JP5128853B2 - Pneumatic tire design method - Google Patents

Pneumatic tire design method Download PDF

Info

Publication number
JP5128853B2
JP5128853B2 JP2007149720A JP2007149720A JP5128853B2 JP 5128853 B2 JP5128853 B2 JP 5128853B2 JP 2007149720 A JP2007149720 A JP 2007149720A JP 2007149720 A JP2007149720 A JP 2007149720A JP 5128853 B2 JP5128853 B2 JP 5128853B2
Authority
JP
Japan
Prior art keywords
value
tire
vulcanization
variable
objective function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007149720A
Other languages
Japanese (ja)
Other versions
JP2008137635A (en
Inventor
大二郎 永野
寛治 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2007149720A priority Critical patent/JP5128853B2/en
Publication of JP2008137635A publication Critical patent/JP2008137635A/en
Application granted granted Critical
Publication of JP5128853B2 publication Critical patent/JP5128853B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は空気入りタイヤの設計方法にかかり、特に、自動車等に使用される空気入りタイヤなどのタイヤを、有限要素法などの解析方法を用いて効率的かつ容易に設計することができる空気入りタイヤの設計方法に関するものである。   The present invention relates to a method for designing a pneumatic tire, and more particularly, a pneumatic tire such as a pneumatic tire used in an automobile can be efficiently and easily designed using an analysis method such as a finite element method. The present invention relates to a tire design method.

一般に、物性を考慮したタイヤ設計方法としては、物性が既知の複数のゴム部材を予め設定し、各ゴム部材毎に物性を変更し、変更した物性によるタイヤを試作・試験を行い、転がり抵抗やバネ定数等について目標性能が得られるまで試作・試験を繰り返して、設計開発するのが従来の通常の方法であった。   In general, as a tire design method considering physical properties, a plurality of rubber members with known physical properties are set in advance, the physical properties are changed for each rubber member, a tire with the changed physical properties is prototyped and tested, rolling resistance and The conventional method has been to design and develop by repeating trial manufacture and testing until the target performance is obtained for the spring constant and the like.

また、近年、コンピュータの進歩に伴い、大規模な3次元有限要素法の解析モデル(以下、有限要素モデルという)を用いての設計最適化が行われている。これは、対象物の3次元形状を有限個の多数の要素に分割し、上記各要素に剛性や質量等の物性を付与して近似した有限要素モデルを作成し、このモデルを用いて、対象物の目的性能を、対象物の形状や構造あるいは物理量を含む制約条件下で解析して対象物の最適構造を求めるものである。   In recent years, with the advancement of computers, design optimization has been performed using a large-scale three-dimensional finite element method analysis model (hereinafter referred to as a finite element model). This is done by dividing the three-dimensional shape of the object into a finite number of elements, creating a finite element model that approximates each element by adding physical properties such as rigidity and mass, and using this model, The objective performance of an object is analyzed under constraint conditions including the shape, structure, or physical quantity of the object, and the optimum structure of the object is obtained.

例えばタイヤ設計の場合には、3次元のタイヤモデルを作成し、所定の境界条件下あるいは制約条件下で、乗り心地性や操舵安定性などの目的性能を達成するための、タイヤトレッド形状やゴムの弾性率などのタイヤの形状、構造、物理量などの設計要因とその組み合わせを求めるような最適化計算方法が提案されている(例えば特許文献1,2参照)。
特開平7−164815号公報 特開2002−222216号公報
For example, in the case of tire design, a three-dimensional tire model is created and the tire tread shape and rubber to achieve the target performance such as ride comfort and steering stability under predetermined boundary conditions or constraint conditions. An optimization calculation method has been proposed in which a design factor such as a tire shape, structure, physical quantity, and the like, and a combination thereof are calculated (for example, see Patent Documents 1 and 2).
JP-A-7-164815 JP 2002-222216 A

上述の技術を利用して、対象物の有限要素モデル(3次元のタイヤモデル)を作成し、有限要素法により、有限要素モデルに外力等の条件を与えて、その時の対象物の変形などをシミュレーションするのみで最適なタイヤ構造やゴム物性を求めることができる。   Using the above-mentioned technology, create a finite element model (three-dimensional tire model) of the object, give conditions such as external force to the finite element model by the finite element method, and then deform the object at that time. Optimal tire structure and rubber physical properties can be obtained only by simulation.

しかしながら、3次元のタイヤモデルを用いた解析では、設計当初のタイヤ形状やゴム部品の物性を考慮して計算を進めることはできるものの、製造過程で変動する物性を考慮することはできなかった。すなわち、実際にタイヤを製造する場合におけるタイヤ加硫条件の影響は考慮されていなかった。このため、最終的には加硫により定まるゴム物性を考慮して、ベストな形状、構造、物性を決定するためには、タイヤの試作・試験の試行錯誤の繰返しを余儀なくされていた。このように、タイヤ開発が試作・試験の試行錯誤の繰り返しとなる場合が多くなることによって、非常に非効率でコスト高になる等の問題があった。   However, in the analysis using the three-dimensional tire model, although the calculation can be advanced in consideration of the tire shape at the initial design and the physical properties of the rubber parts, the physical properties that vary during the manufacturing process cannot be considered. That is, the effect of tire vulcanization conditions in the actual production of tires has not been considered. For this reason, in order to determine the best shape, structure, and physical properties in consideration of the final rubber physical properties determined by vulcanization, trial and error of tire prototyping and testing had to be repeated. As described above, there are many cases where tire development is repeated trial and error in trial production and testing, resulting in a very inefficient and high cost.

本発明は、タイヤ加硫の影響を考慮して目標性能を向上することができると共に、タイヤの設計・開発を高効率化し、低コストでタイヤを提供することができる空気入りタイヤの設計方法を提供することを目的とする。   The present invention provides a pneumatic tire design method capable of improving target performance in consideration of the effects of tire vulcanization, increasing the efficiency of tire design and development, and providing tires at low cost. The purpose is to provide.

本発明は、ゴム弾性率に対するタイヤ加硫の影響を予測することにより、目的性能を満たす設計要因と加硫条件とを求めている。   The present invention seeks design factors and vulcanization conditions that satisfy the target performance by predicting the effect of tire vulcanization on rubber elastic modulus.

具体的には、本発明の空気入りタイヤの設計方法は、(a)内部構造を含むタイヤ断面形状を表すタイヤ基本モデルと、タイヤ性能評価用物理量を表す目的関数と、タイヤの各ゴム部材の物性が定まる加硫条件を決定する加硫条件変数と、ゴム部材及び補強材の物性を決定する設計変数と、ゴム部材及び補強材の物性、性能評価用物理量及びタイヤ寸度の少なくとも1つを制約する制約条件を定めるステップ、(b)加硫条件変数に基づく加硫条件によるタイヤの各ゴム部材に対して付与される熱エネルギを求めると共に求めた熱エネルギに基づいてゴム部材の物性値を求めるステップ、(c)前記求めた物性値を用いて、制約条件を考慮しながら目的関数の最適値を与える加硫条件変数の値及び設計変数の値を求めるステップ、(d)目的関数の最適値を与える加硫条件変数及び設計変数に基づいてタイヤを設計するステップ、を含んでいる。   Specifically, the pneumatic tire designing method of the present invention includes (a) a tire basic model representing a tire cross-sectional shape including an internal structure, an objective function representing a physical quantity for tire performance evaluation, and each rubber member of the tire. At least one of a vulcanization condition variable for determining a vulcanization condition for determining physical properties, a design variable for determining physical properties of the rubber member and the reinforcing material, a physical property for evaluating the rubber member and the reinforcing material, a physical quantity for performance evaluation, and a tire size. A step of determining a constraint condition to be constrained; (b) obtaining thermal energy applied to each rubber member of the tire according to a vulcanization condition based on a vulcanization condition variable and determining a physical property value of the rubber member based on the obtained thermal energy (C) a step of obtaining a value of a vulcanization condition variable and a design variable that give an optimum value of an objective function using the obtained physical property value while considering the constraint condition; Includes the step of designing the tire based on the vulcanization conditions variables and design variables gives the optimum value of the number.

