JP2005113205A - Method for manufacturing molding with crystal orientation - Google Patents

Method for manufacturing molding with crystal orientation Download PDF

Info

Publication number
JP2005113205A
JP2005113205A JP2003349352A JP2003349352A JP2005113205A JP 2005113205 A JP2005113205 A JP 2005113205A JP 2003349352 A JP2003349352 A JP 2003349352A JP 2003349352 A JP2003349352 A JP 2003349352A JP 2005113205 A JP2005113205 A JP 2005113205A
Authority
JP
Japan
Prior art keywords
slurry
molded
molded body
particles
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003349352A
Other languages
Japanese (ja)
Inventor
Shigeo Asai
滋生 浅井
Kensuke Sasa
健介 佐々
Tomotaka Marukawa
知考 丸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003349352A priority Critical patent/JP2005113205A/en
Publication of JP2005113205A publication Critical patent/JP2005113205A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a molding with crystal orientation irrespective of the kind of substances when the molding is obtained by molding the slurry of raw material powder into a desired shape by using a slip casting method, or by firing the obtained molding. <P>SOLUTION: When the slurry of the raw material powder consisting of single crystal particles is kneaded under the mechanical shearing force while adding peptiser, secondary particles formed by agglomeration of a plurality of single crystal particles are decomposed. Further, by adding the peptiser at the same time, the peptiser is adhered to the surface of the primary particles to prevent re-coagulation of the primary particles. By performing the slip casting of the slurry while applying a magnetic field, the primary particles are rotated and arrayed so that the direction of the minimum crystalline magnetic anisotropic energy matches the direction of the applied magnetic field, and the primary particles are solidified by maintaining the arrayed state. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高い結晶配向性を有する成型体の作製方法に関する。   The present invention relates to a method for producing a molded body having high crystal orientation.

結晶粒子の粉末からなるスラリー(泥漿)をスリップキャスティング(鋳込み成形)法を用いて所望の形状に成型して作製する成型体、あるいはこの成型体をさらに焼成して作製する成型体は、用途に応じた形状を容易に実現できることから、電磁材料、熱電素子、生体材料、ろ過材、強化材、医療材料、あるいは光学材料として広く利用されている。
ところで結晶物質は、その結晶面に特有な、あるいは結晶軸方向に特有な、熱的、光学的、化学的、電磁気的、物理化学的、あるいは力学的特性を有しているので、上記の成型体に結晶配向性を付加できれば、その特性を最大限に引き出すことができる。
A molded body made by molding a slurry (sludge) made of crystal particle powder into a desired shape using a slip casting method, or a molded body produced by further firing this molded body Since the corresponding shape can be easily realized, it is widely used as an electromagnetic material, thermoelectric element, biomaterial, filter material, reinforcing material, medical material, or optical material.
By the way, the crystalline material has the thermal, optical, chemical, electromagnetic, physicochemical, or mechanical characteristics specific to the crystal plane or specific to the crystal axis direction. If crystal orientation can be added to the body, the characteristics can be maximized.

従来、粉体から成型する成型体に結晶配向性を持たせようとする試みは、例えば、後述の特許文献1に記載されている。この方法は、酸化物高温超伝導体のように、特定の結晶面で剥離性を有する粉体を溶液中で剥離粉砕して、薄片状微粒子からなるスラリーを作製し、このスラリーにせん断力を印加して、薄片状微粒子の形状異方性を利用して結晶配向させるものである。しかしながらこの方法は、特定の結晶面で剥離性を有する粉体でなければ適用できず、セラミクス、有機材料、あるいは金属といった剥離性を有さない一般の粉体には適用できない。また、後記特許文献2には、強磁性体粉末の2次粒子から成るスラリーを強磁場パルスで1次粒子に分解すると共に静磁場中で圧縮成型して結晶配向させる方法が記載されている。しかしながらこの方法は強磁性を有する粉体でなければ適用できず、セラミクス、有機材料、あるいは金属といった強磁性を有さない一般の粉体には適用できない。   Conventionally, an attempt to give crystal orientation to a molded body molded from powder is described in, for example, Patent Document 1 described later. In this method, like an oxide high-temperature superconductor, a powder having peelability on a specific crystal plane is peeled and ground in a solution to produce a slurry composed of flaky fine particles, and a shearing force is applied to this slurry. The crystal orientation is applied by utilizing the shape anisotropy of the flaky fine particles. However, this method can only be applied to powders having peelability on a specific crystal plane, and cannot be applied to general powders having no peelability such as ceramics, organic materials, or metals. Patent Document 2 described below describes a method in which a slurry composed of secondary particles of ferromagnetic powder is decomposed into primary particles by a strong magnetic field pulse and is crystallized by compression molding in a static magnetic field. However, this method can be applied only to powders having ferromagnetism, and cannot be applied to general powders having no ferromagnetism such as ceramics, organic materials, or metals.

本発明者らは、強磁性体や反強磁性体のように大きな自発磁化を有さない結晶粒子であっても、これらの結晶粒子は、反磁性特性あるいは常磁性特性の何れかを有し、これらの磁性特性に基づく結晶磁気異方性を有しているので、結晶粒子を回転できる状態に保持して大きな磁場を印加することにより、結晶磁気異方性エネルギーの最小方向と印加磁場方向とが一致するように結晶粒子が回転して整列し、この整列状態を保持して固化すれば、結晶配向性を付加することができることに着目した。この方法に必要な磁場強度は、極めて大きいことが必要であるが、消費電力の少ない超電導磁石が実用化されているので、製造コストを引き上げることはない。
この原理を用いた、物質の固液共存状態又は溶融状態から凝固する際に磁場を印加する結晶配向性材料の製造方法(特許文献3参照)、及び、アパタイト被膜成型時に磁場を印加する結晶配向性アパタイトの製造方法(特許文献4参照)は、本発明者らによって既に提案されている。
The present inventors have found that even if the crystal particles do not have large spontaneous magnetization, such as ferromagnets and antiferromagnets, these crystal particles have either diamagnetic characteristics or paramagnetic characteristics. Since it has crystal magnetic anisotropy based on these magnetic properties, the minimum direction of the crystal magnetic anisotropy energy and the applied magnetic field direction can be obtained by applying a large magnetic field while maintaining the crystal grains in a rotatable state. We focused on the fact that crystal orientation can be added if crystal grains are rotated and aligned so as to coincide with each other and solidify while maintaining this aligned state. The magnetic field strength required for this method needs to be extremely large, but since a superconducting magnet with low power consumption has been put into practical use, the manufacturing cost is not increased.
Using this principle, a method for producing a crystal orientation material that applies a magnetic field when solidifying from a solid-liquid coexistence state or a molten state of a substance (see Patent Document 3), and a crystal orientation in which a magnetic field is applied when an apatite film is formed A method for producing crystalline apatite (see Patent Document 4) has already been proposed by the present inventors.

