JP2005112015A - Pneumatic tire designing method - Google Patents

Pneumatic tire designing method Download PDF

Info

Publication number
JP2005112015A
JP2005112015A JP2003345075A JP2003345075A JP2005112015A JP 2005112015 A JP2005112015 A JP 2005112015A JP 2003345075 A JP2003345075 A JP 2003345075A JP 2003345075 A JP2003345075 A JP 2003345075A JP 2005112015 A JP2005112015 A JP 2005112015A
Authority
JP
Japan
Prior art keywords
tire
objective function
value
rim
rims
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003345075A
Other languages
Japanese (ja)
Other versions
JP4358588B2 (en
Inventor
Yoshihiro Tanaka
嘉宏 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2003345075A priority Critical patent/JP4358588B2/en
Publication of JP2005112015A publication Critical patent/JP2005112015A/en
Application granted granted Critical
Publication of JP4358588B2 publication Critical patent/JP4358588B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire designing method capable of enhancing the performance even when a pneumatic tire is mounted on a plurality of applicable rims. <P>SOLUTION: An FEM model of a tire is prepared, and design variables to give changes to the tire configuration, an objective function to express the physical quantity for evaluating the tire performance, and a plurality of applicable rims to be combined with the FEM model are determined (100, 102 and 104). The value of the objective function is operated in each applicable rim by respectively combining the FEM model with the plurality of applicable rims. The value of the objective function on the entire applicable rims is obtained by integrating the result of the operations, and the operation is repeated until the objective function is converged (106-120). The value of the design variables to give the optimum value of the objective function on the entire applicable rims is obtained (122), and the tire is designed based on the design variables to give the optimum value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、空気入りタイヤの設計方法に関するものである。   The present invention relates to a method for designing a pneumatic tire.

従来、物性を考慮したタイヤの設計方法としては、既存のタイヤに対して形状や材料を変更したタイヤを試作、試験して、転がり抵抗やバネ定数などについて目標性能が得られるまで試作、試験を繰り返すという手法がとられていた。しかしながら、このような方法では、非効率でコスト高になる等の問題があり、そのため、FEM(有限要素法)解析による最適化手法を用いてタイヤを設計する方法が提案されている。   Conventionally, as a tire design method that considers physical properties, tires with different shapes and materials compared to existing tires are prototyped and tested, and prototypes and tests are performed until the target performance is achieved for rolling resistance, spring constant, etc. The technique of repeating was taken. However, such a method has problems such as inefficiency and high cost. For this reason, a method for designing a tire using an optimization method based on FEM (finite element method) analysis has been proposed.

例えば、特許文献1には、内部構造を含むタイヤ断面形状を表すとともに複数の要素に分割されたタイヤ基本モデル、タイヤ性能評価用物理量を表す目的関数、ゴム部材及び補強材の物性を決定する設計変数、並びに、ゴム部材及び補強材の物性、性能評価用物理量及びタイヤ寸度の少なくとも1つを制約する制約条件を定めるステップと、制約条件を考慮しながら目的関数の最適値を与える設計変数の値を求めるステップと、目的関数の最適値を与える設計変数に基づいてタイヤを設計するステップと、を含む空気入りタイヤの設計方法が開示されている。   For example, Patent Document 1 describes a tire basic model that represents a tire cross-sectional shape including an internal structure and is divided into a plurality of elements, an objective function that represents a physical quantity for tire performance evaluation, and a design that determines physical properties of a rubber member and a reinforcing material. A variable, a step of defining a constraint that restricts at least one of the physical properties of the rubber member and the reinforcing material, a physical quantity for performance evaluation, and a tire size, and a design variable that gives an optimum value of the objective function while taking the constraint into consideration A method for designing a pneumatic tire is disclosed that includes a step of obtaining a value and a step of designing a tire based on a design variable that provides an optimum value of an objective function.

また、特許文献2には、内部構造を含むタイヤ断面形状又はタイヤ構造を表すタイヤの設計パラメータと該タイヤの性能との非線形な対応を関係付ける変換系を定めるステップと、前記タイヤの性能を表す目的関数を定めると共に、前記タイヤの性能及び前記タイヤの製造条件の少なくとも一方の許容範囲を制約する制約条件を定めるステップと、前記変換系を用いて、前記目的関数及び前記制約条件に基づいて目的関数の最適値を与えるタイヤの設計パラメータを求めて該タイヤの設計パラメータに基づいてタイヤを設計するステップと、を含む空気入りタイヤの設計方法が開示されている。
特開平7−164815号公報 国際公開第99/07543号パンフレット
Further, Patent Document 2 represents a step of determining a conversion system that relates a nonlinear correspondence between a tire cross-sectional shape including an internal structure or a tire design parameter representing the tire structure and the performance of the tire, and represents the performance of the tire. A step of defining an objective function and a constraint condition that restricts an allowable range of at least one of the performance of the tire and the manufacturing condition of the tire; and using the conversion system, the objective function and the objective condition based on the constraint condition A method for designing a pneumatic tire is disclosed, including the step of determining a tire design parameter that provides an optimal value of the function and designing the tire based on the tire design parameter.
JP-A-7-164815 International Publication No. 99/07543 Pamphlet

上記従来の最適化手法を用いたタイヤの設計方法では、個々のタイヤの設計において、標準リム幅又は実験に用いるリム幅でFEM解析を行い、タイヤ設計の指針としている。   In the tire design method using the conventional optimization method described above, FEM analysis is performed with a standard rim width or a rim width used for an experiment as a guideline for tire design.

