JP2005112763A - Method for producing pyridine bases - Google Patents

Method for producing pyridine bases Download PDF

Info

Publication number
JP2005112763A
JP2005112763A JP2003347900A JP2003347900A JP2005112763A JP 2005112763 A JP2005112763 A JP 2005112763A JP 2003347900 A JP2003347900 A JP 2003347900A JP 2003347900 A JP2003347900 A JP 2003347900A JP 2005112763 A JP2005112763 A JP 2005112763A
Authority
JP
Japan
Prior art keywords
group
aliphatic
pyridine
producing
zeolite catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003347900A
Other languages
Japanese (ja)
Inventor
Manabu Kimura
学 木村
Kohei Yamamoto
幸平 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Chemical Co Ltd
Original Assignee
Koei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Chemical Co Ltd filed Critical Koei Chemical Co Ltd
Priority to JP2003347900A priority Critical patent/JP2005112763A/en
Publication of JP2005112763A publication Critical patent/JP2005112763A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a pyridine base in a high yield, in which an aliphatic aldehyde, an aliphatic ketone or its mixture is used as a raw material. <P>SOLUTION: This method for producing the pyridine base comprises subjecting an aliphatic aldehyde, an aliphatic ketone or its mixture to a vapor-phase catalytic reaction with ammonia in the presence of a zeolite catalyst containing at least one kind selected from titanium and cobalt, and boron and silicon as constituent elements. The zeolite catalyst preferably contains further an ion and/or a compound of at least one kind of an element selected from the group consisting of elements of the groups 12-14. For example, acetaldehyde may be cited as the aliphatic aldehyde, the aliphatic ketone or its mixture. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ピリジン塩基類の製造方法に関する。   The present invention relates to a method for producing pyridine bases.

ピリジン、α−ピコリン、γ−ピコリンに代表されるピリジン塩基類は、医薬、農薬の合成原料や溶媒、溶剤等として重要な化合物である。かかるピリジン塩基類の製造方法としては、脂肪族アルデヒド、脂肪族ケトンまたはそれらの混合物を、触媒の存在下に気相接触反応せしめる方法が知られており、触媒としては、例えばチタノシリケート、コバルトシリケート、フェロシリケート、ボロシリケート、ガロシリケート等のゼオライト触媒が知られている(例えば特許文献1参照。)。しかしながら、得られるピリジン塩基類の収率の点で必ずしも工業的に十分満足し得るものではなかった。   Pyridine bases represented by pyridine, α-picoline, and γ-picoline are important compounds as synthetic raw materials, solvents, solvents, and the like for pharmaceuticals and agricultural chemicals. As a method for producing such pyridine bases, a method in which an aliphatic aldehyde, an aliphatic ketone or a mixture thereof is subjected to a gas phase catalytic reaction in the presence of a catalyst is known. Examples of the catalyst include titanosilicate, cobalt, and the like. Zeolite catalysts such as silicate, ferrosilicate, borosilicate, gallosilicate and the like are known (see, for example, Patent Document 1). However, it was not always satisfactory industrially in terms of the yield of the resulting pyridine bases.

特開2000−191642号公報JP 2000-191642 A

このような状況のもと、本発明者らは、脂肪族アルデヒド、脂肪族ケトンまたはそれらの混合物を原料として、より収率よくピリジン塩基類を製造する方法を開発すべく鋭意検討したところ、触媒として、チタンとホウ素とケイ素を構成元素として含有するゼオライトおよびコバルトとホウ素とケイ素を構成元素として含有するゼオライトを用いることにより、収率よくピリジン塩基類が製造できることを見出し、本発明に至った。   Under such circumstances, the present inventors diligently studied to develop a method for producing pyridine bases with higher yields using aliphatic aldehydes, aliphatic ketones or mixtures thereof as raw materials. As a result, it was found that by using zeolite containing titanium, boron and silicon as constituent elements and zeolite containing cobalt, boron and silicon as constituent elements, pyridine bases can be produced with high yield, and the present invention has been achieved.

