JP2005114198A - Ice tray and refrigerator with automatic ice making machine - Google Patents

Ice tray and refrigerator with automatic ice making machine Download PDF

Info

Publication number
JP2005114198A
JP2005114198A JP2003346054A JP2003346054A JP2005114198A JP 2005114198 A JP2005114198 A JP 2005114198A JP 2003346054 A JP2003346054 A JP 2003346054A JP 2003346054 A JP2003346054 A JP 2003346054A JP 2005114198 A JP2005114198 A JP 2005114198A
Authority
JP
Japan
Prior art keywords
ice
wall
ice making
tray
ice tray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003346054A
Other languages
Japanese (ja)
Inventor
Yoji Imahori
洋二 今堀
Tokio Hotta
時雄 堀田
Masashi Toyoshima
昌志 豊嶋
Hitoshi Aoki
均史 青木
Asami Kubota
麻美 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003346054A priority Critical patent/JP2005114198A/en
Publication of JP2005114198A publication Critical patent/JP2005114198A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/10Refrigerator units

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problems of an ice tray wherein ice is made in a state that a low boiling point substance is filled between an inner frame part and an outer frame part and is expanded such that a projecting face is formed toward an ice making small chamber side: the whole ice tray becomes large to contribute to a minus factor to miniaturization, the generated ice has concave drum shape, and it is difficult to form an ice cube when enlarging the ice making small chamber so as to enlarge the ice because volume of the ice making small chamber is small, and to provide an ice tray allowing easy separation of the ice, suitable for the miniaturization, allowing the small chamber of the ice tray to have a large volume when supplying water, and allowing generation of the ice cube of a prescribed shape. <P>SOLUTION: In this ice tray, a bottom wall of the ice making small chamber consists of an inside wall more deformable than an outside wall. A low coagulating point substance coming into a liquid state by temperature of ice making water, and coming into a coagulation state at a prescribed freezing temperature or below to cubically expand is filled between the inside wall and the outside wall, and the ice in time of ice making completion is detached from the ice tray by deformation of the inside wall accompanying the cubic expansion. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、複数の製氷小室が形成された合成樹脂製製氷皿、及び自動製氷機に用いられる製氷皿、及びこの製氷皿を備えた自動製氷機付き冷蔵庫に関する。   The present invention relates to an ice tray made of synthetic resin in which a plurality of ice making chambers are formed, an ice tray used in an automatic ice maker, and a refrigerator with an automatic ice maker provided with the ice tray.

製氷皿にねじり力等を加えなくても、容易に離氷可能な製氷皿を提供することを目的としたものとして、摩擦係数が小さく圧力変化に対し容易に変形可能な材質により形成された内枠部と、変形しにくい材質で形成された外枠部と、この内枠部と外枠部との間に形成された内部に低沸点物質が充填された低沸点物質充填部とから構成された製氷皿を備えた自動製氷装置付き冷蔵庫がある(例えば、特許文献1参照)。   In order to provide an ice tray that can be easily deiced without applying torsional force etc. to the ice tray, it is made of a material that has a low friction coefficient and can be easily deformed against pressure changes. A frame portion, an outer frame portion formed of a material that is not easily deformed, and a low-boiling substance filling portion that is formed between the inner frame portion and the outer frame portion and is filled with a low-boiling substance. There is a refrigerator with an automatic ice making device equipped with an ice tray (see, for example, Patent Document 1).

特許文献1のものは、給水タンクから給水された水温によって、製氷皿の温度は低沸点物質の沸点以上であるため、低沸点物質は気体状態であり液体状態に比して体積が極めて大きく、そのために製氷皿の内枠部が水が入った小室側に向けて凸面を形成するように膨張した状態である。この状態から冷却されて小室に鼓型の氷が生成されると共に、低沸点物質の沸点以下になると液体に状態変化し、低沸点物質の体積激減によって製氷皿の内枠部が外枠部側に向けてへこむようになり、小室の生成された氷と内枠部との間に空間が生じる。この状態から製氷皿を180°回転させることにより、この鼓型の氷を下方の貯氷箱へ自然落下することができるものである。
特開平7−305931号公報
Since the temperature of the ice tray is equal to or higher than the boiling point of the low boiling point substance due to the temperature of water supplied from the water supply tank, the low boiling point substance is in a gaseous state and has a very large volume compared to the liquid state. Therefore, the inner frame part of the ice tray is in a state of expanding so as to form a convex surface toward the small chamber side containing water. Cooling from this state produces drum-shaped ice in the chamber, and changes to a liquid state when the boiling point of the low-boiling point substance falls below the boiling point of the low-boiling point substance. And a space is created between the ice generated in the chamber and the inner frame. By rotating the ice tray from this state by 180 °, the drum-shaped ice can naturally fall into the ice storage box below.
JP-A-7-305931

この特許文献1の発明では、給水された当初の製氷皿の小室は、内枠部が小室側に向けて凸面を形成するように膨張した状態であるため、この小室の容積が小さくなり、そこに生成される氷の大きさが小さくなる問題がある。氷を大きくするためには小室の大きさが大きくなり、製氷皿全体が大きくなり、小型化に対してマイナス要因となる。そして、生成される氷は鼓型となり、角氷の形成に難しい。更に、低沸点物質の沸点以下になったとき製氷皿の内枠部が外枠部側に向けてへこむような形態にしなければならず、そのために内枠部の材質の選定、形状、成形条件等が厳しくなることが考えられる。   In the invention of Patent Document 1, since the small chamber of the original ice tray supplied with water is in a state where the inner frame portion is expanded so as to form a convex surface toward the small chamber side, the volume of the small chamber is reduced. However, there is a problem that the size of ice generated is reduced. In order to enlarge the ice, the size of the small chamber becomes large, and the entire ice tray becomes large, which is a negative factor for downsizing. And the generated ice becomes a drum shape, and it is difficult to form ice cubes. Furthermore, the inner frame part of the ice tray must be dented toward the outer frame part when the boiling point of the low-boiling substance becomes lower than the boiling point. For this purpose, the material selection, shape and molding conditions of the inner frame part are required. Etc. may be severe.

上記の点に鑑み、本発明は、容易に離氷可能な製氷皿を提供する目的において、給水時には製氷皿の小室の容積が大きい状態であり、所定形状の角氷の生成ができ、小型化に適した製氷皿と、これを備えた自動製氷機付き冷蔵庫を提供するものである。   In view of the above points, the present invention aims to provide an ice tray that can be easily deiced, the volume of the small chamber of the ice tray is large when water is supplied, can generate ice cubes of a predetermined shape, and can be downsized. An ice-making tray suitable for the above and a refrigerator with an automatic ice-making machine equipped with the ice-making tray are provided.

第1の発明の製氷皿は、上面開口の複数の製氷小室が形成された合成樹脂成形体であって、前記各製氷小室の底壁は外側壁に比して変形し易い内側壁にて構成されていて、前記内側壁と外側壁との間には、前記製氷用水の温度によって液状になり所定の冷凍温度以下で凝固状態となって体積膨張する低凝固点物質が充填された充填室が形成され、前記体積膨張に伴う前記内側壁の変形にて製氷完了時の氷を前記製氷皿から剥離することを特徴とする。   An ice tray according to a first aspect of the present invention is a synthetic resin molding in which a plurality of ice making chambers having an upper surface opening are formed, and the bottom wall of each ice making chamber is configured by an inner wall that is more easily deformed than an outer wall. In addition, a filling chamber is formed between the inner wall and the outer wall, which is filled with a low freezing point substance that becomes liquid by the temperature of the ice making water and becomes solidified below a predetermined freezing temperature. The ice upon completion of ice making is peeled off from the ice making tray by deformation of the inner wall accompanying the volume expansion.