ところが、JATMA(日本自動車タイヤ協会)イヤーブックなどの規格に記載されている個々のタイヤサイズの適用リムは一般に数種類(例えば、3〜7種類)ある。そのため、ある適用リムのリム幅でFEM解析により目標性能を満足することが確認できたとしても、別の異なる適用リムに装着した場合に目標性能が悪化してしまうことがあった。   However, there are generally several types (for example, 3 to 7 types) of applicable rims for individual tire sizes described in standards such as JATMA (Japan Automobile Tire Association) yearbook. Therefore, even if it can be confirmed that the target performance is satisfied by FEM analysis with a rim width of a certain applied rim, the target performance may be deteriorated when the rim is mounted on another different applied rim.

本発明は、以上の点に鑑みてなされたものであり、複数の適用リムのいずれに装着した場合にも性能の向上を図ることができる空気入りタイヤの設計方法を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a pneumatic tire design method capable of improving performance when mounted on any of a plurality of applicable rims. .

本発明に係る空気入りタイヤの設計方法は、(a)内部構造を含むタイヤ断面形状を表すタイヤモデルを作成するステップと、(b)タイヤ構成に変更を与える設計変数を定めるとともに、タイヤ性能評価用物理量を表す目的関数を定めるステップと、(c)前記タイヤモデルと組み合わせる複数の適用リムを定めるステップと、(d)前記タイヤモデルを前記複数の適用リムとそれぞれ組み合わせて、各適用リムでの目的関数の値を演算し、この演算結果を総合して適用リム全体での目的関数の値を求めて、該適用リム全体での目的関数の最適値を与える設計変数の値を求めるステップと、(e)前記最適値を与える設計変数に基づいてタイヤを設計するステップと、を含むものである。   A pneumatic tire design method according to the present invention includes (a) a step of creating a tire model representing a tire cross-sectional shape including an internal structure, and (b) a design variable for changing a tire configuration, and a tire performance evaluation. Determining an objective function representing a physical quantity for use, (c) determining a plurality of application rims to be combined with the tire model, and (d) combining each of the tire models with the plurality of application rims, Calculating the value of the objective function, obtaining the value of the objective function in the entire application rim by combining the calculation results, and obtaining the value of the design variable that gives the optimum value of the objective function in the entire application rim; (E) designing a tire based on a design variable that gives the optimum value.

かかる本発明では、前記ステップ(d)において、前記適用リム全体での目的関数の値が前記各適用リムでの目的関数の値の平均値により求められることが好ましい。   In the present invention, in the step (d), it is preferable that the value of the objective function in the entire application rim is obtained by an average value of the values of the objective function in each application rim.

また、前記ステップ(b)において、前記設計変数、前記目的関数及び他のタイヤ性能評価用物理量の少なくとも1つを制約する制約条件を定め、前記ステップ(d)において、前記制約条件を考慮しながら前記目的関数の最適値を与える設計変数の値を求めてもよい。   Further, in the step (b), a constraint condition that restricts at least one of the design variable, the objective function, and another physical quantity for tire performance evaluation is defined, and in the step (d), the constraint condition is taken into consideration. A design variable value that gives an optimum value of the objective function may be obtained.

更に、前記制約条件として、前記各適用リムでの目的関数の値がいずれも所定性能を満足していることを条件としてもよく、あるいはまた、前記制約条件として、前記各適用リムでの目的関数の値の分散を制限してもよい。   Further, the constraint condition may be that the value of the objective function at each application rim satisfies a predetermined performance, or alternatively, the objective function at each application rim as the constraint condition. The variance of the values may be limited.

また、前記ステップ(c)において、前記複数の適用リムは、当該タイヤの仕向け地の規格に定められている全ての適用リムであってもよく、あるいはまた、当該タイヤの仕向け地の規格に定められている全ての適用リムのうち、リム幅が最大のものと最小のものと中央値をとるものとの3種類であってもよい。   In the step (c), the plurality of application rims may be all application rims defined in the specification of the destination of the tire, or alternatively, specified in the specification of the destination of the tire. Of all the applicable rims that are used, there may be three types, one with the largest rim width, one with the smallest rim width, and one with the median value.

本発明によれば、複数の適用リムのいずれに装着した場合にも性能の向上を図ることができる空気入りタイヤの設計が可能となり、装着する適用リムを替えると極端に性能が悪化するようなタイヤの製造を事前に回避することができる。   According to the present invention, it is possible to design a pneumatic tire capable of improving performance when mounted on any of a plurality of applied rims, and the performance is extremely deteriorated when the applied rim to be mounted is changed. Tire production can be avoided in advance.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は実施形態にかかるタイヤの設計方法を実現するための最適化計算の流れを示すフローチャートであり、コンピュータを用いて実施することができる。   FIG. 1 is a flowchart showing a flow of optimization calculation for realizing the tire designing method according to the embodiment, which can be implemented using a computer.