すなわち本発明は、チタンおよびコバルトから選ばれる少なくとも一種とホウ素とケイ素を構成元素として含有するゼオライト触媒の存在下、脂肪族アルデヒド、脂肪族ケトンまたはそれらの混合物とアンモニアとを気相接触反応せしめることを特徴とするピリジン塩基類の製造方法を提供するものである。   That is, the present invention comprises a gas phase catalytic reaction of an aliphatic aldehyde, an aliphatic ketone or a mixture thereof with ammonia in the presence of a zeolite catalyst containing at least one selected from titanium and cobalt, boron and silicon as constituent elements. The present invention provides a method for producing pyridine bases.

本発明によれば、ピリジン塩基類をさらに収率よく製造することができるため、工業的により有利である。   According to the present invention, pyridine bases can be produced with higher yield, which is industrially more advantageous.

チタンおよびコバルトから選ばれる少なくとも一種とホウ素とケイ素を構成元素として含有するゼオライト触媒としては、例えばボロチタノシリケート、ボロコバルトシリケート等が挙げられ、市販のものを用いてもよいし、例えば米国特許第4269813号公報、特開2000−191642号公報等に記載の公知の方法に準じて調製したものを用いてもよい。   Examples of the zeolite catalyst containing at least one selected from titanium and cobalt and boron and silicon as constituent elements include borotitanosilicate, borocobalt silicate, and the like, and commercially available ones may be used, for example, US patents. You may use what was prepared according to the well-known method as described in 4292613 gazette, Unexamined-Japanese-Patent No. 2000-191642, etc.

かかるゼオライト触媒としては、例えば下記式(1)
n/2・xTiO・B・ySiO・zHO (1)
(式中、Mは少なくとも1個のカチオン、nは該カチオンの価数を表わす。xは0.002〜1000、yは4〜600、zは0〜2000を表わす。)
で示されるボロチタノシリケート、下記式(2)
n/2・x’Co・B・y’SiO・z’HO (2)
(式中、Mおよびnは前記と同一の意味を表わし、x’は0.001〜500、y’は4〜600、z’は0〜2000を表わす。)
で示されるボロコバルトシリケート等が挙げられる。ここで、カチオンとしては、例えばアルカリ金属カチオン、アルカリ土類金属カチオン、アンモニウムカチオン、アルキルアンモニウムカチオン、水素カチオン等が挙げられる。
As such a zeolite catalyst, for example, the following formula (1)
Mn / 2 · xTiO 2 · B 2 O 3 · ySiO 2 · zH 2 O (1)
(In the formula, M represents at least one cation, n represents the valence of the cation, x represents 0.002 to 1000, y represents 4 to 600, and z represents 0 to 2000.)
Borotitanosilicate represented by the following formula (2)
M n / 2 · x'Co 2 O 3 · B 2 O 3 · y'SiO 2 · z'H 2 O (2)
(In the formula, M and n represent the same meaning as described above, x ′ represents 0.001 to 500, y ′ represents 4 to 600, and z ′ represents 0 to 2000.)
The borocobalt silicate shown by these is mentioned. Here, examples of the cation include an alkali metal cation, an alkaline earth metal cation, an ammonium cation, an alkyl ammonium cation, and a hydrogen cation.

かかるゼオライト触媒の結晶構造は、特に制限されないが、MFI型もしくはMEL型の結晶構造を有するゼオライト触媒が好ましい。   The crystal structure of such a zeolite catalyst is not particularly limited, but a zeolite catalyst having an MFI type or MEL type crystal structure is preferred.

かかるゼオライト触媒に、さらに、第12〜14族元素からなる群から選ばれる少なくとも一種の元素のイオンおよび/または化合物が含有したゼオライト触媒を用いることにより、さらに収率よくピリジン塩基類を製造することができる。第12〜14族元素としては、例えば亜鉛、カドミウム等の第12族元素、例えばアルミニウム、ガリウム、インジウム、タリウム等の第13族元素、例えばゲルマニウム、スズ、鉛等の第14族元素が挙げられ、なかでも第14族元素が好ましい。   Producing pyridine bases in a higher yield by using a zeolite catalyst containing ions and / or compounds of at least one element selected from the group consisting of Group 12-14 elements as the zeolite catalyst. Can do. Examples of Group 12-14 elements include Group 12 elements such as zinc and cadmium, Group 13 elements such as aluminum, gallium, indium, and thallium, and Group 14 elements such as germanium, tin, and lead. Of these, group 14 elements are preferred.