特開平6−172019号公報JP-A-6-172019 特開平9−74036号公報JP-A-9-74036 特願2002−149808号Japanese Patent Application No. 2002-149808 特願2002−319001号Japanese Patent Application No. 2002-31001

このように、原料粉末のスラリーをスリップキャスティング法を用いて所望の形状に成型して作製する成型体、あるいはこの成型体をさらに焼成して作製する成型体に、結晶配向性を付加できる方法があれば極めて有用である。しかしながら従来、結晶面剥離性を有する粉末か、あるいは強磁性粉末に適用できる方法はあったが、これらの方法は、セラミクス、有機材料、あるいは一般の金属のような、結晶面剥離性や強磁性特性を有さない物質を原料粉末とする成型体には適用できないと言う課題があった。   Thus, there is a method in which crystal orientation can be added to a molded body produced by molding a slurry of raw material powder into a desired shape using a slip casting method, or a molded body produced by further firing this molded body. Very useful if present. Conventionally, however, there have been methods that can be applied to powders having crystal plane peelability or ferromagnetic powders, but these methods can be applied to crystal plane peelability and ferromagnetic materials such as ceramics, organic materials, or general metals. There was a problem that it could not be applied to a molded body using a material having no characteristics as a raw material powder.

上記課題に鑑み本発明は、原料粉末のスラリーをスリップキャスティング法を用いて所望の形状に成型する成型体の製造方法、またはこの成型体をさらに焼成する成型体の製造方法において、物質の種類によらずに、高い結晶配向性を有する成型体を作製する方法を提供することを目的とする。   In view of the above problems, the present invention provides a method for producing a molded body in which a slurry of raw material powder is molded into a desired shape using a slip casting method, or a method for producing a molded body in which this molded body is further baked. The object is to provide a method for producing a molded body having high crystal orientation.

上記課題を解決するために、本発明の結晶配向性を有する成型体の作製方法は、原料粉末のスラリーをスリップキャスティング法を用いて所望の形状に成型する成型体の製造方法またはこの成型体をさらに焼成する成型体の製造方法において、単結晶粒子から成る原料粉末のスラリーに、解膠剤を添加しつつ機械的せん断力を加えて混練し、この混練したスラリーを、磁場中のスリップキャスティング法により成型することを特徴とする。
この方法によれば、以下のようにして高結晶配向の成型体を作製することができる。
すなわち、スラリー中における単結晶粒子から成る原料粉末は、単結晶粒子(1次粒子と呼ぶ)間のファン・デル・ワールス力や双極子相互作用力等の引力によって互いに凝集し、複数の単結晶粒子が寄り集まった2次粒子を形成する。このスラリーに機械的せん断力を加えれば、2次粒子が1次粒子に分解し、同時に解膠剤(界面活性剤)を添加することによって、1次粒子の表面に解膠剤が付着し、1次粒子の再凝集が防止され、1次粒子のみから成るスラリーが形成される。このスラリーを磁場を印加しながらスリップキャスティングすれば、単結晶粒子である1次粒子は、結晶磁気異方性エネルギーの最小方向が印加磁場方向に一致するように回転して整列し、この整列状態を保持して固化するので高い結晶配向性を有した成型体を作製することができる。また、高い結晶配向性を有した成型体が作製できるので、この成型体を焼成すればさらに高い結晶配向性をもった成型体が得られる。
In order to solve the above problems, a method for producing a molded body having crystal orientation according to the present invention is a method for producing a molded body in which a slurry of a raw material powder is molded into a desired shape by using a slip casting method. Further, in a method of manufacturing a molded body to be fired, a slurry of raw material powder composed of single crystal particles is kneaded by adding a mechanical shearing force while adding a peptizer, and the kneaded slurry is subjected to a slip casting method in a magnetic field. It is characterized by molding.
According to this method, a molded body having a high crystal orientation can be produced as follows.
That is, the raw material powder composed of single crystal particles in the slurry is agglomerated with each other by attractive forces such as van der Waals force and dipole interaction force between single crystal particles (called primary particles). Secondary particles are formed in which the particles gather together. When mechanical shear force is applied to the slurry, the secondary particles are decomposed into primary particles, and at the same time, the peptizer adheres to the surface of the primary particles by adding the peptizer (surfactant). The reaggregation of the primary particles is prevented, and a slurry composed only of the primary particles is formed. If this slurry is slip-cast while applying a magnetic field, the primary particles as single crystal particles are rotated and aligned so that the minimum direction of magnetocrystalline anisotropy energy coincides with the applied magnetic field direction. Thus, a molded body having high crystal orientation can be produced. Further, since a molded body having high crystal orientation can be produced, if this molded body is fired, a molded body having higher crystal orientation can be obtained.

本発明の他の態様によれば、原料粉末のスラリーをスリップキャスティング法を用いて所望の形状に成型する成型体の製造方法またはこの成型体をさらに焼成する成型体の製造方法において、多結晶粒子から成る原料粉末のスラリーに、解膠剤を添加しつつ機械的せん断力を加えて混練し、この混練したスラリーを磁場中のスリップキャスティング法により成型し、この成型体を焼結してなることを特徴とする。
この方法によれば、以下のようにして高結晶配向の成型体を作製することができる。
すなわち、スラリー中における多結晶粒子から成る原料粉末は、多結晶粒子(1次粒子)間のファン・デル・ワールス力や双極子相互作用力等の引力によって互いに凝集し、複数の1次粒子が寄り集まった2次粒子を形成する。このスラリーに機械的せん断力を加えれば、2次粒子が1次粒子に分解すると共に、1次粒子である多結晶粒子が破砕されて単結晶粒子に分解する。この際、同時に解膠剤を添加することによって単結晶粒子の表面に解膠剤が付着し、単結晶粒子の再凝集が防止され、単結晶粒子のみから成るスラリーが形成される。このスラリーを磁場を印加しながらスリップキャスティングすれば、単結晶粒子は、結晶磁気異方性エネルギーの最小方向が印加磁場方向に一致するように回転して整列し、この整列状態を保持して固化するので、高い結晶配向性を有した成型体を作製することができる。また、高い結晶配向性を有した成型体が作製できるので、この成型体を焼成すればさらに高い結晶配向性をもった成型体が得られる。
According to another aspect of the present invention, there is provided a method for producing a molded body in which a slurry of a raw material powder is molded into a desired shape using a slip casting method, or a method for producing a molded body in which this molded body is further fired. The raw material powder slurry is made by adding mechanical shearing force while adding a deflocculant, kneading, molding the kneaded slurry by a slip casting method in a magnetic field, and sintering the molded body It is characterized by.
According to this method, a molded body having a high crystal orientation can be produced as follows.
That is, the raw material powder composed of polycrystalline particles in the slurry aggregates with each other by attractive forces such as van der Waals force and dipole interaction force between the polycrystalline particles (primary particles), and a plurality of primary particles are formed. It forms secondary particles that gather together. When a mechanical shearing force is applied to the slurry, secondary particles are decomposed into primary particles, and polycrystalline particles as primary particles are crushed and decomposed into single crystal particles. At this time, by simultaneously adding the peptizer, the peptizer adheres to the surface of the single crystal particles, the reaggregation of the single crystal particles is prevented, and a slurry consisting only of the single crystal particles is formed. If this slurry is slip-cast while applying a magnetic field, the single crystal particles are rotated and aligned so that the minimum direction of magnetocrystalline anisotropy energy coincides with the applied magnetic field direction, and this alignment is maintained and solidified. Therefore, a molded body having high crystal orientation can be produced. Further, since a molded body having high crystal orientation can be produced, if this molded body is fired, a molded body having higher crystal orientation can be obtained.