第2の発明の製氷皿は、注入された製氷用水を冷凍温度雰囲気中で凍結させて氷を作るように、長手方向に沿って左右各1列に上面開口の複数の製氷小室が形成された捻り変形可能な合成樹脂成形体であって、前記各製氷小室の底壁は外側壁に比して変形し易い内側壁にて構成されていて、前記内側壁と外側壁との間には、前記製氷用水の温度によって液状になり所定の冷凍温度以下で凝固状態となって体積膨張する低凝固点物質が充填された充填室が形成され、前記体積膨張に伴う前記内側壁の変形にて製氷完了時の氷を前記製氷皿から剥離することを特徴とする。   In the ice making tray of the second invention, a plurality of ice making chambers having upper surface openings are formed in each of the left and right rows along the longitudinal direction so as to make ice by freezing the injected ice making water in a freezing temperature atmosphere. It is a synthetic resin molded body that can be torsionally deformed, and the bottom wall of each ice making chamber is configured with an inner wall that is more easily deformed than the outer wall, and between the inner wall and the outer wall, A filling chamber filled with a low-freezing point substance that becomes liquid by the temperature of the ice-making water and becomes solidified below a predetermined freezing temperature and expands in volume is formed, and the ice making is completed by deformation of the inner wall accompanying the volume expansion The ice at the time is peeled off from the ice tray.

第3の発明の製氷皿は、前記外側壁よりも前記内側壁を薄肉に形成したことを特徴とする。   The ice tray of the third invention is characterized in that the inner side wall is formed thinner than the outer side wall.

第4の発明の製氷皿は、前記内側壁と外側壁とを含めて前記製氷皿をポリプロピレン又はポリエチレンで一体成形したことを特徴とする。   The ice tray of the fourth invention is characterized in that the ice tray including the inner wall and the outer wall is integrally formed of polypropylene or polyethylene.

第5の発明の製氷皿は、前記内側壁を上下方向に凹凸形状としたことを特徴とする。   The ice tray of the fifth invention is characterized in that the inner side wall has an uneven shape in the vertical direction.

第6の発明は、冷蔵庫本体内の冷蔵室に配設された給水容器の製氷用水が冷凍室に配設された自動製氷機の製氷皿へ供給され、冷却器で冷却した冷気が送風機によって前記製氷皿へ供給される自動製氷機付き冷蔵庫において、前記製氷皿は、長手方向に沿って左右各列に上面開口の複数の製氷小室が形成された合成樹脂成形体であって、前記各製氷小室の底壁は外側壁に比して変形し易い内側壁にて構成され、前記内側壁と外側壁との間には、前記製氷用水の温度によって液状になり所定の冷凍温度以下で凝固状態となって体積膨張する低凝固点物質が充填された充填室を備え、前記体積膨張に伴う前記内側壁の変形にて製氷完了時の氷を前記製氷皿から剥離する形態であり、前記低凝固点物質の凝固状態においてモータ装置によって前記製氷皿を反転して氷を下方の貯氷容器へ落下せしめる脱氷動作を行うことを特徴とする。   According to a sixth aspect of the present invention, ice-making water in a water supply container disposed in a refrigerator compartment in a refrigerator body is supplied to an ice tray of an automatic ice maker disposed in the freezer compartment, and the cold air cooled by the cooler is blown by the blower. In the refrigerator with an automatic ice maker supplied to the ice tray, the ice tray is a synthetic resin molded body in which a plurality of ice making chambers having upper surface openings are formed in left and right rows along the longitudinal direction, and each ice making chamber The bottom wall of the inner wall is configured by an inner wall that is more easily deformed than the outer wall, and is liquefied by the temperature of the ice making water between the inner wall and the outer wall and is in a solidified state below a predetermined freezing temperature. And a filling chamber filled with a low-freezing point substance that expands in volume, and is configured to peel ice from the ice tray upon completion of ice making due to deformation of the inner wall accompanying the volume expansion, In the solidified state, the motor device And performs de-ice operation by inverting the dishes allowed to drop ice into the ice container downward.

第1の発明は、低凝固点物質の液状から凝固状態へと移行することによって離氷させるため、製氷小室の大きさは給水した時には大きい状態である。このため、容易に離氷可能な製氷皿を提供できると共に、給水時には製氷皿の小室の容積が大きい状態であり、所定形状の氷の生成ができる小型化に適した製氷皿を提供できる。   In the first aspect of the invention, the ice making chamber is large when the water is supplied because the low-freezing point substance is deiced by shifting from a liquid state to a solidified state. Therefore, it is possible to provide an ice tray that can be easily deiced, and to provide an ice tray that is suitable for downsizing and that can generate ice having a predetermined shape because the volume of the small chamber of the ice tray is large when water is supplied.

第2の発明は、第1の発明の効果に加えて、捻り変形によって更に確実な離氷が可能となる製氷皿を提供できる。   In addition to the effects of the first invention, the second invention can provide an ice tray that enables more reliable deicing by twisting deformation.

第3の発明は、第1又は第2発明の効果に加えて、低凝固点物質の体積膨張による内側壁の変形による離氷が更に良好となる。   In the third invention, in addition to the effects of the first or second invention, the deicing due to the deformation of the inner wall due to the volume expansion of the low freezing point substance is further improved.

第4の発明は、上記効果に加えて、合成樹脂の一体成形の製氷皿を作ることができる。   In addition to the above effects, the fourth invention can make an ice tray made of synthetic resin.

第5の発明は、上下方向の凹凸形状を鋸歯状に形成すれば、内側壁が変形し易くなり、離氷が良好となる。また、凹凸形状を矩形状にして下方に凸の部分の肉厚を薄くすれば、この部分の変形によって離氷が良好となる。   In the fifth aspect of the present invention, when the concave and convex shape in the vertical direction is formed in a sawtooth shape, the inner wall is easily deformed and the deicing is improved. Further, if the concave and convex shape is made rectangular and the thickness of the downwardly projecting portion is reduced, the deicing is improved by the deformation of this portion.

第6の発明は、モータ装置によって製氷皿を反転して氷を下方の貯氷容器へ落下せしめる自動製氷機の製氷皿に適用すれば、従来のもののように製氷皿を大きな力で捻っていた方式に比して、離氷が簡単になるため、モータ装置の駆動力が小さく製氷皿に捻りを与える構造設計も簡素化でき、小型でコスト低減できる自動製氷機を構成できる。   The sixth invention is a method in which the ice tray is twisted with a large force like the conventional one when applied to the ice tray of an automatic ice maker that reverses the ice tray by the motor device and drops the ice to the ice storage container below. Compared to the above, the ice removal is simpler, the driving force of the motor device is small, the structural design for twisting the ice tray can be simplified, and an automatic ice making machine that can be reduced in size and cost can be configured.

