JP2005112700A - Aqueous solution of boron compound stable in room temperature, manufacturing method and utilization of the same - Google Patents

Aqueous solution of boron compound stable in room temperature, manufacturing method and utilization of the same Download PDF

Info

Publication number
JP2005112700A
JP2005112700A JP2003352620A JP2003352620A JP2005112700A JP 2005112700 A JP2005112700 A JP 2005112700A JP 2003352620 A JP2003352620 A JP 2003352620A JP 2003352620 A JP2003352620 A JP 2003352620A JP 2005112700 A JP2005112700 A JP 2005112700A
Authority
JP
Japan
Prior art keywords
aqueous solution
fireproof
wood
room temperature
borax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003352620A
Other languages
Japanese (ja)
Other versions
JP4439234B2 (en
Inventor
Isao Tsuyumoto
伊佐男 露本
Takeshi Ozaki
健 尾崎
Jun Takahashi
潤 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NJ KASEI KK
TRUST LIFE KK
Kanazawa Institute of Technology (KIT)
Original Assignee
NJ KASEI KK
TRUST LIFE KK
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NJ KASEI KK, TRUST LIFE KK, Kanazawa Institute of Technology (KIT) filed Critical NJ KASEI KK
Priority to JP2003352620A priority Critical patent/JP4439234B2/en
Publication of JP2005112700A publication Critical patent/JP2005112700A/en
Application granted granted Critical
Publication of JP4439234B2 publication Critical patent/JP4439234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for manufacturing a neutral aqueous solution containing sodium borate in high concentration and stable at room temperature by a simple method using boric acid and borax as raw materials and for forming wood, paper, cloth and non-woven fabric into a fire proof/fire resistant /incombustible material. <P>SOLUTION: The aqueous solution of the boron compound stable at room temperature contains no chelating agent or surfactant and contains ≥2.5 mol/kg in total of (x) pts. boric acid (H<SB>3</SB>BO<SB>3</SB>) and (y) pts. borax (Na<SB>2</SB>B<SB>4</SB>O<SB>7</SB>-10H<SB>2</SB>O) (where, x<35, y<40 and 0<x<(y+5)) expressed in terms of boron to 100 pts. water. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、室温で安定なホウ素化合物の水溶液、その製造方法およびその用途に関する。さらに詳しくは、本発明は、木材、紙、織布および不織布の防火、耐火、不燃化に好適に用いられる、ホウ素化合物を高濃度に含有する防火・耐火・不燃組成物に関する。   The present invention relates to an aqueous solution of a boron compound that is stable at room temperature, a method for producing the same, and an application thereof. More specifically, the present invention relates to a fireproof / fireproof / incombustible composition containing a boron compound in a high concentration, which is suitably used for fireproofing, fireproofing and incombustibility of wood, paper, woven fabric and non-woven fabric.

ホウ酸(H3BO3)、ホウ砂(四ホウ酸ナトリウム十水和物、Na247・10H2O)は古くから木材の防火剤として利用されてきた。例えば、石原茂久,「木材防火剤としてのホウ素とその化合物」,木材保存,社団法人日本木材保存協会,1989年,第15巻,第6号,p.248−260(非特許文献1)に詳説されているように、ホウ素化合物は木材などのセルロース系材料の燃焼抑制剤として19世紀前半から既に検討されている。コストや入手の容易性からホウ酸、ホウ砂が防火剤として検討されることが多く、これらは木材や木質材料の発炎燃焼と赤熱燃焼を抑制する効果のあることが報告されている。
しかしながら、表1に示すように、ホウ酸、ホウ砂は、水に対する溶解度(水100gに対する溶解量g)が低いという問題があった。
Boric acid (H 3 BO 3 ) and borax (sodium tetraborate decahydrate, Na 2 B 4 O 7 .10H 2 O) have long been used as fireproofing agents for wood. For example, Shigehisa Ishihara, “Boron and its compounds as wood fireproofing agents”, Wood Preservation, Japan Wood Preservation Association, 1989, Vol. 15, No. 6, p. As described in detail in 248-260 (Non-patent Document 1), boron compounds have already been studied from the first half of the 19th century as combustion inhibitors for cellulose-based materials such as wood. In view of cost and availability, boric acid and borax are often studied as fireproofing agents, and these have been reported to have an effect of suppressing flaming combustion and red heat combustion of wood and wood materials.
However, as shown in Table 1, boric acid and borax have a problem that solubility in water (dissolution amount g in 100 g of water) is low.

Figure 2005112700
Figure 2005112700

ホウ酸、ホウ砂の溶解度は、冷水に対するよりも熱水に対して比較的高いものの、20℃でホウ酸、ホウ砂の両方を水に溶解させたところで、その濃度は無水塩換算で7重量%程度にしかならず、木材の燃焼を抑制するだけの量を水溶液として木材や木質材料に注入することは困難である。ホウ酸、ホウ砂を熱水に溶解させて木材や木質材料に注入する場合には、操作性が悪く、高温では木材に水溶液が浸透しにくい傾向があり、しかも材料表面にホウ酸やホウ砂の結晶が析出するなどの問題がある。   Although the solubility of boric acid and borax is relatively higher in hot water than in cold water, when both boric acid and borax are dissolved in water at 20 ° C., the concentration is 7 wt. It is difficult to inject into a wood or woody material as an aqueous solution in an amount sufficient to suppress wood combustion. When boric acid or borax is dissolved in hot water and poured into wood or woody materials, the operability is poor, and there is a tendency that aqueous solutions do not easily penetrate into wood at high temperatures. There are problems such as precipitation of crystals.

20℃で最も高い溶解度を示すホウ酸ナトリウム塩はNa2O・B23・8H2Oであり、その溶解度は無水塩換算で20.0重量%である。すなわち、これまで無水塩換算で16.7重量%以上(ホウ素換算で2.5mol/kg以上)のホウ酸ナトリウム塩を含有する室温の水溶液は知られておらず、その調製方法も知られていなかった。また、このホウ酸ナトリウム塩は天然由来のホウ酸、ホウ砂から固相反応により合成されるが、その調製は簡便ではない。 The sodium borate salt exhibiting the highest solubility at 20 ° C. is Na 2 O · B 2 O 3 · 8H 2 O, and its solubility is 20.0% by weight in terms of anhydrous salt. That is, an aqueous solution at room temperature containing 16.7% by weight or more in terms of anhydrous salt (2.5 mol / kg or more in terms of boron) sodium borate has not been known so far, and its preparation method is also known. There wasn't. This sodium borate salt is synthesized from naturally-occurring boric acid and borax by a solid phase reaction, but its preparation is not simple.

特開平8−73212号公報(特許文献1)には、金属イオン封鎖剤(キレート化剤またはキレート剤)の水溶液あるいは湿潤浸透性界面活性剤の水溶液のいずれかに、ホウ酸化合物を常温で5g/水100gに相当する溶解度以上になるように混合し、この混合物を60℃以上に水熱反応せしめて得られる高濃度ホウ酸化合物が開示されている。また、この公報には、ホウ酸、ホウ砂の溶解は、キレート化剤や界面活性剤によるイオンミセル化・会合が関与していると考えられると記載されている。しかしながら、キレート化剤や界面活性剤などの有機化合物の非存在下、すなわち無機化合物のみの高濃度ホウ素化合物の水溶液は知られていなかった。   In JP-A-8-73212 (Patent Document 1), 5 g of boric acid compound at room temperature is added to either an aqueous solution of a sequestering agent (chelating agent or chelating agent) or an aqueous solution of a wet permeable surfactant. A high concentration boric acid compound obtained by mixing so as to have a solubility equal to or higher than 100 g of water and hydrothermally reacting the mixture at 60 ° C. or higher is disclosed. Further, this publication describes that dissolution of boric acid and borax is considered to involve ion micelle formation and association by a chelating agent or a surfactant. However, an aqueous solution of a high concentration boron compound containing only an inorganic compound in the absence of an organic compound such as a chelating agent or a surfactant has not been known.

他方、木材を使用した建築物は落ち着いた雰囲気を醸し出すことから、近年、その需要が増大している。特に建築基準法で不燃が求められる高層建築や地下用建築物では、これまで木材の使用が認可されなかったが、不燃木材の開発により認可されるようになり、その需要が飛躍的に増大している。このような背景のもと、より高濃度の無機成分を含有する不燃液を、より簡便な方法により低コストで製造することが強く求められている。   On the other hand, buildings using wood bring about a calm atmosphere, and in recent years, their demand has increased. Especially for high-rise buildings and underground buildings where noncombustibility is required by the Building Standard Law, the use of timber has not been approved so far, but it has been approved by the development of noncombustible timber, and its demand has increased dramatically. ing. Under such a background, it is strongly demanded to produce an incombustible liquid containing a higher concentration of inorganic components at a lower cost by a simpler method.