また、本発明の他の態様によれば、原料粉末のスラリーをスリップキャスティング法を用いて所望の形状に成型する成型体の製造方法またはこの成型体をさらに焼成する成型体の製造方法において、解膠剤を添加した単結晶粒子から成る原料粉末のスラリーに、機械的せん断力を加えて混練し、この混練したスラリーを磁場中のスリップキャスティング法により成型し、この成型体を焼結してなることを特徴とする。
この方法によれば、以下のようにして高結晶配向の成型体を作製することができる。
すなわち、スラリー中における単結晶粒子から成る原料粉末は、単結晶粒子(1次粒子)間のファン・デル・ワールス力や双極子相互作用力等の引力によって互いに凝集し、複数の1次粒子が寄り集まった2次粒子を形成する。このスラリーに機械的せん断力を加えれば、2次粒子が1次粒子に分解する。この際、解膠剤がスラリー中に添加されているので単結晶粒子の表面に解膠剤が付着し、単結晶粒子の再凝集が防止され、単結晶粒子のみから成るスラリーが形成される。このスラリーを磁場を印加しながらスリップキャスティングすれば、単結晶粒子は結晶磁気異方性エネルギーの最小方向が印加磁場方向に一致するように回転して整列し、この整列状態を保持して固化するので高い結晶配向性を有した成型体を作製することができる。また、高い結晶配向性を有する成型体を作製し得るので、この成型体を焼成すればさらに高い結晶配向性をもった成型体が得られる。
Further, according to another aspect of the present invention, in a method for producing a molded body in which a slurry of a raw material powder is molded into a desired shape using a slip casting method or a method for producing a molded body in which this molded body is further fired, A raw material powder slurry consisting of single crystal particles to which glue has been added is kneaded by applying mechanical shearing force, the kneaded slurry is molded by a slip casting method in a magnetic field, and the molded body is sintered. It is characterized by that.
According to this method, a molded body having a high crystal orientation can be produced as follows.
That is, the raw material powder composed of single crystal particles in the slurry is agglomerated with each other by attractive forces such as van der Waals force and dipole interaction force between the single crystal particles (primary particles). It forms secondary particles that gather together. When a mechanical shear force is applied to the slurry, the secondary particles are decomposed into primary particles. At this time, since the peptizer is added to the slurry, the peptizer adheres to the surface of the single crystal particles, the reaggregation of the single crystal particles is prevented, and a slurry consisting only of the single crystal particles is formed. If this slurry is slip-cast while applying a magnetic field, the single crystal particles are rotated and aligned so that the minimum direction of magnetocrystalline anisotropy energy coincides with the applied magnetic field direction, and solidifies while maintaining this aligned state. Therefore, a molded body having high crystal orientation can be produced. In addition, since a molded body having high crystal orientation can be produced, a molded body having higher crystal orientation can be obtained by firing the molded body.

また、本発明の別の態様によれば、原料粉末のスラリーをスリップキャスティング法を用いて所望の形状に成型する成型体の製造方法またはこの成型体をさらに焼成する成型体の製造方法において、解膠剤を添加した多結晶粒子から成る原料粉末のスラリーに、機械的せん断力を加えて混練し、この混練したスラリーを磁場中のスリップキャスティング法により成型し、この成型体を焼結してなることを特徴とする。
この方法によれば、以下のようにして高結晶配向の成型体を作製することができる。
すなわち、スラリー中における多結晶粒子から成る原料粉末は、多結晶粒子(1次粒子)間のファン・デル・ワールス力や双極子相互作用力等の引力によって互いに凝集し、複数の1次粒子が寄り集まった2次粒子を形成する。このスラリーに機械的せん断力を加えれば、2次粒子が1次粒子に分解すると共に、1次粒子である多結晶粒子が破砕されて単結晶粒子に分解する。この際、解膠剤がスラリー中に添加されているので単結晶粒子の表面に解膠剤が付着し、単結晶粒子の再凝集が防止され、単結晶粒子のみから成るスラリーが形成される。このスラリーを磁場を印加しながらスリップキャスティングすれば、単結晶粒子は、結晶磁気異方性エネルギーの最小方向が印加磁場方向に一致するように回転して整列し、この整列状態を保持して固化するので、高い結晶配向性を有する成型体を作製することができる。また、高い結晶配向性を有する成型体が作製できるので、この成型体を焼成すればさらに高い結晶配向性をもった成型体が得られる。
Further, according to another aspect of the present invention, in a method for manufacturing a molded body in which a slurry of raw material powder is molded into a desired shape using a slip casting method, or a method for manufacturing a molded body in which this molded body is further fired, A raw material powder slurry composed of polycrystalline particles to which glue is added is kneaded by applying mechanical shearing force, the kneaded slurry is molded by a slip casting method in a magnetic field, and the molded body is sintered. It is characterized by that.
According to this method, a molded body having a high crystal orientation can be produced as follows.
That is, the raw material powder composed of polycrystalline particles in the slurry aggregates with each other by attractive forces such as van der Waals force and dipole interaction force between the polycrystalline particles (primary particles), and a plurality of primary particles are formed. It forms secondary particles that gather together. When a mechanical shearing force is applied to the slurry, secondary particles are decomposed into primary particles, and polycrystalline particles as primary particles are crushed and decomposed into single crystal particles. At this time, since the peptizer is added to the slurry, the peptizer adheres to the surface of the single crystal particles, the reaggregation of the single crystal particles is prevented, and a slurry consisting only of the single crystal particles is formed. If this slurry is slip-cast while applying a magnetic field, the single crystal particles are rotated and aligned so that the minimum direction of magnetocrystalline anisotropy energy coincides with the applied magnetic field direction, and this alignment is maintained and solidified. Thus, a molded body having high crystal orientation can be produced. In addition, since a molded body having high crystal orientation can be produced, a molded body having higher crystal orientation can be obtained by firing the molded body.