本発明は、製氷皿へ氷が生成されたとき液状の低凝固点物質が凝固状態になることによって生じる体積膨張を利用して製氷皿の一部を離氷方向へ変形させて離氷を容易にするものであり、本発明の実施例を以下に記載する。   The present invention makes it easy to deice by deforming a part of the ice tray in the direction of de-icing using the volume expansion caused by the liquid low-freezing point substance becoming solidified when ice is generated in the ice tray. Examples of the present invention are described below.

次に、本発明の実施の形態について説明する。図1は本発明冷蔵庫の正面図、図2は本発明の冷蔵庫本体の正面図、図3は本発明の給水容器から製氷部分への給水状態説明図、図4は注水時の状態を説明する製氷皿の断面図、図5は製氷終了時の低凝固点物質の凝固状態を説明する製氷皿の断面図である。   Next, an embodiment of the present invention will be described. FIG. 1 is a front view of the refrigerator of the present invention, FIG. 2 is a front view of the refrigerator main body of the present invention, FIG. 3 is an explanatory view of the water supply state from the water supply container of the present invention to the ice making part, and FIG. FIG. 5 is a cross-sectional view of the ice tray, and FIG. 5 is a cross-sectional view of the ice tray for explaining the solidification state of the low freezing point substance at the end of ice making.

本発明を図に基づき説明する。1は冷蔵庫であり、前面開口の本体2内を区画して複数の貯蔵室を形成し、これら各貯蔵室の前面は扉で開閉できる構成である。冷蔵庫本体2は、外箱(外壁板)と内箱(内壁板)との間に発泡断熱材を充填した断熱構造である。冷蔵庫本体2内には、上から冷蔵室3、野菜室4、上冷凍室5と製氷室7、下冷凍室6が区画されて設けられ、冷蔵室3内の底部にはその上方の冷蔵室3と区画板(区画壁)8にて区画された特定低温室9が設けられている。上冷凍室5は冷気量調節装置を手動操作して冷蔵室とすることもできるので、切り替え室と称することもできる。   The present invention will be described with reference to the drawings. Reference numeral 1 denotes a refrigerator, which has a configuration in which a plurality of storage chambers are formed by partitioning the inside of the main body 2 having a front opening, and the front surfaces of these storage chambers can be opened and closed by doors. The refrigerator body 2 has a heat insulating structure in which a foam heat insulating material is filled between an outer box (outer wall plate) and an inner box (inner wall plate). In the refrigerator main body 2, a refrigerator compartment 3, a vegetable compartment 4, an upper freezer compartment 5, an ice making compartment 7, and a lower freezer compartment 6 are partitioned from the top, and the refrigerator compartment 3 is provided at the bottom of the refrigerator compartment 3. 3 and a specific low temperature chamber 9 partitioned by a partition plate (partition wall) 8 is provided. The upper freezer compartment 5 can also be referred to as a switching chamber because it can be manually operated by the cold air amount adjusting device to be a refrigerator compartment.

冷蔵室3の前面開口は、冷蔵庫本体2の一側部にヒンジ装置にて横方向に回動して開閉される回動式扉10にて閉塞される。野菜室4の前面開口は、野菜室4内に設けた左右のレール又はローラ装置によって前後方向へ引き出し可能に支持した野菜容器15と共に前方へ引き出される引き出し式扉11にて閉塞されている。上冷凍室5と下冷凍室6はそれぞれ野菜室4と同様に、冷凍室内に設けた左右のレールに対してそれぞれ前後方向へ引き出し可能に支持した容器16、17と共に前方へ引き出される引き出し式扉12、13にて閉塞されている。   The front opening of the refrigerator compartment 3 is closed by a pivoting door 10 that is pivoted laterally by a hinge device on one side of the refrigerator body 2 and opened and closed. The front opening of the vegetable compartment 4 is closed by a drawer-type door 11 that is drawn forward together with a vegetable container 15 supported so as to be able to be drawn in the front-rear direction by left and right rails or roller devices provided in the vegetable compartment 4. The upper freezer compartment 5 and the lower freezer compartment 6, like the vegetable compartment 4, are drawer-type doors that are drawn forward together with containers 16 and 17 that are supported so that they can be drawn in the front-rear direction with respect to the left and right rails provided in the freezer compartment. Blocked at 12 and 13.

製氷室7内は、上部に自動製氷機18を設けその下部に貯氷容器19を配置している。貯氷容器19は、野菜室4と同様に、製氷室7内の左右壁に設けた左右のレールに対してそれぞれ前後方向へ引き出し可能に支持されており、製氷室7の前面開口を開閉する引き出し式扉14と共に前方へ引き出される仕組みである。20は自動製氷機18へ供給する製氷用水を貯める給水容器であり、冷蔵室3内において特定低温室9の横に形成した小室に配置されており、冷蔵室3の前面扉10を開いて前方へ取り出し自在である。製氷用水は給水容器20からポンプ21によって吸い上げられて給水パイプ22を介して自動製氷機18の製氷皿23へ供給される。   In the ice making chamber 7, an automatic ice making machine 18 is provided at the upper part, and an ice storage container 19 is arranged at the lower part. As with the vegetable compartment 4, the ice storage container 19 is supported so that it can be pulled out in the front-rear direction with respect to the left and right rails provided on the left and right walls in the ice making chamber 7, and the drawer that opens and closes the front opening of the ice making chamber 7. It is a mechanism that is pulled forward together with the ceremony door 14. 20 is a water supply container for storing ice making water to be supplied to the automatic ice making machine 18. The water supply container 20 is disposed in a small chamber formed beside the specific low temperature chamber 9 in the refrigerating chamber 3, and the front door 10 of the refrigerating chamber 3 is opened to the front. It can be taken out freely. The ice making water is sucked up by the pump 21 from the water supply container 20 and supplied to the ice making tray 23 of the automatic ice making machine 18 through the water supply pipe 22.

冷蔵庫1は、圧縮機で圧縮した冷媒を凝縮器で凝縮した後、膨張弁又はキャピラリチューブを通して減圧し、蒸発器(冷却器)で蒸発させて圧縮機へ帰還せしめ、再び圧縮機で圧縮して同じ循環を繰り返す冷凍システムを備えている。この冷凍システムの蒸発器(冷却器)で冷却した空気を冷蔵室3、野菜室4、上冷凍室5、下冷凍室6、製氷室7、特定低温室9へ送風機で循環して、各室を所定温度に冷却する。その一つの方法として、前記蒸発器(冷却器)と送風機の一対を2基設け、その一つが冷蔵室3、野菜室4、特定低温室9を冷却する冷蔵用冷気供給装置を構成し、もう一つが、上冷凍室5、下冷凍室6、製氷室7を冷却する冷凍用冷気供給装置を構成するである。   The refrigerator 1 condenses the refrigerant compressed by the compressor with a condenser, then depressurizes it through an expansion valve or a capillary tube, evaporates it with an evaporator (cooler), returns it to the compressor, and compresses it again with the compressor. It has a refrigeration system that repeats the same circulation. The air cooled by the evaporator (cooler) of this refrigeration system is circulated to the refrigerator compartment 3, the vegetable compartment 4, the upper freezer compartment 5, the lower freezer compartment 6, the ice making compartment 7, and the specific low temperature compartment 9 by a blower. Is cooled to a predetermined temperature. As one of the methods, two pairs of the evaporator (cooler) and the blower are provided, and one of them constitutes a refrigeration cold air supply device for cooling the refrigerator compartment 3, the vegetable compartment 4, and the specific low temperature compartment 9, One is to constitute a refrigeration cool air supply device that cools the upper freezer compartment 5, the lower freezer compartment 6, and the ice making chamber 7.

