement of electrode active material layers on both sides of a current collector in order to solve the above-described problems.

即ち、本発明は、帯状の導電材からなる集電体における対向する第一面及び第二面に、電極活物質層形成部分及び電極活物質層非形成部分を有する電極において、前記第一面の前記電極活物質層形成部分の一方の端部は、前記集電体を介して対向する位置の前記第二面の前記電極活物質層形成部分の一方の端部よりも、他方の端部側に5〜100mm偏倚して配置され、かつ、前記第一面の前記電極活物質層形成部分の他方の端部は、前記集電体を介して対向する位置の前記第二面の前記電極活物質層形成部分の前記他方の端部よりも、前記一方の端部側に1〜5mm偏倚して配置されてなることを特徴とする電極である。   That is, the present invention provides an electrode having an electrode active material layer forming portion and an electrode active material layer non-forming portion on the first and second surfaces facing each other in a current collector made of a strip-shaped conductive material. One end portion of the electrode active material layer forming portion of the other side of the electrode active material layer forming portion on the second surface at a position facing the current collector is opposite to the other end portion. The electrode on the second surface at a position where the other end of the electrode active material layer forming portion of the first surface is opposed to the current collector is disposed 5 to 100 mm offset to the side The electrode is characterized in that the electrode is formed so as to be deviated by 1 to 5 mm on the one end side from the other end of the active material layer forming portion.

また、本発明は、帯状の導体からなる集電体における対向する第一面および第二面に、不連続的に電極活物質層を形成する電極の製造方法において、前記第一面に形成する電極活物質層は、前記集電体を介して対向する位置に形成された前記第二面の電極活物質層の一方の端部よりも、他方の端部側に5〜100mm偏倚した位置から形成を開始し、かつ、前記集電体を介して対向する位置に形成された前記第二面の電極活物質層の前記他方の端部よりも、前記一方の端部側に1〜5mm偏倚した位置で形成を終了することを特徴とする電極の製造方法である。   Moreover, this invention forms in said 1st surface in the manufacturing method of the electrode which forms an electrode active material layer discontinuously in the 1st surface and 2nd surface which oppose in the collector which consists of a strip | belt-shaped conductor. From the position where the electrode active material layer is displaced by 5 to 100 mm on the other end side from one end of the electrode active material layer on the second surface formed at the position facing the current collector. 1-5 mm deviation from the other end portion of the electrode active material layer on the second surface formed at a position facing the current collector through the current collector. The method for producing an electrode is characterized in that the formation is finished at the above-mentioned position.

また、本発明は、帯状の導体からなる集電体における対向する第一面および第二面に、不連続的に電極活物質層を形成する電極の製造方法において、前記第一面に形成する電極活物質層は、前記集電体を介して対向する位置に形成された前記第二面の電極活物質層の一方の端部よりも、他方の端部側に1〜5mm偏倚した位置から形成を開始し、かつ、前記集電体を介して対向する位置に形成された前記第二面の電極活物質層の前記他方の端部よりも、前記一方の端部側に5〜100mm偏倚した位置で形成を終了することを特徴とする電極の製造方法である。   Moreover, this invention forms in said 1st surface in the manufacturing method of the electrode which forms an electrode active material layer discontinuously in the 1st surface and 2nd surface which oppose in the collector which consists of a strip | belt-shaped conductor. The electrode active material layer is located at a position offset by 1 to 5 mm from the one end of the second surface electrode active material layer formed at the position facing the current collector to the other end. 5-100 mm deviation from the other end of the electrode active material layer on the second surface formed at a position opposite to the current collector through the current collector. The method for producing an electrode is characterized in that the formation is finished at the above-mentioned position.

また、本発明は、前記の構造を有する正極電極及び負極電極を、間に介在するセパレータとともに巻き回してなる巻回素子を有することを特徴とする二次電池である。   The present invention also provides a secondary battery comprising a winding element formed by winding the positive electrode and the negative electrode having the above structure together with a separator interposed therebetween.