本発明によれば、原料粉末のスラリーをスリップキャスティング法を用いて所望の形状に成型し、この成型体を焼成して成る成型体において、物質の種類を選ばずに、結晶配向性を付加することができる。すなわち、強磁性特性を有さない一般のセラミクス材料、有機材料、あるいは金属材料の成型体であっても、結晶配向性を付加することができる。特に単結晶粒子から成る原料粉末の場合には、ほぼ100%配向した成型体を作製することができる。   According to the present invention, a raw material powder slurry is molded into a desired shape by using a slip casting method, and a crystal orientation is added to a molded body obtained by firing the molded body, regardless of the type of substance. be able to. That is, even a general ceramic material, organic material, or metal material molded body that does not have ferromagnetic properties can add crystal orientation. In particular, in the case of a raw material powder composed of single crystal particles, a molded body oriented almost 100% can be produced.

以下、本発明の実施の形態を実施例に基づき詳細に説明する。
初めに、水酸アパタイト(化学式:Ca10(PO4 6 (OH)2 )を原料粉末とした実施例について説明する。水酸アパタイトは歯のエナメル質の成分であり、六方晶型に属する結晶構造を有し、a,b面は生体親和性が高く、c面は化学反応性が低いという結晶面に依存した特性を有している。このため、水酸アパタイトは人工骨や人工歯として注目されているが、人工骨や人工歯の成型体は上記の結晶面による特性の違いを考慮した結晶配向性を付加することが好ましい。水酸アパタイトは反磁性物質であり、また、結晶面磁気異方性エネルギーが最小の方向はaまたはb軸方向であり、aまたはb軸が印加磁場方向に整列する。
Hereinafter, embodiments of the present invention will be described in detail based on examples.
First, an example using hydroxyapatite (chemical formula: Ca 10 (PO 4 ) 6 (OH) 2 ) as a raw material powder will be described. Hydroxyapatite is a component of tooth enamel, has a crystal structure belonging to the hexagonal crystal type, a and b surfaces have high biocompatibility, and c surface has low chemical reactivity. have. For this reason, although hydroxyapatite is attracting attention as artificial bones and artificial teeth, it is preferable to add crystal orientation in consideration of the difference in characteristics depending on the crystal plane in the molded body of artificial bones and artificial teeth. Hydroxyapatite is a diamagnetic substance, and the direction with the smallest crystal plane magnetic anisotropy energy is the a or b axis direction, and the a or b axis is aligned with the applied magnetic field direction.

次に、水酸アパタイトを用いた実施例の試料作製方法を説明する。
本発明の方法によるスラリーは、蒸留水60gに対し、体積比で40%の水酸アパタイト粉末を混合してスラリーを作製し、このスラリーをボールミル粉砕器により機械的せん断力を加えて1時間、混練すると共に、この混練工程中に解膠剤(ポリアクリル酸アンモニウム塩:{〔−CH2 CH(COONH4 −〕n },製品名:セルナD 中京油脂社製)を全量で1重量%になるように、適宜添加して作製した。
Next, a sample preparation method of an example using hydroxyapatite will be described.
The slurry according to the method of the present invention was prepared by mixing 40% of hydroxyapatite powder in a volume ratio with 60 g of distilled water to prepare a slurry, and applying mechanical shearing force to the slurry with a ball mill pulverizer for 1 hour. while kneading, a deflocculant (ammonium polyacrylate in the kneading step: {[- CH 2 CH (COONH 4 -] n}, product name: Serna D Chukyo Yushi Co., Ltd.) 1 wt% in the total amount Thus, it was prepared by appropriately adding.

また、本発明の方法における、解膠剤を添加しながらスラリーにせん断力を加えて混練する工程の効果を確認するために、せん断力を加えた混練工程を含まない比較用スラリーとして、蒸留水60gに対し、体積比で40%の水酸アパタイト粉末と、1重量%の上記解膠剤を混合し、マグネティックスターラーで2〜3時間撹拌混合した後、150Wの洗浄用超音波発振器を用いて2〜3時間撹拌混合したスラリーを作製した。   Further, in order to confirm the effect of the kneading step by adding shearing force to the slurry while adding the peptizer in the method of the present invention, distilled water is used as a comparative slurry not including the kneading step to which shearing force is applied. 60 g of hydroxyapatite powder and 1% by weight of the above-described peptizer are mixed with respect to 60 g, and after stirring and mixing with a magnetic stirrer for 2 to 3 hours, using a 150 W cleaning ultrasonic oscillator. A slurry was prepared by stirring and mixing for 2 to 3 hours.

次に、本発明の方法によるスラリーと、せん断力を加えた混練工程を含まない比較用スラリーを、それぞれの石膏製の多孔質鋳型に流し入れ、磁場を印加しないでスリップキャスティングした成型体と、超伝導マグネットによる12T(テスラ)の強磁場中でスリップキャスティングした成型体を作製し、その後1150℃で2時間、無磁場中で焼結して水酸アパタイト成型体を作製した。   Next, a slurry obtained by the method of the present invention and a comparative slurry that does not include a kneading step to which a shearing force is applied are poured into a porous mold made of gypsum, and a slip cast without applying a magnetic field, A molded article was produced by slip casting in a strong magnetic field of 12T (Tesla) using a conductive magnet, and then sintered at 1150 ° C. for 2 hours in a magneticless field to produce a hydroxyapatite molded article.

図1は、比較用水酸アパタイトのスラリー中における水酸アパタイト粒子の凝集状態を示すSEM写真であり、(a)は低倍率、(b)は高倍率の写真である。これらの図からわかるように、水酸アパタイト単結晶粒子が多数凝集して2次粒子を形成している。   FIG. 1 is an SEM photograph showing the aggregation state of the hydroxyapatite particles in the comparative hydroxyapatite slurry, where (a) is a low magnification photograph and (b) is a high magnification photograph. As can be seen from these figures, a large number of hydroxyapatite single crystal particles aggregate to form secondary particles.

図2は、本発明の方法による水酸アパタイトのスラリーと、比較用水酸アパタイトのスラリーの水酸アパタイト粒子の粒径分布を示す図である。上側の図は比較用スラリーの粒径分布を示し、下側の図は本発明の方法によるスラリーの粒径分布を示す。図において、横軸は粒径を示し、棒グラフは左側の縦軸目盛で表した%頻度を示し、曲線は右側の縦軸目盛で表した累積頻度を示す。
図からわかるように、本発明の方法によるスラリーの粒径分布は、比較用スラリーの粒径分布に比べて粒径が小さい方向にシフトしていることから、ボールミル粉砕器による混連、即ち解膠剤を添加しながらスラリーにせん断力を加えて混練する工程によって、2次粒子が単結晶粒子である1次粒子に粉砕され、かつ粉砕されると同時に1次粒子の表面に解膠剤が付着して、1次粒子の再凝集が防止されていることがわかる。なお、本発明の方法によるスラリーの粒径分布に2つのピークが存在するが、この分布は、用いた水酸アパタイト粉末の単結晶粒子の粒径分布を示すものである。
FIG. 2 is a diagram showing the particle size distribution of hydroxide apatite particles of a hydroxide apatite slurry and a comparative hydroxide apatite slurry according to the method of the present invention. The upper diagram shows the particle size distribution of the comparative slurry, and the lower diagram shows the particle size distribution of the slurry according to the method of the present invention. In the figure, the horizontal axis shows the particle size, the bar graph shows the% frequency expressed on the left vertical scale, and the curve shows the cumulative frequency expressed on the right vertical scale.
As can be seen from the figure, the particle size distribution of the slurry by the method of the present invention is shifted in a direction in which the particle size is smaller than the particle size distribution of the comparative slurry. The secondary particles are pulverized into primary particles which are single crystal particles by the process of adding shearing force to the slurry while adding the glue, and at the same time, the peptizer is applied to the surface of the primary particles. It can be seen that re-aggregation of the primary particles is prevented. There are two peaks in the particle size distribution of the slurry according to the method of the present invention, and this distribution shows the particle size distribution of the single crystal particles of the hydroxyapatite powder used.