特開平8−73212号公報JP-A-8-73212 石原茂久,「木材防火剤としてのホウ素とその化合物」,木材保存,社団法人日本木材保存協会,1989年,第15巻,第6号,p.248−260Shigehisa Ishihara, “Boron and its compounds as wood fireproofing agents”, Wood Preservation, Japan Wood Preservation Association, 1989, Vol. 15, No. 6, p. 248-260

本発明は、ホウ酸、ホウ砂を原料として、ホウ酸ナトリウムを高濃度に含有し、室温で安定な中性の水溶液を簡便な方法で製造し、木材、紙、織布および不織布を防火・耐火・不燃材料とする技術を提供することを課題とする。   The present invention uses boric acid and borax as raw materials, contains sodium borate in a high concentration, and produces a neutral aqueous solution that is stable at room temperature by a simple method to fire-proof and protect wood, paper, woven fabric and nonwoven fabric. It is an object to provide technology for making fireproof and incombustible materials.

かくして、本発明によれば、水100部に対して、キレート化剤または界面活性剤を含まないで、ホウ酸(H3BO3)のx部とホウ砂(Na247・10H2O)のy部(但し、x<35、y<40、0<x<y+5)とを、ホウ素換算で2.5mol/kg以上含むことを特徴とする、室温で安定なホウ素化合物の水溶液が提供される。 Thus, according to the present invention, x part of boric acid (H 3 BO 3 ) and borax (Na 2 B 4 O 7 .10H) are contained in 100 parts of water without containing a chelating agent or surfactant. 2 O) y part (provided that x <35, y <40, 0 <x <y + 5) at least 2.5 mol / kg in terms of boron Is provided.

また、本発明によれば、水100部に対して、ホウ酸(H3BO3)のx部とホウ砂(Na247・10H2O)のy部(但し、x<35、y<40、0<x<y+5)とを添加し、加熱して溶解せしめ、次に室温まで冷却することにより、室温で安定なホウ素化合物の水溶液を得ることを特徴とするホウ素化合物の水溶液の製造方法が提供される。 In addition, according to the present invention, x part of boric acid (H 3 BO 3 ) and y part of borax (Na 2 B 4 O 7 .10H 2 O) with respect to 100 parts of water (provided that x <35 , Y <40, 0 <x <y + 5), heated to dissolve, and then cooled to room temperature to obtain an aqueous solution of boron compound that is stable at room temperature. A manufacturing method is provided.

さらに、本発明によれば、上記の水溶液を含むことを特徴とする液状の防火・耐火・不燃組成物が提供される。   Furthermore, according to the present invention, there is provided a liquid fireproof / fireproof / incombustible composition comprising the above aqueous solution.

また、本発明によれば、上記の液状の防火・耐火・不燃組成物を、木材、紙、織布および不織布から選択される対象物に含浸または噴霧し、対象物の1kg当り100g以上の防火・耐火・不燃組成物を対象物に含ませ、次に乾燥させることにより得られることを特徴とする防火・耐火・不燃材料が提供される。   Further, according to the present invention, the above liquid fireproof / fireproof / incombustible composition is impregnated or sprayed onto an object selected from wood, paper, woven fabric and non-woven fabric, and 100 g or more of fireproof per kg of the object. A fireproof / fireproof / incombustible material is provided which is obtained by including a fireproof / incombustible composition in an object and then drying it.

さらに、本発明によれば、上記の水溶液を蒸発乾固して得られることを特徴とする粉末状の防火・耐火・不燃組成物が提供される。   Furthermore, according to the present invention, there is provided a powdery fireproof / fireproof / incombustible composition obtained by evaporating and drying the aqueous solution.

本発明によれば、ホウ酸、ホウ砂を原料として、ホウ酸ナトリウムを高濃度に含有し、室温で安定な中性の水溶液を簡便な方法で製造し、木材、紙、織布および不織布を防火・耐火・不燃材料とする技術を提供することができる。   According to the present invention, boric acid and borax are used as raw materials, sodium borate is contained at a high concentration, and a neutral aqueous solution that is stable at room temperature is produced by a simple method, and wood, paper, woven fabric and nonwoven fabric are produced. Technology can be provided for fireproofing, fireproofing and nonflammable materials.

本発明の、室温で安定なホウ素化合物の水溶液は、水100部に対して、キレート化剤または界面活性剤を含まないで、ホウ酸(H3BO3)のx部とホウ砂(Na247・10H2O)のy部(但し、x<35、y<40、0<x<y+5)とを、ホウ素換算で2.5mol/kg以上含むことを特徴とする。 The aqueous solution of a boron compound which is stable at room temperature of the present invention does not contain a chelating agent or a surfactant with respect to 100 parts of water, and x part of boric acid (H 3 BO 3 ) and borax (Na 2). B 4 O 7 .10H 2 O) is characterized by containing 2.5 mol / kg or more of boron in terms of boron (provided that x <35, y <40, 0 <x <y + 5).

本発明において用いられるホウ酸はH3BO3(オルトホウ酸)および/またはHBO2(メタホウ酸)であり、ホウ砂は四ホウ酸ナトリウム十水和物Na247・10H2Oである。ホウ砂の重量は十水和物の重量換算であるが、ホウ砂は必ずしも水和物である必要はなく、無水物であってもよい。 The boric acid used in the present invention is H 3 BO 3 (orthoboric acid) and / or HBO 2 (metaboric acid), and borax is sodium tetraborate decahydrate Na 2 B 4 O 7 .10H 2 O. is there. Although the weight of borax is in terms of the weight of decahydrate, borax is not necessarily a hydrate and may be an anhydride.

本発明において、「部」とは重量部を意味する。
「濃度単位:mol/kg」は重量モル濃度であり、溶媒である水1kg当たりに溶解するホウ素の質量(モル)で表現したものである。
「室温」とは、15℃から25℃の温度範囲を意味する。
「室温で安定な」とは、室温で析出しないことを意味する。
In the present invention, “parts” means parts by weight.
“Concentration unit: mol / kg” is the molar concentration by weight, and is expressed by the mass (mol) of boron dissolved per 1 kg of water as a solvent.
“Room temperature” means a temperature range of 15 ° C. to 25 ° C.
“Stable at room temperature” means that it does not precipitate at room temperature.

本発明の、室温で安定なホウ素化合物の水溶液は、例えば、水100部に対して、ホウ酸(H3BO3)のx部とホウ砂(Na247・10H2O)のy部(但し、x<35、y<40、0<x<y+5)とを添加し、加熱して溶解せしめ、次に室温まで冷却することにより調製することができる。加熱は、70〜90℃、より好ましくは75〜85℃で行われるのが好ましい。 The aqueous solution of a boron compound that is stable at room temperature according to the present invention includes, for example, x part of boric acid (H 3 BO 3 ) and borax (Na 2 B 4 O 7 .10H 2 O) with respect to 100 parts of water. It can be prepared by adding y part (however, x <35, y <40, 0 <x <y + 5), heating to dissolve, and then cooling to room temperature. Heating is preferably performed at 70 to 90 ° C, more preferably 75 to 85 ° C.

従来から知られているように、ホウ酸だけを水に加え、加温して溶解させ、冷却したときには、溶解度の差に相当するホウ酸が溶解しきれずに析出(再結晶)する。例えば、水100gにホウ酸20gを加え、100℃に加温して完全に溶解させたとしても、20℃に冷却すれば20℃での溶解度は4.90なので、15.1gのホウ酸が析出することになる。ホウ砂の場合も同様であり、加温してホウ砂を多量に溶解させたとしても、室温に冷却すれば、室温での溶解度に相当する分しか溶解しないから、ホウ砂が析出(再結晶)することになる。   As conventionally known, when boric acid alone is added to water, heated and dissolved, and cooled, boric acid corresponding to the difference in solubility cannot be completely dissolved but is precipitated (recrystallized). For example, even if 20 g of boric acid is added to 100 g of water and heated to 100 ° C. and completely dissolved, if it is cooled to 20 ° C., the solubility at 20 ° C. is 4.90, so 15.1 g of boric acid is It will be deposited. The same applies to borax. Even if a large amount of borax is dissolved by heating, if it is cooled to room temperature, only the amount corresponding to the solubility at room temperature will be dissolved. ).

本発明の、室温で安定なホウ素化合物の水溶液は、ホウ酸、ホウ砂の両方を特定の割合で水に混合し、加温して完全に溶解させた後、室温に冷却しても、ホウ酸、ホウ砂などを析出しないことを見出したことに基づく。   The boron compound aqueous solution of the present invention, which is stable at room temperature, is prepared by mixing both boric acid and borax in water at a specific ratio, heating to completely dissolve, and then cooling to room temperature. It is based on finding out that acid, borax, etc. do not precipitate.