また、前記ステップ(a)を行った後かつ前記ステップ(b)を行う前に、有限要素法から実使用条件下での各ゴム部材の歪(この歪には、内圧による静的な歪と、実使用条件下(例えば車両走行時)での動的な歪を含めることができる)及び温度を求めるステップ(e)を行うと共に、前記ステップ(c)では、前記ステップ(b)で求めたゴム部材の物性値と前記ステップ(e)で求めた各ゴム部材の歪及び温度を用い、各ゴム部材の歪及び温度と物性値との既知の対応関係から前記ゴム部材の物性値を更新した後に、更新した物性値を用いて、制約条件を考慮しながら目的関数の最適値を与える加硫条件変数の値及び設計変数の値を求めている。 In addition , after performing step (a) and before performing step (b), the strain of each rubber member under actual use conditions from the finite element method (this strain includes static strain due to internal pressure and In addition, the step (e) for obtaining the dynamic strain under actual use conditions (for example, when the vehicle is running) and the temperature are performed, and the step (c) is obtained in the step (b). Using the physical property value of the rubber member and the strain and temperature of each rubber member obtained in step (e), the physical property value of the rubber member was updated from the known correspondence between the strain and temperature of each rubber member and the physical property value. Later, using the updated physical property values, the values of the vulcanization condition variables and the design variables that give the optimum values of the objective function are obtained while considering the constraint conditions .

前記ステップ(b)では、前記熱エネルギを求めるために、ゴム配合の熱伝導度、比熱、密度の温度依存性、および加硫中に発生する加硫反応熱量の影響を考慮して熱伝達予測を行い、タイヤ各部材の得られる熱量及び最高到達温度を熱エネルギとして該熱エネルギに基づいてゴム部材の物性値を求めることができる。   In the step (b), in order to obtain the heat energy, heat transfer prediction is performed in consideration of the thermal conductivity of the rubber compound, the specific heat, the temperature dependence of the density, and the influence of the heat of vulcanization reaction generated during vulcanization. The physical property value of the rubber member can be obtained based on the heat energy by using the amount of heat and the maximum temperature achieved by each tire member as heat energy.

また、前記ステップ(c)では、加硫条件変数の単位変化量に対する目的関数の変化量の割合である目的関数の感度及び加硫条件の単位変化量に対する制約条件の変化量の割合である制約条件の感度と、設計変数の単位変化量に対する目的関数の変化量の割合である目的関数の感度及び設計変数の単位変化量に対する制約条件の変化量の割合である制約条件の感度とに基づいて、制約条件を考慮しながら目的関数の最適値を与える加硫条件変数の変化量及び設計変数の変化量を予測すると共に、加硫条件変数を予測量に相当する量変化させたときの目的関数の値及び設計変数を予測量に相当する量変化させたときの制約条件の値と、設計変数を予測量に相当する量変化させたときの目的関数の値及び設計変数を予測量に相当する量変化させたときの制約条件の値と、を演算し、予測値と演算値とに基づいて、制約条件を考慮しながら目的関数の最適値を与える加硫条件変数の値及び設計変数の値を求めることができる。   In step (c), the sensitivity of the objective function that is the ratio of the change amount of the objective function to the unit change amount of the vulcanization condition variable and the constraint that is the ratio of the change amount of the constraint condition to the unit change amount of the vulcanization condition Based on the sensitivity of the condition and the sensitivity of the objective function, which is the ratio of the change amount of the objective function to the unit change amount of the design variable, and the sensitivity of the constraint condition, which is the ratio of the change amount of the constraint condition to the unit change amount of the design variable , Predicting the amount of change of the vulcanization condition variable and the design variable that gives the optimum value of the objective function while taking into account the constraint conditions, and the objective function when the vulcanization condition variable is changed by an amount corresponding to the predicted amount The value of the constraint condition when the value of the design variable and the design variable are changed by the amount corresponding to the prediction amount, and the value of the objective function and the design variable when the design variable is changed by the amount corresponding to the prediction amount correspond to the prediction amount Amount changed The value of the vulcanization condition variable and the design variable value that give the optimum value of the objective function based on the predicted value and the calculated value and giving the optimum value of the objective function can be obtained based on the predicted value and the calculated value. it can.

また、前記加硫条件変数は、タイヤモールド側温度、ブラダー側温度及び加硫時間の少なくとも1つを表すことができる。   The vulcanization condition variable can represent at least one of a tire mold side temperature, a bladder side temperature, and a vulcanization time.

また、前記設計変数は、ゴムのヤング率、ポアソン比、及び異方性補強材の各方向のヤング率またはポアソン比の少なくとも1つを表すことができる。   The design variable may represent at least one of a Young's modulus, Poisson's ratio of rubber, and a Young's modulus or Poisson's ratio in each direction of the anisotropic reinforcing material.

本発明によれば、ステップ(a)において、内部構造を含むタイヤ断面形状を表すタイヤ基本モデルと、タイヤ性能評価用物理量を表す目的関数と、タイヤの各ゴム部材の物性が定まる加硫条件を決定する加硫条件変数と、ゴム部材及び補強材の物性を決定する設計変数と、ゴム部材及び補強材の物性、性能評価用物理量及びタイヤ寸度の少なくとも1つを制約する制約条件と、を定める。タイヤ基本モデルは、複数の要素に分割するのが良い。タイヤ性能評価用物理量を表す目的関数としては、転がり抵抗や横バネ定数等のタイヤの優劣を支配する物理量を使用することができる。タイヤのゴム部材の物性を決定する設計変数としては、各ゴム部材毎のヤング率及びポアソン比等の弾性率やロス特性を用いることができる。タイヤのゴム部材やゴム部材の配置を制約する制約条件としては、ゴム部材のヤング率及びポアソン比の値の制約、タイヤの縦バネ定数の制約、上下一次固有振動数の制約、ケース剛性の制約、ベルト弾性率等がある。タイヤの各ゴム部材の物性が定まる加硫条件を決定する加硫条件変数としては、モールド側温度、ブラダー側温度及び加硫時間で定まる加硫条件を決定する物理エネルギがある。   According to the present invention, in step (a), a tire basic model representing a tire cross-sectional shape including an internal structure, an objective function representing a physical quantity for tire performance evaluation, and a vulcanization condition for determining physical properties of each rubber member of the tire are determined. A vulcanization condition variable to be determined, a design variable to determine the physical properties of the rubber member and the reinforcing material, and a constraint condition that restricts at least one of the physical properties of the rubber member and the reinforcing material, the physical quantity for performance evaluation, and the tire size. Determine. The tire basic model is preferably divided into a plurality of elements. As an objective function representing a physical quantity for tire performance evaluation, a physical quantity that governs superiority or inferiority of the tire such as rolling resistance and lateral spring constant can be used. As a design variable that determines the physical properties of the rubber member of the tire, elastic modulus such as Young's modulus and Poisson's ratio and loss characteristics for each rubber member can be used. Constraints that restrict the placement of rubber members and rubber members of tires include the restriction of the Young's modulus and Poisson's ratio of the rubber member, the restriction of the longitudinal spring constant of the tire, the restriction of the upper and lower primary natural frequencies, and the restriction of the case rigidity. And belt elastic modulus. The vulcanization condition variable that determines the vulcanization condition that determines the physical properties of each rubber member of the tire includes physical energy that determines the vulcanization condition determined by the mold side temperature, the bladder side temperature, and the vulcanization time.

