JP2005116300A - Flexible flat cable - Google Patents

Flexible flat cable Download PDF

Info

Publication number
JP2005116300A
JP2005116300A JP2003347945A JP2003347945A JP2005116300A JP 2005116300 A JP2005116300 A JP 2005116300A JP 2003347945 A JP2003347945 A JP 2003347945A JP 2003347945 A JP2003347945 A JP 2003347945A JP 2005116300 A JP2005116300 A JP 2005116300A
Authority
JP
Japan
Prior art keywords
ffc
insulator
width direction
flat cable
flexible flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003347945A
Other languages
Japanese (ja)
Inventor
Kazuhiro Katayama
和弘 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003347945A priority Critical patent/JP2005116300A/en
Publication of JP2005116300A publication Critical patent/JP2005116300A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable to give flexibility in width direction of a flexible flat cable ( herein after FFC). <P>SOLUTION: A cutting slit which penetrates an insulator is provided between conductors constituted by a printing technology on the pasting face of two insulators forming a FFC. The lateral width of the individual portions of the FFC divided by the slit becomes narrower and the insulator of each portions can be easily distorted and deformed, and the internal stress in the width direction of the insulator generated inside the insulator of the FFC by shifting of mutual position relations between the FFC end part and a connector is alleviated by the distortion deformation owing to installation of the slit, and as a result, flexibility in width direction of the FFC can be given. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電子機器の小型化や電気回路接続コストの低減を目的に印刷回路基板内、印刷回路基板間、印刷回路基板と他の電子回路ユニット間の接続用として従来の絶縁被覆電線に替え、柔軟性を有する2枚のフィルム状樹脂材料製の絶縁体の張り合わせ面に導電体を印刷技術により配設したフレキシブルフラットケーブル(以後、FFCと略称)に関する技術である。 The present invention replaces a conventional insulated wire for connection within a printed circuit board, between printed circuit boards, and between a printed circuit board and another electronic circuit unit for the purpose of reducing the size of electronic equipment and reducing the cost of connecting an electric circuit. This is a technique relating to a flexible flat cable (hereinafter abbreviated as FFC) in which a conductor is disposed on a bonding surface of two flexible film-shaped resin material insulators by a printing technique.

FFCの両端部のそれぞれが接続されるべき一組のコネクター相互の位置関係が近接し、短いFFCにより一組のコネクター間の接続が出来る場合にも、コネクター間距離よりも長いFFCを適用し、FFCの長さ余裕により生ずる撓みを利用することにより、接続作業性の改善、および、コネクター相互の位置関係のずれに起因して発生する不具合防止を実現している。しかしながら、コネクター間の接続に必要な長さよりも長いFFCの適用は、機器の小型化、経済的構成の妨げとなる。 Even when the positional relationship between a pair of connectors to which both ends of the FFC are to be connected is close and a connection between a pair of connectors can be made by a short FFC, an FFC longer than the distance between the connectors is applied, By utilizing the bending caused by the length margin of the FFC, improvement in connection workability and prevention of malfunctions caused by displacement of the positional relationship between the connectors are realized. However, the application of an FFC longer than the length necessary for connection between the connectors hinders downsizing of the equipment and economical configuration.

特開2002-184496号公報Japanese Patent Laid-Open No. 2002-18496 特開2003-168509号公報JP 2003-168509 A

FFCは、面と垂直な方向へは柔軟であり容易に撓む。しかしながら、FFCを構成する2枚の絶縁体張り合わせ面に印刷技術により配設された導電体の剥離や断線事故を防止するため、絶縁体材料としては剛性が高く、従って可撓性の低いポリエステル系合成樹脂材料が用いられ、FFC面と平行な方向には、可撓性を示さない。 The FFC is flexible and easily bent in a direction perpendicular to the surface. However, in order to prevent the peeling and disconnection accident of the conductors arranged by the printing technology on the two insulator bonding surfaces constituting the FFC, the polyester material has high rigidity and therefore low flexibility as an insulator material. A synthetic resin material is used and does not exhibit flexibility in a direction parallel to the FFC surface.