例えば、水100gに対して、ホウ酸20g、ホウ砂25gを加え、加温したところ、70℃で完全に溶解した。その後、20℃に冷却したところ、透明な水溶液となり、析出物は全く見られなかった。この水溶液はホウ素換算で3.48mol/kg、固形分換算で23重量%であり、従来は室温で安定に存在し得なかった濃度の水溶液である。この水溶液のpHは6.95、比重は1.13であった。   For example, 20 g of boric acid and 25 g of borax were added to 100 g of water and heated, and then completely dissolved at 70 ° C. Then, when it cooled at 20 degreeC, it became transparent aqueous solution and the deposit was not seen at all. This aqueous solution is 3.48 mol / kg in terms of boron and 23% by weight in terms of solid content, and is an aqueous solution having a concentration that could not exist stably at room temperature. The aqueous solution had a pH of 6.95 and a specific gravity of 1.13.

得られた水溶液(ファイアレスB)について、室温でラマンスペクトルを測定したところ、図1に示すように、ファイアレスB(D)は、ホウ酸飽和水溶液(A)、ホウ砂飽和水溶液(B)、ホウ酸・ホウ砂飽和水溶液(C)とは異なるスペクトルが得られた。
図1によれば、ホウ酸飽和水溶液(A)は、ホウ酸イオン(BO3 3-)によるスペクトルを呈し、ホウ砂飽和水溶液(B)は、四ホウ酸イオン(B47 2-)によるスペクトルを呈している。また、ホウ酸・ホウ砂飽和水溶液(C)は、ホウ酸イオンと四ホウ酸イオンを足し合わせた状態のスペクトルを呈している。一方、本発明の室温で安定なホウ素化合物の水溶液(D)のスペクトルは、単独および室温混合の水溶液のスペクトルに比べて低エネルギー側にシフトし、全く異なる場所にピークを有している(880±150cm-1)。
When the Raman spectrum of the obtained aqueous solution (fireless B) was measured at room temperature, as shown in FIG. 1, fireless B (D) was a boric acid saturated aqueous solution (A), a borax saturated aqueous solution (B). A spectrum different from that of the saturated aqueous solution of boric acid / borax (C) was obtained.
According to FIG. 1, the boric acid saturated aqueous solution (A) exhibits a spectrum of borate ions (BO 3 3− ), and the borax saturated aqueous solution (B) is tetraborate ions (B 4 O 7 2− ). Spectrum. Moreover, the boric acid / borax saturated aqueous solution (C) exhibits a spectrum in a state where borate ions and tetraborate ions are added together. On the other hand, the spectrum of the aqueous solution (D) of the boron compound stable at room temperature according to the present invention is shifted to a lower energy side as compared with the spectrum of the single and room temperature mixed aqueous solution, and has peaks at completely different locations (880). ± 150 cm −1 ).

一般に、ホウ酸イオンの重合度が上がり、大きなポリホウ酸イオンになるにしたがって、ラマンスペクトルのピークは低エネルギー側にシフトすると考えられ、高濃度にホウ素を含有する本発明のホウ素化合物の水溶液は、四ホウ酸イオンに比較して、より多くのホウ素を1つのアニオン内に含有するポリホウ酸イオン、例えばB2n+43n+7 2-(nは1以上の整数)となって溶解していると推定される。また、ホウ素原子は3個の酸素原子に囲まれているが、この3つのホウ素−酸素結合は全て同一平面上にあり、重合度が大きいポリホウ酸イオンも平面状の陰イオンと考えられる。このことは後述する造膜性、発泡性とも深く関連する。 Generally, as the degree of polymerization of borate ions increases and becomes large polyborate ions, the peak of the Raman spectrum is considered to shift to a lower energy side, and the aqueous solution of the boron compound of the present invention containing boron at a high concentration is Compared to tetraborate ion, it dissolves as a polyborate ion containing more boron in one anion, for example, B 2n + 4 O 3n + 7 2− (n is an integer of 1 or more). It is estimated that In addition, the boron atom is surrounded by three oxygen atoms, but the three boron-oxygen bonds are all on the same plane, and a polyborate ion having a high degree of polymerization is considered to be a planar anion. This is deeply related to the film forming property and foaming property described later.

本発明のホウ素化合物の水溶液に半導体励起YAGレーザー(波長532nm)を照射したところ、光路が輝いて見えるチンダル現象が観察された。このことからも、本発明のホウ素化合物の水溶液は、コロイド並み、すなわち1〜100nmの大きさのポリホウ酸イオンが溶解している状態であると考えられる。   When an aqueous solution of the boron compound of the present invention was irradiated with a semiconductor-excited YAG laser (wavelength of 532 nm), a Tyndall phenomenon in which the optical path appeared to shine was observed. Also from this fact, it is considered that the aqueous solution of the boron compound of the present invention is in a state in which polyborate ions having a size of 1 to 100 nm are dissolved, which is equivalent to a colloid.

本発明のホウ素化合物の水溶液を加熱して蒸発乾固させたところ、水分の蒸発時に発生する泡がなかなか弾けずに、表面に膜を生成する傾向が観察され、最終的に発泡スチロール状の固形物が得られた。この固形物の比重は0.1〜0.3程度で、その性状は原料としたホウ酸やホウ砂とは全く異なるものであった。   When the aqueous solution of the boron compound of the present invention was heated and evaporated to dryness, the tendency of forming a film on the surface was observed without the foam generated during the evaporation of water being easily blown, and finally a polystyrene-like solid substance was gotten. The specific gravity of the solid was about 0.1 to 0.3, and its properties were completely different from boric acid and borax as raw materials.

得られた固形物について、CuKα線(1.5418Å)を用いて粉末X線回折を行ったところ、図2に示すようなブロードな2つの回折ピーク、具体的には2θ=27.8±1.2および45.7±1.2にピークが観察された。この回折ピークは、ホウ酸やホウ砂の単独の回折ピークではなく、ホウ酸、ホウ砂を原料にした非晶質ホウ酸ナトリウム塩の回折ピークと考えられる。
以上のことから、ホウ酸、ホウ砂の両方を加温し、室温では溶解できない量を溶解させた後に、室温に冷却したものは、公知のホウ酸ナトリウム塩水溶液とは異なるものと考えられる。
The obtained solid was subjected to powder X-ray diffraction using CuKα ray (1.5418 Å). As a result, two broad diffraction peaks as shown in FIG. 2, specifically 2θ = 27.8 ± 1. Peaks were observed at .2 and 45.7 ± 1.2. This diffraction peak is not a single diffraction peak of boric acid or borax, but is considered to be a diffraction peak of amorphous sodium borate using boric acid or borax as a raw material.
From the above, what heated both boric acid and borax, melt | dissolved the quantity which cannot be melt | dissolved at room temperature, and cooled to room temperature is considered to differ from well-known sodium borate aqueous solution.

ホウ酸とホウ砂の混合比を変化させてホウ素化合物の水溶液を調製したところ、図3の結果が得られた。図中、「○」は70℃以上に加温して、室温に冷却しても、析出物を生じないもの、「△」は微量の析出物を生じるもの、「×」は析出物を生じるものを示す。得られた結果から、水100部に対するホウ酸x部とホウ砂y部との関係は、x<35、y<40、0<x<y+5の関係を満たす必要があることがわかる。   When the boron compound aqueous solution was prepared by changing the mixing ratio of boric acid and borax, the results shown in FIG. 3 were obtained. In the figure, “◯” indicates that no precipitate is generated even when heated to 70 ° C. or higher and is cooled to room temperature, “Δ” indicates that a very small amount of precipitate is generated, and “×” indicates that a precipitate is generated. Show things. From the obtained results, it can be seen that the relationship between the boric acid x part and the borax y part relative to 100 parts of water needs to satisfy the relations x <35, y <40, and 0 <x <y + 5.

また、ホウ酸/ホウ砂の混合比が増加するにしたがって、溶液のpHは中性に近くなる傾向が見られ、ホウ酸/ホウ砂の混合比を0.6〜1.2の範囲にすることにより、溶液のpHを6〜8の範囲に調整できることがわかった。例えば、水100gに対して、ホウ酸25g、ホウ砂35gを添加し、70℃以上に加温して、溶解させて、室温に冷却した溶液(27.2重量%、ホウ素に関して4.26mol/kg)のpHは6.65であった。溶液の液性を中性にすることは、不燃液としての使用の際に極めて重要になる。
さらに水100gに対して、ホウ酸31g、ホウ砂38gを添加した水溶液(30.2重量%、ホウ素に関して5.1mol/kg)も調製できることがわかった。
In addition, as the boric acid / borax mixing ratio increases, the pH of the solution tends to become neutral, and the boric acid / borax mixing ratio is in the range of 0.6 to 1.2. It was found that the pH of the solution can be adjusted in the range of 6-8. For example, 25 g of boric acid and 35 g of borax are added to 100 g of water, heated to 70 ° C. or higher, dissolved, and cooled to room temperature (27.2 wt%, 4.26 mol /% with respect to boron). kg) had a pH of 6.65. Making the solution liquid neutral is extremely important when used as an incombustible liquid.
Furthermore, it was found that an aqueous solution (30.2% by weight, 5.1 mol / kg with respect to boron) in which 31 g of boric acid and 38 g of borax were added to 100 g of water could be prepared.