なお、目的関数、加硫条件変数、設計変数及び制約条件は、上記の例に限られるものではなく、タイヤ設計目的に応じて種々のものを定めることができる。   The objective function, the vulcanization condition variable, the design variable, and the constraint condition are not limited to the above example, and various things can be determined according to the tire design purpose.

次のステップ(b)では、加硫条件変数に基づく加硫条件によるタイヤの各ゴム部材に対して付与される熱エネルギを求めると共に求めた熱エネルギに基づいてゴム部材の物性値を求める。このゴム部材の物性値を求めるときには、前記ステップ(b)では、前記熱エネルギを求めるために、ゴム配合の熱伝導度、比熱、密度の温度依存性、および加硫中に発生する加硫反応熱量の影響を考慮して熱伝達予測を行い、得られる熱量またはタイヤ各部材の最高到達温度及び熱量を熱エネルギとして該熱エネルギに基づいてゴム部材の物性値を求めると効果的である。   In the next step (b), the thermal energy applied to each rubber member of the tire under the vulcanization condition based on the vulcanization condition variable is obtained, and the physical property value of the rubber member is obtained based on the obtained thermal energy. When determining the physical properties of the rubber member, in step (b), in order to determine the thermal energy, the thermal conductivity of the rubber compound, the specific heat, the temperature dependence of the density, and the vulcanization reaction that occurs during vulcanization. It is effective to perform heat transfer prediction in consideration of the influence of the heat quantity, and to determine the physical property value of the rubber member based on the heat quantity obtained or the maximum temperature and heat quantity of each tire member as heat energy.

次のステップ(c)では、前記求めた物性値を用いて、制約条件を考慮しながら目的関数の最適値を与える加硫条件変数の値及び設計変数の値を求める。この設計変数の値を求めるときには、制約条件を満たしながら目的関数の最適値を与える設計変数の値を求めることが含まれる。この場合には、加硫条件変数の単位変化量に対する目的関数の変化量の割合である目的関数の感度及び加硫条件の単位変化量に対する制約条件の変化量の割合である制約条件の感度と、設計変数の単位変化量に対する目的関数の変化量の割合である目的関数の感度及び設計変数の単位変化量に対する制約条件の変化量の割合である制約条件の感度とに基づいて、制約条件を考慮しながら目的関数の最適値を与える加硫条件変数の変化量及び設計変数の変化量を予測すると共に、加硫条件変数を予測量に相当する量変化させたときの目的関数の値及び設計変数を予測量に相当する量変化させたときの制約条件の値と、設計変数を予測量に相当する量変化させたときの目的関数の値及び設計変数を予測量に相当する量変化させたときの制約条件の値と、を演算し、予測値と演算値とに基づいて、制約条件を考慮しながら目的関数の最適値を与える加硫条件変数の値及び設計変数の値を求めると効果的である。これによって、制約条件を考慮し目的関数の値が最適になるときの加硫条件変数の値及び設計変数の値が求められる。   In the next step (c), the value of the vulcanization condition variable and the value of the design variable that give the optimum value of the objective function are obtained using the obtained physical property values while considering the constraint conditions. Obtaining the value of this design variable includes obtaining the value of the design variable that gives the optimum value of the objective function while satisfying the constraint conditions. In this case, the sensitivity of the objective function, which is the ratio of the change amount of the objective function to the unit change amount of the vulcanization condition variable, and the sensitivity of the constraint condition, which is the ratio of the change amount of the constraint condition to the unit change amount of the vulcanization condition, Based on the sensitivity of the objective function, which is the ratio of the change amount of the objective function to the unit change amount of the design variable, and the sensitivity of the constraint condition, which is the ratio of the change amount of the constraint condition to the unit change amount of the design variable, Predict the amount of change in the vulcanization condition variable and design variable that give the optimum value of the objective function while taking into account the value and design of the objective function when the vulcanization condition variable is changed by an amount corresponding to the predicted amount The value of the constraint condition when the variable was changed by the amount corresponding to the predicted amount, the value of the objective function when the design variable was changed by the amount corresponding to the predicted amount, and the design variable were changed by the amount corresponding to the predicted amount. When constraints If, calculated, and based on the predicted value and the calculated value, it is effective to determine the values of and design variables vulcanization condition variable which gives the optimum value of the objective function while considering the constraint condition. As a result, the value of the vulcanization condition variable and the value of the design variable when the value of the objective function is optimized in consideration of the constraints are obtained.

そしてステップ(d)では、目的関数の最適値を与える加硫条件変数及び設計変数に基づいてタイヤ基本モデル等を変更することによりタイヤを設計する。また、ステップ(a)を行った後かつステップ(b)を行う前に、有限要素法から実使用条件下での各ゴム部材の歪及び温度を求めるステップ(e)を行うと共に、ステップ(c)では、ステップ(b)で求めたゴム部材の物性値とステップ(e)で求めた各ゴム部材の歪及び温度を用い、各ゴム部材の歪及び温度と物性値との既知の対応関係から前記ゴム部材の物性値を更新した後に、更新した物性値を用いて、制約条件を考慮しながら目的関数の最適値を与える加硫条件変数の値及び設計変数の値を求めている。 In step (d), the tire is designed by changing the tire basic model and the like based on the vulcanization condition variable and the design variable that give the optimum value of the objective function. In addition, after performing step (a) and before performing step (b), step (e) for determining strain and temperature of each rubber member under actual use conditions from the finite element method is performed, and step (c) ), Using the physical property value of the rubber member obtained in step (b) and the strain and temperature of each rubber member obtained in step (e), from the known correspondence between the strain and temperature of each rubber member and the physical property value. After updating the physical property value of the rubber member, the updated physical property value is used to obtain the value of the vulcanization condition variable and the design variable value that give the optimum value of the objective function while considering the constraint conditions.

本発明の設計法に基づき設計・開発した場合、従来の試行錯誤を基本とした設計・開発と異なり、コンピューター計算を主体にしてかつ製造時の加硫条件を考慮してベストモードの設計から設計されたタイヤの性能評価までがある程度可能となり、著しい効率化を達成でき、開発にかかる費用が削減可能となるものである。   When designing and developing based on the design method of the present invention, unlike the conventional design and development based on trial and error, designing from the best mode design based on computer calculation and taking into account the vulcanization conditions during production It is possible to evaluate the performance of the tires to a certain extent, achieve remarkable efficiency, and reduce development costs.