この最適化計算では、まず、ステップ100において、対象とするタイヤに対して、その内部構造を含むタイヤ断面形状を表すタイヤFEMモデルを作成する。より詳細には、自然平衡状態のタイヤ断面形状を基準形状とし、この基準形状をFEM等のようにタイヤ性能評価用物理量を数値的、解析的に求めることができる手法によりモデル化して、内部構造を含むタイヤ断面形状を表すと共にメッシュ分割によって複数の要素に分割されたタイヤ初期モデルを作成する。ここで、モデル化とは、タイヤ形状、構造、材料、パターンを、数値的、解析的手法に基づいて作成されたコンピュータプログラムへのインプットデータ形式に数値化することをいう。本実施形態では、図2に示すようにタイヤ断面を複数の要素に分割したFEMモデルを作成する。   In this optimization calculation, first, in step 100, a tire FEM model representing a tire cross-sectional shape including the internal structure is created for a target tire. More specifically, a tire cross-sectional shape in a natural equilibrium state is used as a reference shape, and this reference shape is modeled by a method capable of obtaining a physical quantity for tire performance evaluation numerically and analytically, such as FEM. An initial tire model is created that represents a tire cross-sectional shape including the above and is divided into a plurality of elements by mesh division. Here, modeling means that the tire shape, structure, material, and pattern are digitized into an input data format to a computer program created based on numerical and analytical methods. In the present embodiment, as shown in FIG. 2, an FEM model in which a tire cross section is divided into a plurality of elements is created.

次のステップ102では、タイヤ構成に変更を与える設計変数と、タイヤ性能評価用物理量を表す目的関数と、前記設計変数、前記目的関数及び他のタイヤ性能評価用物理量の少なくとも1つを制約する制約条件を設定する。   In the next step 102, a constraint that restricts at least one of a design variable that changes the tire configuration, an objective function that represents a physical quantity for tire performance evaluation, and the design variable, the objective function, and another physical quantity for tire performance evaluation Set conditions.

ここで、設計変数としては、タイヤ形状、ゴム部材や補強部材等のタイヤ材料の物性などが挙げられる。また、目的関数としては、ある特定の領域の歪みエネルギーや、転がり抵抗、タイヤ剛性などが挙げられる。更に、制約条件としては、設計変数であるタイヤ形状や材料物性として許容される範囲や、目的関数について最低限の目標性能や、目的関数以外のタイヤ性能評価用物理量に関して所定以上の性能を確保するための制約範囲などが挙げられる。   Here, examples of the design variable include a tire shape and physical properties of a tire material such as a rubber member and a reinforcing member. Examples of the objective function include strain energy in a specific region, rolling resistance, tire rigidity, and the like. Furthermore, as a constraint condition, a range that is allowed as a design variable such as a tire shape and material physical properties, a minimum target performance with respect to an objective function, and a physical performance evaluation physical quantity other than the objective function are ensured to exceed a predetermined level. For example, there is a restriction range.

次のステップ104では、最適化計算において上記FEMモデルと組み合わせる複数の適用リムを設定する。詳細には、対象とするタイヤの仕向け地の規格に記載されている適用リムを確認する。例えば、185/65R15の日本国内向けの場合、JATMAイヤーブックより適用リムは、5J,51/2JJ,6JJ,61/2JJの4種類あるので、これら4種類全てをFEMモデルに組み合わせる適用リムとして、そのデータをコンピュータに入力する。   In the next step 104, a plurality of application rims to be combined with the FEM model in the optimization calculation are set. Specifically, check the applicable rim described in the standard of the destination of the target tire. For example, in the case of 185 / 65R15 for Japan, there are four types of applicable rims from the JATMA Yearbook: 5J, 51 / 2JJ, 6JJ, 61 / 2JJ. The data is input to the computer.

なお、このように規格に定められている全ての適用リムについてFEMモデルと組み合わせることが計算精度を高める上では好ましいが、計算時間短縮化の観点から、全ての適用リムの中から幾つかを選択して最適化計算を行うこともできる。その場合、例えば、規格に定められている全ての適用リムのうち、リム幅が最大のものと最小のものと中央値をとるものとの3種類について最適化計算を行うことが好適である。なお、中央値をとるものについて、適用リムの総数が偶数の場合には、中央の2つの適用リムのうちいずれを選択してもよい。   It is preferable to combine all applicable rims stipulated in the standard with the FEM model in order to improve calculation accuracy. However, from the viewpoint of shortening the calculation time, some of all applicable rims are selected. It is also possible to perform optimization calculation. In this case, for example, it is preferable to perform optimization calculation for three types of rim widths having the maximum, minimum, and median values among all applicable rims defined in the standard. In addition, about the thing which takes a median, when the total number of application rims is an even number, you may select either of the center two application rims.