本発明のホウ素化合物の水溶液は、水100部に対して、過剰のホウ酸とホウ砂とを添加し、加熱して溶解せしめ、次に室温まで冷却し、未溶解物を除去することによっても調製することができる。すなわち、上記のようにホウ酸、ホウ砂を添加し、溶け残りを生じさせず、完溶させてもよいが、図3に示した範囲よりも過剰量のホウ酸、ホウ砂を添加し、溶け残りを生じさせ、上澄み液を採取することによっても、本発明のホウ素化合物の水溶液を得ることができる。しかし、この方法は経済上、好ましくない。   The boron compound aqueous solution of the present invention can also be prepared by adding excess boric acid and borax to 100 parts of water, heating to dissolve, and then cooling to room temperature to remove undissolved matter. Can be prepared. That is, as described above, boric acid and borax are added, and it may be completely dissolved without causing undissolved residue, but an excessive amount of boric acid and borax than the range shown in FIG. 3 is added, An aqueous solution of the boron compound of the present invention can also be obtained by causing undissolved residue and collecting the supernatant. However, this method is not preferable economically.

例えば、水100gに対して、ホウ酸50g、ホウ砂70gを添加し、70℃以上に加熱してから、室温に冷却した後、溶け残りをろ過して分離することにより、本発明のホウ素化合物の水溶液を得ることができる。得られたろ液(上澄み液)を蒸発乾固したところ、30重量%の固形物が得られた。また、ろ紙上に回収された溶け残りを乾燥後、CuKα線(1.5418Å)を用いた粉末X線回折で定量したところ、ホウ酸約18g、ホウ砂約33gであった。添加量から溶け残り量を差し引いて求めた溶解量はホウ酸約32g、ホウ砂約37gとなり、上記の完溶させる方法で溶解させることができる量とほぼ等しくなった。このように、溶け残りが生じることを前提として、ホウ酸、ホウ砂を過剰に添加しても、約30重量%の固形分を含有するホウ素化合物の水溶液を調製することができる。   For example, the boron compound of the present invention is obtained by adding 50 g of boric acid and 70 g of borax to 100 g of water, heating to 70 ° C. or higher, cooling to room temperature, and filtering and separating the undissolved residue. Can be obtained. When the obtained filtrate (supernatant liquid) was evaporated to dryness, a solid matter of 30% by weight was obtained. Moreover, when the undissolved residue collected on the filter paper was dried and quantified by powder X-ray diffraction using CuKα rays (1.5418Å), it was about 18 g of boric acid and about 33 g of borax. The dissolution amount obtained by subtracting the undissolved amount from the addition amount was about 32 g of boric acid and about 37 g of borax, which was almost equal to the amount that can be dissolved by the above-described complete dissolution method. Thus, even if boric acid and borax are added excessively on the assumption that undissolved residue is generated, an aqueous solution of a boron compound containing a solid content of about 30% by weight can be prepared.

本発明のホウ素化合物の水溶液は、リン酸またはリン酸塩をさらに含むのが好ましい。
リン酸およびリン酸塩は、接炎後の消火速度を早くする燃焼抑制効果を有する。
リン酸またはリン酸塩の添加量は、0.2〜5重量%程度、好ましくは0.5〜2重量%である。
The aqueous solution of the boron compound of the present invention preferably further contains phosphoric acid or a phosphate.
Phosphoric acid and phosphate have a combustion suppressing effect that increases the fire extinguishing speed after flame contact.
The amount of phosphoric acid or phosphate added is about 0.2 to 5% by weight, preferably 0.5 to 2% by weight.

本発明によれば、上記のホウ素化合物の水溶液を含む液状の防火・耐火・不燃組成物を、木材、紙、織布および不織布から選択される対象物に含浸または噴霧し、対象物の1kg当り100g以上の防火・耐火・不燃組成物を対象物に含ませ、次に乾燥させることにより得られることを特徴とする防火・耐火・不燃材料が提供される。
本発明の液状の防火・耐火・不燃組成物は、高濃度のホウ素化合物を含有するので、大量の防火・耐火・不燃成分を材料中に導入することができ、材料に優れた防火・耐火・不燃・難燃の性能を付与することができる。なお、木材など重量に対して表面積の割合が小さい材料については、オートクレーブなどを使用し、加圧下で含浸させるのが好ましい。含浸は、0.5N/mm2以上、好ましくは1N/mm2以上の加圧下で行われるのが好ましい。
According to the present invention, a liquid fireproof / fireproof / incombustible composition containing an aqueous solution of the above boron compound is impregnated or sprayed on an object selected from wood, paper, woven fabric and non-woven fabric, and per 1 kg of the object. There is provided a fireproof / fireproof / incombustible material characterized by being obtained by adding 100 g or more of a fireproof / fireproof / incombustible composition to an object and then drying it.
Since the liquid fireproof / fireproof / incombustible composition of the present invention contains a high concentration of boron compound, a large amount of fireproof / fireproof / incombustible components can be introduced into the material. Incombustible and flame retardant performance can be imparted. For materials such as wood that have a small surface area ratio relative to weight, it is preferable to use an autoclave or the like and impregnate under pressure. The impregnation is preferably performed under a pressure of 0.5 N / mm 2 or more, preferably 1 N / mm 2 or more.

本発明によれば、上記のホウ素化合物の水溶液を蒸発乾固して得られることを特徴とする粉末状の防火・耐火・不燃組成物が提供される。
蒸発乾固は、公知の方法により行うことができるが、スプレードライ法(噴霧乾燥法)が特に好ましい。「スプレードライ法」とは、液体を微細な霧状にして、熱風中に噴霧し、瞬間的に乾燥させて粉体を得る方法である。
According to the present invention, there is provided a powdery fireproof / fireproof / incombustible composition obtained by evaporating and drying an aqueous solution of the boron compound.
Evaporation to dryness can be performed by a known method, but spray drying (spray drying) is particularly preferred. The “spray drying method” is a method in which a liquid is made into a fine mist, sprayed in hot air, and instantaneously dried to obtain a powder.

本発明を以下の実施例によりさらに詳しく説明するが、これらの実施例により本発明が限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

(実施例1)
水100部に対して、ホウ酸20部、ホウ砂25部を加えて調製したホウ素化合物の水溶液(固形分22.9%、以下「2025溶液」という)を、室温で木材に含浸させる実験を行った。
木材としては、集成材(100mm×25mm×25mm)、南洋材(100mm×24mm×24mm)、杉材(100mm×12mm×30mm)、ひのき(100mm×3mm×20mm)を使用した。含浸前に各木材を100℃で24時間乾燥させた後、比重を測定したところ、それぞれ0.46、0.58、0.31、0.50であった。これらの木材を25℃でホウ素化合物の水溶液に24時間含浸させ、次いで100℃で24時間乾燥させたところ、各木材の重量はそれぞれ3.7%、3.1%、10.5%、3.5%増加していた。この重量増加分が木材内部に導入できたホウ酸ナトリウム塩である。
(Example 1)
An experiment in which wood is impregnated with an aqueous solution of a boron compound prepared by adding 20 parts of boric acid and 25 parts of borax to 100 parts of water at a room temperature (solid content 22.9%, hereinafter referred to as “2025 solution”). went.
As the wood, laminated timber (100 mm × 25 mm × 25 mm), south-sea wood (100 mm × 24 mm × 24 mm), cedar (100 mm × 12 mm × 30 mm), cypress (100 mm × 3 mm × 20 mm) were used. After each wood was dried at 100 ° C. for 24 hours before impregnation, the specific gravity was measured to be 0.46, 0.58, 0.31, and 0.50, respectively. When these woods were impregnated with an aqueous solution of a boron compound at 25 ° C. for 24 hours and then dried at 100 ° C. for 24 hours, the weight of each wood was 3.7%, 3.1%, 10.5%, Increased by 5%. This increase in weight is sodium borate that can be introduced into the wood.

得られた木材にブタンガスバーナーを使用して、簡易燃焼試験を行った。比較として、未処理の木材についても同様に試験したところ、10秒間の接炎で着火し、瞬く間に燃え広がり、炎が大きくなった。これに対して、処理した木材は30秒以上、バーナーの炎を接触させても炎は出ず、炭化するのみで、炎を離すと火が消える傾向が観察された。また、処理した木材に炎を近付けるとともに、木材の内部に導入したホウ酸ナトリウム塩の成分が白い膜となって膨らみ、木材内部を覆う形で木材を炎から保護する現象が観察された。   A simple combustion test was performed on the obtained wood using a butane gas burner. As a comparison, untreated wood was also tested in the same manner, and it was ignited by flame contact for 10 seconds. In contrast, the treated wood was observed to have a tendency to extinguish when the flame was released when the flame was released after the treated wood had been exposed to a burner flame for more than 30 seconds and no flame was produced. In addition, the flame was brought closer to the treated wood, and the phenomenon that the components of sodium borate introduced into the inside of the wood swelled as a white film and protected the wood from the flame covering the inside of the wood was observed.