かかる第12〜14族元素の化合物としては、前記各元素の酸化物、ハロゲン化物、硫酸塩、リン酸塩、硝酸塩、水酸化物、硫化物、ケイ酸塩、チタン酸塩、ホウ酸塩、炭酸塩等が挙げられる。   Examples of the Group 12-14 element compounds include oxides, halides, sulfates, phosphates, nitrates, hydroxides, sulfides, silicates, titanates, borates of the respective elements. And carbonates.

かかる第12〜14族元素からなる群から選ばれる少なくとも一種の元素のイオンおよび/または化合物は、前記元素の含有量が、ゼオライトに対して、通常0.01〜30重量%となる量が用いられる。前記元素の含有量は、例えばICP分析法等の分析方法により測定することができる。   The ions and / or compounds of at least one element selected from the group consisting of such Group 12 to 14 elements are used in such an amount that the content of the elements is usually 0.01 to 30% by weight with respect to zeolite. It is done. The content of the element can be measured by an analysis method such as an ICP analysis method.

第12〜14族元素からなる群から選ばれる少なくとも一種の元素のイオンおよび/または化合物をさらに含有したゼオライト触媒は、例えばイオン交換法、混練法、含浸法、浸漬法、沈着法、蒸発乾固法等通常の方法に従い、前記ゼオライト触媒に含有せしめることにより調製することができる。   Zeolite catalysts further containing ions and / or compounds of at least one element selected from the group consisting of Group 12-14 elements include, for example, ion exchange method, kneading method, impregnation method, dipping method, deposition method, evaporation to dryness. According to a usual method such as a method, it can be prepared by incorporating in the zeolite catalyst.

脂肪族アルデヒドとしては、例えばホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、アクロレイン、メタクロレイン、クロトンアルデヒド等の炭素数1〜5の飽和もしくは不飽和脂肪族アルデヒド等が挙げられる。脂肪族ケトンとしては、例えばアセトン、メチルエチルケトン、ジエチルケトン、メチルビニルケトン等の炭素数3〜5の飽和もしくは不飽和脂肪族ケトンが挙げられる。また、例えばパラホルムアルデヒド等の前記脂肪族アルデヒドや脂肪族ケトンを発生し得るダイマー、トリマー、オリゴマー、ポリマー等を用いてもよい。   Examples of the aliphatic aldehyde include saturated or unsaturated aliphatic aldehydes having 1 to 5 carbon atoms such as formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, acrolein, methacrolein, and crotonaldehyde. Examples of the aliphatic ketone include saturated or unsaturated aliphatic ketones having 3 to 5 carbon atoms such as acetone, methyl ethyl ketone, diethyl ketone, and methyl vinyl ketone. Moreover, you may use the dimer, trimer, oligomer, polymer, etc. which can generate | occur | produce the said aliphatic aldehyde and aliphatic ketones, such as paraformaldehyde, for example.

用いる脂肪族アルデヒドや脂肪族ケトンの種類によって、生成する主たるピリジン塩基類が異なるため、目的とするピリジン塩基類に応じて、用いる脂肪族アルデヒドや脂肪族ケトンを決めればよい。下記表1に、脂肪族アルデヒドや脂肪族ケトンと生成する主たるピリジン塩基類の組み合わせの代表的な例を示した。表1にもあるように、例えばα−ピコリンとγ−ピコリンを主生成物として得たい場合には、アセトアルデヒドを用いればよく、ピリジンとβ−ピコリンを主生成物として得たい場合には、ホルムアルデヒドとアセトアルデヒドの混合物を用いればよい。また、β−ピコリンを主生成物として得たい場合には、アクロレインとプロピオンアルデヒドの混合物を用いればよい。   Since the main pyridine bases produced differ depending on the type of aliphatic aldehyde or aliphatic ketone used, the aliphatic aldehyde or aliphatic ketone to be used may be determined according to the target pyridine base. Table 1 below shows typical examples of combinations of aliphatic aldehydes and aliphatic ketones and the main pyridine bases produced. As also shown in Table 1, for example, when it is desired to obtain α-picoline and γ-picoline as main products, acetaldehyde may be used, and when pyridine and β-picoline are obtained as main products, formaldehyde is used. And a mixture of acetaldehyde may be used. In addition, when it is desired to obtain β-picoline as a main product, a mixture of acrolein and propionaldehyde may be used.