以上説明したように本発明によれば、制約条件を考慮し目的関数の最適値を与える加硫条件変数及び設計変数を求め、これらの加硫条件変数及び設計変数から最適なゴム部材及び補強材の物性となるタイヤを設計しているので、設計・開発が高効率化し、低コストでベストな構造のタイヤを設計することができる、という効果がある。   As described above, according to the present invention, the vulcanization condition variable and the design variable that give the optimum value of the objective function in consideration of the constraint condition are obtained, and the optimum rubber member and reinforcing material are obtained from these vulcanization condition variable and design variable. Since the tire having the physical properties is designed, there is an effect that the design / development is highly efficient and the tire having the best structure can be designed at a low cost.

以下、図面を参照して本発明の実施の形態を詳細に説明する。なお、以下では本発明の実施形態の説明に先立ち、まず本発明の比較例を説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Hereinafter, prior to the description of the embodiment of the present invention, a comparative example of the present invention will be described first.

比較例
図1は本比較例に係る空気入りタイヤの設計方法を実施するためのパーソナルコンピュータの概略を示すものである。このパーソナルコンピュータは、データ等を入力するためのキーボード10、予め記憶されたプログラムに従って制約条件を満たしかつ目的関数を最適、例えば、最大または最小にする加硫条件変数及び設計変数を演算するコンピュータ本体12、及びコンピュータ本体12の演算結果等を表示するCRT14から構成されている。
[ Comparative Example ]
FIG. 1 shows an outline of a personal computer for carrying out the pneumatic tire designing method according to this comparative example . This personal computer has a keyboard 10 for inputting data and the like, a computer main body that calculates vulcanization condition variables and design variables that satisfy constraint conditions and optimize an objective function, for example, maximum or minimum, according to a program stored in advance 12 and a CRT 14 for displaying a calculation result of the computer main body 12 and the like.

先ず、タイヤ加硫を予測しつつ転がり抵抗を低減させる各ゴム部材の物性である弾性率(ヤング率)を求める例を説明する。   First, an example of obtaining an elastic modulus (Young's modulus) that is a physical property of each rubber member that reduces rolling resistance while predicting tire vulcanization will be described.

なお、このヤング率を求めるに際しては、転がり抵抗を低減させるために、タイヤの歪みエネルギーロス(ヒステリシス損失)を最適値である最小値にする各ゴム部材の物性であるヤング率を求めてもよい。   In determining the Young's modulus, in order to reduce rolling resistance, the Young's modulus, which is a physical property of each rubber member, which makes the distortion energy loss (hysteresis loss) of the tire the minimum value that is the optimum value may be determined. .

図2は、本実施の形態のプログラムの処理ルーチンを示すものある。ステップ100では、自然平衡状態のタイヤ断面形状を基準形状とし、この基準形状を、有限要素法等のように荷重転動時の転がり抵抗値を数値的・解析的に求めることができる手法によりモデル化し、内部構造を含むタイヤ断面形状を表すと共にメッシュ分割によって複数の要素に分割されたタイヤ基本モデルを求める。なお、基準形状は、自然平衡状態のタイヤ断面形状に限らず任意の形状でよい。ここで、モデル化とは、タイヤ形状、構造、材料、パターンを、数値的・解析的手法に基づいて作成されたコンピュータプログラムへのインプットデータ形式に数値化することをいう。   FIG. 2 shows a processing routine of the program according to the present embodiment. In step 100, a tire cross-sectional shape in a natural equilibrium state is set as a reference shape, and this reference shape is modeled by a method capable of numerically and analytically determining a rolling resistance value during load rolling, such as a finite element method. And a tire basic model that represents a tire cross-sectional shape including an internal structure and is divided into a plurality of elements by mesh division. The reference shape is not limited to the tire cross-sectional shape in a natural equilibrium state, and may be any shape. Here, modeling means that the tire shape, structure, material, and pattern are digitized into an input data format to a computer program created based on a numerical / analytical method.

図3はこのタイヤ基本モデルを示すもので、複数のゴム部材毎に分割されたカーカス22を有する空気入りタイヤ20を示している。このカーカス22はビード26により折り返されている。このカーカス22の内側はインナーライナー24とされ、インナーライナー24に延長上にはビードゴム36が配置している。また、折り返されたカーカス22により形成される略三角形状の領域はビードフィラー28とされている。カーカス22の上方には、ベルト30が配置しており、このベルト30の半径方向外側には溝が形成されたトレッドゴム32が配置し、カーカス22の軸方向外側にはサイドゴム34が配置している。なお、タイヤ基本モデルをゴム部材毎に複数分割した例を挙げたが、設計目的によって3角形等の任意の形状に分割してもよい。   FIG. 3 shows this tire basic model, and shows a pneumatic tire 20 having a carcass 22 divided into a plurality of rubber members. The carcass 22 is folded back by a bead 26. The inner side of the carcass 22 is an inner liner 24, and a bead rubber 36 is disposed on the inner liner 24 so as to extend. A substantially triangular area formed by the folded carcass 22 is a bead filler 28. A belt 30 is disposed above the carcass 22, a tread rubber 32 having a groove is disposed on the outer side in the radial direction of the belt 30, and a side rubber 34 is disposed on the outer side in the axial direction of the carcass 22. Yes. In addition, although the example which divided | segmented the tire basic model into multiple for every rubber member was given, you may divide | segment into arbitrary shapes, such as a triangle, according to the design objective.

次のステップ102では、タイヤ性能評価用物理量を表す目的関数、ゴム部材の物性を制約する制約条件、タイヤの各ゴム部材の物性が定まる加硫条件を決定する加硫条件変数、及びゴム部材の物性を決定する設計変数を決定する。本実施の形態では、タイヤの転がり抵抗を低減させる加硫条件及び弾性率(ヤング率)を設計するため、目的関数OBJ、制約条件G、及び加硫条件Vを次のように定めている。   In the next step 102, an objective function that represents a physical quantity for tire performance evaluation, a constraint condition that restricts physical properties of the rubber member, a vulcanization condition variable that determines a vulcanization condition that determines the physical property of each rubber member of the tire, and a rubber member Determine design variables that determine physical properties. In the present embodiment, in order to design the vulcanization conditions and the elastic modulus (Young's modulus) that reduce the rolling resistance of the tire, the objective function OBJ, the constraint condition G, and the vulcanization condition V are determined as follows.

目的関数OBJ:転がり抵抗値
制約条件G :ケース剛性が現行同等(既存のタイヤについてのケース剛性)
加硫条件V :現行同等(例えば、モールド側温度、ブラダー側温度及び加硫時間の少なくとも1つで定まる条件)。
Objective function OBJ: Rolling resistance value Constraint G: Case stiffness is the same as the current case (case stiffness for existing tires)
Vulcanization condition V: Current equivalent (for example, a condition determined by at least one of mold side temperature, bladder side temperature, and vulcanization time).