木材の内部にこれまでの技術で導入できる固形分の量は、杉材の10.5重量%が最大であった。建築基準法に基づく不燃試験に合格するためには、最低でも木材1m3当たり200kgの無機固形分を導入する必要がある。したがって、比重0.31の杉材の場合には、重量比で65%以上の無機固形分を導入しなければならない。しかしながら、本実施例の室温、常圧下での含浸では10重量%強の導入量に留まったにもかかわらず、簡易燃焼試験の結果から、難燃性が付与できたものと考えられる。 The maximum amount of solids that can be introduced into the wood using conventional techniques was 10.5% by weight of cedar. In order to pass the nonflammability test based on the Building Standards Law, it is necessary to introduce at least 200 kg of inorganic solids per m 3 of wood. Therefore, in the case of cedar wood having a specific gravity of 0.31, an inorganic solid content of 65% or more by weight must be introduced. However, impregnation under room temperature and normal pressure in this example was considered to have been able to impart flame retardancy from the result of the simple combustion test, although the amount introduced was just over 10% by weight.

(実施例2)
リン酸の1重量%をさらに添加すること以外は、実施例1と同様にして、水溶液を調整し、同様に含浸させる実験を行った。実施例1と同様の材料を使用し、室温で木材に含浸させる実験を行った。
含浸後の重量はそれぞれ4.6%、3.6%、11.8%、4.1%増加していた。重量増加率が実施例1よりも大きいのは、リン酸が木材内部に導入されたためと考えられる。
簡易燃焼試験では、実施例1と比較して、接炎後の消火速度が若干早くなる傾向が観察された。これは、リン酸のもつ燃焼抑制効果がプラスに寄与したものと考えられる。
(Example 2)
An experiment was carried out in which an aqueous solution was prepared and impregnated in the same manner as in Example 1 except that 1% by weight of phosphoric acid was further added. Using the same material as in Example 1, an experiment was performed in which wood was impregnated at room temperature.
The weight after impregnation increased by 4.6%, 3.6%, 11.8% and 4.1%, respectively. The weight increase rate is larger than that in Example 1 because phosphoric acid was introduced into the wood.
In the simple combustion test, it was observed that the fire extinguishing speed after flame contact was slightly faster than in Example 1. This is considered that the combustion suppression effect which phosphoric acid has contributed positively.

(実施例3)
実施例1と同様にして調製した2025溶液を和紙0.30gに含浸させ、風乾したところ、和紙の重量は0.63gとなり、和紙に対して重量比で110%の無機固形分を導入できた。
得られた和紙に接炎したところ、着火せず、炭化するのみであった。炭化後の重量は0.46gであった。
2025溶液を和紙に含浸させると、和紙の手触りが硬くなるなどの風合いの変化が見られたため、霧吹きを用いて2025溶液を和紙0.40gにスプレーし、風乾させることにより、無機固形分を導入した。その結果、和紙の重量は0.68gとなり、和紙に対して重量比で70%の無機固形分を導入できた。
得られた和紙に接炎したところ、着火せず、炭化するのみであった。炭化後の重量は0.46gであった。
(Example 3)
When a 2025 solution prepared in the same manner as in Example 1 was impregnated into 0.30 g of Japanese paper and air-dried, the weight of the Japanese paper was 0.63 g, and an inorganic solid content of 110% by weight relative to the Japanese paper could be introduced. .
When the obtained Japanese paper was in contact with flame, it did not ignite but only carbonized. The weight after carbonization was 0.46 g.
When the Japanese paper was impregnated with the 2025 solution, changes in the texture such as the hand of the Japanese paper becoming hard were observed. Therefore, the inorganic solid content was introduced by spraying the 2025 solution onto 0.40 g of the Japanese paper using a spray bottle and air-drying. did. As a result, the weight of the Japanese paper was 0.68 g, and an inorganic solid content of 70% by weight with respect to the Japanese paper could be introduced.
When the obtained Japanese paper was in contact with flame, it did not ignite but only carbonized. The weight after carbonization was 0.46 g.

(実施例4)
和紙の代わりに、ふすまに用いられる厚手のふすま紙を用いること以外は、実施例3と同様にして、試験を行った。
含浸させる方法および霧吹きを用いてスプレーする方法で、2025溶液をふすま紙0.55gに無機固形分を導入したところ、ふすま紙の重量は、それぞれ1.20gおよび0.88gとなり、それぞれ118重量%および60重量%の無機固形分が導入できた。
得られたふすま紙に接炎したところ、炎は出ず、炭化するのみであった。炭化後の重量は、それぞれ0.90g、0.58gであった。
本発明のホウ素化合物の水溶液は、建築物に使用される紙の不燃化に極めて有効であり、火災予防に効果的であることがわかった。
Example 4
The test was conducted in the same manner as in Example 3 except that thick bran paper used for bran was used instead of Japanese paper.
When inorganic solids were introduced into 0.55 g of bran paper by the impregnation method and the spray method using a spray, the weight of the bran paper was 1.20 g and 0.88 g, respectively, and 118% by weight, respectively. And 60 wt% inorganic solids could be introduced.
When the obtained bran paper was in contact with flame, no flame was produced and only carbonization occurred. The weight after carbonization was 0.90 g and 0.58 g, respectively.
It has been found that the aqueous solution of the boron compound of the present invention is extremely effective for incombustibility of paper used for buildings and is effective for fire prevention.

(実施例5)
和紙の代わりに、綿100%のカーテン用布を用いること以外は、実施例3と同様にして、試験を行った。
含浸させる方法で、2025溶液をカーテン用布10.8gに無機固形分を導入したところ、カーテン用布の重量は、15.6gとなり、44.4重量%の無機固形分が導入できた。また、含浸の程度、含浸後の絞りの有無などを変化させたところ、重量比にして20〜105重量%の範囲で無機固形分を導入できた。
得られた全てのカーテン用布に接炎したところ、着火せず、炭化するのみで、炎を離すと火が消える傾向が観察された。
カーテンに着火し火災事故となる事例が多いが、本発明のホウ素化合物の水溶液を含浸させることにより、火災予防上、優れた効果のある綿布を得ることができる。
(Example 5)
The test was conducted in the same manner as in Example 3 except that 100% cotton curtain cloth was used instead of Japanese paper.
When an inorganic solid content was introduced into 10.8 g of curtain fabric by the impregnation method, the weight of the curtain fabric was 15.6 g, and 44.4 wt% of the inorganic solid content could be introduced. In addition, when the degree of impregnation and the presence or absence of squeezing after the impregnation were changed, the inorganic solid content could be introduced in the range of 20 to 105% by weight.
When all the curtain fabrics obtained were in contact with flame, it was observed that there was a tendency for the fire to extinguish when the flame was released.
In many cases, the curtain is ignited to cause a fire accident. By impregnating the aqueous solution of the boron compound of the present invention, a cotton cloth having an excellent effect on fire prevention can be obtained.

(実施例6)
綿100%のカーテン用布の代わりに、ポリエステル100%のカーテン用布を用いること以外は、実施例5と同様にして、試験を行った。
2025溶液の含浸の程度、含浸後の絞りの有無などを変化させたところ、重量比にして12〜88重量%の範囲で無機固形分を導入できた。
比較として、未処理のカーテン用布に接炎したところ、ポリエステルの融解物が滴となって落下し、さらにその滴に着火して炎が舞い上がる状況が観察された。これに対して、処理したカーテン用布は、ポリエステルの融解物が滴となって落下するものの、滴や布にはほとんど着火せず、黒く炭化するのみであった。また、着火してもその炎が融解物表面に析出する白い膜に覆われると直ちに消火される様子が観察できた。
本発明のホウ素化合物の水溶液は、一般に難燃処理の難しい合成化学繊維に対しても顕著な難燃効果を示すことがわかった。
(Example 6)
The test was conducted in the same manner as in Example 5 except that a 100% polyester curtain fabric was used instead of the 100% cotton curtain fabric.
When the degree of impregnation of the 2025 solution, the presence or absence of squeezing after the impregnation, and the like were changed, the inorganic solid content could be introduced in the range of 12 to 88% by weight.
As a comparison, when the flame was contacted with an untreated curtain cloth, it was observed that the melt of the polyester dropped as a drop and further ignited and the flame soared. On the other hand, the treated curtain cloth fell in the form of a polyester melt, but hardly ignited the drop or cloth and only carbonized black. In addition, it was observed that the fire extinguished immediately when the flame was covered with a white film deposited on the surface of the melt.
It has been found that the aqueous solution of the boron compound of the present invention generally exhibits a remarkable flame retardant effect even for synthetic chemical fibers that are difficult to flame retardant.