Figure 2005112763
Figure 2005112763

かかる脂肪族アルデヒドや脂肪族ケトンは、通常そのまま用いられるが、例えばホルマリン等の水溶液を用いてもよいし、有機溶媒に溶解させて有機溶媒溶液として用いてもよい。   Such aliphatic aldehydes and aliphatic ketones are usually used as they are, but for example, an aqueous solution such as formalin may be used, or it may be dissolved in an organic solvent and used as an organic solvent solution.

反応は、回分式で行ってもよいし、連続式で行ってもよい。工業的には、連続式で行うことが好ましい。連続式で行う場合、固定床触媒反応器、流動床触媒反応器、移動床触媒反応器等のいずれで行ってもよい。   The reaction may be performed batchwise or continuously. Industrially, it is preferable to carry out continuously. When it is carried out continuously, it may be carried out in any of a fixed bed catalyst reactor, a fluidized bed catalyst reactor, a moving bed catalyst reactor and the like.

アンモニアとしては、通常アンモニアガスが用いられるが、アンモニア水やアンモニアの有機溶媒溶液を用いてもよい。   As ammonia, ammonia gas is usually used, but ammonia water or an organic solvent solution of ammonia may be used.

アンモニアの使用量は、脂肪族アルデヒド、脂肪族ケトンまたはこれらの混合物に対して、通常0.5〜5モル倍であり、目的とするピリジン塩基類の種類に応じて適宜選択すればよい。例えばピリジンおよびβ−ピコリンを目的とする場合には、前記表1にあるとおり、アセトアルデヒドとホルムアルデヒドを用い、アセトアルデヒドに対して、通常0.3〜3モル倍のホルムアルデヒドと、通常0.5〜5モル倍のアンモニアが用いられる。また、α−ピコリンおよびγ−ピコリンを目的とする場合には、アセトアルデヒドを用い、アセトアルデヒドに対して、通常0.8〜3モル倍のアンモニアが用いられる。   The amount of ammonia used is usually 0.5 to 5 moles per mole of the aliphatic aldehyde, aliphatic ketone or mixture thereof, and may be appropriately selected according to the type of the target pyridine base. For example, when aiming at pyridine and β-picoline, as shown in Table 1, acetaldehyde and formaldehyde are used, and usually 0.3 to 3 mol times formaldehyde and usually 0.5 to 5 times the amount of acetaldehyde. Molar ammonia is used. When α-picoline and γ-picoline are intended, acetaldehyde is used, and ammonia is usually used in an amount of 0.8 to 3 mol times with respect to acetaldehyde.

本反応は、ゼオライト触媒の存在下に、脂肪族アルデヒドおよび/または脂肪族ケトンならびにアンモニアを混合、接触させることにより実施され、その混合順序は特に制限されないが、脂肪族アルデヒドおよび/または脂肪族ケトンとアンモニアを同時並行的にゼオライト触媒に加えることが好ましい。この場合、脂肪族アルデヒドおよび/または脂肪族ケトンとアンモニアを予め混合しておき、該混合物をゼオライト触媒に加えてもよい。また、水、窒素等の反応に不活性な気体、メタノール等を混合してもよい。なお、アセトアルデヒドとホルムアルデヒドを反応原料として用いる場合であって、メタノールを混合するときは、メタノールの使用量は、アセトアルデヒドに対して、0.5モル倍以下とすることが好ましい。   This reaction is carried out by mixing and contacting an aliphatic aldehyde and / or aliphatic ketone and ammonia in the presence of a zeolite catalyst, and the mixing order is not particularly limited, but the aliphatic aldehyde and / or aliphatic ketone is not limited. And ammonia are preferably added simultaneously to the zeolite catalyst. In this case, aliphatic aldehyde and / or aliphatic ketone and ammonia may be mixed in advance, and the mixture may be added to the zeolite catalyst. Further, a gas inert to the reaction such as water and nitrogen, methanol, or the like may be mixed. In addition, it is a case where acetaldehyde and formaldehyde are used as a reaction raw material, Comprising: When mixing methanol, it is preferable that the usage-amount of methanol shall be 0.5 mol times or less with respect to acetaldehyde.