なお、ゴム部材の物性を決定する設計変数は、タイヤ基本モデルにおけるゴム部材のヤング率から予め定められた範囲を変化可能なように、以下の式(1)で示したヤング率を定める係数が対応される。このヤング率を定める係数は、係数r,r,r,・・・(以下、一般式rと表す。但し、i=1,2,・・・,予め定めた自然数)と順に予め定めた所定増分量で増加または減少してヤング率が変動するように設定され、ゴム部材のヤング率を得るためタイヤ基本モデルにおけるゴム部材のヤング率に係数を乗算するときの係数ri を設計変数として設定する。 The design variable that determines the physical properties of the rubber member is a coefficient that determines the Young's modulus expressed by the following equation (1) so that a predetermined range can be changed from the Young's modulus of the rubber member in the tire basic model. Corresponding. The coefficients that determine the Young's modulus are coefficients r 1 , r 2 , r 3 ,... (Hereinafter, represented by the general formula r i , where i = 1, 2,..., A predetermined natural number). Young's modulus is set to vary increased or decreased by at a predetermined predetermined increment amount, the coefficient r i when multiplied by a coefficient Young's modulus of the rubber member in the tire basic model to obtain a Young's modulus of the rubber member Set as a design variable.

i =ri ・eo −−−(1)
但し、ei :ヤング率
i :係数
eo:タイヤ基本モデルにおけるゴム部材のヤング率、
である。
e i = r i · eo --- (1)
However, e i: Young's modulus r i: coefficient eo: Young's modulus of the rubber member in the tire basic model,
It is.

また、加硫条件を決定する加硫条件変数は、タイヤ製造時に付与可能な予め定められたエネルギ範囲を変化可能なように、以下の式(2)で示した加硫条件を定める係数が対応される。この加硫条件を定める係数は、係数q,q,q,・・・(以下、一般式qと表す。但し、j=1,2,・・・,予め定めた自然数)と順に予め定めた所定増分量で増加または減少して加硫条件が変動するように設定され、ゴム部材に対する加硫条件を規定する条件値に係数を乗算するときの係数qを加硫条件変数として設定する。 In addition, the vulcanization condition variable that determines the vulcanization condition corresponds to the coefficient that determines the vulcanization condition expressed by the following equation (2) so that the predetermined energy range that can be given at the time of tire manufacture can be changed. Is done. Coefficients that determine the vulcanization conditions are coefficients q 1 , q 2 , q 3 ,... (Hereinafter, expressed as general formula q j , where j = 1, 2,..., A predetermined natural number) The vulcanization conditions are set so that the vulcanization conditions fluctuate by increasing or decreasing in order by a predetermined increment in order, and the coefficient q j when multiplying the condition value defining the vulcanization conditions for the rubber member by the coefficient is the vulcanization condition variable Set as.

=q・vo −−−(2)
但し、V:加硫条件
:係数(加硫条件変数)
vo:現行タイヤにおける加硫条件、である。
V j = q j · vo --- (2)
Where V j : vulcanization condition q j : coefficient (vulcanization condition variable)
vo: Vulcanization conditions for current tires.

このようにして目的関数OBJ、制約条件G、加硫条件変数q及び設計変数rを決定した後、図2のステップ104において、目的関数及び制約条件の初期値を演算する。すなわち、現行タイヤ構造(対象とするタイヤのタイヤ基本モデルである形状)、現行ゴム配合(対象とするタイヤのゴム部材の要素配合)、及び現行加硫条件(対象とするタイヤを製造するときの現行の加硫条件)において、目的関数(例えばタイヤ転がり抵抗)の初期値、制約条件(例えばケース剛性やべルト弾性率)の初期値を演算する。 Thus objective function OBJ, after determining constraints G, the vulcanizing condition variable q j and design variables r i, in step 104 of FIG. 2, to calculate the initial value of the objective function and constraints. That is, the current tire structure (the shape that is the basic tire model of the target tire), the current rubber composition (element composition of the rubber member of the target tire), and the current vulcanization conditions (when manufacturing the target tire) Under the current vulcanization conditions, the initial value of the objective function (for example, tire rolling resistance) and the initial value of the constraint conditions (for example, case rigidity and belt elastic modulus) are calculated.

この初期値の演算は、現行ゴム配合によるゴム部材を有する現行タイヤ構造のタイヤ基本モデルに対して、現行加硫条件によりエネルギ付与した場合の熱伝導計算を、有限要素法により行って、ゴム部材の物性計算を実施する。この得られた物性値(例えばヤング率)を用いて、目的関数の値、及び制約条件の値を求める。   The calculation of the initial value is carried out by calculating the heat conduction when the energy is applied under the current vulcanization condition for the tire basic model of the current tire structure having the rubber member with the current rubber composition by the finite element method. Perform physical property calculations. Using the obtained physical property value (for example, Young's modulus), the value of the objective function and the value of the constraint condition are obtained.

なお、上記熱伝導計算は、以下に説明する伝熱予測により行ってもよく、初期値として予め実験的に求めた値を記憶しておき、これを読み取ることによって実行してもよい。   The heat conduction calculation may be performed by heat transfer prediction described below, or may be executed by storing an experimentally obtained value as an initial value and reading this value.

次のステップ106では、加硫条件によるタイヤ基本モデルの物性を変化させるためにタイヤのゴム部材に対する加硫条件変数qを各々単位量Δqずつ変化させ、熱伝導計算を実行する。これにより加硫条件によって与えられる、タイヤ各部位の熱量(熱エネルギ)を求めることができる。 In the next step 106, each varied by a unit amount [Delta] q j vulcanized condition variable q j the rubber member of the tire to vary the physical properties of the tire basic model by vulcanization conditions, performing heat transfer calculations. Thereby, the calorie | heat amount (thermal energy) of each part of a tire given by vulcanization conditions can be calculated | required.

このステップ106の熱伝導計算では、ゴム部材の熱伝導度や反応熱を予め材料単位で実験的に求めておき、データベース化し、記憶することが好ましい。本実施の形態では、加硫条件(例えば、モールド側温度、ブラダー側温度及び加硫時間等)における伝熱予測を行うために、予測パラメータを予め求めてデータベース化している。   In the heat conduction calculation in step 106, it is preferable that the thermal conductivity and reaction heat of the rubber member are experimentally obtained in advance for each material, stored in a database, and stored. In the present embodiment, in order to perform heat transfer prediction under vulcanization conditions (for example, mold side temperature, bladder side temperature, vulcanization time, etc.), prediction parameters are obtained in advance and stored in a database.

予測パラメータは、加硫条件に基づきタイヤ各部材への熱伝達性を計算する際に用いるものである。具体的には、各ゴム部材の熱伝導度、比熱、密度、及び加硫時反応熱や、それらの温度依存性に相当するものであるが、これらは実測して、データベース化することが好ましいがゴム配合内容から推定することも可能である。   The prediction parameter is used when calculating heat transfer to each tire member based on vulcanization conditions. Specifically, it corresponds to the thermal conductivity, specific heat, density, reaction heat during vulcanization, and temperature dependence thereof, but these are preferably measured and databased. It is also possible to estimate from the rubber compounding content.

従って、任意の加硫条件において、有限要素法を活用した予測パラメータに基づく非定常熱伝導計算を行うことで各ゴム部材の熱伝達性を求めることができ、結果としてタイヤ各部位の熱量(熱エネルギー)を計算(予測)することができる。   Therefore, the heat transferability of each rubber member can be obtained by performing unsteady heat conduction calculation based on a prediction parameter utilizing the finite element method under an arbitrary vulcanization condition. Energy) can be calculated (predicted).