次のステップ106において、設計変数の初期値における目的関数の初期値を演算する。詳細には、タイヤFEMモデル(初期モデル)を上記した全ての適用リム(FEM解析では仮想リム)に各々装着し、実験条件を模擬した計算条件(例えば、空気圧、荷重、車両周りのスリップ角やアライメントなど)を該FEMモデルに付与して、それにより得られる要素毎の力と変位を各適用リム(1)〜(N)で計算する(ステップ108a,108b,108c)。そして、この計算結果から、各適用リムでの目的関数(1)〜(N)の値を演算し(ステップ110a,110b,110c)、この演算結果を総合して適用リム全体での目的関数の初期値を算出する(ステップ112)。なお、各適用リムでの計算および目的関数(1)〜(N)の演算は、適用リムの種類の数だけ並行して計算を行ってもよく、また、複数の適用リムについて順次に計算を行うこともできる。   In the next step 106, the initial value of the objective function in the initial value of the design variable is calculated. Specifically, the tire FEM model (initial model) is mounted on each of the above-described applied rims (virtual rims in the FEM analysis), and calculation conditions (for example, air pressure, load, slip angle around the vehicle, etc.) Alignment or the like) is applied to the FEM model, and the force and displacement for each element obtained thereby are calculated for each applied rim (1) to (N) (steps 108a, 108b, and 108c). Then, from the calculation result, the values of the objective functions (1) to (N) at each application rim are calculated (steps 110a, 110b, and 110c), and the calculation results are combined to calculate the objective function of the entire application rim. An initial value is calculated (step 112). The calculation for each application rim and the calculation of the objective functions (1) to (N) may be performed in parallel for the number of types of application rims, or the calculation is sequentially performed for a plurality of application rims. It can also be done.

ここで、適用リム全体での目的関数OBJは、適用リムの数=N、各適用リムでの目的関数=OBJ(i)(但し、i=1〜N)として、下記式(1)のように定義される。

Figure 2005112015
すなわち、適用リム全体での目的関数OBJは、各適用リムでの目的関数OBJ(i)の平均値により求められる。 Here, the objective function OBJ in the entire applied rim is expressed by the following equation (1), where the number of applied rims = N and the objective function in each applied rim = OBJ (i) (where i = 1 to N). Defined in
Figure 2005112015
That is, the objective function OBJ for the entire applied rim is obtained from the average value of the objective function OBJ (i) for each applied rim.

このようにして目的関数OBJの初期値を求めた後、ステップ114において、感度解析を行う。感度解析は、各設計変数を各々予め定められた所定量だけ少しずつ変化させ、最も勾配が急な方向を見つけることであり、一般に感度は下記式(2)で定義される。

Figure 2005112015
After obtaining the initial value of the objective function OBJ in this way, sensitivity analysis is performed in step 114. Sensitivity analysis is to change each design variable little by little by a predetermined amount and find the direction with the steepest slope. Generally, sensitivity is defined by the following equation (2).
Figure 2005112015

詳細には、個々の設計変数xiをΔxiだけ変化させて、変化後の目的関数の値を演算し、上記式(2)に従って設計変数の単位変化量に対する目的関数の変化量の割合である目的関数の感度を各設計変数毎に演算して、感度の勾配が最も急な方向を見つける。その際に演算する目的関数の値は適用リム全体での目的関数OBJの値であり、N個の適用リムでの目的関数の平均値を上記ステップ106と同様に演算する。   Specifically, by changing each design variable xi by Δxi and calculating the value of the objective function after the change, the objective is the ratio of the change amount of the objective function to the unit change amount of the design variable according to the above equation (2). The function sensitivity is calculated for each design variable to find the direction with the steepest sensitivity gradient. The value of the objective function calculated at that time is the value of the objective function OBJ in the entire applied rim, and the average value of the objective function in the N applied rims is calculated in the same manner as in step 106 above.

次いで、ステップ116において、一次元探索により、上記した勾配が急な方向に設計変数をどれだけ変化させたらよいかを求めて、適用リム全体での目的関数OBJを最大化又は最小化し得る設計変数の解を求めるとともに、この設計変数の解から適用リム全体での目的関数OBJの値を演算する。ここでの適用リム全体での目的関数OBJの値も、上記ステップ106と同様に、N個の適用リムでの目的関数の平均値として演算する。   Next, in step 116, a design variable capable of maximizing or minimizing the objective function OBJ in the entire applied rim by determining how much the design variable should be changed in a direction in which the gradient is steep by a one-dimensional search. And the value of the objective function OBJ in the entire applied rim is calculated from the solution of the design variable. The value of the objective function OBJ for the entire applied rim here is also calculated as the average value of the objective functions for the N applied rims, as in step 106 described above.

次のステップ118において、ステップ106で求めた初期モデルでの適用リム全体での目的関数OBJの値と、ステップ116で求めた修正モデルでの適用リム全体での目的関数OBJの値とを対比して、両者の差と所定のしきい値とを比較することで目的関数OBJの値が収束したか否かを判断する。   In the next step 118, the value of the objective function OBJ in the entire applied rim in the initial model obtained in step 106 is compared with the value of the objective function OBJ in the entire applied rim obtained in step 116. Then, it is determined whether or not the value of the objective function OBJ has converged by comparing the difference between them and a predetermined threshold value.