次に、本発明の方法による水酸アパタイト成型体の結晶配向特性について説明する。
焼成後の水酸アパタイト成型体のX線回折測定を行った。なお、成型体は印加磁場方向に垂直な面を有する板状の形状を有しており、この面の面法線を含む入射面内でX線入射角θを走査し、この入射面内の2θ方向のX線回折強度を測定した。
図3は、本発明の方法による水酸アパタイト成型体と、比較用スラリーによる水酸アパタイト成型体のX線回折を示す。(a)は比較用スラリーを用いた成型体のX線回折を示し、(b)は本発明の方法によるスラリーを用いた成型体のX線回折を示す図である。また、図3(a)又は(b)における上側の図は、磁場を印加しないで成型した成型体のX線回折であり、下側の図は磁場(強度B=12T)を印加して成型した成型体のX線回折である。また、図中に示した四角形のマークは、c面に垂直な面、即ちa面又はb面による回折ピークを示し、六角形のマークはc面による回折ピークを示している。
Next, the crystal orientation characteristics of the hydroxyapatite molded body by the method of the present invention will be described.
X-ray diffraction measurement of the hydroxyapatite molded body after firing was performed. The molded body has a plate-like shape having a surface perpendicular to the direction of the applied magnetic field, and scans the X-ray incident angle θ within the incident surface including the surface normal of this surface, The X-ray diffraction intensity in the 2θ direction was measured.
FIG. 3 shows the X-ray diffraction of the hydroxyapatite molded body obtained by the method of the present invention and the hydroxyapatite molded body obtained by the comparative slurry. (A) shows the X-ray diffraction of the molding using the comparative slurry, and (b) is a diagram showing the X-ray diffraction of the molding using the slurry according to the method of the present invention. 3 (a) or 3 (b) is an X-ray diffraction pattern of a molded product molded without applying a magnetic field, and the lower diagram is molded by applying a magnetic field (intensity B = 12T). It is an X-ray diffraction of the molded body. In addition, the square mark shown in the figure indicates a diffraction peak due to a plane perpendicular to the c-plane, that is, the a-plane or b-plane, and the hexagonal mark indicates a diffraction peak due to the c-plane.

図3(a)から、比較用スラリーを用いた場合には、磁場を印加しないで成型した成型体に比べ、磁場を印加して成型した成型体は、a面又はb面によるX線回折ピーク強度が約35%大きく、c面による回折ピークは約35%小さいことがわかる。この結果から、解膠剤を添加しながらスラリーにせん断力を加えて混練する工程がない場合には、スリップキャスティングの際に磁場を印加することによって成型体が結晶配向するが、充分ではないことがわかる。
図3(b)から、解膠剤を添加しながらスラリーにせん断力を加えて混練する工程を含んで作製したスラリーを用いた場合には、磁場を印加しないで成型した成型体に存在していたc面によるX線回折ピークが、磁場を印加して成型した成型体においては全くなくなり、a面又はb面によるX線回折ピークのみとなり、ほぼ100%の結晶配向が実現されていることがわかる。
この結果から、解膠剤を添加しながらスラリーにせん断力を加えて混練する工程によって、凝集体が粉砕されて単結晶粒子となり、解膠剤によってこの単結晶粒子の再凝集が防止されていることがわかる。従って、本発明の方法に依れば、ほぼ100%配向した成型体を作製することができる。
From FIG. 3A, when the comparative slurry is used, the molded body formed by applying a magnetic field has an X-ray diffraction peak due to the a-plane or b-plane as compared to a molded body molded without applying a magnetic field. It can be seen that the intensity is about 35% larger and the diffraction peak due to the c-plane is about 35% smaller. From this result, when there is no step of adding shearing force to the slurry while adding the peptizer and kneading, the molded body is crystallized by applying a magnetic field during slip casting, but it is not sufficient I understand.
From FIG. 3 (b), when using a slurry prepared by adding shearing force to the slurry while adding the peptizer and kneading, it exists in the molded body molded without applying a magnetic field. The X-ray diffraction peak due to the c-plane is completely eliminated in the molded body formed by applying a magnetic field, and only the X-ray diffraction peak due to the a-plane or b-plane is obtained, and almost 100% crystal orientation is realized. Understand.
From this result, by adding a shearing force to the slurry while adding the peptizer, the aggregate is pulverized into single crystal particles, and the reaggregation of the single crystal particles is prevented by the peptizer. I understand that. Therefore, according to the method of the present invention, it is possible to produce a molded body that is almost 100% oriented.

また上記実施例では、解膠剤を添加しながらスラリーにせん断力を加えて混練したが、混練工程に先立って所定量の解膠剤を添加し、混練中は解膠剤を添加しない方法も試みたが、上記実施例と同様に、ほぼ100%の結晶配向が実現できた。   In the above examples, the slurry was kneaded by adding shearing force while adding the peptizer, but a method of adding a predetermined amount of peptizer prior to the kneading step and not adding the peptizer during kneading was also possible. Although an attempt was made, almost 100% of crystal orientation could be realized as in the above example.