本発明の電極においては、集電体の両面に電極活物質層形成部分と電極活物質層非形成部分が設けられ、集電体を介して対向する電極活物質層の形成開始端または形成終了端の位置が相互に偏倚しているので、加圧工程における破断不良を極めて少なくすることができる。   In the electrode of the present invention, the electrode active material layer forming portion and the electrode active material layer non-forming portion are provided on both sides of the current collector, and the formation start end or formation end of the electrode active material layer facing each other through the current collector Since the positions of the ends are deviated from each other, it is possible to extremely reduce the failure to break in the pressing process.

また、巻き回し工程において、折り返す場合のように極率半径が小さくなる場合でも、本発明の電極は、電極活物質層非形成部分を長くした部分を設けることで対応できるため、巻き回し工程の効率が向上し、不良発生を抑制することができる。   In the winding process, even when the radius of curvature is small as in the case of folding, the electrode of the present invention can be dealt with by providing a part where the electrode active material layer non-formed part is elongated. Efficiency is improved and the occurrence of defects can be suppressed.

図1は、本発明を実施するための最良の形態に係る、電極の例の断面を模式的に示した図である。図1において、1は集電体、2aは第一面に形成された電極活物質層、2bは第二面に形成された電極活物質層、3は電極である。偏倚量であるd1及びd2は、それぞれ1〜5mm、5〜100mmに設定する。この中で特にd2は電極の巻き回し径、巻き回し回数などによって、適宜調製することも可能である。 FIG. 1 is a diagram schematically showing a cross section of an example of an electrode according to the best mode for carrying out the present invention. In FIG. 1, 1 is a current collector, 2a is an electrode active material layer formed on the first surface, 2b is an electrode active material layer formed on the second surface, and 3 is an electrode. The deviation amounts d 1 and d 2 are set to 1 to 5 mm and 5 to 100 mm, respectively. In particular, d 2 can be appropriately adjusted depending on the winding diameter of the electrode, the number of windings, and the like.

また、集電体に用いられる材質としては、導電性を有するものであれば特に限定されるものではなく、各種の金属箔、導電性粉末を分散した可撓性を有する高分子シートなどが用いられる。なお、材質の選択にあたっては、電解液と化学反応を起こさないこと、電解液を構成する溶媒に不溶であることなどを考慮する必要があることは勿論である。   In addition, the material used for the current collector is not particularly limited as long as it has conductivity, and various metal foils, flexible polymer sheets in which conductive powder is dispersed, and the like are used. It is done. In selecting the material, it is needless to say that it does not cause a chemical reaction with the electrolytic solution and is insoluble in the solvent constituting the electrolytic solution.

また、正極電極活物質としては、リチウムイオン二次電池であれば、リチウム−コバルト複合酸化物などが、グラファイトなどの導電性炭素材料とともに用いられ、負極電極活物質としては、グラファイト、コークス、活性炭などが用いられる。   Moreover, as a positive electrode active material, if it is a lithium ion secondary battery, lithium-cobalt composite oxide etc. are used with conductive carbon materials, such as a graphite, As a negative electrode active material, graphite, coke, activated carbon Etc. are used.

これらの電極活物質を、集電体表面に塗布するには、材料を適当な粒度の粉末に調製した後、たとえばポリフッ化ビニリデンなどのバインダ、たとえばN−メチル−2−ピロリドンなどの溶媒と混合してペーストとして塗布する方法などが用いられる。   In order to apply these electrode active materials to the surface of the current collector, the material is prepared into a powder having an appropriate particle size, and then mixed with a binder such as polyvinylidene fluoride, for example, a solvent such as N-methyl-2-pyrrolidone. Then, a method of applying as a paste is used.

次に、具体的な例を挙げ、本発明について、さらに詳しく説明する。   Next, the present invention will be described in more detail with specific examples.

まず、正極電極の製造方法について説明する。ここでは、炭酸リチウムと炭酸コバルトを、リチウムとコバルトのモル比が1:1になるように混合し、空気中で900℃、5時間焼成した。この焼成体を、乳鉢を用いて粉砕し、平均粒径が15μmの焼成粉末とした。さらに得られた焼成粉末と炭酸リチウム粉末を、重量比で95/5となるように混合した。   First, the manufacturing method of a positive electrode is demonstrated. Here, lithium carbonate and cobalt carbonate were mixed so that the molar ratio of lithium to cobalt was 1: 1, and baked in air at 900 ° C. for 5 hours. The fired body was pulverized using a mortar to obtain a fired powder having an average particle size of 15 μm. Further, the obtained fired powder and lithium carbonate powder were mixed so that the weight ratio was 95/5.