(実施例7)
ポリエステル100%のカーテン用布の代わりに、ポリエステル100%のカーペット、およびポリエステル100%の換気扇フィルター用の不織布を用いること以外は、実施例6と同様にして、試験を行った。
2025溶液の含浸の程度、含浸後の絞りの有無などを変化させたところ、重量比にして15〜90重量%の範囲で無機固形分を導入でき、ポリエステル100%のカーテン用布の結果とほとんど一致した。
得られたカーペットおよび不織布に接炎したところ、、ポリエステルの融解物に一時的に着火して炎が上がることもあったが、それが直ちに白色の無機物に覆われる形で消火される傾向が確認できた。
本発明のホウ素化合物の水溶液は、用途、形態を問わず、ポリエステル繊維で構成される布に難燃効果を付与できるがわかった。
(Example 7)
The test was conducted in the same manner as in Example 6 except that a 100% polyester carpet and a 100% polyester non-woven fabric for a ventilation fan filter were used in place of the 100% polyester curtain fabric.
When the degree of impregnation of the 2025 solution, the presence or absence of squeezing after the impregnation, etc. were changed, inorganic solid content could be introduced in the range of 15 to 90% by weight, almost the same as the result of 100% polyester curtain cloth. Matched.
When the obtained carpet and nonwoven fabric were in flame contact, the melt of the polyester was temporarily ignited and the flame rose, but it was confirmed that it immediately extinguishes in a form covered with white inorganic matter. did it.
It turned out that the aqueous solution of the boron compound of this invention can provide a flame-retardant effect to the cloth comprised by polyester fiber regardless of a use and a form.

(実施例8)
パーティクルボードの原料として使用される廃木材チップ(一片20〜30mm×5mm×0.5〜1mm程度)に2025溶液を含浸させて、燃焼性の有無をチェックした。
室温、常圧下で、2025溶液を廃木材チップに1分間含浸させ、乾燥させた。その結果、重量比で25〜35%の無機固形分が廃木材チップに導入できた。廃木材チップの無機固形分は、実施例1の杉材の固形分10.5%と比較すると大きい。これは廃木材チップが小さく、表面積が大きいため、内部まで液体が浸透し易いためと考えられる。
廃木材チップを一片ずつ、バーナーの炎であぶり、着火の様子を調べたが、炭化するのみで、炎を離すと消火し、着火することはなかった。
得られた結果から、2025溶液で不燃化した廃木材チップを原料として、不燃パーティクルボードを作製できることがわかる。
(Example 8)
Waste wood chips (20-30 mm × 5 mm × 0.5-1 mm or so) used as a raw material for particleboard were impregnated with 2025 solution to check for combustibility.
The waste wood chips were impregnated with the 2025 solution for 1 minute at room temperature and normal pressure, and dried. As a result, an inorganic solid content of 25 to 35% by weight ratio could be introduced into the waste wood chip. The inorganic solid content of the waste wood chip is larger than the solid content of 10.5% of the cedar wood of Example 1. This is presumably because the waste wood chips are small and the surface area is large, so that the liquid can easily penetrate into the inside.
Each piece of waste wood chip was burned with a burner flame, and the state of ignition was examined, but it was only carbonized, extinguished when the flame was released, and never ignited.
From the obtained results, it is understood that a non-combustible particle board can be produced using waste wood chips incombustible with a 2025 solution as a raw material.

(実施例9)
オートクレーブを使用して、2025溶液を加圧下で木材に注入する実験を行った。
注入条件は、圧力2N/mm2(20kgf/cm2)、温度20℃および70℃の2条件とした。
木材としては、各条件とも温度100℃で1週間乾燥させた杉材を使用した。温度20℃の条件では、成熟材A(比重0.343)、成熟材B(比重0.385)および間伐材A(比重0.299)を、温度70℃の条件では、成熟材C(比重0.357)および間伐材B(比重0.307)を使用した。
Example 9
Using an autoclave, an experiment was conducted in which the 2025 solution was poured into wood under pressure.
The injection conditions were a pressure of 2 N / mm 2 (20 kgf / cm 2 ), a temperature of 20 ° C. and 70 ° C.
As the wood, cedar wood dried at a temperature of 100 ° C. for 1 week was used for each condition. Under the condition of a temperature of 20 ° C., the matured wood A (specific gravity of 0.343), the matured wood B (specific gravity of 0.385) and the thinned wood A (specific gravity of 0.299) are used. 0.357) and thinned wood B (specific gravity 0.307) were used.

図4に2025溶液の含浸時間と導入量(単位体積当りの無機固形分kg/m3)の関係を示す。注入温度で比較した場合、含浸後12時間くらいまでは70℃の方が、導入量が多く、24時間以降では逆転し、最終的な導入量は20℃の方が多い。これは、温度が高い方が注入速度が速いものの、最終的な平衡状態においては導入量が小さくなることを示している。
得られた結果から、大量の無機成分を木材内部に導入するためには、高温よりも室温で含浸させる方が望ましく、そのために大量の無機成分が室温で安定に溶解した水溶液が必要であることがわかる。
FIG. 4 shows the relationship between the impregnation time of the 2025 solution and the amount introduced (inorganic solid content kg / m 3 per unit volume). When compared at the injection temperature, the introduction amount is higher at 70 ° C. until about 12 hours after impregnation, and the amount of introduction is reversed after 24 hours, and the final introduction amount is higher at 20 ° C. This shows that the higher the temperature, the faster the injection rate, but the smaller the amount introduced in the final equilibrium state.
From the obtained results, in order to introduce a large amount of inorganic components into the wood, it is desirable to impregnate at room temperature rather than high temperature, and therefore an aqueous solution in which a large amount of inorganic components are stably dissolved at room temperature is required. I understand.

20℃で約24時間含浸させたものの導入量は、230〜270kg/m3の範囲にあり、導入量から判断すると建築基準法に基づく不燃試験に合格すると予測される。一方、70℃で含浸させ、最終的に導入量が197kg/m3のものは、不燃試験の合格、不合格のボーダーラインにあると考えられる。
また、無機成分は木材の導管を通って内部に浸透するので、導管の切断面が表面に出ている割合の大きい方が、注入速度が速い傾向にある。成熟材Aと成熟材Bの注入速度の違いは、これによるものと推定される。
The amount of the material impregnated at 20 ° C. for about 24 hours is in the range of 230 to 270 kg / m 3 , and judging from the amount of introduction, it is predicted that the incombustible test based on the Building Standard Law will be passed. On the other hand, impregnation at 70 ° C. and finally introduction amount of 197 kg / m 3 is considered to be in the borderline of pass / fail of the nonflammability test.
In addition, since the inorganic component permeates into the inside through the wood conduit, the injection rate tends to be higher when the ratio of the cut surface of the conduit to the surface is larger. It is presumed that this is due to the difference in the injection rate between the matured material A and the matured material B.

(実施例10)
2025溶液の代わりに、実施例2と同様にして調製したリン酸1重量%を含む2025溶液を用いること以外は、実施例9と同様にして、試験を行った。
注入条件は、圧力2N/mm2、温度20℃とした。
木材としては、温度100℃で1週間乾燥させた杉材、成熟材D(比重0.351)および間伐材C(比重0.313)を使用した。
途中でオートクレーブを開けることなく、48時間連続して溶液を含浸させたところ、最終的な導入量は、それぞれ265kg/m3、261kg/m3となった。
得られた結果から、リン酸の存在は無機成分の注入に悪影響を及ぼさないことがわかる。
(Example 10)
The test was performed in the same manner as in Example 9 except that instead of the 2025 solution, a 2025 solution containing 1% by weight of phosphoric acid prepared in the same manner as in Example 2 was used.
The injection conditions were a pressure of 2 N / mm 2 and a temperature of 20 ° C.
As wood, cedar wood, mature wood D (specific gravity 0.351) and thinned wood C (specific gravity 0.313) dried at a temperature of 100 ° C. for 1 week were used.
Without opening the autoclave in the course, it was impregnated with the solution continuously for 48 hours, the final introduction amount became 265kg / m 3, 261kg / m 3 respectively.
From the results obtained, it can be seen that the presence of phosphoric acid does not adversely affect the injection of inorganic components.

(実施例11)
杉材の代わりに、ヒノキ材(比重0.37)およびアカマツ材(比重0.48)を用いること以外は、実施例9と同様にして、試験を行った。
注入条件は、圧力2N/mm2、温度20℃とした。
途中でオートクレーブを開けることなく、48時間連続して溶液を含浸させたところ、最終的な導入量は、それぞれ210kg/m3、255kg/m3となった。これらの木材も導入量から判断すると不燃試験に合格するレベルであることがわかる。
(Example 11)
A test was conducted in the same manner as in Example 9 except that cypress wood (specific gravity 0.37) and red pine wood (specific gravity 0.48) were used instead of cedar wood.
The injection conditions were a pressure of 2 N / mm 2 and a temperature of 20 ° C.
Without opening the autoclave in the course, it was impregnated with the solution continuously for 48 hours, the final introduction amount became 210kg / m 3, 255kg / m 3 respectively. Judging from the amount of these timbers, it can be seen that they are at a level that passes the nonflammability test.