反応は、減圧条件下、常圧条件下、加圧条件下のいずれで行ってもよいが、常圧条件下もしくは加圧条件下で行うことが好ましい。加圧条件下で実施する場合の圧力は、特に制限されないが、実用的な観点から、200kPa以下が好ましい。また、反応温度は、通常300〜700℃、好ましくは350〜600℃である。   The reaction may be performed under reduced pressure, normal pressure, or pressurized conditions, but is preferably performed under normal pressure or pressurized conditions. Although the pressure in the case of implementing on pressurization conditions is not restrict | limited, 200 kPa or less is preferable from a practical viewpoint. Moreover, reaction temperature is 300-700 degreeC normally, Preferably it is 350-600 degreeC.

固定床触媒反応器で反応を実施する場合、空間速度は、通常100〜10000/Hr、好ましくは300〜3000/Hrである。   When carrying out the reaction in a fixed bed catalytic reactor, the space velocity is usually from 100 to 10000 / Hr, preferably from 300 to 3000 / Hr.

反応終了後、通常ピリジン塩基類を含む反応ガスが得られ、該反応ガスをそのまま冷却し、ピリジン塩基類を凝縮させて取り出してもよいし、該反応ガスと水等の溶媒を混合し、ピリジン塩基類を含む溶液を得、該溶液を濃縮処理し、ピリジン塩基類を取り出してもよい。取り出したピリジン塩基類は、通常の精製手段により、さらに精製してもよい。   After the completion of the reaction, a reaction gas containing pyridine bases is usually obtained. The reaction gas is cooled as it is, and the pyridine bases may be condensed and taken out, or the reaction gas and a solvent such as water are mixed and mixed with pyridine. A solution containing bases may be obtained, the solution may be concentrated, and pyridine bases may be taken out. The removed pyridine bases may be further purified by ordinary purification means.

かくして得られるピリジン塩基類としては、例えばピリジン、α−ピコリン、β−ピコリン、γ−ピコリン、3,5−ルチジン、2,4−ルチジン、2,6−ルチジン、2,4,6−コリジン、2,3,5−コリジン等が挙げられる。   Examples of the pyridine bases thus obtained include pyridine, α-picoline, β-picoline, γ-picoline, 3,5-lutidine, 2,4-lutidine, 2,6-lutidine, 2,4,6-collidine, 2,3,5-collidine and the like can be mentioned.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されない。なお、分析はガスクロマトグラフィを用い、反応に供したアセトアルデヒドの炭素原子総数に対する生成した各ピリジン塩基類の炭素原子総数の比を各ピリジン塩基類の収率とした。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. The analysis used gas chromatography, and the ratio of the total number of carbon atoms of each pyridine base to the total number of carbon atoms of acetaldehyde subjected to the reaction was defined as the yield of each pyridine base.

実施例1
硝酸鉛3.36gを水36gに溶解させた硝酸鉛水溶液に、H型ボロチタノシリケート(エヌ・イー ケムキャット社より入手)30gを加え、20〜25℃で含浸処理を行った。これを120℃で4時間乾燥処理した後、空気気流中、500℃で5時間焼成処理し、鉛含有ボロチタノシリケートを得た。該鉛含有ボロチタノシリケート中の鉛含有量は、5.3重量%(鉛含有量は鉛金属換算)であり、Si/Bモル比は286、Si/Tiモル比は80、BET比表面積は377m/gであった。
Example 1
To an aqueous lead nitrate solution in which 3.36 g of lead nitrate was dissolved in 36 g of water, 30 g of H + type borotitanosilicate (obtained from N Chemcat) was added, and impregnation was performed at 20 to 25 ° C. This was dried at 120 ° C. for 4 hours, and then baked at 500 ° C. for 5 hours in an air stream to obtain lead-containing borotitanosilicate. The lead content in the lead-containing borotitanosilicate is 5.3% by weight (lead content is converted to lead metal), Si / B molar ratio is 286, Si / Ti molar ratio is 80, BET specific surface area. Was 377 m 2 / g.