前記混合粉末と、導電材としてのグラファイトと、バインダとしてのポリフッ化ビニリデンを、重量比で91/6/3となるように秤量混合し、N−メチル−2−ピロリドンに分散して正極電極活物質層形成用ペーストとした。このペーストを集電体として準備した厚さが20μmのアルミニウム箔に塗布して、電極活物質層を形成した。   The mixed powder, graphite as a conductive material, and polyvinylidene fluoride as a binder are weighed and mixed at a weight ratio of 91/6/3, dispersed in N-methyl-2-pyrrolidone, and positive electrode active The material layer forming paste was obtained. This paste was applied to an aluminum foil having a thickness of 20 μm prepared as a current collector to form an electrode active material layer.

塗布の工程は、まず第一面に、電極活物質層形成部分の長さが420mm、電極活物質層非形成部分の長さが6mmの繰り返しパターンとなるようにペーストを塗布した。なお、電極活物質層の乾燥後の厚さが110μmとなるように、ペーストの塗布量を調整した。   In the coating process, first, the paste was applied to the first surface so as to form a repeated pattern in which the length of the electrode active material layer forming portion was 420 mm and the length of the electrode active material layer non-forming portion was 6 mm. The amount of paste applied was adjusted so that the thickness of the electrode active material layer after drying was 110 μm.

次に、第二面に、図1におけるd1及びd2がそれぞれ3mm、60mmとなるように、ペーストを塗布した。第二面側も、電極活物質層の乾燥後の厚さが110μmとなるように、ペーストの塗布量を調整した。次いで、集電体の両面に電極活物質層を形成したシートを、ロールを用いて加圧し、全体の厚さを160μmとした。 Next, the paste was applied to the second surface so that d 1 and d 2 in FIG. 1 were 3 mm and 60 mm, respectively. Also on the second surface side, the amount of paste applied was adjusted so that the thickness of the electrode active material layer after drying was 110 μm. Subsequently, the sheet | seat which formed the electrode active material layer on both surfaces of the electrical power collector was pressurized using the roll, and the whole thickness was 160 micrometers.

次に、負極電極の製造方法について説明する。ここでは、フェノール樹脂を不活性ガス気流中で焼成後、粉砕して得られた平均粒径20μmの炭素材料と、バインダとしてのポリフッ化ビニリデンを、重量比で90/10となるように秤量混合し、N−メチル−2−ピロリドンに分散して負極電極活物質層形成用のペーストとした。その後の工程は、正極電極の場合と同様にして、負極電極を得た。なお、集電体に用いた金属箔は、厚みが20μmの銅箔である。   Next, the manufacturing method of a negative electrode is demonstrated. Here, a carbon material having an average particle size of 20 μm obtained by firing and pulverizing a phenol resin in an inert gas stream and a polyvinylidene fluoride as a binder are weighed and mixed so that the weight ratio is 90/10. And dispersed in N-methyl-2-pyrrolidone to obtain a paste for forming a negative electrode active material layer. Subsequent steps were performed in the same manner as in the case of the positive electrode to obtain a negative electrode. The metal foil used for the current collector is a copper foil having a thickness of 20 μm.

このようにして得られた正極電極及び負極電極は、いずれも破断がまったく見られず、加圧工程において、集電体の特定箇所に、圧力の集中が起こらないことが判明した。従って、本発明により二次電池の生産性や信頼性を向上できることが明らかである。   The positive electrode and the negative electrode thus obtained were not broken at all, and it was found that pressure concentration did not occur at a specific location of the current collector in the pressurizing step. Therefore, it is clear that the productivity and reliability of the secondary battery can be improved by the present invention.

また、前記実施例では、リチウムイオン二次電池について説明したが、他の二次電池や、同様の構造を有する電気二重層キャパシタなどの、電気化学セルにも適用できる。   Moreover, in the said Example, although the lithium ion secondary battery was demonstrated, it is applicable also to electrochemical cells, such as another secondary battery and the electric double layer capacitor which has the same structure.