(実施例12)
建築基準法に基づく不燃認定を受けるためには、不燃試験および燃焼試験のいずれかに合格する必要がある。不燃試験は直径40mm、高さ55mmの円柱状の木材片を750℃の電気炉の中に20分間保持して、重量減少率を調べるもので、重量減少率が30%以下となることが合格の必要条件となる。
実施例9〜11において本発明のホウ素化合物の水溶液を含浸させた木材を使用して不燃試験を実施した。予め750℃に保持しておいた電気炉に木材片を挿入すると、木材片は全て赤熱した状態となったが、挿入後の電気炉の温度上昇は12℃以内に留まった。20分後、電気炉から取り出して放冷した木材片は、黒色の炭状の固形物で、木材片の外形を保っていた。重量減少率は、成熟材A:23.1%、成熟材B:25.9%、間伐材A:21.2%、成熟材C:28.2%、間伐材B:29.1%、成熟材D:21.8%、間伐材C:19.5%、ヒノキ材:26.0%、アカマツ材:26.9%であった。このように、本発明のホウ素化合物の水溶液を含浸させた木材の重量減少率は、全て30%以内に収まり、不燃性試験の判定基準を満たした。
(Example 12)
In order to receive non-combustibility certification based on the Building Standard Law, it is necessary to pass either a non-flammability test or a combustion test. The non-flammability test is a test to check the weight reduction rate by holding a cylindrical piece of wood with a diameter of 40 mm and a height of 55 mm in an electric furnace at 750 ° C. for 20 minutes. The weight reduction rate is 30% or less. Is a necessary condition.
In Examples 9 to 11, non-flammability tests were performed using wood impregnated with an aqueous solution of the boron compound of the present invention. When the wood pieces were inserted into an electric furnace previously maintained at 750 ° C., all the wood pieces were in a red-hot state, but the temperature rise of the electric furnace after insertion remained within 12 ° C. After 20 minutes, the wood piece taken out from the electric furnace and allowed to cool was a black charcoal solid, maintaining the shape of the wood piece. The weight reduction rate is: matured wood A: 23.1%, matured wood B: 25.9%, thinned wood A: 21.2%, mature wood C: 28.2%, thinned wood B: 29.1%, Mature wood D: 21.8%, thinned wood C: 19.5%, cypress wood: 26.0%, red pine wood: 26.9%. As described above, the weight reduction rate of the wood impregnated with the aqueous solution of the boron compound of the present invention was all within 30%, which satisfied the judgment standard of the nonflammability test.

(実施例13)
実施例1と同様にして調製した2025溶液482kgを、次の条件でスプレードライ法により粒体化した。
装置:日本化学機械製造株式会社製
ノズル径:0.84mm
スワール:SC
噴霧圧力:約120kgf/cm2(12mPa)
噴霧量:約120L/H
熱風量:40Nm3/min.
熱風温度:160℃
排風温度:79.8〜83.8℃(コーン部)
75.8〜80.2℃(サイクロン部)
(Example 13)
482 kg of a 2025 solution prepared in the same manner as in Example 1 was granulated by the spray drying method under the following conditions.
Apparatus: Nippon Chemical Machinery Manufacturing Co., Ltd. Nozzle diameter: 0.84 mm
Swirl: SC
Spray pressure: about 120 kgf / cm 2 (12 mPa)
Spray amount: about 120L / H
Hot air volume: 40 Nm 3 / min.
Hot air temperature: 160 ° C
Exhaust air temperature: 79.8-83.8 ° C. (cone portion)
75.8-80.2 ° C (Cyclone part)

次の物性値を有するきれいな球形の粒子が得られた(パウダー回収量64.2kg)。
水分量:7.2%(105℃×2時間の乾燥減量値)
粒度:30〜50μm(電子顕微鏡写真より計測)
平均粒径:41.7μm
嵩比重:0.87(さわり比重)
0.61(みかけ比重)
このように、本発明のホウ素化合物の水溶液を公知の方法により粒体化することができた。
Clean spherical particles having the following physical property values were obtained (powder recovery amount 64.2 kg).
Water content: 7.2% (105 ° C. × 2 hours loss on drying value)
Particle size: 30-50 μm (measured from electron micrograph)
Average particle size: 41.7 μm
Bulk specific gravity: 0.87 (touch specific gravity)
0.61 (apparent specific gravity)
Thus, the aqueous solution of the boron compound of the present invention could be granulated by a known method.

ホウ酸飽和水溶液(A)、ホウ砂飽和水溶液(B)、ホウ酸・ホウ砂飽和水溶液(C)および本発明のホウ素化合物の水溶液(D)のラマンスペクトルの結果を示す図である。It is a figure which shows the result of the Raman spectrum of the boric-acid saturated aqueous solution (A), the borax saturated aqueous solution (B), the boric-acid / borax saturated aqueous solution (C), and the aqueous solution (D) of the boron compound of this invention. 本発明のホウ素化合物の水溶液から得られた固形物の粉末X線回折の結果を示す図である。It is a figure which shows the result of the powder X-ray diffraction of the solid substance obtained from the aqueous solution of the boron compound of this invention. ホウ酸、ホウ砂が完溶する範囲を示す図である。It is a figure which shows the range which boric acid and borax completely dissolve. 本発明のホウ素化合物の水溶液を木材に含浸させたときの、含浸時間と導入量の関係を示す図である。It is a figure which shows the relationship between an impregnation time and the introduction amount when the aqueous solution of the boron compound of this invention is impregnated to wood.

Claims (11)

水100部に対して、キレート化剤または界面活性剤を含まないで、ホウ酸(H3BO3)のx部とホウ砂(Na247・10H2O)のy部(但し、x<35、y<40、0<x<y+5)とを、ホウ素換算で2.5mol/kg以上含むことを特徴とする、室温で安定なホウ素化合物の水溶液。 The x part of boric acid (H 3 BO 3 ) and the y part of borax (Na 2 B 4 O 7 .10H 2 O) (without the chelating agent or surfactant) , X <35, y <40, 0 <x <y + 5), which is 2.5 mol / kg or more in terms of boron, and is an aqueous solution of a boron compound stable at room temperature. ホウ素化合物の水溶液が、ラマンスペクトルにおいて、880±150cm-1にピークを有している請求項1に記載の水溶液。 The aqueous solution according to claim 1, wherein the aqueous solution of the boron compound has a peak at 880 ± 150 cm −1 in the Raman spectrum. ホウ素化合物の水溶液を蒸発乾固した粉末が、粉末X線回折(CuKα線1.5418Å)において、2θ=27.8±1.2および45.7±1.2にピークを有している請求項1または2に記載の水溶液。   A powder obtained by evaporating and drying an aqueous solution of a boron compound has peaks at 2θ = 27.8 ± 1.2 and 45.7 ± 1.2 in powder X-ray diffraction (CuKα ray 1.54184) Item 3. The aqueous solution according to Item 1 or 2. リン酸またはリン酸塩をさらに含む請求項1〜3のいずれか1つに記載の水溶液。   The aqueous solution according to claim 1, further comprising phosphoric acid or phosphate. 水100部に対して、ホウ酸(H3BO3)のx部とホウ砂(Na247・10H2O)のy部(但し、x<35、y<40、0<x<y+5)とを添加し、加熱して溶解せしめ、次に室温まで冷却することにより、室温で安定なホウ素化合物の水溶液を得ることを特徴とするホウ素化合物の水溶液の製造方法。 100 parts of water, x part of boric acid (H 3 BO 3 ) and y part of borax (Na 2 B 4 O 7 .10H 2 O), where x <35, y <40, 0 <x <Y + 5) is added, dissolved by heating, and then cooled to room temperature to obtain an aqueous solution of a boron compound that is stable at room temperature. 加熱が70〜90℃で行われる請求項5に記載の製造方法。   The production method according to claim 5, wherein the heating is performed at 70 to 90 ° C. 請求項1〜4のいずれか1つに記載の水溶液を含むことを特徴とする液状の防火・耐火・不燃組成物。   A liquid fireproof / fireproof / incombustible composition comprising the aqueous solution according to claim 1. 請求項7に記載の液状の防火・耐火・不燃組成物を、木材、紙、織布および不織布から選択される対象物に含浸または噴霧し、対象物の1kg当り100g以上の防火・耐火・不燃組成物を対象物に含ませ、次に乾燥させることにより得られることを特徴とする防火・耐火・不燃材料。   The liquid fireproof / fireproof / incombustible composition according to claim 7 is impregnated or sprayed on an object selected from wood, paper, woven fabric and non-woven fabric, and 100 g or more of fireproof / fireproof / incombustible material per kg of the object. A fireproof / fireproof / incombustible material obtained by including a composition in an object and then drying the composition. 含浸が0.5N/mm2以上の加圧下で行われる請求項8に記載の防火・耐火・不燃材料。 The fireproof / fireproof / incombustible material according to claim 8, wherein the impregnation is performed under a pressure of 0.5 N / mm 2 or more. 請求項1〜4のいずれか1つに記載の水溶液を蒸発乾固して得られることを特徴とする粉末状の防火・耐火・不燃組成物。   A powdery fireproof / fireproof / incombustible composition obtained by evaporating and drying the aqueous solution according to any one of claims 1 to 4. 蒸発乾固がスプレードライ法により行われる請求項10に記載の粉末状の防火・耐火・不燃組成物。   The powdery fireproof / fireproof / incombustible composition according to claim 10, wherein the evaporation to dryness is performed by a spray drying method.
JP2003352620A 2003-10-10 2003-10-10 Aqueous solution of boron compound stable at room temperature, its production method and its use Expired - Lifetime JP4439234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003352620A JP4439234B2 (en) 2003-10-10 2003-10-10 Aqueous solution of boron compound stable at room temperature, its production method and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003352620A JP4439234B2 (en) 2003-10-10 2003-10-10 Aqueous solution of boron compound stable at room temperature, its production method and its use