実施例2
実施例1で得られた鉛含有ボロチタノシリケート12gを、内径15mmのパイレックス(登録商標)製反応管に充填し、触媒充填部を420℃に昇温した。この反応管に、アセトアルデヒド7.93g/Hr、アンモニア8820mL/Hrおよび窒素3600mL/Hrでそれぞれ供給し、反応を行った。アセトアルデヒドの供給開始から1時間経過した後、反応管から流出する反応ガスを11分間水中に導入し、反応生成物を含む水溶液を得た。結果を表2に示した。
Example 2
12 g of the lead-containing borotitanosilicate obtained in Example 1 was charged into a Pyrex (registered trademark) reaction tube having an inner diameter of 15 mm, and the temperature of the catalyst packed portion was raised to 420 ° C. This reaction tube was supplied with acetaldehyde at 7.93 g / Hr, ammonia at 8820 mL / Hr, and nitrogen at 3600 mL / Hr, respectively, to carry out the reaction. After 1 hour from the start of the supply of acetaldehyde, the reaction gas flowing out from the reaction tube was introduced into water for 11 minutes to obtain an aqueous solution containing the reaction product. The results are shown in Table 2.

実施例3
実施例1において、H+型ボロチタノシリケートに代えて、H型ボロコバルトシリケート(エヌ・イー ケムキャット社より入手)を用いた以外は実施例1と同様に実施して、鉛含有ボロコバルトシリケートを得た。該鉛含有ボロコバルトシリケート中の鉛含有量は、4.4重量%(鉛含有量は鉛金属換算)であり、Si/Bモル比は169、Si/Tiモル比は141、BET比表面積は391m/gであった。
Example 3
In Example 1, instead of the H + form boro titanosilicate, H + type rags except for using cobalt silicate (available from NE Chemcat Corporation) is performed in a manner similar to that in Example 1, the lead-containing rag cobalt silicate Got. The lead content in the lead-containing borocobalt silicate is 4.4% by weight (lead content is in terms of lead metal), the Si / B molar ratio is 169, the Si / Ti molar ratio is 141, and the BET specific surface area is It was 391 m 2 / g.

実施例4
実施例3で得られた鉛含有ボロコバルトシリケート12gを、内径15mmのパイレックス(登録商標)製反応管に充填し、触媒充填部を380℃に昇温した。この反応管に、アセトアルデヒド7.93g/Hr、アンモニア8820mL/Hrおよび窒素3600mL/Hrでそれぞれ供給し、反応を行った。アセトアルデヒドの供給開始から3時間経過した後、反応管から流出する反応ガスを11分間水中に導入し、反応生成物を含む水溶液を得た。結果を表2に示した。
Example 4
12 g of the lead-containing borocobalt silicate obtained in Example 3 was charged into a Pyrex (registered trademark) reaction tube having an inner diameter of 15 mm, and the temperature of the catalyst packed portion was increased to 380 ° C. This reaction tube was supplied with acetaldehyde at 7.93 g / Hr, ammonia at 8820 mL / Hr, and nitrogen at 3600 mL / Hr, respectively, to carry out the reaction. After 3 hours from the start of the supply of acetaldehyde, the reaction gas flowing out from the reaction tube was introduced into water for 11 minutes to obtain an aqueous solution containing the reaction product. The results are shown in Table 2.

比較例1
硝酸鉛1.68gを水18gに溶解させた硝酸鉛水溶液に、H型チタノシリケート(エヌ・イー ケムキャット社より入手)13.9gを加え、20〜25℃で含浸処理を行った。これを120℃で5時間乾燥処理した後、空気気流中、550℃で5時間焼成処理し、鉛含有チタノシリケートを得た。該鉛含有チタノシリケートの鉛含有量は、7.0重量%(鉛含有量は鉛金属換算)であった。
Comparative Example 1
To an aqueous lead nitrate solution in which 1.68 g of lead nitrate was dissolved in 18 g of water, 13.9 g of H + type titanosilicate (obtained from N.E. Chemcat Co.) was added, and impregnation was performed at 20 to 25 ° C. This was dried at 120 ° C. for 5 hours, and then fired at 550 ° C. for 5 hours in an air stream to obtain lead-containing titanosilicate. The lead content of the lead-containing titanosilicate was 7.0% by weight (the lead content is converted to lead metal).