通常、FFCの両端末位置には、FFCの導電体と印刷回路基板上の電気回路との接続用コネクターが配設されており、印刷技術により高密度に配設されたFFC両端の多数の導電体とコネクター内に同様に高密度で配設された多数の端子が、それぞれに対関係を保ちながら各導電体面に適度な圧力を加え電気的接続機能を実現している。しかしながら、FFCの両端末位置に配設されたコネクターの横方向の位置関係に僅かでもずれがある場合に、FFCが横方向に撓まず位置ずれを吸収することが出来ないため、FFCの端末部には大きな応力が加わる。 Normally, connectors for connecting the FFC conductor and the electric circuit on the printed circuit board are arranged at both terminal positions of the FFC, and a large number of conductive elements at both ends of the FFC arranged at high density by printing technology. Similarly, a large number of terminals arranged at high density in the body and the connector realize an electrical connection function by applying appropriate pressure to each conductor surface while maintaining a pair relationship with each other. However, if there is even a slight shift in the lateral positional relationship between the connectors arranged at both terminal positions of the FFC, the FFC will not bend in the horizontal direction and cannot absorb the positional shift. A large stress is applied to.

上記、応力が原因でコネクターへのFFC端末部の挿入作業が困難となり、あるいは、挿入後も衝撃や使用中の機器内温度の変化に伴いコネクターが組み付けられた印刷配線基板の支持機構の位置ずれの悪化により、相互の寸法精度関係が厳密に要求されるFFC端末部分の導電体とコネクターの端子部分での電気的短絡や接触不良事故の誘発原因となる。 Due to the stress described above, it becomes difficult to insert the FFC terminal into the connector, or even after insertion, the printed circuit board support mechanism where the connector is assembled is displaced due to impact or changes in device temperature during use. As a result of the deterioration, an electrical short circuit or a contact failure accident is caused between the conductor of the FFC terminal portion and the terminal portion of the connector, which strictly require a mutual dimensional accuracy relationship.

上述の問題に対応するため、本発明は、図1に示すFFC面の幅方向Bへ可撓性を付与する手段を提供する。FFCの導電体2相互間の位置にFFC両端末部5の補強板3に達しない長さの切り込み4を穿配する。切り込み4は、全ての導電体2間に穿配する場合、数本の導電体2毎に穿配する場合、あるいは、FFCの幅方向Bの両端末部5から離れ、中心に向かう程、切り込み4の配設密度を高くすることも可能である。 In order to address the above-described problems, the present invention provides a means for imparting flexibility in the width direction B of the FFC surface shown in FIG. A notch 4 having a length that does not reach the reinforcing plates 3 of the FFC end portions 5 is provided at a position between the FFC conductors 2. The notches 4 are cut between the conductors 2, in the case of drilling every several conductors 2, or farther from the both end portions 5 in the width direction B of the FFC and toward the center. It is also possible to increase the arrangement density of 4.

切り込み4は、薄い形状の刃先を有するカッターで加工することが可能である他に、図3(b)、図3(c)および図3(e)に示すごとく切り込み4に隣接する導電体2に接しない範囲で一定の幅を有する穿孔形状とすることも可能である。 In addition to being able to process the cut 4 with a cutter having a thin cutting edge, the conductor 2 adjacent to the cut 4 as shown in FIGS. 3 (b), 3 (c) and 3 (e). It is also possible to form a perforated shape having a certain width in a range not in contact with.

以上述べたように本発明は、FFCを構成する2枚の絶縁体1の張り合わせ面に配設された複数本の導電体2間に切り込み4を穿配することによりつぎのような効果が得られる。FFCとコネクターとの位置関係ずれにより、FFC内部に応力が生じた場合、絶縁体1面に導電体2と平行なn本の切り込みを穿配することで、切り込み4により分割された個々のFFCの横幅が狭くなるために、ねじれ変形が容易となり、FFC絶縁体1のねじれ変形によりFFCとコネクターとの位置ずれを吸収する事が出来る。 As described above, according to the present invention, the following effects can be obtained by providing the notches 4 between the plurality of conductors 2 disposed on the bonding surface of the two insulators 1 constituting the FFC. It is done. When stress occurs in the FFC due to the positional relationship between the FFC and the connector, each FFC divided by the cuts 4 is formed by drilling n cuts parallel to the conductors 2 on the surface of the insulator 1. Since the lateral width of the FFC insulator 1 becomes narrow, the torsional deformation becomes easy, and the positional deviation between the FFC and the connector can be absorbed by the torsional deformation of the FFC insulator 1.