ステップ108では、上記ステップ106で求めたタイヤ各部位の熱量演算結果からゴム部材の物性値(ヤング率)を予測する。このステップ108のゴム部材の物性予測演算では、ゴム部材の物性値と熱量との関係を予め材料単位で実験的に求めておき、データベース化し、記憶することが好ましい。本実施の形態では、ゴム部材の物性値を予測するために、加硫温度及び加硫時間の各々とゴム物性との相関関係を予め求めてデータベース化している。   In step 108, the physical property value (Young's modulus) of the rubber member is predicted from the calorific value calculation result of each part of the tire obtained in step 106. In the physical property prediction calculation of the rubber member in this step 108, it is preferable that the relationship between the physical property value of the rubber member and the amount of heat is experimentally obtained in advance for each material, stored in a database, and stored. In the present embodiment, in order to predict the physical property values of the rubber member, the correlation between each of the vulcanization temperature and vulcanization time and the physical properties of the rubber is obtained in advance and stored in a database.

すなわち、各種ゴム配合による複数のゴム部材の各々について、加硫温度及び加硫時間の各々を変化させたときのゴム部材の物性値をラボ等の試験環境において予め実測する。この結果から最高加硫温度と総熱量に対するゴム部材の物性値(ヤング率などのゴム弾性率やロス特性)の特性をマスター曲線として求め、データベース化する。図4には、ゴム部材の物性の一例として、ゴムロス特性を示した。このゴムロス特性の例は、熱エネルギー量が増加するに従ってゴムロス特性値が一旦減少したのち増加する特性を示している。また、図5には、ベルトゴム弾性率の特性を示した。このベルトゴム弾性率の例は、熱エネルギー量が増加するに従ってゴム弾性率が概ね徐々に増加する特性を示している。   That is, for each of a plurality of rubber members made of various rubbers, the physical property values of the rubber member when the vulcanization temperature and the vulcanization time are changed are measured in advance in a test environment such as a laboratory. From this result, the properties of the physical properties (rubber elastic modulus such as Young's modulus and loss properties) of the rubber member with respect to the maximum vulcanization temperature and the total heat quantity are obtained as a master curve, and are made into a database. FIG. 4 shows rubber loss characteristics as an example of physical properties of the rubber member. This example of the rubber loss characteristic shows a characteristic that the rubber loss characteristic value is once decreased and then increased as the thermal energy amount is increased. FIG. 5 shows the belt rubber elastic modulus characteristics. This example of the belt rubber elastic modulus shows a characteristic in which the rubber elastic modulus generally gradually increases as the amount of thermal energy increases.

従って、ステップ108では、まず、上記ステップ106で求めたタイヤ各部位の熱量演算結果から、タイヤ各部材(または要素)における最高加硫温度、及び総熱量を求める。次にデータベース化したマスター曲線を用いて、タイヤ各部材(または要素)の最高加硫温度、及び総熱量に対応するゴム部材の物性値を求めることによって、ゴム部材の物性値(ヤング率)を予測する。   Therefore, in step 108, first, the maximum vulcanization temperature and the total heat quantity in each tire member (or element) are obtained from the calorific value calculation result of each tire part obtained in step 106. Next, the physical property value (Young's modulus) of the rubber member is obtained by obtaining the physical property value of the rubber member corresponding to the maximum vulcanization temperature and the total heat quantity of each tire member (or element) using the master curve created in the database. Predict.

次のステップ110では、タイヤ基本モデルの物性を変化させるために所定のゴム部材の設計変数ri を各々Δri ずつ変化させる。次のステップ112では、設計変数をΔri 変化させた後の目的関数の値OBJi 及び制約条件の値Gi を演算して、その結果から以下の式(3)、(4)に従って、設計変数の単位変化量に対する目的関数の変化量の割合である目的関数の感度dOBJ/dri と、設計変数の単位変化量に対する制約条件の変化量の割合である制約条件の感度dG/dri と、を各設計変数毎に演算する。 In the next step 110, each varying by [Delta] r i design variables r i a predetermined rubber member in order to change the physical properties of the tire basic model. In the next step 112, the value OBJ i of the objective function and the value G i of the constraint condition after changing the design variable Δr i are calculated, and the design is performed according to the following equations (3) and (4) from the results. The sensitivity dOBJ / dr i of the objective function, which is the ratio of the change amount of the objective function to the unit change amount of the variable, and the sensitivity dG / dr i of the constraint condition, which is the ratio of the change amount of the constraint condition to the unit change amount of the design variable Are calculated for each design variable.

Figure 0005128853
Figure 0005128853

また、加硫条件を考慮するため、ステップ110及び112において、初期値の演算と同様に、上記変化させた加硫条件によりエネルギー付与した場合の熱伝導計算によりゴム部材の物性計算を実施し、得られた物性値(例えばヤング率)を用いて、目的関数の値、及び制約条件の値を求める。そして、加硫条件変数をΔq変化させた後の目的関数の値OBJ及び制約条件の値Gを演算して、その結果から以下の式(5)、(6)に従って、加硫条件変数の単位変化量に対する目的関数の変化量の割合である目的関数の感度dOBJ/dqと、加硫条件変数の単位変化量に対する制約条件の変化量の割合である制約条件の感度dG/dqと、を各加硫条件変数毎に演算する。 Further, in order to consider the vulcanization conditions, in Steps 110 and 112, as in the calculation of the initial value, the physical property calculation of the rubber member is performed by the heat conduction calculation when energy is applied under the changed vulcanization conditions, Using the obtained physical property value (for example, Young's modulus), the value of the objective function and the value of the constraint condition are obtained. Then, the value OBJ j of the objective function and the value G j of the constraint condition after changing the vulcanization condition variable by Δq j are calculated, and the vulcanization condition is calculated from the results according to the following equations (5) and (6). The sensitivity dOBJ / dq j of the objective function, which is the ratio of the change amount of the objective function to the unit change amount of the variable, and the sensitivity dG / dq of the constraint condition, which is the ratio of the change amount of the constraint condition to the unit change amount of the vulcanization condition variable j is calculated for each vulcanization condition variable.

Figure 0005128853
Figure 0005128853

これらの感度によって、加硫条件変数を単位量Δq変化させたとき、設計変数を単位量Δri 変化させたときの各々について目的関数の値がどの程度変化するか予測することができる。 These sensitivity, when the vulcanization condition variable is a unit amount [Delta] q j changes, may each forecast whether the value of the objective function is how to change the time obtained by the unit amount [Delta] r i change the design variable.

次のステップ114では、全ゴム部材について演算が終了したか否かを判断し、全てのゴム部材について演算が終了していない場合には、ステップ106からステップ112を繰り返し実行する。   In the next step 114, it is determined whether or not the calculation has been completed for all the rubber members. If the calculation has not been completed for all the rubber members, steps 106 to 112 are repeatedly executed.