そして、両者の差がしきい値よりも大きく、従って目的関数OBJの値が収束していないと判断した場合には、ステップ120で、初期モデルを今回得られた修正モデルに置き換えて、即ちステップ116で求めた設計変数の解及び目的関数OBJの値を初期値として、ステップ114からステップ118を繰り返し実行する。なお、このように繰り返し実行するに際し、ステップ118では、前回得られた解から算出した目的関数OBJの値と、今回得られた解から算出した目的関数OBJの値とを比較することで収束性を判断する。   If it is determined that the difference between the two is larger than the threshold value, and therefore the value of the objective function OBJ has not converged, in step 120, the initial model is replaced with the corrected model obtained this time, ie, step Steps 114 to 118 are repeatedly executed with the solution of the design variable obtained in 116 and the value of the objective function OBJ as initial values. Note that, when repeatedly executing in this way, in step 118, the convergence is obtained by comparing the value of the objective function OBJ calculated from the previously obtained solution with the value of the objective function OBJ calculated from the solution obtained this time. Judging.

一方、ステップ118において、上記両者の差が所定のしきい値よりも小さく、目的関数OBJの改良幅が小さくなったときには、目的関数OBJの値が収束したと判断して、ステップ122においてこのときの設計変数の値を、目的関数OBJに対して最適値を与える最適解として決定する。   On the other hand, when the difference between the two is smaller than the predetermined threshold value in step 118 and the improvement width of the objective function OBJ is small, it is determined that the value of the objective function OBJ has converged. Is determined as an optimal solution that gives an optimal value to the objective function OBJ.

このように目的関数を最適化するに際しては、上記制約条件を考慮しながら行うことが好ましく、例えば、ステップ116で演算された目的関数OBJが目標性能を満足しているか否か、目的関数以外のタイヤ性能評価用物理量が所定以上の性能を満足しているか否かなどの点も併せて判断することができる。また、ステップ116の一次元探索で設計変数の解を求める際には、上記した制約条件としてのタイヤ形状や材料物性として許容される範囲が考慮され、その範囲内で解が求められる。   When optimizing the objective function in this manner, it is preferable to consider the above-mentioned constraint conditions. For example, whether the objective function OBJ calculated in step 116 satisfies the target performance, It can also be determined whether or not the tire performance evaluation physical quantity satisfies a predetermined performance or more. Further, when the solution of the design variable is obtained by the one-dimensional search in step 116, the allowable range for the tire shape and material physical properties as the above-described constraint conditions is taken into consideration, and the solution is obtained within the range.

また、制約条件として、各適用リムでの目的関数OBJ(1)〜(N)の値がいずれも所定の目標性能を満足しているか否かを判断して、適用リムの全てで最低限の性能を保証できるようにしてもよい。あるいはまた、制約条件として、各適用リムでの目的関数OBJ(1)〜(N)の値の分散(例えば、平均値である適用リム全体での目的関数OBJからの偏差の二乗の和を自由度(N−1)で割ったもの)が所定値以下になるように制限して、適用リムの違いによる性能のバラツキを低減することもできる。   Further, as a constraint condition, it is determined whether or not the values of the objective functions OBJ (1) to (N) in each applied rim satisfy the predetermined target performance, and the minimum value is obtained in all the applied rims. The performance may be guaranteed. Alternatively, as a constraint condition, the variance of the value of the objective function OBJ (1) to (N) at each application rim (for example, the sum of the squares of deviations from the objective function OBJ over the entire application rim, which is an average value) is free. It is also possible to reduce the variation in performance due to the difference in the applied rims by restricting the degree (degree divided by (N-1)) to a predetermined value or less.

なお、このような数理計画法による最適化手法において、タイヤ剛性などのように目的関数を最大化する設計変数が最適解となる場合、ステップ114の感度解析では目的関数の感度が正の急な勾配を持つ方向を見つければよい。一方、耐久性能向上などのように目的関数を最小化する設計変数が最適解となる場合、ステップ114の感度解析では目的関数の感度が負の急な勾配を持つ方向を見つければよいのであるが、例えば、目的関数に負の符号を付加したり、あるいはまた目的関数を逆数に置き換えるなどして、最大化問題に変えて最適化を行うこともできる。   In the optimization method based on mathematical programming, when the design variable that maximizes the objective function, such as tire stiffness, is an optimal solution, the sensitivity of the objective function is positive and steep in the sensitivity analysis in step 114. Find a direction with a slope. On the other hand, when the design variable that minimizes the objective function is an optimal solution, such as an improvement in durability performance, the sensitivity analysis in step 114 may find a direction in which the sensitivity of the objective function has a negative steep slope. For example, the optimization can be performed instead of the maximization problem by adding a negative sign to the objective function or replacing the objective function with an inverse number.

以上のようにしてステップ122で算出された設計変数の最適解により、目的関数OBJの値が最適化されたタイヤを設計することができる。   As described above, it is possible to design a tire in which the value of the objective function OBJ is optimized by the optimum solution of the design variable calculated in step 122.

次に、上記した実施形態の最適化手法を用いてシミュレーションを行うことで、耐久性能の向上を図るタイヤ設計方法の1実施例について説明する。   Next, an example of a tire design method for improving durability performance by performing simulation using the optimization method of the above-described embodiment will be described.