FFCの幅方向Bへの可撓性は、全ての導電体2間に切り込み4を配設することで効果的に付与することが出来るが、FFCの長さが、幅に比して充分に長い場合は、必ずしも全ての導電体2間に切り込み4を要せず、FFCの長さと幅との比を勘案しながら複数本の導電体2毎に切り込み4を配設することも可能であり、また、FFCの幅方向Bの両辺では潜在応力が解放されているのに対し、絶縁体1の幅方向B中央部は、より大きな潜在応力を有するため、切り込み4の配設密度を高め、絶縁体1のねじれ変形による潜在応力の緩和を容易にする事も可能である。 Flexibility in the width direction B of the FFC can be effectively imparted by arranging the cuts 4 between all the conductors 2, but the length of the FFC is sufficiently larger than the width. In the case of a long length, the notch 4 is not necessarily required between all the conductors 2, and it is possible to arrange the notch 4 for each of the plurality of conductors 2 in consideration of the ratio of the length and width of the FFC. Moreover, since the latent stress is released on both sides in the width direction B of the FFC, the central portion in the width direction B of the insulator 1 has a larger potential stress, so the arrangement density of the cuts 4 is increased, It is also possible to facilitate the relaxation of the latent stress due to the torsional deformation of the insulator 1.

切り込み4は、図3(a)に示すごとく薄い形状の刃先を有するカッターで加工する方法、または、図3(b)に示すごとく短冊状に穿孔する方法も可能であるが、図3(a)の切り込み4の両端部分、図3(b)の短冊状穿孔の4隅のコーナー部分には、絶縁体1内の潜在応力の集中に起因し、絶縁体1の前記該部分を起点とした亀裂状損傷が発生し、導電体2の断線事故を惹起することがある。切り込み4の両端部には図3(c)乃至図3(e)に示す形状を適用し、前記該部分の応力分散を図ることにより上記不具合の発生防止が可能である。 The incision 4 can be processed by a cutter having a thin cutting edge as shown in FIG. 3 (a) or a method of perforating in a strip shape as shown in FIG. 3 (b). ) At both ends of the incision 4 and at the corners at the four corners of the strip-shaped perforations in FIG. 3 (b) due to the concentration of latent stress in the insulator 1 A crack-like damage may occur, causing a disconnection accident of the conductor 2. The shapes shown in FIGS. 3 (c) to 3 (e) are applied to both ends of the notch 4, and the occurrence of the above-described problems can be prevented by distributing the stress in the portions.

本発明によるFFCの幅方向Bへの可撓性の付与の実施例を図1乃至図3に基づき、以下に説明する。図1、図2に示すFFCの絶縁体1は、面と垂直方向Aへは柔軟で可撓性を有するが、FFCの幅方向Bへは、可撓性を示さず、FFCの両端末部5をコネクターに嵌合させる際に、FFCとコネクターとの互いの位置関係がFFCの幅方向Bにずれた場合には、FFCの可撓性により位置ずれを吸収する事が出来ない。 An embodiment of imparting flexibility in the width direction B of the FFC according to the present invention will be described below with reference to FIGS. The FFC insulator 1 shown in FIGS. 1 and 2 is soft and flexible in the direction A perpendicular to the surface, but does not show flexibility in the width direction B of the FFC, and both end portions of the FFC. When the positional relationship between the FFC and the connector is shifted in the width direction B of the FFC when the 5 is fitted to the connector, the positional shift cannot be absorbed by the flexibility of the FFC.

このため、FFCを構成する2枚の絶縁体1の張り合わせ面に印刷技術により配設された複数の導電体2間に切り込み4を配設することにより、図1、図2に示す例では、FFCの全幅が3分割される。分割された個々の部分は、幅が狭くなるために、容易にねじれ変形し、コネクターとFFCとの幅方向Bとの位置関係ずれを吸収することが出来、コネクターとFFCとの接続作業性の向上、および、使用中の振動衝撃や熱変化に伴う相互の位置関係の寸法精度の変化にも対応することが出来る。 For this reason, in the example shown in FIG. 1 and FIG. 2, by disposing the notch 4 between the plurality of conductors 2 disposed by the printing technique on the bonding surface of the two insulators 1 constituting the FFC, The entire width of the FFC is divided into three. Since each divided part is narrow in width, it can be easily torsionally deformed and can absorb the positional displacement between the connector and the FFC in the width direction B, and the connection workability between the connector and the FFC can be improved. It is possible to cope with the improvement and the change in the dimensional accuracy of the mutual positional relationship due to the vibration shock and thermal change during use.