前記圧縮機と前記冷凍用冷気供給装置の送風機の運転は、冷凍室6の温度を直接又は間接的に感知する冷凍室センサの温度感知によってON/OFF制御される。また、冷蔵室3、野菜室4及び特定低温室9の温度は、前記冷蔵用冷気供給装置の送風機によって冷蔵室3へ循環する冷気を冷気調節装置よって制御することによって所定の温度に維持される。このような制御によって、各室の温度は、冷蔵室3が約3〜5℃、野菜室4が約3〜5℃、上冷凍室5と下冷凍室6が約−18℃〜−20℃である。特定低温室9は、0℃よりも高い約1℃のチルド室であったり、0℃よりも低く食品の凍結温度よりも高い約−1℃℃〜−2℃の氷温室であったり、また、食品の表面に薄い氷の層が形成される程度の約−4℃の部分凍結室であったりする。製氷室7は冷凍室6と同様に低い温度であり、通常、冷気調節装置によって約−18℃〜−20℃に保たれている。   The operation of the blower of the compressor and the refrigeration cool air supply device is ON / OFF controlled by temperature sensing of a freezer sensor that senses the temperature of the freezer compartment 6 directly or indirectly. Moreover, the temperature of the refrigerator compartment 3, the vegetable compartment 4, and the specific low temperature chamber 9 is maintained at a predetermined temperature by controlling the cold air circulated to the refrigerator compartment 3 by the blower of the refrigerator air supply device for the refrigerator by the cool air adjusting device. . By such control, the temperature of each room is about 3 to 5 ° C. in the refrigerator room 3, about 3 to 5 ° C. in the vegetable room 4, and about −18 ° C. to −20 ° C. in the upper freezer room 5 and the lower freezer room 6. It is. The specific low temperature chamber 9 is a chilled chamber of about 1 ° C. higher than 0 ° C., an ice greenhouse of about −1 ° C. to −2 ° C. lower than 0 ° C. and higher than the freezing temperature of food, Or a partial freezing chamber at about −4 ° C. to the extent that a thin ice layer is formed on the surface of the food. The ice making room 7 is at a low temperature like the freezing room 6 and is usually kept at about −18 ° C. to −20 ° C. by a cold air adjusting device.

給水容器20は、冷蔵庫1内に取り出し自在に収納されて、製氷室7内の製氷部分である自動製氷機18へ給水される水を溜める。この給水容器20は、所定の高さで前後方向に細長い容器を形成し長方形状の上面開口を備えたタンク本体30と、タンク本体30の上面開口を覆うカバー33とよりなり、カバー33は、その前部に下方に窪ませて注水口39が形成され、この注水口39を開閉するように注水口蓋40が軸41を中心に開閉できる。42はポンプ21の吸込み口に接続された連結管であり、カバー33からタンク本体30に深く垂下した吸水管43によって吸い上げられる水をポンプ21へ導く。44は注水口39から注入された水を、底部に取り付けた活性炭フィルタ45を通してタンク本体30内へ導くフィルタケースで、カバー33に着脱可能に取り付けられている。この状態で注水口蓋40を開いて注水口39からタンク本体30内へ注水できる。   The water supply container 20 is removably accommodated in the refrigerator 1 and stores water to be supplied to the automatic ice making machine 18 that is an ice making part in the ice making chamber 7. The water supply container 20 includes a tank main body 30 having a rectangular shape and a rectangular upper surface opening, and a cover 33 that covers the upper surface opening of the tank main body 30. A water injection port 39 is formed by being recessed downward in the front portion, and the water injection port lid 40 can be opened and closed around the shaft 41 so as to open and close the water injection port 39. Reference numeral 42 denotes a connecting pipe connected to the suction port of the pump 21, and guides the water sucked up by the water suction pipe 43 drooping deeply from the cover 33 to the tank body 30 to the pump 21. A filter case 44 guides the water injected from the water injection port 39 into the tank body 30 through the activated carbon filter 45 attached to the bottom, and is detachably attached to the cover 33. In this state, the water inlet cover 40 can be opened to inject water from the water inlet 39 into the tank body 30.

自動製氷機7の製氷運転は、冷蔵庫1に設けた制御回路部によって制御される製氷工程と脱氷工程から構成される。始動スイッチが入ると製氷工程が開始し、前記制御回路部によってポンプ21へ所定時間通電され、所定量の製氷用水が給水容器20から製氷皿23へ給水される。この給水の後、前記制御回路部のタイマ手段によって一定時間経過したとき、又は氷の形成を製氷皿23に取り付けた温度センサが製氷皿23の低下した温度を検知したとき、前記制御回路部によって製氷工程を終了して脱氷工程が開始し、モータ装置50が始動して製氷皿23を反転して捻り、氷を下方の貯氷容器19へ落下せしめた後、製氷皿23を復帰させ、再び製氷皿23へ給水して製氷工程に入る製氷運転サイクルを行う。   The ice making operation of the automatic ice making machine 7 includes an ice making process and a deicing process controlled by a control circuit unit provided in the refrigerator 1. When the start switch is turned on, the ice making process starts, and the control circuit unit energizes the pump 21 for a predetermined time, and supplies a predetermined amount of ice making water from the water supply container 20 to the ice making tray 23. After this water supply, when a predetermined time has passed by the timer means of the control circuit unit, or when the temperature sensor attached to the ice tray 23 detects the temperature at which the ice tray 23 has dropped, the control circuit unit After the ice making process is completed, the deicing process is started, the motor device 50 is started, the ice making tray 23 is reversed and twisted, the ice is dropped into the lower ice storage container 19, the ice making tray 23 is returned, and again An ice making operation cycle for supplying water to the ice tray 23 and entering the ice making process is performed.

貯氷容器19の貯氷状態は、モータ装置50が始動して製氷皿23を反転させる動作と関連して貯氷容器19内へ下降するよう上下動する検知レバーによって検知する。貯氷容器19の満氷状態は、満氷状態のとき前記検知レバーの降下が氷で妨げられるため、そのときのモータ電流の変化によって検知する方法や、検知レバーが所定位置へ下降したとき動作するスイッチを設けておき脱氷工程の開始から一定時間中に検知レバーが氷によって下降を妨げられて所定位置へ下降しなかったことを判定回路で判定する方法や、貯氷容器19の満氷状態を秤機構にて測定する方法などによって検知する。   The ice storage state of the ice storage container 19 is detected by a detection lever that moves up and down to descend into the ice storage container 19 in association with the operation of starting the motor device 50 and inverting the ice tray 23. When the ice storage container 19 is full, the descent of the detection lever is hindered by ice when the ice storage is full. Therefore, the ice storage container 19 is detected by a change in motor current at that time, or operates when the detection lever is lowered to a predetermined position. A switch is provided to determine whether the detection lever has been prevented from descending to a predetermined position due to ice during a certain period of time from the start of the deicing process, or whether the ice storage container 19 is full. It is detected by a method of measuring with a scale mechanism.