次のステップ116では、目的関数の初期値OBJo、制約条件の初期値Go、加硫条件変数の初期値qo、設計変数の初期値ro及び感度を用いて、数理計画法により制約条件を満たしながら目的関数を最小にする設計変数の変化量を予測する。これら加硫条件変数及び設計変数の予測値を用いて、ステップ118でタイヤを構成するゴム部材の構造は変化することはないが各ゴム部材のヤング率が修正されたヤング率修正モデルを決定すると共に、目的関数値を演算する。   In the next step 116, the initial value OBJo of the objective function, the initial value Go of the constraint condition, the initial value qo of the vulcanization condition variable, the initial value ro and the sensitivity of the design variable are used to satisfy the constraint condition by mathematical programming. Predict the amount of design variable change that minimizes the objective function. Using the predicted values of the vulcanization condition variable and the design variable, a Young's modulus correction model in which the Young's modulus of each rubber member is corrected is determined in step 118 without changing the structure of the rubber member constituting the tire. At the same time, the objective function value is calculated.

次のステップ120では、ステップ118で演算した目的関数値OBJとステップ104で演算した目的関数の初期値OBJoとの差と、予めインプットされたしきい値とを比較することで目的関数の値が収束したか否かを判断し、目的関数の値が収束していない場合にはステップ116で求められた加硫条件変数及び設計変数の予測値を初期値として、ステップ104からステップ118を繰り返し実行する。目的関数の値が収束したと判断されたときには、このときの設計変数の値をもって制約条件を満たしながら目的関数を最小にする加硫条件変数の値及び設計変数の値とし、ステップ122において、加硫条件変数の値及び設計変数の値を用いてタイヤを構成する各ゴム部材のヤング率及び加硫条件を決定する。   In the next step 120, the value of the objective function is determined by comparing the difference between the objective function value OBJ calculated in step 118 and the initial value OBJo of the objective function calculated in step 104 with a threshold value input in advance. It is determined whether or not it has converged, and if the value of the objective function has not converged, the predicted values of the vulcanization condition variable and the design variable obtained in step 116 are used as initial values, and steps 104 to 118 are repeatedly executed. To do. When it is determined that the value of the objective function has converged, the value of the design variable at this time is used as the value of the vulcanization condition variable and the design variable that minimizes the objective function while satisfying the constraint conditions. The value of the vulcanization condition variable and the value of the design variable are used to determine the Young's modulus and vulcanization conditions of each rubber member constituting the tire.

〔実施形態〕
次に本発明の実施形態を説明する。なお、本実施形態は比較例と同一の構成であるので、各部分に同一の符号を付して構成の説明を省略し、以下図6を参照し、本実施形態に係る処理ルーチンについて、比較例で説明した処理ルーチン(図2)と異なる部分についてのみ説明する。
[Implementation Embodiment
It will now be described implementation form of the present invention. Since this implementation mode is the same configuration as Comparative Example, not described configuration for each portion are denoted by the same reference numerals, with reference to FIG. 6 below, the processing routine according to the present implementation mode Only parts different from the processing routine (FIG. 2) described in the comparative example will be described.

上述した比較例では、「ケース剛性が現行同等」等の制約条件を満たし、かつ目的関数としての転がり抵抗値が最小になるように、各ゴム部材の物性値(ヤング率)及び加硫条件を決定する態様を説明したが、タイヤの実使用条件下では、まず内圧が加えられることでタイヤの各ゴム部材に歪(静的な歪)が生じ、タイヤが転動されることで各ゴム部材の歪が更に変化する(静的な歪に動的な歪が加わる)と共に、タイヤの転動に伴って各ゴム部材の温度も変化する。そして、各ゴム部材の歪や温度が変化すると各ゴム部材のヤング率等の物性値が変化する。比較例では実使用条件下での各ゴム部材の歪や温度の影響を考慮していないので改善の余地がある。 In the comparative example described above, the physical property values (Young's modulus) and vulcanization conditions of each rubber member are set so as to satisfy the constraints such as “case rigidity is equivalent to the current” and to minimize the rolling resistance value as an objective function. Although the mode to be determined has been described, under the actual use conditions of the tire, first, an internal pressure is applied to cause strain (static strain) in each rubber member of the tire, and each rubber member by rolling the tire The strain of the rubber member further changes (dynamic strain is added to the static strain), and the temperature of each rubber member also changes as the tire rolls. When the strain and temperature of each rubber member change, physical property values such as Young's modulus of each rubber member change. In the comparative example , there is room for improvement because the effects of distortion and temperature of each rubber member under actual use conditions are not considered.

上記に基づき本実施形態に係る処理ルーチン(図6)では、ステップ104で目的関数及び制約条件の初期値を演算した後に、次のステップ105において、タイヤを構成する各ゴム部材のうち演算対象の特定ゴム部材について、実使用条件下での歪及び温度を演算する処理を行う。実使用条件下でのゴム部材の歪及び温度の演算は、例えば以下のようにして行うことができる。 In the processing routine according to the present implementation embodiment based on the above-mentioned (FIG. 6), after calculating the initial value of the objective function and constraints at step 104. In the next step 105, the operation target of the rubber member constituting the tire The specific rubber member is processed to calculate strain and temperature under actual use conditions. Calculation of the strain and temperature of the rubber member under actual use conditions can be performed, for example, as follows.

すなわち、まず路面をモデル化した路面モデルを作成すると共に、作成した路面モデルに対し、実際の路面状態を模するための路面状態の設定を行う。路面モデルは路面形状を要素分割することで作成され、路面状態の設定は路面の摩擦係数μを選択設定することで行われる。路面の摩擦係数μは、例えば乾燥(DRY)、濡れ(WET)、氷上、雪上、非舗装等の路面状態によって相違するので、路面の摩擦係数μとして適切な値を選択設定することで、実際の路面状態を再現させることができる。なお、路面とタイヤモデルの間に流体モデルを設けても良い。流体モデルは、タイヤの一部(又は全部)及び接地面、タイヤが移動・変形する領域を含む流体領域を要素分割してモデル化したものである。   That is, a road surface model that models a road surface is first created, and a road surface state is set for the created road surface model to simulate an actual road surface state. The road surface model is created by dividing the road surface shape into elements, and the road surface state is set by selectively setting the friction coefficient μ of the road surface. The friction coefficient μ of the road surface differs depending on the road surface condition such as dry (DRY), wetness (WET), on ice, on snow, non-paved, etc., so by selecting and setting an appropriate value as the friction coefficient μ of the road surface, The road surface condition can be reproduced. A fluid model may be provided between the road surface and the tire model. The fluid model is a model obtained by dividing a fluid region including a part (or all) of a tire, a ground contact surface, and a region where the tire moves and deforms into elements.

次に境界条件の設定を行う。この境界条件とは、タイヤモデルの解析上、すなわちタイヤの挙動をシミュレートする上で必要なものであり、タイヤモデルに付与する各種条件である。境界条件の設定では、まずタイヤモデルに内圧を与えると共に、回転変位及び直進変位(変位は力、速度でも良い)の少なくとも一方と、予め定めた負荷荷重とを与える。なお、路面との摩擦を考慮する場合は、回転変位(若しくは力、速度)及び直進変位(若しくは力、速度)の何れか一方のみでよい。   Next, the boundary condition is set. The boundary conditions are necessary for analysis of the tire model, that is, for simulating the behavior of the tire, and are various conditions given to the tire model. In setting the boundary conditions, first, an internal pressure is applied to the tire model, and at least one of rotational displacement and linear displacement (displacement may be force or speed) and a predetermined load are applied. When considering friction with the road surface, only one of rotational displacement (or force, speed) and straight displacement (or force, speed) is sufficient.