FFCの幅方向Bへの可撓性は、全ての導電体2間に切り込み4を配設することで効果的に付与することが出来るが、FFCの長さが、幅に比して充分に長い場合は、必ずしも全ての導電体2間に切り込み4を要せず、FFCの長さと幅との比を勘案しながら複数本の導電体2毎に切り込み4を配設することも可能であり、また、FFCの幅方向Bの両辺では潜在応力が解放されているのに対し、絶縁体1の幅方向B中央部は、より大きな潜在応力を有するため、切り込み4の配設密度を高め、絶縁体1のねじれ変形による潜在応力の緩和を容易にする事も可能である。 Flexibility in the width direction B of the FFC can be effectively imparted by arranging the cuts 4 between all the conductors 2, but the length of the FFC is sufficiently larger than the width. In the case of a long length, the notch 4 is not necessarily required between all the conductors 2, and it is possible to arrange the notch 4 for each of the plurality of conductors 2 in consideration of the ratio of the length and width of the FFC. Moreover, since the latent stress is released on both sides in the width direction B of the FFC, the central portion in the width direction B of the insulator 1 has a larger potential stress, so the arrangement density of the cuts 4 is increased, It is also possible to facilitate the relaxation of the latent stress due to the torsional deformation of the insulator 1.

切り込み4は、図3(a)に示すごとく薄い形状の刃先を有するカッターで加工する方法、または、図3(b)に示すごとく短冊状に穿孔する方法も可能であるが、図3(a)の切り込みの両端の応力集中点6、図3(b)の短冊状穿孔の4隅のコーナー部分の応力集中点6には、絶縁体1内の潜在応力の集中に起因し、絶縁体1の前記該部分を起点とした亀裂状損傷が発生し、導電体2の断線事故を惹起することがある。 The incision 4 can be processed by a cutter having a thin cutting edge as shown in FIG. 3 (a) or a method of perforating in a strip shape as shown in FIG. 3 (b). The stress concentration points 6 at both ends of the notch) and the stress concentration points 6 at the four corners of the strip-shaped perforations in FIG. In some cases, crack-like damages starting from the above-mentioned part may occur, causing a disconnection accident of the conductor 2.

このため、切り込み4の両端部には図3(c)に示すごとく、切り込み4の両端部のコーナー部分に丸みを持たせ、あるいは、図3(d)や図3(e)に示すごとく、切り込み4の両端部を切り込み4の幅よりも大きい直径の円状とし、切り込み4の両端部に発生する集中応力を分散緩和し、応力集中点6を起点とし、発生する亀裂状損傷の防止が可能である。 For this reason, as shown in FIG. 3C, both corners of the notch 4 are rounded at the corners of both ends of the notch 4, or as shown in FIG. 3D and FIG. 3E. Both ends of the cut 4 have a circular shape with a diameter larger than the width of the cut 4, the concentrated stress generated at both ends of the cut 4 is dispersed and relaxed, and the stress concentration point 6 is the starting point to prevent the occurrence of crack-like damage. Is possible.

本発明の活用例として、電子機器の小型化や電気回路接続コストの低減を目的として、印刷回路基板内、印刷回路基板間、印刷回路基板と他の電子回路ユニット間に配設されたコネクター間の接続用途に適用できる。
As an application example of the present invention, for the purpose of reducing the size of electronic equipment and reducing the cost of connecting electric circuits, between printed circuit boards, between printed circuit boards, and between connectors arranged between printed circuit boards and other electronic circuit units. It can be applied to other connection applications.

本発明によるフレキシブルフラットケーブルの斜視図である。It is a perspective view of the flexible flat cable by this invention. 本発明によるフレキシブルフラットケーブルの分解図である。It is an exploded view of the flexible flat cable by this invention. 切り込み形状例の詳細図である。It is detail drawing of the example of a cut shape.