製氷皿23は、モータ装置50と共に製氷室7内にフレーム装置51によって取り付けられ、製氷皿23の上方はカバー部材52によって覆われている。製氷皿23は、前後方向に長く設置され、長手方向に沿って上面開口の複数の製氷小室23Aが形成された合成樹脂成形体である。製氷小室23Aは、その周囲壁面が上方へ行くに従って広がる形状である。各製氷小室23Aの底壁は二重底になっており、外側壁23Cとこの外側壁23Cに比して変形し易い内側壁23Bにて構成されている。内側壁23Bと外側壁23Cとの間には、氷点下の所定温度、即ち所定の冷凍温度で凝固する低凝固点物質60が充填された充填室61が形成されている。   The ice tray 23 is attached to the ice making chamber 7 together with the motor device 50 by a frame device 51, and the upper side of the ice tray 23 is covered with a cover member 52. The ice making tray 23 is a synthetic resin molded body that is long installed in the front-rear direction and in which a plurality of ice making chambers 23A having upper surface openings are formed along the longitudinal direction. The ice making chamber 23A has a shape in which its peripheral wall surface expands upward. The bottom wall of each ice making chamber 23A has a double bottom, and is composed of an outer wall 23C and an inner wall 23B that is more easily deformed than the outer wall 23C. Between the inner wall 23B and the outer wall 23C, a filling chamber 61 filled with a low freezing point substance 60 that solidifies at a predetermined temperature below freezing, that is, a predetermined freezing temperature, is formed.

製氷用水が製氷皿23へ注入されたときは、その製氷用水の温度によって製氷皿23の温度が上昇する。このため、低凝固点物質60は、このときの製氷用水の温度によって液状になり、図4のように内側壁23Bは外側壁23Cに略平行な状態である。製氷工程において製氷皿23が製氷室7の温度によって氷点下に冷却されることにより、各製氷小室23A内の製氷用水が凍結し、各製氷小室23Aの形状に沿った所定の硬さの氷62が生成される。   When ice-making water is poured into the ice tray 23, the temperature of the ice-making tray 23 rises due to the temperature of the ice-making water. For this reason, the low freezing point substance 60 becomes liquid by the temperature of the ice making water at this time, and the inner wall 23B is substantially parallel to the outer wall 23C as shown in FIG. In the ice making process, the ice tray 23 is cooled below the freezing point by the temperature of the ice making chamber 7, so that the ice making water in each ice making chamber 23A is frozen, and ice 62 having a predetermined hardness along the shape of each ice making chamber 23A is formed. Generated.

製氷皿23の温度がこの所定の硬さの氷62が生成された時の温度よりも更に低い冷凍温度になった時、低凝固点物質60が凝固状態となるように低凝固点物質60の凝固温度を設定しておく。この凝固状態になると液状の時に比して体積膨張する。この体積膨張に伴って内側壁23Bが製氷小室23A側へ膨出するように変形し、この変形によって製氷完了時の氷62は、図5のように製氷皿23から剥離されるように持ち上げられる。   The freezing temperature of the low freezing point material 60 is set so that the low freezing point material 60 is in a solidified state when the temperature of the ice tray 23 reaches a lower freezing temperature than the temperature at which the ice 62 having the predetermined hardness is generated. Is set in advance. In this solidified state, the volume expands as compared with the liquid state. With this volume expansion, the inner wall 23B is deformed so as to swell toward the ice making chamber 23A, and by this deformation, the ice 62 upon completion of ice making is lifted so as to be peeled off from the ice making tray 23 as shown in FIG. .

一つの具体例として、製氷皿23には長手方向に沿って左右各1列に上面開口の複数の製氷小室23Aが形成されている。低凝固点物質60は−10℃で凝固しそれ以下の温度で凝固状態を保つものを使用する。そして、製氷室7の温度は−18℃とし、冷蔵室3の温度で冷却された給水容器20内の製氷用水の温度は2〜3℃とする。この製氷用水が製氷皿23へ供給されると、製氷皿23の温度が上昇する。この温度は低凝固点物質60が液状になる温度であり、製氷皿23への製氷用水の供給によって、低凝固点物質60が液状になり、図4のように内側壁23Bは平坦な変形前の状態となる。   As one specific example, the ice tray 23 is formed with a plurality of ice making chambers 23 </ b> A having an upper surface opening in each of the left and right rows along the longitudinal direction. As the low freezing point material 60, a material that solidifies at −10 ° C. and maintains a solidified state at a temperature lower than that is used. And the temperature of the ice making chamber 7 shall be -18 degreeC, and the temperature of the ice making water in the water supply container 20 cooled by the temperature of the refrigerator compartment 3 shall be 2-3 degreeC. When this ice-making water is supplied to the ice tray 23, the temperature of the ice tray 23 rises. This temperature is a temperature at which the low freezing point material 60 becomes liquid, and by supplying ice making water to the ice tray 23, the low freezing point material 60 becomes liquid, and the inner wall 23B is in a flat state before deformation as shown in FIG. It becomes.

製氷工程の進行に伴って製氷皿23が製氷室7の温度によって冷却されて氷の生成が行われ、製氷皿23の温度が−10℃程度まで低下する前に、各製氷小室23A内の製氷用水は全て凍結しており、製氷小室23Aの形状に沿った所定の氷62が形成された状態である。このように氷62が生成され、更に製氷皿23の温度が−10℃程度まで低下したときには、このとき低凝固点物質60が凝固状態となり、液状の時に比して5〜10%の体積膨張にて内側壁23Bが製氷小室23A側へ膨出する。この内側壁23Bの変形によって製氷完了時の氷62は、図5のように製氷皿23から剥離して浮き上がるため、製氷皿23から氷62の取り出しが容易となる。低凝固点物質60としては、−10℃程度で凝固する濃度の塩化カリウム等が使用される。   As the ice making process progresses, the ice making tray 23 is cooled by the temperature of the ice making chamber 7 to generate ice, and before the temperature of the ice making tray 23 drops to about −10 ° C., the ice making in each ice making chamber 23A. All of the irrigation water is frozen, and a predetermined ice 62 is formed along the shape of the ice making chamber 23A. In this way, when the ice 62 is generated and the temperature of the ice tray 23 is lowered to about −10 ° C., the low freezing point substance 60 is in a solidified state at this time, and the volume expansion is 5 to 10% as compared with the liquid state. As a result, the inner wall 23B bulges toward the ice making chamber 23A. Due to the deformation of the inner wall 23B, the ice 62 when the ice making is completed peels off from the ice tray 23 and floats as shown in FIG. 5, so that the ice 62 can be easily taken out from the ice tray 23. As the low freezing point substance 60, potassium chloride or the like having a concentration that solidifies at about −10 ° C. is used.