次に、多結晶粒子粉末を用いた実施例について説明する。
多結晶粒子として亜鉛粉末を用いた。亜鉛は六方晶型に属する結晶構造を有し、反磁性物質であり、結晶磁気異方性エネルギーが最小になる方向はc軸方向であり、c軸が印加磁場方向に整列する。
ここで、試料の作製方法を示すと、エタノール80gに20体積%の亜鉛粉末(多結晶粒子粉末)を混合したスラリーを作製し、解膠剤としてヘキサメタリン酸ナトリウムを適宜加えながら、乳鉢またはボールミルでスラリーにせん断力を加えて混練した。
また、本発明の方法における、解膠剤を添加しながらスラリーにせん断力を加えて混練する工程の効果を確認するために、せん断力を加えた混練工程を含まない比較用スラリーとして、エタノール80gに20体積%の亜鉛粉末(多結晶粒子粉末)を混合し、1重量%の上記解膠剤を混合し、マグネティックスターラーで2〜3時間撹拌混合した後、150Wの洗浄用超音波発振器を用いて2〜3時間撹拌混合したスラリーを作製した。
次に、本発明の方法によるスラリーと、混練工程を含まない比較用スラリーを、それぞれの石膏製の多孔質鋳型に流し入れ、磁場を印加しないでスリップキャスティングした成型体と、超伝導マグネットによる12Tの強磁場中でスリップキャスティングした成型体とをそれぞれ作製し、その後、1150℃、2時間、無磁場中で焼結して亜鉛成型体を作製した。
Next, examples using polycrystalline particle powder will be described.
Zinc powder was used as the polycrystalline particles. Zinc has a crystal structure belonging to the hexagonal crystal type and is a diamagnetic substance. The direction in which the magnetocrystalline anisotropy energy is minimized is the c-axis direction, and the c-axis is aligned with the applied magnetic field direction.
Here, a sample preparation method is described. A slurry in which 20% by volume of zinc powder (polycrystalline particle powder) is mixed with 80 g of ethanol is prepared, and sodium hexametaphosphate is appropriately added as a peptizer while using a mortar or ball mill. The slurry was kneaded by applying a shearing force.
Further, in order to confirm the effect of the kneading step by adding shearing force to the slurry while adding the peptizer in the method of the present invention, 80 g of ethanol was used as a comparative slurry not including the kneading step to which shearing force was applied. 20% by volume of zinc powder (polycrystalline particle powder), 1% by weight of the above-described peptizer, and stirring and mixing with a magnetic stirrer for 2 to 3 hours, and then using a 150W ultrasonic cleaning oscillator The slurry was mixed by stirring for 2 to 3 hours.
Next, the slurry by the method of the present invention and the comparative slurry not including the kneading step are poured into each gypsum porous mold, slip cast without applying a magnetic field, and 12T of superconducting magnet. Each of the molded bodies was slip cast in a strong magnetic field, and then sintered in a non-magnetic field at 1150 ° C. for 2 hours to prepare a zinc molded body.

図4は、本発明の方法による亜鉛スラリーと、比較用亜鉛スラリーの亜鉛粒子の粒径分布を示す図である。上側の図は比較用スラリーの粒径分布を示し、下側の図は本発明の方法によるスラリーの粒径分布を示す。図において、横軸は粒径を示し、棒グラフは左側の縦軸目盛で表した%頻度を示し、曲線は右側の縦軸目盛で表した累積頻度を示す。
図からわかるように、本発明の方法によるスラリーの粒径分布は、比較用スラリーの粒径分布に比べて粒径分布が小さい方向にシフトしていることから、乳鉢またはボールミル粉砕器による混連、即ち解膠剤を添加しながらスラリーにせん断力を加えて混練する工程によって、亜鉛粉末の多結晶粒子が粉砕されて単結晶粒子に分解すると共に、単結晶粒子の表面に解膠剤が付着して、単結晶粒子の再凝集が防止されていることがわかる。なお、多結晶粒子は、複数の単結晶粒子が結晶粒界を介して互いに結合したものであり、単結晶領域に比べて結晶粒界の機械的強度が弱いために、せん断力によって結晶粒界が破砕し、単結晶粒子に分解すると考えられる。
FIG. 4 is a diagram showing the particle size distribution of the zinc slurry of the zinc slurry according to the method of the present invention and the comparative zinc slurry. The upper diagram shows the particle size distribution of the comparative slurry, and the lower diagram shows the particle size distribution of the slurry according to the method of the present invention. In the figure, the horizontal axis shows the particle size, the bar graph shows the% frequency expressed on the left vertical scale, and the curve shows the cumulative frequency expressed on the right vertical scale.
As can be seen from the figure, the particle size distribution of the slurry according to the method of the present invention is shifted in a direction in which the particle size distribution is smaller than the particle size distribution of the comparative slurry. That is, by adding shearing force to the slurry while adding the peptizer, the zinc powder polycrystalline particles are crushed and decomposed into single crystal particles, and the peptizer adheres to the surface of the single crystal particles. Thus, it can be seen that re-aggregation of the single crystal particles is prevented. Polycrystalline particles are obtained by bonding a plurality of single crystal particles to each other through a crystal grain boundary, and the mechanical strength of the crystal grain boundary is weaker than that of the single crystal region. Are considered to break up into single crystal particles.

次に、本発明の方法による亜鉛成型体の結晶配向特性について説明する。
焼成後の亜鉛成型体のX線回折測定を行った。なお、成型体は印加磁場方向に垂直な面を有する板状の形状を有しており、この面の面法線を含む入射面内でX線入射角θを走査し、この入射面内の2θ方向のX線回折強度を測定した。
図5は、本発明の方法による亜鉛成型体と、比較用スラリーによる亜鉛成型体のX線回折を示す図である。(a)は比較用スラリーを用いた成型体のX線回折を示し、(b)は本発明の方法によるスラリーを用いた成型体のX線回折を示す。また、(a)又は(b)における上側の図は、磁場を印加しないで成型した成型体のX線回折であり、下側の図は磁場(強度B=12T)を印加して成型した成型体のX線回折である。また、図中に示した六角形のマークはc面による回折ピークを示している。
Next, the crystal orientation characteristic of the zinc molding by the method of this invention is demonstrated.
X-ray diffraction measurement was performed on the zinc molded body after firing. The molded body has a plate-like shape having a surface perpendicular to the direction of the applied magnetic field, and scans the X-ray incident angle θ within the incident surface including the surface normal of this surface, The X-ray diffraction intensity in the 2θ direction was measured.
FIG. 5 is a diagram showing X-ray diffraction of a zinc molded body obtained by the method of the present invention and a zinc molded body formed by a comparative slurry. (A) shows the X-ray diffraction of the molding using the comparative slurry, and (b) shows the X-ray diffraction of the molding using the slurry according to the method of the present invention. The upper diagram in (a) or (b) is the X-ray diffraction of a molded product molded without applying a magnetic field, and the lower diagram is molded by applying a magnetic field (strength B = 12T). X-ray diffraction of the body. Moreover, the hexagonal mark shown in the figure has shown the diffraction peak by c surface.