本発明を実施するため最良の形態に係る電極の例の断面模式図。The cross-sectional schematic diagram of the example of the electrode which concerns on the best form for implementing this invention. 正極電極及び負極電極をセパレータを介在させて重ねて巻き回した構成の例を示す斜視図。The perspective view which shows the example of the structure which piled up and wound the positive electrode and the negative electrode through the separator. 従来技術による電極の断面の模式図。The schematic diagram of the cross section of the electrode by a prior art.

符号の説明Explanation of symbols

1,8 集電体
2a 第一面に形成された電極活物質層
2b 第二面に形成された電極活物質層
3,11 電極
4a 正極電極
4b 負極電極
5 セパレータ
6a 正極電流取出タブ
6b 負極電流取出タブ
7 巻回素子
9a 一面に形成された電極活物質層
9b 他面に形成された電極活物質層
10a,10b 盛り上がり部
1,d2,d3偏倚量
DESCRIPTION OF SYMBOLS 1,8 Current collector 2a Electrode active material layer 2b formed on the first surface Electrode active material layer 3,11 formed on the second surface Electrode 4a Positive electrode 4b Negative electrode 5 Separator 6a Positive electrode current extraction tab 6b Negative electrode current the electrode active material layer 10a formed on the other surface electrode active material layer 9b formed on the take-out tab 7 spirally wound element 9a one aspect, 10b protruding portion d 1, d 2, d 3 bias amount

Claims (4)

帯状の導電材からなる集電体における対向する第一面及び第二面に、電極活物質層形成部分及び電極活物質層非形成部分を有する電極において、前記第一面の前記電極活物質層形成部分の一方の端部は、前記集電体を介して対向する位置の前記第二面の前記電極活物質層形成部分の一方の端部よりも、他方の端部側に5〜100mm偏倚して配置され、かつ、前記第一面の前記電極活物質層形成部分の他方の端部は、前記集電体を介して対向する位置の前記第二面の前記電極活物質層形成部分の前記他方の端部よりも、前記一方の端部側に1〜5mm偏倚して配置されてなることを特徴とする電極。   In the electrode having the electrode active material layer forming portion and the electrode active material layer non-forming portion on the opposing first surface and second surface of the current collector made of a strip-shaped conductive material, the electrode active material layer on the first surface One end of the formation portion is biased 5 to 100 mm closer to the other end than the one end of the electrode active material layer formation portion on the second surface at the position facing the current collector. And the other end portion of the electrode active material layer forming portion of the first surface is a portion of the electrode active material layer forming portion of the second surface at a position facing through the current collector. The electrode is characterized in that it is arranged with a deviation of 1 to 5 mm on the one end side with respect to the other end. 帯状の導体からなる集電体における対向する第一面および第二面に、不連続的に電極活物質層を形成する電極の製造方法において、前記第一面に形成する電極活物質層は、前記集電体を介して対向する位置に形成された前記第二面の電極活物質層の一方の端部よりも、他方の端部側に5〜100mm偏倚した位置から形成を開始し、かつ、前記集電体を介して対向する位置に形成された前記第二面の電極活物質層の前記他方の端部よりも、前記一方の端部側に1〜5mm偏倚した位置で形成を終了することを特徴とする電極の製造方法。   In the electrode manufacturing method in which the electrode active material layer is formed discontinuously on the first and second surfaces facing each other in the current collector made of a strip-shaped conductor, the electrode active material layer formed on the first surface is: Formation is started from a position deviated by 5 to 100 mm on the other end side from one end of the electrode active material layer on the second surface formed at a position facing through the current collector; and The formation is finished at a position deviated from the other end of the second surface electrode active material layer formed at the position facing the current collector by 1 to 5 mm toward the one end. A method for manufacturing an electrode. 帯状の導体からなる集電体における対向する第一面および第二面に、不連続的に電極活物質層を形成する電極の製造方法において、前記第一面に形成する電極活物質層は、前記集電体を介して対向する位置に形成された前記第二面の電極活物質層の一方の端部よりも、他方の端部側に1〜5mm偏倚した位置から形成を開始し、かつ、前記集電体を介して対向する位置に形成された前記第二面の電極活物質層の前記他方の端部よりも、前記一方の端部側に5〜100mm偏倚した位置で形成を終了することを特徴とする電極の製造方法。   In the electrode manufacturing method in which the electrode active material layer is formed discontinuously on the first and second surfaces facing each other in the current collector made of a strip-shaped conductor, the electrode active material layer formed on the first surface is: Starting from a position that is offset by 1 to 5 mm on the other end side from one end of the electrode active material layer on the second surface formed at a position facing through the current collector, and The formation is finished at a position that is offset by 5 to 100 mm toward the one end side of the other end part of the electrode active material layer on the second surface formed at a position facing through the current collector. A method for manufacturing an electrode. 請求項1に記載の構造を有する正極電極及び負極電極を、間に介在するセパレータとともに巻き回してなる巻回素子を有することを特徴とする二次電池。   A secondary battery comprising a winding element formed by winding the positive electrode and the negative electrode having the structure according to claim 1 together with a separator interposed therebetween.
JP2003350170A 2003-10-09 2003-10-09 Electrode and its manufacturing method, and secondary battery Pending JP2005116376A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003350170A JP2005116376A (en) 2003-10-09 2003-10-09 Electrode and its manufacturing method, and secondary battery
CNB2004100852351A CN1279634C (en) 2003-10-09 2004-10-09 Electrode, method for making same and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003350170A JP2005116376A (en) 2003-10-09 2003-10-09 Electrode and its manufacturing method, and secondary battery