製氷皿23に取り付けた温度センサが製氷皿23の低下したこの−10℃の温度を検知したとき、冷蔵庫1に設けた制御回路部によって製氷工程を終了して脱氷工程が開始し、電動機構50が始動して製氷皿23を略180°反転して、氷を下方の貯氷容器19へ落下せしめた後、製氷皿23を復帰させ、再び給水して製氷工程に入る製氷運転サイクルを行う。図5のように、氷62が製氷皿23から剥離した状態であれば、製氷皿23が略180°反転する運動によって、氷62は全て下方の貯氷容器19へ落下せしめることができる。   When the temperature sensor attached to the ice tray 23 detects the temperature of −10 ° C. at which the ice tray 23 is lowered, the ice making process is terminated by the control circuit unit provided in the refrigerator 1 and the deicing process is started. 50 is started and the ice tray 23 is inverted by approximately 180 ° to drop the ice into the ice storage container 19 below. Then, the ice tray 23 is returned, and the ice making operation cycle is started by supplying water again and entering the ice making process. As shown in FIG. 5, if the ice 62 is peeled off from the ice tray 23, all the ice 62 can be dropped to the lower ice storage container 19 by the movement of the ice tray 23 reversed by approximately 180 °.

また、製氷皿23がその長手方向に沿って左右各1列に上面開口の複数の製氷小室23Aが形成された捻り変形可能な合成樹脂成形体で形成されることによって、この製氷皿23を略180°反転したとき、電動機構50とは反対側で製氷皿23部分の回転を拘束すれば、更なる電動機構50の駆動によって製氷皿23に捻りが生じる。この捻れが若干生じるような制御状態とすることによって、万一、製氷皿23との剥離が不十分な氷62があっても確実に剥離でき、製氷皿23内の全ての氷62を下方の貯氷容器19へ落下せしめることができる。   Further, the ice tray 23 is formed of a synthetic resin molded body capable of twisting deformation in which a plurality of ice making chambers 23A having upper surface openings are formed in each of the left and right rows along the longitudinal direction thereof. If the rotation of the ice tray 23 portion is constrained on the side opposite to the electric mechanism 50 when it is turned 180 °, the ice tray 23 is twisted by further driving of the electric mechanism 50. By adopting a control state in which this twisting occurs slightly, even if there is ice 62 that is insufficiently detached from the ice tray 23, it can be reliably peeled off, and all the ice 62 in the ice tray 23 can be moved downward. It can be dropped into the ice storage container 19.

内側壁23Bを外側壁23Cよりも十分薄肉に形成すれば、低凝固点物質60の体積膨張にて内側壁23Bが製氷小室23A側へ膨出し易くなる。製氷皿23は、上記の捻りが生じ易く、また低凝固点物質60の体積膨張にて内側壁23Bを製氷小室23A側へ膨出し易くするために、製氷皿23の成形時に低凝固点物質60が充填されるように、内側壁23Bと外側壁23Cとを含めてポリプロピレン又はポリエチレンで一体成形した構成である。   If the inner wall 23B is formed to be sufficiently thinner than the outer wall 23C, the inner wall 23B can easily expand to the ice making chamber 23A side due to the volume expansion of the low freezing point material 60. The ice tray 23 is easily twisted, and the low freezing point material 60 is filled when the ice tray 23 is formed in order to easily expand the inner wall 23B toward the ice making chamber 23A by the volume expansion of the low freezing point material 60. As shown, the inner wall 23B and the outer wall 23C are integrally formed of polypropylene or polyethylene.

また、製氷皿23は、上記の捻りが生じ易く、また低凝固点物質60の体積膨張にて内側壁23Bを製氷小室23A側へ膨出し易くするために、製氷小室23Aの周囲壁と外側壁23C(内側壁23Bが無い状態)を含めてポリプロピレン又はポリエチレンで一体成形し、この成形体に製氷小室23Aの底部に低凝固点物質60を入れた状態で、その上を塞ぐ状態でこの成形体に薄肉の内側壁23Bを接着や溶着等によって一体化した構成とすることもできる。薄肉の内側壁23Bはフィルムや薄いシートで構成したものでもよい。   In addition, the ice tray 23 is easily twisted, and the peripheral wall and the outer wall 23 </ b> C of the ice making chamber 23 </ b> A are formed in order to easily expand the inner wall 23 </ b> B toward the ice making chamber 23 </ b> A due to the volume expansion of the low freezing point material 60. It is integrally molded with polypropylene or polyethylene including the inner wall 23B, and the molded body is thin-walled with the low freezing point substance 60 placed in the bottom of the ice making chamber 23A in a closed state. The inner wall 23B can be integrated by bonding, welding, or the like. The thin inner wall 23B may be a film or a thin sheet.

上記の実施形態では、製氷皿23に氷62が生成されたときの製氷皿23の温度を温度センサで検出して製氷工程を終了して脱氷工程を開始したが、これに代わって、始動スイッチがONしてから一定時間給水され、その後一定時間氷の生成が行われ、更に低凝固点物質60が凝固するのに十分な時間を保つように、製氷工程がタイマ式制御によって行われるようにすることもできる。   In the above embodiment, the temperature of the ice tray 23 when the ice 62 is generated in the ice tray 23 is detected by the temperature sensor, and the ice making process is terminated and the deicing process is started. The ice making process is performed by a timer-type control so that water is supplied for a certain period of time after the switch is turned on, ice is then generated for a certain period of time, and sufficient time is allowed for the low freezing point material 60 to solidify. You can also

図6は注水時の状態を説明する製氷皿23の部分断面図、図7は製氷終了時の低凝固点物質60の凝固状態を説明する製氷皿23の部分断面図である。図1乃至図5と同一機能部分は同一符合で示している。この冷蔵庫1は、図1乃至図3に示すものと同様である。以下、図6、図7の構成と作用について説明する。   FIG. 6 is a partial cross-sectional view of the ice tray 23 for explaining the state at the time of water injection, and FIG. 7 is a partial cross-sectional view of the ice tray 23 for explaining the solidification state of the low freezing point substance 60 at the end of ice making. The same functional parts as those in FIGS. 1 to 5 are denoted by the same reference numerals. The refrigerator 1 is the same as that shown in FIGS. Hereinafter, the configuration and operation of FIGS. 6 and 7 will be described.

実施例1の製氷皿23と異なるところは、内側壁23Bの下面を中央部分で薄肉形状とした点であり、その他の部分は実施例1の製氷皿23と同じである。これによって、内側壁23B中央部分が上方に伸張しやすくなり、低凝固点物質60の体積膨張にて内側壁23Bの中央部分が製氷小室23A側へ膨出して、氷62の剥離が良好となる。   The difference from the ice tray 23 of the first embodiment is that the lower surface of the inner wall 23B is thin at the center, and the other portions are the same as the ice tray 23 of the first embodiment. As a result, the central portion of the inner wall 23B easily expands upward, and the central portion of the inner wall 23B bulges toward the ice making chamber 23A due to the volume expansion of the low freezing point material 60, and the ice 62 is peeled off favorably.

図8は注水時の状態を説明する製氷皿の断面図、図9は製氷終了時の低凝固点物質の凝固状態を説明する製氷皿の断面図である。図1乃至図5と同一機能部分は同一符合で表示している。この冷蔵庫1は、図1乃至図3に示すものと同様である。以下、図8、図9の構成と作用について説明する。   FIG. 8 is a cross-sectional view of the ice making tray for explaining the state at the time of water injection, and FIG. 9 is a cross-sectional view of the ice making tray for explaining the solidification state of the low freezing point substance at the end of ice making. The same functional parts as those in FIGS. 1 to 5 are indicated by the same reference numerals. The refrigerator 1 is the same as that shown in FIGS. Hereinafter, the configuration and operation of FIGS. 8 and 9 will be described.