得られた鉛含有チタノシリケート6gを、内径20mmのパイレックス(登録商標)製反応管に充填し、触媒充填部を380℃に昇温した。この反応管に、アセトアルデヒド2.48g/Hrおよびアンモニア2760mL/Hrでそれぞれ供給し、反応を行った。アセトアルデヒドの供給開始から0.5時間経過した後、反応管から流出する反応ガスを20分間水中に導入し、反応生成物を含む水溶液を得た。結果を表2に示した。   6 g of the obtained lead-containing titanosilicate was filled in a Pyrex (registered trademark) reaction tube having an inner diameter of 20 mm, and the temperature of the catalyst filling portion was raised to 380 ° C. The reaction was carried out by supplying acetaldehyde at 2.48 g / Hr and ammonia at 2760 mL / Hr, respectively. After 0.5 hours have passed since the start of acetaldehyde supply, the reaction gas flowing out from the reaction tube was introduced into water for 20 minutes to obtain an aqueous solution containing the reaction product. The results are shown in Table 2.

比較例2
比較例1において、H型チタノシリケートに代えて、H型コバルトシリケートを用いた以外は比較例1と同様に実施して、鉛含有量3.0重量%(鉛含有量は鉛金属換算)の鉛含有コバルトシリケートを得た。続いて、比較例1において、鉛含有チタノシリケートに代えて、得られた鉛含有コバルトシリケートを用いた以外は比較例1と同様に実施した。結果を表2に示した。
Comparative Example 2
In Comparative Example 1, in place of the H + form titanosilicate, H + form cobalt except that silicate was used is carried out in the same manner as in Comparative Example 1, the lead content 3.0 wt% (lead content of lead metal Lead-containing cobalt silicate. Then, it carried out similarly to the comparative example 1 except having replaced with the lead-containing titanosilicate in the comparative example 1, and having used the obtained lead-containing cobalt silicate. The results are shown in Table 2.

Figure 2005112763
Figure 2005112763

実施例5
実施例4において、鉛含有ボロコバルトシリケートに代えて、H型ボロコバルトシリケート(エヌ・イー ケムキャット社から入手)を用い、アセトアルデヒドの供給開始から2時間経過した後に反応管から流出する反応ガスを水中に導入し、反応生成物を含む水溶液を得た以外は実施例4と同様に実施し、ピリジンを、収率4.7%、α−ピコリンを、収率29.0%、γ−ピコリンを、収率16.3%でそれぞれ得た。
Example 5
In Example 4, instead of lead-containing borocobalt silicate, H + type borocobalt silicate (obtained from NEM Catcat) was used, and the reaction gas flowing out from the reaction tube after 2 hours from the start of acetaldehyde supply was This was carried out in the same manner as in Example 4 except that it was introduced into water to obtain an aqueous solution containing the reaction product, and pyridine was obtained in a yield of 4.7%, α-picoline in a yield of 29.0%, and γ-picoline Were obtained in a yield of 16.3%.

実施例6
実施例5において、H型ボロコバルトシリケートに代えて、H型ボロチタノシリケートを用いた以外は実施例5と同様に実施して、ピリジンを、収率3.5%、α−ピコリンを、収率27.8%、γ−ピコリンを、収率15.3%でそれぞれ得た。
Example 6
In Example 5, instead of the H + form boro cobalt silicate, H + form except for using rags titanosilicate was carried out as in Example 5, a pyridine, 3.5% yield, alpha-picoline Were obtained in a yield of 27.8%, and γ-picoline was obtained in a yield of 15.3%.

Claims (7)