この実施例では、タイヤサイズ:185/65R15、空気圧:240kPa、荷重:7683Nとした。また、目的関数は、カーカス巻き上げ端の歪みエネルギー密度のタイヤ周方向振幅とした。より詳細には、カーカス巻き上げ端における耐久性能に影響を及ぼす領域は図3の枠10で囲まれた範囲であるため、この範囲内にFEMモデルの要素がk個あるとする(図3の例では2個)。そして、i番目の要素の歪みエネルギー密度の周方向振幅をE(i)とすると、目的関数は下記式(3)により表されるので、これを最小化するように最適化計算を行えばよい。

Figure 2005112015
また、設計変数は、タイヤ最大幅およびトレッド幅とし、制約条件は、カーカスのペリフェリ長さが初期形状のそれの3%を越えないこととした。 In this example, the tire size was 185 / 65R15, the air pressure was 240 kPa, and the load was 7683 N. The objective function was the tire circumferential amplitude of the strain energy density at the carcass winding end. More specifically, since the region that affects the durability performance at the carcass winding end is a range surrounded by the frame 10 in FIG. 3, it is assumed that there are k elements of the FEM model in this range (example in FIG. 3). Then two). Then, assuming that the circumferential amplitude of the strain energy density of the i-th element is E (i), the objective function is expressed by the following equation (3). Therefore, optimization calculation may be performed so as to minimize this. .
Figure 2005112015
The design variables were the maximum tire width and tread width, and the constraint condition was that the peripheral length of the carcass did not exceed 3% of that of the initial shape.

更に、FEM解析に用いた仮想リムは、JATMAイヤーブックで定められた全ての適用リム、即ち、5J,51/2JJ,6JJ,61/2JJとした。なお、比較のために、FEMモデルと組み合わせる適用リムを51/2JJのみとし、その他は実施例と同様にして最適化を行ったものを比較例とした。   Furthermore, the virtual rims used for the FEM analysis were all applicable rims defined in the JATMA yearbook, that is, 5J, 51 / 2JJ, 6JJ, 61 / 2JJ. For comparison, the applied rim combined with the FEM model was only 51 / 2JJ, and the others were optimized in the same manner as in the example as a comparative example.

実施例の最適化計算により設計変数の最適解を求め、これを最適解1として実際にタイヤを試作して、室内耐久性能試験を実施した。下記表2に、最適解1により計算した各適用リムでの目的関数の値と、最適解1に基づいて試作したタイヤの耐久性の結果を、それぞれコントロール(最適化前のタイヤ)を100とした指数で表示した。いずれも指数は小さいほど結果が良好であることを示す。   The optimum solution of the design variable was obtained by the optimization calculation of the example, and the tire was actually made as an optimum solution 1 and an indoor durability performance test was performed. Table 2 below shows the value of the objective function at each applicable rim calculated by the optimal solution 1 and the result of the durability of the tire manufactured based on the optimal solution 1, and the control (tire before optimization) is 100. The index was displayed. In either case, the smaller the index, the better the result.

また、比較例の最適化計算により設計変数の最適解(リムサイズを51/2JJに固定したときに求めた最適解)を求め、これを最適解0として実際にタイヤを試作して、室内耐久性能試験を実施した。下記表2に、最適解0により計算した各適用リムでの目的関数の値と、最適解0に基づいて試作したタイヤの耐久性の結果を、それぞれコントロールを100とした指数で表示した。   In addition, the optimal solution of the design variable (optimal solution obtained when the rim size is fixed to 51/2 JJ) is obtained by the optimization calculation of the comparative example, and the tire is actually made as an optimum solution 0, and the indoor durability performance is obtained. The test was conducted. In Table 2 below, the value of the objective function at each applicable rim calculated with the optimal solution 0 and the result of the durability of the tire prototyped based on the optimal solution 0 are shown as indices with the control being 100, respectively.

また、コントロールと実施例と比較例の各タイヤについて、図4にそれぞれのモールド形状を示した。   Moreover, about each tire of a control, an Example, and a comparative example, each mold shape was shown in FIG.

なお、室内耐久性能試験は、JIS D 4230に定められた試験条件の下、試験段階3以降については早期故障を促すため、段階的に負荷を増して行く手法を採用した。試験時間と負荷との関係は下記表1の通りであり、故障するまでの時間の長さにより耐久性を評価した。表2では、故障するまでの時間の逆数をとり、コントロールを100とした指数で表した。

Figure 2005112015
Figure 2005112015
In the indoor durability performance test, under the test conditions defined in JIS D 4230, a method of increasing the load step by step was adopted in order to promote early failure after test stage 3. The relationship between the test time and the load is as shown in Table 1 below, and the durability was evaluated by the length of time until failure. In Table 2, the reciprocal of the time until failure is taken, and the control is taken as an index of 100.
Figure 2005112015
Figure 2005112015

表2に示すように、比較例のタイヤでは、リム幅51/2JJ,6JJ,61/2JJについては耐久性の向上が図られていたが、リム幅5Jについては逆に耐久性が悪化していた。これに対し、実施例のタイヤでは、適用リム幅のいずれのリム幅に装着した場合にも耐久性の向上が図られていた。   As shown in Table 2, in the tires of the comparative examples, the durability was improved for the rim widths 51 / 2JJ, 6JJ, and 61 / 2JJ, but the durability was deteriorated for the rim width 5J. It was. On the other hand, in the tire of the example, the durability was improved even when the tire was mounted to any rim width of the applicable rim width.