符号の説明Explanation of symbols

1:絶縁体
2:導電体
3:補強板
4:切り込み
5:端末部
6:応力集中点
1: Insulator 2: Conductor 3: Reinforcing plate 4: Notch 5: End portion 6: Stress concentration point

Claims (6)

複数本の導電体間に導電体と平行して切り込みを穿配したことを特徴とするフレキシブルフラットケーブル。 A flexible flat cable comprising a plurality of conductors cut in parallel with a conductor. 請求項1に記載のフレキシブルフラットケーブルにおいて、全ての導電体間に絶縁体を貫通する切り込みを穿配したことを特徴とするフレキシブルフラットケーブル。 2. The flexible flat cable according to claim 1, wherein a notch penetrating the insulator is provided between all conductors. 請求項1に記載のフレキシブルフラットケーブルにおいて、複数本の導電体毎に切り込みを穿配したことを特徴とするフレキシブルフラットケーブル。 The flexible flat cable according to claim 1, wherein a notch is provided for each of a plurality of conductors. 請求項1に記載のフレキシブルフラットケーブルにおいて、ケーブルの幅方向の両端部から中心部に向かい、切り込みの穿配密度を高めたことを特徴とするフレキシブルフラットケーブル。 The flexible flat cable according to claim 1, wherein the penetration density of the cut is increased from both ends in the width direction of the cable toward the center. 請求項1乃至4の何れかに記載のフレキシブルフラットケーブルにおいて、切り込み自体に幅を有することを特徴とするフレキシブルフラットケーブル。 5. The flexible flat cable according to claim 1, wherein the notch itself has a width. 請求項5に記載のフレキシブルフラットケーブルにおいて、切り込みの両端部のコーナー部分に丸みを持たせ、あるいは、切り込みの両端部を切り込みの幅寸法より大きい直径の円状としたことを特徴とするフレキシブルフラットケーブル。 6. The flexible flat cable according to claim 5, wherein corners of both ends of the cut are rounded, or both ends of the cut are circular with a diameter larger than the width of the cut. cable.
JP2003347945A 2003-10-07 2003-10-07 Flexible flat cable Pending JP2005116300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347945A JP2005116300A (en) 2003-10-07 2003-10-07 Flexible flat cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347945A JP2005116300A (en) 2003-10-07 2003-10-07 Flexible flat cable

Publications (1)

Publication Number Publication Date
JP2005116300A true JP2005116300A (en) 2005-04-28

Family

ID=34540298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347945A Pending JP2005116300A (en) 2003-10-07 2003-10-07 Flexible flat cable

Country Status (1)

Country Link
JP (1) JP2005116300A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007073673A1 (en) * 2005-12-29 2007-07-05 Shenzhen Excelstor Technology Ltd Transferring interface and vibration proof hard disk drive
JP2010143140A (en) * 2008-12-19 2010-07-01 Canon Inc Liquid ejection head and recording apparatus using the same
WO2010148164A3 (en) * 2009-06-19 2011-02-17 3M Innovative Properties Company Shielded electrical cable
US8466365B2 (en) 2010-08-31 2013-06-18 3M Innovative Properties Company Shielded electrical cable
US8841555B2 (en) 2010-08-31 2014-09-23 3M Innovative Properties Company Connector arrangements for shielded electrical cables
US8841554B2 (en) 2010-08-31 2014-09-23 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US8859901B2 (en) 2010-09-23 2014-10-14 3M Innovative Properties Company Shielded electrical cable
US9064612B2 (en) 2010-08-31 2015-06-23 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US9119292B2 (en) 2010-08-31 2015-08-25 3M Innovative Properties Company Shielded electrical cable in twinaxial configuration
KR20160047860A (en) 2014-10-23 2016-05-03 한화테크윈 주식회사 Flexible Printed Circuit Board
US9685259B2 (en) 2009-06-19 2017-06-20 3M Innovative Properties Company Shielded electrical cable
US10147522B2 (en) 2010-08-31 2018-12-04 3M Innovative Properties Company Electrical characteristics of shielded electrical cables