Publications (2)

Publication Number Publication Date
JP2005112700A true JP2005112700A (en) 2005-04-28
JP4439234B2 JP4439234B2 (en) 2010-03-24

Family

ID=34543499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003352620A Expired - Lifetime JP4439234B2 (en) 2003-10-10 2003-10-10 Aqueous solution of boron compound stable at room temperature, its production method and its use

Country Status (1)

Country Link
JP (1) JP4439234B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219329A (en) * 2005-02-09 2006-08-24 Kanazawa Inst Of Technology Stable liquid composition of boron compound and its manufacturing method and its application
JP2008094699A (en) * 2006-10-16 2008-04-24 Hi-Van:Kk Nonflammable particle molding method
JP2009149721A (en) * 2007-12-19 2009-07-09 Achilles Corp Flame retardant polyurethane foam
JP2011162743A (en) * 2010-02-15 2011-08-25 Kanazawa Inst Of Technology Flame-retardant composition, method for flame-retarding treatment using the same, and flame-retardant material
JP2011214200A (en) * 2010-03-31 2011-10-27 Daio Paper Corp Flame-retardant sheet and insulating paper employing the same
JP2012072353A (en) * 2010-09-02 2012-04-12 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol film, and method for producing polyvinyl alcohol film
JP2012071470A (en) * 2010-09-28 2012-04-12 Kyorin Co Ltd Fireproof cellulosic honeycomb structure
JP2012233039A (en) * 2011-04-28 2012-11-29 Shin-Etsu Chemical Co Ltd Room temperature curable organopolysiloxane composition
JP2018083900A (en) * 2016-11-24 2018-05-31 丸善石油化学株式会社 Flame-retardant composition, and flame-retardant base material containing the same, and method for producing flame-retardant base material
WO2020180272A1 (en) * 2019-03-04 2020-09-10 Kahramanmaraş Sütçü İmam Üni̇versi̇tesi̇ Potable boron solution
ES2938012A1 (en) * 2021-10-01 2023-04-03 Univ Valladolid Flame retardant substance for fire prevention and associated production method (Machine-translation by Google Translate, not legally binding)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141649B1 (en) * 1968-04-06 1976-11-11
JPH01313303A (en) * 1988-06-10 1989-12-18 Koomitsukusu:Kk Inorganic compound capable of forming film by hydration
JPH0250801A (en) * 1988-08-12 1990-02-20 Matsushita Electric Works Ltd Manufacture of modified wood
JPH0873212A (en) * 1994-07-07 1996-03-19 Koomitsukusu:Kk High concentration boric acid compound and composition for fireproofing/fire resisting use containing the same and binding material and fireproof/fire resistant material using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141649B1 (en) * 1968-04-06 1976-11-11
JPH01313303A (en) * 1988-06-10 1989-12-18 Koomitsukusu:Kk Inorganic compound capable of forming film by hydration
JPH0250801A (en) * 1988-08-12 1990-02-20 Matsushita Electric Works Ltd Manufacture of modified wood
JPH0873212A (en) * 1994-07-07 1996-03-19 Koomitsukusu:Kk High concentration boric acid compound and composition for fireproofing/fire resisting use containing the same and binding material and fireproof/fire resistant material using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
石原茂久: "木材防火剤としてのホウ素とその化合物", 木材保存, vol. 15, no. 6, JPN6008058539, 1989, pages 248 - 260, ISSN: 0001185356 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219329A (en) * 2005-02-09 2006-08-24 Kanazawa Inst Of Technology Stable liquid composition of boron compound and its manufacturing method and its application
JP2008094699A (en) * 2006-10-16 2008-04-24 Hi-Van:Kk Nonflammable particle molding method
JP2009149721A (en) * 2007-12-19 2009-07-09 Achilles Corp Flame retardant polyurethane foam
JP2011162743A (en) * 2010-02-15 2011-08-25 Kanazawa Inst Of Technology Flame-retardant composition, method for flame-retarding treatment using the same, and flame-retardant material
JP2011214200A (en) * 2010-03-31 2011-10-27 Daio Paper Corp Flame-retardant sheet and insulating paper employing the same
JP2012072353A (en) * 2010-09-02 2012-04-12 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol film, and method for producing polyvinyl alcohol film
JP2012071470A (en) * 2010-09-28 2012-04-12 Kyorin Co Ltd Fireproof cellulosic honeycomb structure
JP2012233039A (en) * 2011-04-28 2012-11-29 Shin-Etsu Chemical Co Ltd Room temperature curable organopolysiloxane composition
JP2018083900A (en) * 2016-11-24 2018-05-31 丸善石油化学株式会社 Flame-retardant composition, and flame-retardant base material containing the same, and method for producing flame-retardant base material
WO2020180272A1 (en) * 2019-03-04 2020-09-10 Kahramanmaraş Sütçü İmam Üni̇versi̇tesi̇ Potable boron solution
ES2938012A1 (en) * 2021-10-01 2023-04-03 Univ Valladolid Flame retardant substance for fire prevention and associated production method (Machine-translation by Google Translate, not legally binding)

Also Published As

Publication number Publication date
JP4439234B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP5079983B2 (en) Stable boron compound liquid composition, production method thereof and use thereof
EP0631515B1 (en) Fire and heat resistant materials
US8647750B2 (en) Process of using sodium silicate to create fire retardant products
JP4439234B2 (en) Aqueous solution of boron compound stable at room temperature, its production method and its use
Kumar et al. Flame retardancy of clay–sodium silicate composite coatings on wood for construction purposes
EA003177B1 (en) Fire retardant intumescent coating for lignocellulosic materials
NO762105L (en)
KR101386396B1 (en) Fire retardant coating composition and coating method thereof
JPH04506323A (en) Flame-retardant and smoke-suppressing mixture
CN105907210B (en) A kind of inorganic component that adds solves the tacky method of phosphorous flame-retardant coated fabric moisture absorption
JP3491181B2 (en) High-concentration boric acid compound, fire- and fire-resistant composition containing the same, and binder and fire- and fire-resistant material using the same
KR101946537B1 (en) Fire prevention coating composition for Flame retardant cloths and Flame retardant cloths using thereof
KR100696874B1 (en) Composition for action of resist-fire and fire-extinguishing
Sun et al. The combustion performance of medium density fiberboard treated with fire retardant microspheres
Li et al. Synergistic effect of aluminum diethylphosphinate/sodium stearate modified vermiculite on flame retardant and smoke suppression properties of amino coatings
JPH01239163A (en) Production of flame-retardant vegetable fiber material
CN106633897A (en) Formula of halogen-free flame-retardant aid
Turku et al. Progress in Achieving Fire-Retarding Cellulose-Derived Nano/Micromaterial-Based Thin Films/Coatings and Aerogels: A Review
CN102634350B (en) Preparation method of boron-containing flame retardant
Gao et al. Thermal degradation and smoke suspension of cotton cellulose modified with THPC and its lanthanide metal complexes
Rawal et al. Effect of fire retardancy materials in fibre reinforced composite plate for false ceilings-A Review
Du et al. A novel modified nano-alumina composite sol for potential application in forest firefighting
KR101768947B1 (en) Flame retardant composition and a method of producing a coating method for wood
KR101071782B1 (en) The manufacture method of non-framable paper and incombustible material using the same
Colson et al. Formulation of novel fire retardant additives for biobased insulation material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050908

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4439234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term