チタンおよびコバルトから選ばれる少なくとも一種とホウ素とケイ素を構成元素として含有するゼオライト触媒の存在下、脂肪族アルデヒド、脂肪族ケトンまたはそれらの混合物とアンモニアとを気相接触反応せしめることを特徴とするピリジン塩基類の製造方法。 Pyridine characterized by reacting an aliphatic aldehyde, aliphatic ketone or mixture thereof with ammonia in a gas phase catalytic reaction in the presence of a zeolite catalyst containing at least one selected from titanium and cobalt and boron and silicon as constituent elements. A method for producing bases. ゼオライト触媒が、さらに、第12〜14族元素からなる群から選ばれる少なくとも一種の元素のイオンおよび/または化合物を含有する触媒である請求項1に記載のピリジン塩基類の製造方法。 The method for producing pyridine bases according to claim 1, wherein the zeolite catalyst is a catalyst further containing ions and / or compounds of at least one element selected from the group consisting of Group 12-14 elements. ゼオライト触媒が、MFI型またはMEL型の結晶構造を有する触媒である請求項1または2に記載のピリジン塩基類の製造方法。 The method for producing pyridine bases according to claim 1 or 2, wherein the zeolite catalyst is a catalyst having an MFI type or MEL type crystal structure. 脂肪族アルデヒド、脂肪族ケトンまたはそれらの混合物として、アセトアルデヒドを用いる請求項1に記載のピリジン塩基類の製造方法。 The method for producing a pyridine base according to claim 1, wherein acetaldehyde is used as the aliphatic aldehyde, the aliphatic ketone, or a mixture thereof. チタンおよびコバルトから選ばれる少なくとも一種とホウ素とケイ素を構成元素として含有するピリジン塩基製造用ゼオライト触媒。 A zeolite catalyst for producing a pyridine base, comprising at least one selected from titanium and cobalt and boron and silicon as constituent elements. チタンおよびコバルトから選ばれる少なくとも一種とホウ素とケイ素を構成元素として含有し、さらに、第12〜14族元素からなる群から選ばれる少なくとも一種の元素のイオンおよび/または化合物を含有するゼオライト組成物。 A zeolite composition containing at least one selected from titanium and cobalt, boron and silicon as constituent elements, and further containing ions and / or compounds of at least one element selected from the group consisting of Group 12-14 elements. さらに、第12〜14族元素からなる群から選ばれる少なくとも一種の元素のイオンおよび/または化合物を含有する請求項5に記載のピリジン塩基製造用ゼオライト触媒。
Furthermore, the zeolite catalyst for pyridine base manufacture of Claim 5 containing the ion and / or compound of the at least 1 sort (s) of element chosen from the group which consists of a group 12-14 group element.
JP2003347900A 2003-10-07 2003-10-07 Method for producing pyridine bases Pending JP2005112763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347900A JP2005112763A (en) 2003-10-07 2003-10-07 Method for producing pyridine bases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347900A JP2005112763A (en) 2003-10-07 2003-10-07 Method for producing pyridine bases

Publications (1)

Publication Number Publication Date
JP2005112763A true JP2005112763A (en) 2005-04-28

Family

ID=34540270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347900A Pending JP2005112763A (en) 2003-10-07 2003-10-07 Method for producing pyridine bases

Country Status (1)

Country Link
JP (1) JP2005112763A (en)

Similar Documents

Publication Publication Date Title
US7759525B2 (en) Process for preparing partial oxidation products of lower alcohols by direct oxidation of a lower alcohol and catalysts for use in that process
US4810794A (en) Process for producing pyridine bases
ITMI991658A1 (en) PROCEDURE FOR THE PREPARATION OF EPOXY
US4324908A (en) Preparation of unsaturated acids and esters from saturated carboxylic acid derivatives and carbonyl compounds over phosphate catalysts
US20040116280A1 (en) Reaction tube, process for producing catalyst and process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2001097965A (en) Method for producing olefin oxide
JP2005112763A (en) Method for producing pyridine bases
JP4854150B2 (en) How to increase production of cyanide stably
JP4854151B2 (en) Method to stably increase production of acetonitrile and hydrocyanic acid
JP4414155B2 (en) Production of pyridine bases
KR100995258B1 (en) Method for reactivating catalyst for methacrylic acid preparation
US3433792A (en) Alkylpyridine production
US6281362B1 (en) Method for producing pyridine bases
US3436406A (en) Production of alpha,alpha-disubstituted-beta-propiolactones
EP3089960B1 (en) Process for making ethanolamines
GB1560238A (en) Production of metharcrylic and acrylick acids and their esters
JPH021819B2 (en)
JP7345754B2 (en) Method for producing N,N-disubstituted α,β-unsaturated carboxylic acid amide and catalyst for producing N,N-disubstituted α,β-unsaturated carboxylic acid amide
JP4095724B2 (en) Method for activating copper-containing catalyst and method for producing tetrahydro-2H-pyran-2-one and / or 3,4-dihydro-2H-pyran
EP1648869B1 (en) Process for the production of pyridine and picolines
JP2000191642A (en) Production of pyridine bases
JPH07145133A (en) Production of phenoxy-substituted benzonitrile
US6492524B1 (en) Process for the synthesis of an aryl pyridine base using a zeolite catalyst
JPS63139168A (en) Production of pyridine bases
EP1373209B1 (en) A process for the synthesis of an aryl pyridine base using a zeolite catalyst