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007073673A1 (en) * 2005-12-29 2007-07-05 Shenzhen Excelstor Technology Ltd Transferring interface and vibration proof hard disk drive
US8840225B2 (en) 2008-12-19 2014-09-23 Canon Kabushiki Kaisha Liquid ejection head and recording apparatus including the same
JP2010143140A (en) * 2008-12-19 2010-07-01 Canon Inc Liquid ejection head and recording apparatus using the same
US9883620B2 (en) 2009-06-19 2018-01-30 3M Innovative Properties Company Shielded electrical cable
US8946558B2 (en) 2009-06-19 2015-02-03 3M Innovative Properties Company Shielded electrical cable
CN102804290A (en) * 2009-06-19 2012-11-28 3M创新有限公司 Shielded Electrical Cable
US10306819B2 (en) 2009-06-19 2019-05-28 3M Innovative Properties Company Shielded electrical cable
US10080319B2 (en) 2009-06-19 2018-09-18 3M Innovative Properties Company Shielded electrical cable
WO2010148164A3 (en) * 2009-06-19 2011-02-17 3M Innovative Properties Company Shielded electrical cable
US9763369B2 (en) 2009-06-19 2017-09-12 3M Innovative Properties Company Shielded electrical cable
US10448547B2 (en) 2009-06-19 2019-10-15 3M Innovative Properties Company Shielded electrical cable
US9035186B2 (en) 2009-06-19 2015-05-19 3M Innovative Properties Company Shielded electrical cable
US9715951B2 (en) 2009-06-19 2017-07-25 3M Innovative Properties Company Shielded electrical cable
US9686893B2 (en) 2009-06-19 2017-06-20 3M Innovative Properties Company Shielded electrical cable
US9685259B2 (en) 2009-06-19 2017-06-20 3M Innovative Properties Company Shielded electrical cable
CN102804290B (en) * 2009-06-19 2016-08-10 3M创新有限公司 Shielded cable
US9324477B2 (en) 2009-06-19 2016-04-26 3M Innovative Properties Company Shielded electrical cable
US9202608B2 (en) 2010-08-31 2015-12-01 3M Innovative Properties Company Connector arrangements for shielded electrical cables
US10056170B2 (en) 2010-08-31 2018-08-21 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9208927B2 (en) 2010-08-31 2015-12-08 3M Innovative Properties Company Shielded electrical cable
US9325121B2 (en) 2010-08-31 2016-04-26 3M Innovative Properties Company Connector arrangements for shielded electrical cables
US9196397B2 (en) 2010-08-31 2015-11-24 3M Innovative Properties Company Shielded electrical cable
US11923112B2 (en) 2010-08-31 2024-03-05 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US11854716B2 (en) 2010-08-31 2023-12-26 3M Innovative Properties Company Shielded electrical cable
US9443644B2 (en) 2010-08-31 2016-09-13 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9449738B2 (en) 2010-08-31 2016-09-20 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9502154B1 (en) 2010-08-31 2016-11-22 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9595371B2 (en) 2010-08-31 2017-03-14 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9601236B2 (en) 2010-08-31 2017-03-21 3M Innovative Properties Company Shielded electrical cable
US9607735B2 (en) 2010-08-31 2017-03-28 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US9607734B2 (en) 2010-08-31 2017-03-28 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US9627106B2 (en) 2010-08-31 2017-04-18 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9646740B2 (en) 2010-08-31 2017-05-09 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US9653195B2 (en) 2010-08-31 2017-05-16 3M Innovative Properties Company Shielded electrical cable
US9666332B1 (en) 2010-08-31 2017-05-30 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9119292B2 (en) 2010-08-31 2015-08-25 3M Innovative Properties Company Shielded electrical cable in twinaxial configuration
US9105376B2 (en) 2010-08-31 2015-08-11 3M Innovative Properties Company Connector arrangements for shielded electrical cables
US9704619B1 (en) 2010-08-31 2017-07-11 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US9715952B2 (en) 2010-08-31 2017-07-25 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US9064612B2 (en) 2010-08-31 2015-06-23 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US8933333B2 (en) 2010-08-31 2015-01-13 3M Innovative Properties Company Shielded electrical cable
US9786411B2 (en) 2010-08-31 2017-10-10 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US9865378B2 (en) 2010-08-31 2018-01-09 3M Innovative Properties Company Shielded electrical cable
US11699536B2 (en) 2010-08-31 2023-07-11 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9892823B2 (en) 2010-08-31 2018-02-13 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9202609B2 (en) 2010-08-31 2015-12-01 3M Innovative Properties Company Connector arrangements for shielded electrical cables
US8841554B2 (en) 2010-08-31 2014-09-23 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10090082B2 (en) 2010-08-31 2018-10-02 3M Innovative Properties Company Shielded electrical cable
US10109396B2 (en) 2010-08-31 2018-10-23 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US10109397B2 (en) 2010-08-31 2018-10-23 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US10134506B2 (en) 2010-08-31 2018-11-20 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US10147522B2 (en) 2010-08-31 2018-12-04 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US8841555B2 (en) 2010-08-31 2014-09-23 3M Innovative Properties Company Connector arrangements for shielded electrical cables
US10340059B2 (en) 2010-08-31 2019-07-02 3M Innovative Properties Company Shielded electrical cable
US10347398B2 (en) 2010-08-31 2019-07-09 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US10347393B2 (en) 2010-08-31 2019-07-09 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10373734B2 (en) 2010-08-31 2019-08-06 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US10438725B2 (en) 2010-08-31 2019-10-08 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US8466365B2 (en) 2010-08-31 2013-06-18 3M Innovative Properties Company Shielded electrical cable
US10573432B2 (en) 2010-08-31 2020-02-25 3M Innovative Properties Company Shielded electrical cable
US10573427B2 (en) 2010-08-31 2020-02-25 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US10629329B2 (en) 2010-08-31 2020-04-21 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10784021B2 (en) 2010-08-31 2020-09-22 3M Innovative Properties Company Shielded electrical cable
US10896772B2 (en) 2010-08-31 2021-01-19 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10998111B2 (en) 2010-08-31 2021-05-04 3M Innovative Properties Company Shielded electrical cable
US11348706B2 (en) 2010-08-31 2022-05-31 3M Innovative Properties Company Shielded electrical cable
US11488745B2 (en) 2010-08-31 2022-11-01 3M Innovative Properties Company Shielded electrical cable
US11651871B2 (en) 2010-08-31 2023-05-16 3M Innovative Properties Company Shielded electric cable
US11664137B2 (en) 2010-08-31 2023-05-30 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US11688530B2 (en) 2010-08-31 2023-06-27 3M Innovative Properties Company Shielded electric cable
US8859901B2 (en) 2010-09-23 2014-10-14 3M Innovative Properties Company Shielded electrical cable
US9129724B2 (en) 2010-09-23 2015-09-08 3M Innovative Properties Company Shielded electrical cable
KR20160047860A (en) 2014-10-23 2016-05-03 한화테크윈 주식회사 Flexible Printed Circuit Board