なお、以上説明した実施形態では、数理計画法に基づく最適化手法について説明したが、本発明はこれに限定されることなく、例えば遺伝的アルゴリズムや、統計的最適化手法など、種々の最適化手法に適用することができる。   In the above-described embodiment, the optimization method based on mathematical programming has been described. However, the present invention is not limited to this, and various optimizations such as a genetic algorithm and a statistical optimization method can be used. It can be applied to the method.

また、上記実施形態では、1つのタイヤ性能の物理量を目的関数として最適化する方法について説明したが、本発明では2つのタイヤ性能に関する目的関数を一度に最適化することもできる。その場合、例えば、タイヤ剛性のように最大化すべき目的関数をOBJaとし、また、上記した耐久性のように最小化すべき目的関数をOBJbとすると、両者を合成した目的関数としてOBJ=OBJa+(−OBJb)を定義し、これを最大化するように上記最適化計算をすればよい。なお、このように複数の目的関数を合成した目的関数を最適化する場合、個々の目的関数の数値のオーダーが異なる場合がある。そのような場合には、各目的関数を無次元化することが好ましく、無次元化の一般的方法としては初期値の目的関数で除すなどが挙げられる。その他、本発明の技術思想を損なわない限りで種々の具体的手法を採用することができる。   In the above embodiment, a method for optimizing a physical quantity of one tire performance as an objective function has been described. However, in the present invention, an objective function related to two tire performances can be optimized at a time. In this case, for example, if the objective function to be maximized like tire rigidity is OBJa and the objective function to be minimized like durability mentioned above is OBJb, OBJ = OBJa + (− OBJb) is defined and the above optimization calculation is performed so as to maximize it. When optimizing an objective function obtained by synthesizing a plurality of objective functions in this way, the numerical order of each objective function may be different. In such a case, it is preferable to make each objective function non-dimensional, and a general method for non-dimensionalization includes dividing by an objective function of an initial value. In addition, various specific methods can be adopted as long as the technical idea of the present invention is not impaired.

本発明は、複数の適用リムに対して性能向上を図ることができる空気入りタイヤの効率的な設計に利用することができる。   The present invention can be used for an efficient design of a pneumatic tire capable of improving performance with respect to a plurality of applied rims.

実施形態における最適化計算の流れを示すフローチャートである。It is a flowchart which shows the flow of the optimization calculation in embodiment. タイヤ断面を複数の要素に分割したFEMモデルの図である。It is a figure of the FEM model which divided a tire section into a plurality of elements. カーカス巻き上げ端付近を拡大して示すFEMモデルの図である。It is a figure of the FEM model which expands and shows carcass winding end vicinity. (a)はコントロールのタイヤのモールド形状、(b)は実施例のタイヤのモールド形状、(c)は比較例のタイヤのモールド形状をそれぞれ示す図である。(A) is the mold shape of the tire of a control, (b) is the figure of the mold shape of the tire of an Example, (c) is a figure which shows the mold shape of the tire of a comparative example, respectively.

Claims (7)

(a)内部構造を含むタイヤ断面形状を表すタイヤモデルを作成するステップと、
(b)タイヤ構成に変更を与える設計変数を定めるとともに、タイヤ性能評価用物理量を表す目的関数を定めるステップと、
(c)前記タイヤモデルと組み合わせる複数の適用リムを定めるステップと、
(d)前記タイヤモデルを前記複数の適用リムとそれぞれ組み合わせて、各適用リムでの目的関数の値を演算し、この演算結果を総合して適用リム全体での目的関数の値を求めて、該適用リム全体での目的関数の最適値を与える設計変数の値を求めるステップと、
(e)前記最適値を与える設計変数に基づいてタイヤを設計するステップと、
を含む空気入りタイヤの設計方法。
(A) creating a tire model representing a tire cross-sectional shape including an internal structure;
(B) determining design variables that change the tire configuration, and determining an objective function that represents a physical quantity for tire performance evaluation;
(C) determining a plurality of application rims to be combined with the tire model;
(D) The tire model is combined with each of the plurality of application rims, and the value of the objective function at each application rim is calculated. Obtaining a value of a design variable that gives an optimum value of the objective function in the entire applied rim;
(E) designing a tire based on a design variable that gives the optimum value;
A pneumatic tire design method including:
前記ステップ(d)において、前記適用リム全体での目的関数の値は、前記各適用リムでの目的関数の値の平均値により求められる請求項1記載の空気入りタイヤの設計方法。   The method for designing a pneumatic tire according to claim 1, wherein, in the step (d), the value of the objective function in the entire applied rim is obtained by an average value of the value of the objective function in each applied rim. 前記ステップ(b)において、前記設計変数、前記目的関数及び他のタイヤ性能評価用物理量の少なくとも1つを制約する制約条件を定め、
前記ステップ(d)において、前記制約条件を考慮しながら前記目的関数の最適値を与える設計変数の値を求めることを特徴とする請求項1又は2記載の空気入りタイヤの設計方法。
In the step (b), a constraint condition that restricts at least one of the design variable, the objective function, and another physical quantity for tire performance evaluation is defined.
The method for designing a pneumatic tire according to claim 1 or 2, wherein, in the step (d), a value of a design variable that gives an optimum value of the objective function is obtained in consideration of the constraint condition.
前記制約条件として、前記各適用リムでの目的関数の値がいずれも所定性能を満足していることを条件とする請求項3記載の空気入りタイヤの設計方法。   The method for designing a pneumatic tire according to claim 3, wherein the constraint condition is that each of the values of the objective function at each applicable rim satisfies a predetermined performance. 前記制約条件として、前記各適用リムでの目的関数の値の分散を制限することを特徴する請求項3記載の空気入りタイヤの設計方法。   The pneumatic tire design method according to claim 3, wherein, as the constraint condition, dispersion of a value of an objective function at each application rim is limited. 前記ステップ(c)において、前記複数の適用リムが当該タイヤの仕向け地の規格に定められている全ての適用リムであることを特徴とする請求項1〜5のいずれかに記載の空気入りタイヤの設計方法。   The pneumatic tire according to any one of claims 1 to 5, wherein in the step (c), the plurality of application rims are all application rims defined in a specification of a destination of the tire. Design method. 前記ステップ(c)において、前記複数の適用リムが、当該タイヤの仕向け地の規格に定められている全ての適用リムのうち、リム幅が最大のものと最小のものと中央値をとるものとの3種類であることを特徴とする請求項1〜5のいずれかに記載の空気入りタイヤの設計方法。   In the step (c), the plurality of application rims take the median value of the maximum, minimum, and minimum rim widths of all the applicable rims defined in the destination specification of the tire. The method for designing a pneumatic tire according to any one of claims 1 to 5, wherein:
JP2003345075A 2003-10-02 2003-10-02 Pneumatic tire design method Expired - Lifetime JP4358588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003345075A JP4358588B2 (en) 2003-10-02 2003-10-02 Pneumatic tire design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003345075A JP4358588B2 (en) 2003-10-02 2003-10-02 Pneumatic tire design method