Publications (1)

Publication Number Publication Date
JP2005116376A true JP2005116376A (en) 2005-04-28

Family

ID=34541790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003350170A Pending JP2005116376A (en) 2003-10-09 2003-10-09 Electrode and its manufacturing method, and secondary battery

Country Status (2)

Country Link
JP (1) JP2005116376A (en)
CN (1) CN1279634C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134258A1 (en) * 2009-05-18 2010-11-25 パナソニック株式会社 Electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN107871851A (en) * 2016-09-22 2018-04-03 财团法人工业技术研究院 Electrode and battery comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095961B2 (en) * 2011-12-06 2017-03-15 株式会社半導体エネルギー研究所 Square lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134258A1 (en) * 2009-05-18 2010-11-25 パナソニック株式会社 Electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN107871851A (en) * 2016-09-22 2018-04-03 财团法人工业技术研究院 Electrode and battery comprising same

Also Published As

Publication number Publication date
CN1606184A (en) 2005-04-13
CN1279634C (en) 2006-10-11

Similar Documents

Publication Publication Date Title
CN111668451B (en) Preparation method of pole piece for winding type multi-pole lug battery cell, pole piece and battery cell
CN108604669B (en) Method for manufacturing electrode for secondary battery including precutting process
JP6027136B2 (en) Electrode assembly manufacturing method and electrode assembly manufactured using the same
JP5776446B2 (en) Battery electrode manufacturing method and battery electrode
US7307831B2 (en) Method of manufacturing electrode and electrode
JP5772397B2 (en) Battery electrode manufacturing method and battery electrode
JP6183348B2 (en) Electrode body and method for producing electrode body
KR20070110563A (en) Electrolyte assembly for secondary battery of novel laminated structure
JP2009163942A (en) Nonaqueous secondary battery, and its manufacturing method thereof
JP7046185B2 (en) Positive electrode for solid-state battery, method for manufacturing positive electrode for solid-state battery, and solid-state battery
WO2013098970A1 (en) Method for producing electrode and method for producing non-aqueous electrolyte battery
JP5580198B2 (en) Square battery
KR20170094983A (en) An electrode for an electrochemical device and a method for manufacturing the same
JP4929592B2 (en) Energy device manufacturing method
JP2000348754A (en) Rolled electrode type battery
JP2002157997A (en) Method of manufacturing collapsible lithium battery
JP2009252349A (en) Electrode plate for nonaqueous electrolyte secondary battery, and manufacturing method of the same
JP2005116376A (en) Electrode and its manufacturing method, and secondary battery
JP2009272055A (en) Non-aqueous electrolyte secondary battery manufacturing method
JP2005174779A (en) Lithium ion secondary cell
JP2018060699A (en) Manufacturing method for laminated secondary battery
JP4466905B2 (en) Flat non-aqueous electrolyte secondary battery
JP7177210B2 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3552654B2 (en) Battery or capacitor and method of manufacturing the same
JP2012069279A (en) Electrode cutting device and electrode manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060309

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100203