図5(a)から、磁場を印加して成型した成型体も、磁場を印加しないで成型した成型体も、同等のX線回折パターンを示し、c面によるX線回折ピーク強度もほとんど同じであることがわかる。
この結果から、多結晶粒子の場合には、解膠剤を添加しながらスラリーにせん断力を加えて混練する工程がないと、スリップキャスティングの際に磁場を印加しても、結晶配向した成型体を作製できないことがわかる。なお、多結晶粒子は、複数の単結晶粒子が、その結晶方位を揃えることなく互いに無作為に結合したものであるため、結晶磁気異方性は互いに打ち消し合い、印加磁場方向に整列しなくなると考えられる。
図5(b)から、磁場を印加して成型した成型体においては、磁場を印加しないで成型した成型体に比べて、c面によるX線回折ピーク強度が大きくなっていることがわかる。この結果から、解膠剤を添加しながらスラリーにせん断力を加えて混練する工程によって、多結晶微粒子が粉砕されて単結晶粒子となり、解膠剤によってこの単結晶粒子の再凝集が防止されていることがわかる。従って、本発明の方法によれば、多結晶微粒子を原料粉末とする成型体においても、結晶配向性を付加することができることがわかる。
From FIG. 5 (a), both the molded body molded by applying a magnetic field and the molded body molded without applying a magnetic field show equivalent X-ray diffraction patterns, and the X-ray diffraction peak intensity by the c-plane is almost the same. I know that there is.
From this result, in the case of polycrystalline particles, there is no step of applying a shearing force to the slurry while adding the peptizer and kneading, and even if a magnetic field is applied during slip casting, the crystal-oriented molded body It can be seen that cannot be produced. In addition, since the polycrystalline particles are a plurality of single crystal particles that are randomly bonded to each other without aligning the crystal orientation, the magnetocrystalline anisotropy cancels each other and does not align with the applied magnetic field direction. Conceivable.
From FIG. 5 (b), it can be seen that the X-ray diffraction peak intensity due to the c-plane is greater in the molded body molded by applying the magnetic field than in the molded body molded without applying the magnetic field. From this result, the polycrystalline fine particles are pulverized into single crystal particles by adding a shearing force to the slurry while adding the peptizer, and the single crystal particles are prevented from reaggregating by the peptizer. I understand that. Therefore, according to the method of the present invention, it is understood that crystal orientation can be added even to a molded body using polycrystalline fine particles as a raw material powder.

また上記実施例では、解膠剤を添加しながらスラリーにせん断力を加えて混練したが、混練工程に先立って所定量の解膠剤を添加し、混練中は解膠剤を添加しない方法も試みたが、上記実施例と同様の結晶配向性を付加することができた。   In the above examples, the slurry was kneaded by adding shearing force while adding the peptizer, but a method of adding a predetermined amount of peptizer prior to the kneading step and not adding the peptizer during kneading was also possible. Although it tried, the same crystal orientation as the said Example was able to be added.

比較用水酸アパタイトのスラリー中における水酸アパタイト粒子の凝集状態を示すSEM写真であり、(a)は低倍率、(b)は高倍率の写真である。It is a SEM photograph which shows the aggregation state of the hydroxide apatite particle | grains in the slurry of the comparative hydroxyapatite, (a) is a low magnification, (b) is a high magnification photograph. 本発明の方法による水酸アパタイトのスラリーと、比較用水酸アパタイトのスラリーの水酸アパタイト粒子の粒径分布を示す図である。上側の図は比較用スラリーの粒径分布を示し、下側の図は本発明の方法によるスラリーの粒径分布を示す。It is a figure which shows the particle size distribution of the hydroxide apatite particle | grains of the slurry of the hydroxyapatite by the method of this invention, and the hydroxide apatite for a comparison. The upper diagram shows the particle size distribution of the comparative slurry, and the lower diagram shows the particle size distribution of the slurry according to the method of the present invention. 本発明の方法による水酸アパタイト成型体と、比較用スラリーによる水酸アパタイト成型体のX線回折を示す図である。(a)は比較用スラリーを用いた成型体のX線回折を示し、(b)は本発明の方法によるスラリーを用いた成型体のX線回折を示す。また、(a)又は(b)における上側の図は、磁場を印加しないで成型した成型体のX線回折で、下側の図は磁場(強度B=12T)を印加して成型した成型体のX線回折である。It is a figure which shows the X-ray diffraction of the hydroxyapatite molded object by the method of this invention, and the hydroxyapatite molded object by the slurry for a comparison. (A) shows the X-ray diffraction of the molding using the comparative slurry, and (b) shows the X-ray diffraction of the molding using the slurry according to the method of the present invention. The upper figure in (a) or (b) is X-ray diffraction of a molded article molded without applying a magnetic field, and the lower figure is a molded article molded by applying a magnetic field (strength B = 12T). X-ray diffraction. 本発明の方法による亜鉛スラリーと、比較用亜鉛スラリーの亜鉛粒子の粒径分布を示す図である。上側の図は比較用スラリーの粒径分布を、下側の図は本発明の方法によるスラリーの粒径分布を示す。It is a figure which shows the particle size distribution of the zinc slurry by the method of this invention, and the zinc particle of the zinc slurry for a comparison. The upper diagram shows the particle size distribution of the comparative slurry, and the lower diagram shows the particle size distribution of the slurry according to the method of the present invention. 本発明の方法による亜鉛成型体と、比較用スラリーによる亜鉛成型体のX線回折を示す図である。(a)は比較用スラリーを用いた成型体のX線回折を示し、(b)は本発明の方法によるスラリーを用いた成型体のX線回折を示す。また、(a)又は(b)における上側の図は、磁場を印加しないで成型した成型体のX線回折で、下側の図は磁場(強度B=12T)を印加して成型した成型体のX線回折である。It is a figure which shows the X-ray diffraction of the zinc molding by the method of this invention, and the zinc molding by the slurry for a comparison. (A) shows the X-ray diffraction of the molding using the comparative slurry, and (b) shows the X-ray diffraction of the molding using the slurry according to the method of the present invention. The upper figure in (a) or (b) is X-ray diffraction of a molded article molded without applying a magnetic field, and the lower figure is a molded article molded by applying a magnetic field (strength B = 12T). X-ray diffraction.

Claims (5)