Publications (2)

Publication Number Publication Date
JP2005112015A true JP2005112015A (en) 2005-04-28
JP4358588B2 JP4358588B2 (en) 2009-11-04

Family

ID=34538450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003345075A Expired - Lifetime JP4358588B2 (en) 2003-10-02 2003-10-02 Pneumatic tire design method

Country Status (1)

Country Link
JP (1) JP4358588B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191094A (en) * 2006-01-20 2007-08-02 Bridgestone Corp Method of designing pneumatic tire
JP2007276697A (en) * 2006-04-10 2007-10-25 Yokohama Rubber Co Ltd:The Tire performance forecasting method and computer program for tire performance forecast
JP2007276636A (en) * 2006-04-06 2007-10-25 Toyo Tire & Rubber Co Ltd Tire designing method
JP2008195341A (en) * 2007-02-15 2008-08-28 Yokohama Rubber Co Ltd:The Designing method of tire and designing device of tire
JP2009265693A (en) * 2008-04-21 2009-11-12 Yokohama Rubber Co Ltd:The Evaluation method for tire and computer program for evaluation of tire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191094A (en) * 2006-01-20 2007-08-02 Bridgestone Corp Method of designing pneumatic tire
JP2007276636A (en) * 2006-04-06 2007-10-25 Toyo Tire & Rubber Co Ltd Tire designing method
JP2007276697A (en) * 2006-04-10 2007-10-25 Yokohama Rubber Co Ltd:The Tire performance forecasting method and computer program for tire performance forecast
JP2008195341A (en) * 2007-02-15 2008-08-28 Yokohama Rubber Co Ltd:The Designing method of tire and designing device of tire
JP2009265693A (en) * 2008-04-21 2009-11-12 Yokohama Rubber Co Ltd:The Evaluation method for tire and computer program for evaluation of tire

Also Published As

Publication number Publication date
JP4358588B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
US8103489B2 (en) Tire design method
JP3686107B2 (en) Pneumatic tire design method
US8103488B2 (en) Tire design method
JP2002015010A (en) Method for designing product form and pneumatic tire designed with it
US8086428B2 (en) Tire design method
WO1994016877A1 (en) Design method for a pneumatic tire
WO1998029269A1 (en) Pneumatic tire designing method
JP2006285381A (en) Method for designing structure
JP2009269557A (en) Method for designing tire and program therefor
JP4358588B2 (en) Pneumatic tire design method
JP2001009838A (en) Method for designing pneumatic tire, method for designing mold for vulcanization of tire, manufacture of mold for vulcanization of tire, manufacture of pneumatic tire, optimization analysis apparatus, and storage medium storing optimization analysis program of tire
JP5630147B2 (en) Tire model creation method and tire design method using the same
JP4755015B2 (en) Tire design method
JPH09323367A (en) Method for designing pneumatic tire
JP6065472B2 (en) Tire model creation method, tire cross-sectional shape determination method, tire model creation device, and program
JP5128853B2 (en) Pneumatic tire design method
JP4275991B2 (en) Tire performance simulation method and tire design method
JP4318971B2 (en) Tire performance simulation method and tire design method
JP2008280029A (en) Design method for tire
JP4559159B2 (en) Pneumatic tire design method and program therefor
JP4800581B2 (en) Tire design method
KR100968262B1 (en) A tire design method for estimating a tire performance
JP4750608B2 (en) Tire design method
JP4761753B2 (en) Simulation method
JP7401286B2 (en) How to evaluate tires

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4358588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150814

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term