実施例1の製氷皿23と異なるところは、内側壁23Bの形状を上下方向に矩形状に凹凸形状とした点であり、その他の部分は実施例1の製氷皿23と同じである。これによって、内側壁23Bが上方に伸張しやすくなり、低凝固点物質60の体積膨張にて内側壁23Bが製氷小室23A側へ膨出し易く、氷62の剥離が良好となる。   The difference from the ice tray 23 of the first embodiment is that the shape of the inner wall 23B is a rectangular shape in the vertical direction, and the other portions are the same as the ice tray 23 of the first embodiment. As a result, the inner wall 23B tends to extend upward, and the inner wall 23B tends to bulge toward the ice making chamber 23A due to the volume expansion of the low-freezing point material 60, so that the ice 62 is peeled off favorably.

図10は注水時の状態を説明する製氷皿の断面図、図11は製氷終了時の低凝固点物質の凝固状態を説明する製氷皿の断面図である。図1乃至図5と同一機能部分は同一符合で表示している。この冷蔵庫1は、図1乃至図3に示すものと同様である。以下、図10、図11の構成と作用について説明する。   FIG. 10 is a cross-sectional view of an ice making tray for explaining the state at the time of water injection, and FIG. 11 is a cross-sectional view of the ice making tray for explaining the solidification state of the low freezing point substance at the end of ice making. The same functional parts as those in FIGS. 1 to 5 are indicated by the same reference numerals. The refrigerator 1 is the same as that shown in FIGS. Hereinafter, the configuration and operation of FIGS. 10 and 11 will be described.

実施例1の製氷皿23と異なるところは、内側壁23Bの形状を上下方向に略三角形状で代表される波形状に凹凸形状とした点であり、その他の部分は実施例1の製氷皿23と同じである。これによって、内側壁23Bが上方に伸張しやすくなり、低凝固点物質60の体積膨張にて内側壁23Bが製氷小室23A側へ膨出し易く、氷62の剥離が良好となる。   The difference from the ice tray 23 of the first embodiment is that the shape of the inner wall 23B is a corrugated shape represented by a substantially triangular shape in the vertical direction, and the other portions are the ice tray 23 of the first embodiment. Is the same. As a result, the inner wall 23B tends to extend upward, and the inner wall 23B tends to bulge toward the ice making chamber 23A due to the volume expansion of the low-freezing point material 60, so that the ice 62 is peeled off favorably.

本発明は、自動製氷機付き冷蔵庫であるが、冷蔵室、冷凍室の配置関係は上記形態に限定されず、本発明の技術的範囲を逸脱しない限り種々の冷蔵庫の形態に適用できるものである。   The present invention is a refrigerator with an automatic ice making machine, but the arrangement relationship between the refrigerator compartment and the freezer compartment is not limited to the above-described form, and can be applied to various refrigerator forms without departing from the technical scope of the present invention. .

本発明冷蔵庫の正面図である。(実施例1)It is a front view of this invention refrigerator. (Example 1) 本発明の冷蔵庫本体の正面図である。(実施例1)It is a front view of the refrigerator main body of this invention. (Example 1) 本発明の給水容器から製氷部分への給水状態説明図である。(実施例1)It is water supply state explanatory drawing from the water supply container of this invention to the ice making part. (Example 1) 注水時の状態を説明する本発明の製氷皿の断面図である。(実施例1)It is sectional drawing of the ice tray of this invention explaining the state at the time of water injection. (Example 1) 製氷終了時の低凝固点物質の凝固状態を説明する本発明の製氷皿の断面図である。(実施例1)It is sectional drawing of the ice tray of this invention explaining the solidification state of the low freezing point substance at the time of completion | finish of ice making. (Example 1) 注水時の状態を説明する本発明の製氷皿の部分断面図である。(実施例2)It is a fragmentary sectional view of the ice tray of the present invention explaining the state at the time of water pouring. (Example 2) 製氷終了時の低凝固点物質の凝固状態を説明する本発明の製氷皿の部分断面図である。(実施例2)It is a fragmentary sectional view of the ice tray of this invention explaining the solidification state of the low freezing point substance at the time of completion | finish of ice making. (Example 2) 注水時の状態を説明する本発明の製氷皿の部分断面図である。(実施例3)It is a fragmentary sectional view of the ice tray of the present invention explaining the state at the time of water pouring. Example 3 製氷終了時の低凝固点物質の凝固状態を説明する本発明の製氷皿の部分断面図である。(実施例3)It is a fragmentary sectional view of the ice tray of this invention explaining the solidification state of the low freezing point substance at the time of completion | finish of ice making. Example 3 注水時の状態を説明する本発明の製氷皿の部分断面図である。(実施例4)It is a fragmentary sectional view of the ice tray of the present invention explaining the state at the time of water pouring. (Example 4) 製氷終了時の低凝固点物質の凝固状態を説明する本発明の製氷皿の部分断面図である。(実施例4)It is a fragmentary sectional view of the ice tray of this invention explaining the solidification state of the low freezing point substance at the time of completion | finish of ice making. (Example 4)

符号の説明Explanation of symbols

1・・・冷蔵庫
2・・・冷蔵庫本体
3・・・冷蔵室
4・・・野菜室
5・・・冷凍室
6・・・製氷室
7・・・製氷室
18・・・自動製氷機
20・・・給水容器
23・・・製氷皿
23A・・製氷小室
23B・・内側壁
23C・・外側壁
60・・・低凝固点物質
61・・・低凝固点物質の充填室
62・・・氷
DESCRIPTION OF SYMBOLS 1 ... Refrigerator 2 ... Refrigerator main body 3 ... Refrigeration room 4 ... Vegetable room 5 ... Freezing room 6 ... Ice making room 7 ... Ice making room 18 ... Automatic ice making machine 20. ··· Water supply container 23 · · · ice tray 23A · · ice making chamber 23B · · inner wall 23C · · · outer wall 60 · low freezing point material 61 · low freezing point material filling chamber 62 · · · ice

Claims (6)