Similar Documents

Publication Publication Date Title
US7795540B2 (en) Extendable cable or extendable connecting member
US9899759B2 (en) Power connector
JP2005116300A (en) Flexible flat cable
CN103259116B (en) Connector
JP5600428B2 (en) Female connector block and connector
US6910922B2 (en) Connector in which occurrence of crosstalk is suppressed by a ground contact
JP5872311B2 (en) Electrical connector
JP2007214139A (en) Mounting structure for receptacle
KR20160005589A (en) A Flexible Flat Cable for a Low Valtage Differential Signaling
JP6075637B2 (en) Circuit structure and inlay
JP4849681B2 (en) Magnetic connector
US9313885B2 (en) Flexible flat cable for low voltage differential signaling
JP2000196205A (en) Flexible printed board
JP2002134861A (en) Flexible wiring substrate
US10777925B2 (en) Connector and stacked substrate module
JP2005033882A (en) Circuit structure of electric connection box
JP5816065B2 (en) Connected body
JP2005136182A (en) Flexible wiring board
JP6836952B2 (en) connector
US8517774B2 (en) Connector with ground electrode terminals having different lengths
JP2014175584A (en) Wiring board
JP2007250815A (en) Flexible printed board and electronic component mounting circuit using it
JP2007287363A (en) Connection structure of flexible flat circuit board
JP4322075B2 (en) Large current conductive structure of power supply
WO2018138753A1 (en) Electric device