原料粉末のスラリーをスリップキャスティング法を用いて所望の形状に成型する成型体の製造方法において、
単結晶粒子から成る原料粉末のスラリーに、解膠剤を添加しつつ機械的せん断力を加えて混練し、この混練したスラリーを磁場中のスリップキャスティング法により成型することを特徴とする、結晶配向性を有する成型体の作製方法。
In the manufacturing method of a molded body in which a slurry of raw material powder is molded into a desired shape using a slip casting method,
Crystal orientation, characterized in that a slurry of raw material powder consisting of single crystal particles is kneaded by applying mechanical shearing force while adding a peptizer, and the kneaded slurry is molded by a slip casting method in a magnetic field For producing a molded article having properties.
原料粉末のスラリーをスリップキャスティング法を用いて所望の形状に成型する成型体の製造方法において、
多結晶粒子から成る原料粉末のスラリーに、解膠剤を添加しつつ機械的せん断力を加えて混練し、この混練したスラリーを磁場中のスリップキャスティング法により成型することを特徴とする、結晶配向性を有する成型体の作製方法。
In the manufacturing method of a molded body in which a slurry of raw material powder is molded into a desired shape using a slip casting method,
Crystal orientation, characterized in that a slurry of raw material powder composed of polycrystalline particles is kneaded by applying mechanical shearing force while adding a peptizer, and the kneaded slurry is molded by a slip casting method in a magnetic field For producing a molded article having properties.
原料粉末のスラリーをスリップキャスティング法を用いて所望の形状に成型する成型体の製造方法において、
解膠剤を添加した単結晶粒子から成る原料粉末のスラリーに、機械的せん断力を加えて混練し、この混練したスラリーを磁場中のスリップキャスティング法により成型することを特徴とする、結晶配向性を有する成型体の作製方法。
In the manufacturing method of a molded body in which a slurry of raw material powder is molded into a desired shape using a slip casting method,
Crystal orientation, characterized in that a slurry of raw material powder consisting of single crystal particles with a peptizer added is kneaded by applying mechanical shearing force, and the kneaded slurry is molded by slip casting in a magnetic field The manufacturing method of the molded object which has this.
原料粉末のスラリーをスリップキャスティング法を用いて所望の形状に成型する成型体の製造方法において、
解膠剤を添加した多結晶粒子から成る原料粉末のスラリーに、機械的せん断力を加えて混練し、この混練したスラリーを磁場中のスリップキャスティング法により成型することを特徴とする、結晶配向性を有する成型体の作製方法。
In the manufacturing method of a molded body in which a slurry of raw material powder is molded into a desired shape using a slip casting method,
Crystal orientation, characterized in that a slurry of raw material powder consisting of polycrystalline particles to which a deflocculant has been added is kneaded by applying mechanical shearing force, and the kneaded slurry is molded by a slip casting method in a magnetic field. The manufacturing method of the molded object which has this.
前記方法で得た成型体を、さらに焼成することを特徴とする、請求項1〜4の何れかに記載の結晶配向性を有する成型体の作製方法。   The method for producing a molded body having crystal orientation according to any one of claims 1 to 4, wherein the molded body obtained by the method is further fired.
JP2003349352A 2003-10-08 2003-10-08 Method for manufacturing molding with crystal orientation Pending JP2005113205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349352A JP2005113205A (en) 2003-10-08 2003-10-08 Method for manufacturing molding with crystal orientation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003349352A JP2005113205A (en) 2003-10-08 2003-10-08 Method for manufacturing molding with crystal orientation

Publications (1)

Publication Number Publication Date
JP2005113205A true JP2005113205A (en) 2005-04-28

Family

ID=34541240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349352A Pending JP2005113205A (en) 2003-10-08 2003-10-08 Method for manufacturing molding with crystal orientation

Country Status (1)

Country Link
JP (1) JP2005113205A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160760A (en) * 2007-12-28 2009-07-23 National Institutes Of Natural Sciences Orientation polycrystalline material and its producing method
WO2010041645A1 (en) * 2008-10-10 2010-04-15 株式会社村田製作所 Method for producing perovskite-structure compound sintered compact
EP2371784A1 (en) * 2008-12-25 2011-10-05 Inter-University Research Institute Corporation National Institutes of Natural Sciences Light-transmissive polycrystalline material and method for producing the same
JP2013129199A (en) * 2013-01-25 2013-07-04 National Institutes Of Natural Sciences Optical material and method for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160760A (en) * 2007-12-28 2009-07-23 National Institutes Of Natural Sciences Orientation polycrystalline material and its producing method
WO2010041645A1 (en) * 2008-10-10 2010-04-15 株式会社村田製作所 Method for producing perovskite-structure compound sintered compact
JP2010090021A (en) * 2008-10-10 2010-04-22 Murata Mfg Co Ltd Method for producing sintered compact of compound with perovskite structure
EP2371784A1 (en) * 2008-12-25 2011-10-05 Inter-University Research Institute Corporation National Institutes of Natural Sciences Light-transmissive polycrystalline material and method for producing the same
CN102272070A (en) * 2008-12-25 2011-12-07 株式会社根本研究所 Light-transmissive polycrystalline material and method for producing the same
EP2371784A4 (en) * 2008-12-25 2013-04-17 Kek High Energy Accelerator Light-transmissive polycrystalline material and method for producing the same
US8470724B2 (en) 2008-12-25 2013-06-25 Inter-University Research Institute Corporation, National Institutes Of Natural Sciences Transparent polycrystalline material and production process for the same
JP2013129199A (en) * 2013-01-25 2013-07-04 National Institutes Of Natural Sciences Optical material and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR101228689B1 (en) Oxide based magnetic material, process for producing the same, sintered ferrite magnet and process for producing the same
JP5626211B2 (en) Ferrite magnetic material
KR101642535B1 (en) Method for producing alkali metal niobate particles, and alkali metal niobate particles
Ren et al. BaTiO 3/CoFe 2 O 4 particulate composites with large high frequency magnetoelectric response
JP5676910B2 (en) Method for manufacturing ceramics and piezoelectric material
JP4821792B2 (en) Manufacturing method of sintered ferrite magnet
CN107428619B (en) Crystal orientation ceramic, manufacturing method thereof and heat dissipation material
Jenuš et al. Magnetic performance of SrFe12O19–Zn0. 2Fe2. 8O4 hybrid magnets prepared by spark plasma sintering
EP1052658B1 (en) Ferrite magnet powder and magnet using said magnet powder, and method for preparing them
JP2005113205A (en) Method for manufacturing molding with crystal orientation
EP1484282A1 (en) Cerium based composite oxide, sintered product thereof and method for preparation thereof
JP4096053B2 (en) Method for producing oriented ceramic sintered body such as titanium dioxide
WO2006043407A1 (en) Production method for non-ferromagnetic substance molded product, and non-ferromagnetic substance molded product
JP2610445B2 (en) Method for producing soft magnetic hexagonal ferrite
WO2004024650A1 (en) Oriented silicon carbide sintered compact and method for preparation thereof
Balla et al. Co-Ni-Zn ferrites fabricated by spark plasma sintering
JPS59143002A (en) Organic binder of fine pulverous powder for powder metallurgy
JP4688271B2 (en) Method for producing bismuth layered compound sintered body
JP4461276B2 (en) Method for producing magnetic powder
JP2545603B2 (en) Method for manufacturing anisotropic sintered magnet
JP2006269637A (en) Rare earth-transition metal-nitrogen system magnet powder, its manufacturing method and composite for bond magnet using same and bond magnet
JP3144088B2 (en) Manufacturing method of ferrite magnet
Charoensuk et al. Modifying Barium Hexaferrite Magnets by Adding Sol-Gel Synthesized Cobalt Ferrite Phase
Sami The effect of temperature on the physical and magnetic properties of Ni-ferrite powder preparation
JP2007243070A (en) Oriented zinc oxide based thermoelectric conversion material and thermoelectric conversion device using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016