上面開口の複数の製氷小室が形成された合成樹脂成形体であって、前記各製氷小室の底壁は外側壁に比して変形し易い内側壁にて構成されていて、前記内側壁と外側壁との間には、前記製氷用水の温度によって液状になり所定の冷凍温度以下で凝固状態となって体積膨張する低凝固点物質が充填された充填室が形成され、前記体積膨張に伴う前記内側壁の変形にて製氷完了時の氷を前記製氷皿から剥離することを特徴とする製氷皿。   A synthetic resin molded body in which a plurality of ice making chambers having an upper surface opening are formed, wherein the bottom wall of each ice making chamber is configured with an inner wall that is more easily deformed than an outer wall, and the inner wall and the outer wall Between the walls, there is formed a filling chamber filled with a low freezing point substance which becomes liquid by the temperature of the ice-making water and becomes solidified below a predetermined freezing temperature and expands in volume. An ice making tray characterized in that ice upon completion of ice making is peeled off from the ice making tray by wall deformation. 注入された製氷用水を冷凍温度雰囲気中で凍結させて氷を作るように、長手方向に沿って左右各1列に上面開口の複数の製氷小室が形成された捻り変形可能な合成樹脂成形体であって、前記各製氷小室の底壁は外側壁に比して変形し易い内側壁にて構成されていて、前記内側壁と外側壁との間には、前記製氷用水の温度によって液状になり所定の冷凍温度以下で凝固状態となって体積膨張する低凝固点物質が充填された充填室が形成され、前記体積膨張に伴う前記内側壁の変形にて製氷完了時の氷を前記製氷皿から剥離することを特徴とする製氷皿。   A synthetic resin molded body capable of torsional deformation in which a plurality of ice making chambers having upper surface openings are formed in each of the left and right rows along the longitudinal direction so as to make ice by freezing the injected ice making water in a freezing temperature atmosphere. The bottom wall of each ice making chamber is composed of an inner wall that is more easily deformed than the outer wall, and the space between the inner wall and the outer wall becomes liquid depending on the temperature of the ice making water. A filling chamber filled with a low freezing point substance that expands in a solidified state below a predetermined freezing temperature is formed, and the ice at the completion of ice making is peeled off from the ice tray by deformation of the inner wall accompanying the volume expansion. An ice tray characterized by 前記外側壁よりも前記内側壁を薄肉に形成したことを特徴とする請求項1又は2に記載の製氷皿。   The ice tray according to claim 1 or 2, wherein the inner wall is formed thinner than the outer wall. 前記内側壁と外側壁とを含めて前記製氷皿をポリプロピレン又はポリエチレンで一体成形したことを特徴とする請求項1乃至3のいずれかに記載の製氷皿。   The ice tray according to any one of claims 1 to 3, wherein the ice tray including the inner wall and the outer wall is integrally formed of polypropylene or polyethylene. 前記内側壁を上下方向に凹凸形状としたことを特徴とする請求項1乃至4のいずれかに記載の製氷皿。   The ice tray according to any one of claims 1 to 4, wherein the inner wall has an uneven shape in the vertical direction. 冷蔵庫本体内の冷蔵室に配設された給水容器の製氷用水が冷凍室に配設された自動製氷機の製氷皿へ供給され、冷却器で冷却した冷気が送風機によって前記製氷皿へ供給される自動製氷機付き冷蔵庫において、前記製氷皿は、長手方向に沿って左右各列に上面開口の複数の製氷小室が形成された合成樹脂成形体であって、前記各製氷小室の底壁は外側壁に比して変形し易い内側壁にて構成され、前記内側壁と外側壁との間には、前記製氷用水の温度によって液状になり所定の冷凍温度以下で凝固状態となって体積膨張する低凝固点物質が充填された充填室を備え、前記体積膨張に伴う前記内側壁の変形にて製氷完了時の氷を前記製氷皿から剥離する形態であり、前記低凝固点物質の凝固状態においてモータ装置によって前記製氷皿を反転して氷を下方の貯氷容器へ落下せしめる脱氷動作を行うことを特徴とする自動製氷機付き冷蔵庫。   Ice-making water in a water supply container provided in the refrigerator compartment in the refrigerator body is supplied to the ice tray of the automatic ice maker provided in the freezer compartment, and the cold air cooled by the cooler is supplied to the ice tray by the blower. In the refrigerator with an automatic ice making machine, the ice tray is a synthetic resin molded body in which a plurality of ice making chambers having upper surface openings are formed in left and right rows along a longitudinal direction, and a bottom wall of each ice making chamber is an outer wall. The inner wall is more easily deformed than the inner wall, and the space between the inner wall and the outer wall becomes liquid due to the temperature of the ice making water and becomes a solidified state below a predetermined freezing temperature. It has a filling chamber filled with a freezing point material, and is configured to peel off ice at the time of ice making completion from the ice making dish by deformation of the inner wall accompanying the volume expansion, and in a solidified state of the low freezing point material by a motor device Invert the ice tray Refrigerator with automatic ice maker and performing the drop allowed to de-ice operation to the ice container downward.
JP2003346054A 2003-10-03 2003-10-03 Ice tray and refrigerator with automatic ice making machine Pending JP2005114198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003346054A JP2005114198A (en) 2003-10-03 2003-10-03 Ice tray and refrigerator with automatic ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003346054A JP2005114198A (en) 2003-10-03 2003-10-03 Ice tray and refrigerator with automatic ice making machine

Publications (1)

Publication Number Publication Date
JP2005114198A true JP2005114198A (en) 2005-04-28

Family

ID=34539140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003346054A Pending JP2005114198A (en) 2003-10-03 2003-10-03 Ice tray and refrigerator with automatic ice making machine

Country Status (1)

Country Link
JP (1) JP2005114198A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915482A (en) * 2010-08-06 2010-12-15 合肥美的荣事达电冰箱有限公司 Ice machine and refrigerator having same
CN102116567A (en) * 2008-05-30 2011-07-06 日立空调·家用电器株式会社 Refrigerator
WO2011093567A1 (en) * 2010-01-29 2011-08-04 Lg Electronics Inc. Refrigerator
WO2020145230A1 (en) * 2019-01-07 2020-07-16 東芝ライフスタイル株式会社 Refrigerator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102116567A (en) * 2008-05-30 2011-07-06 日立空调·家用电器株式会社 Refrigerator
WO2011093567A1 (en) * 2010-01-29 2011-08-04 Lg Electronics Inc. Refrigerator
CN102575891A (en) * 2010-01-29 2012-07-11 Lg电子株式会社 Refrigerator
CN102575891B (en) * 2010-01-29 2015-07-01 Lg电子株式会社 Refrigerator
US9291386B2 (en) 2010-01-29 2016-03-22 Lg Electronics Inc. Refrigerator
CN101915482A (en) * 2010-08-06 2010-12-15 合肥美的荣事达电冰箱有限公司 Ice machine and refrigerator having same
WO2020145230A1 (en) * 2019-01-07 2020-07-16 東芝ライフスタイル株式会社 Refrigerator
JP2020109338A (en) * 2019-01-07 2020-07-16 東芝ライフスタイル株式会社 refrigerator

Similar Documents

Publication Publication Date Title
CN103363752B (en) Refrigerator
JP5858678B2 (en) refrigerator
JPH05203302A (en) Automated ice making apparatus
JPH051870A (en) Automatic ice making device
JP4443489B2 (en) Ice tray and refrigerator equipped with the ice tray
JPH04161774A (en) Automatic ice making device
JP2005114198A (en) Ice tray and refrigerator with automatic ice making machine
KR101483028B1 (en) Ice maker controlling method of refrigerator
JP2005106346A (en) Refrigerator
JP2006214615A (en) Refrigerator
JPH05172445A (en) Automatic ice making device of refrigerator
JP2006023042A (en) Refrigerator
JP2019095122A (en) Ice-maker and refrigerator
JP2006078107A (en) Freezer-refrigerator
CN1971174A (en) Expansion device for ice making device in refrigerator
JP3796148B2 (en) Water supply container for ice making part in refrigerator
KR20070034680A (en) Refrigerator
JP3831644B2 (en) Water supply container for ice making part in refrigerator
JP7159781B2 (en) refrigerator
JP2005134092A (en) Refrigerator
JP2005127698A (en) Automatic ice maker and refrigerator
JPH05312447A (en) Automatic ice making device of refrigerator
JPH05256545A (en) Automatic ice making device for refrigerator
JPH05157423A (en) Automatic ice making device
JP4017624B2 (en) refrigerator