続いて、タイヤモデル及び上記で与えた境界条件に基づき、有限要素法により実使用条件下(所定速度でタイヤが転動している状態)でのタイヤモデルの変形計算を行う。タイヤモデルの変形計算では、タイヤ転動時の状態(過渡的な状態)を得るために変形計算を繰り返し(例えば1msec以内の計算を繰り返して行い)、その度に境界条件を更新するようにしてもよい。また、タイヤモデルの変形計算における計算時間としては、タイヤ変形が定常状態となることを想定し予め定めた時間を採用することができる。上記の変形計算により、タイヤモデルを構成する個々の要素毎に、実使用条件下で生ずる応力や歪(内圧による静的な歪及びタイヤ転動時の動的な歪を含む)が算出される。   Subsequently, based on the tire model and the boundary conditions given above, deformation calculation of the tire model under the actual use condition (the state where the tire is rolling at a predetermined speed) is performed by the finite element method. In the tire model deformation calculation, the deformation calculation is repeated in order to obtain the tire rolling state (transient state) (for example, the calculation within 1 msec is repeated), and the boundary condition is updated each time. Also good. In addition, as a calculation time in the deformation calculation of the tire model, a predetermined time can be adopted assuming that the tire deformation is in a steady state. By the above deformation calculation, stress and strain (including static strain due to internal pressure and dynamic strain at the time of tire rolling) generated under actual usage conditions are calculated for each element constituting the tire model. .

次に、タイヤモデルに対して実使用条件下での発熱計算を行った後に、タイヤ内部の伝熱計算を行う。発熱計算は、実使用条件の一部として使用温度(環境温度)等を設定した後に、当該実使用条件下で生じる発熱現象をタイヤの各部位毎に特定し、その熱エネルギーを用いて行う。この場合、歪エネルギーロス等を基にタイヤの各部位に生じる発熱を計算することができる。また、この発熱計算では、タイヤの使用による路面との接触で生じる摩擦により発生するトレッド部分の発熱エネルギーを用いることができる。この場合にも、歪エネルギーロス等を基に、各部位に生じる発熱を計算することができる。なお、発熱計算はタイヤ各部位の温度予測を含む。温度予測は、予め設定した使用温度により、タイヤの全ての部位についてどの程度の温度になるのかを計算により求めるものである。この計算は、前述した変形計算によって算出されたタイヤ各部位の応力や歪に基づき、FEM等による熱解析によって予測することができる。   Next, after calculating the heat generation under the actual use conditions for the tire model, the heat transfer inside the tire is calculated. The heat generation calculation is performed by setting a use temperature (environment temperature) and the like as a part of the actual use conditions, and then specifying a heat generation phenomenon that occurs under the actual use conditions for each part of the tire and using the thermal energy. In this case, the heat generated in each part of the tire can be calculated based on strain energy loss and the like. In this heat generation calculation, the heat generation energy of the tread portion generated by the friction generated by the contact with the road surface due to the use of the tire can be used. Also in this case, the heat generated in each part can be calculated based on strain energy loss and the like. The heat generation calculation includes the temperature prediction of each part of the tire. The temperature prediction is to calculate by calculation the level of temperature for all parts of the tire at a preset use temperature. This calculation can be predicted by thermal analysis such as FEM based on the stress and strain of each part of the tire calculated by the deformation calculation described above.

また、伝熱計算は、タイヤ内部から付与される熱エネルギーがタイヤ内部で伝達されるときのエネルギー伝達を計算したり、タイヤ内部で発生した熱エネルギーが周囲に伝達されるときのエネルギー伝達を計算する。この計算は、前述した変形計算によって算出されたタイヤ各部位の応力や歪に基づき、FEM等による熱解析によって計算することができる。これらの発熱計算と伝熱計算は、計算結果が収束するまで、例えば所定時間が経過するか、又は温度平衡状態になるまで繰り返し行われる。   The heat transfer calculation calculates the energy transfer when the thermal energy applied from inside the tire is transferred inside the tire, and calculates the energy transfer when the heat energy generated inside the tire is transferred to the surroundings. To do. This calculation can be performed by thermal analysis using FEM or the like based on the stress and strain of each part of the tire calculated by the deformation calculation described above. These heat generation calculation and heat transfer calculation are repeatedly performed until the calculation result converges, for example, until a predetermined time elapses or a temperature equilibrium state is reached.

上述した演算(変形計算や発熱計算、伝熱計算)により、タイヤモデルを構成する個々の要素毎に、実使用条件下での歪(内圧による静的な歪及びタイヤ転動時の動的な歪を含む)や温度が算出されるので、各要素のうち演算対象の特定ゴム部材に対応する複数の要素について、算出された歪及び温度の例えば平均値を各々演算する。これにより、演算対象の特定ゴム部材について、実使用条件下での歪及び温度を算出することができる。   By the above-described operations (deformation calculation, heat generation calculation, heat transfer calculation), for each element constituting the tire model, the strain under actual use conditions (static distortion due to internal pressure and dynamic during rolling of the tire) For example, an average value of the calculated strain and temperature is calculated for each of a plurality of elements corresponding to the specific rubber member to be calculated. Thereby, the strain and temperature under actual use conditions can be calculated for the specific rubber member to be calculated.

また、本実施形態に係る処理ルーチン(図6)では、比較例で説明した熱伝導計算(ステップ106)及び演算対象の特定ゴム部材の物性値(ヤング率)の予測演算(ステップ108)を行った後に、次のステップ109において、先のステップ105で演算した特定ゴム部材の実使用条件下での歪及び温度に基づき、ステップ108で予測演算した特定ゴム部材の物性値(ヤング率)を更新する。ゴム部材の歪及び温度の変化に対し、ゴム部材の物性値(ヤング率)は例として図7に示すように変化する。本実施形態に係るパーソナルコンピュータの記憶部には、図7に示すようなゴム部材の歪及び温度と物性値との対応関係がマップ、或いはテーブル等の形態で記憶されており、ステップ109では上記の対応関係を表すマップ、或いはテーブル等を記憶部から読み出し、ステップ105で演算した特定ゴム部材の実使用条件下での歪及び温度に対応する物性値をマップ、或いはテーブル等から導出することで、ステップ108で予測演算した特定ゴム部材の物性値(ヤング率)を更新する。 Further, the processing routine according to the present implementation mode (Fig. 6), the prediction calculation of heat conduction calculation described in Comparative Example (step 106) and physical properties of the particular rubber member operand (Young's modulus) to (step 108) After performing, in the next step 109, the physical property value (Young's modulus) of the specific rubber member calculated in step 108 is calculated based on the strain and temperature under the actual use condition of the specific rubber member calculated in the previous step 105. Update. The physical property value (Young's modulus) of the rubber member changes as shown in FIG. 7 as an example with respect to the strain and temperature change of the rubber member. In a storage unit of a personal computer according to the present implementation embodiment, correspondence between the strain and temperature and physical properties of the rubber member shown in FIG. 7 is the map, or is stored in the form of a table or the like, in step 109 Reading out the map or table showing the above correspondence from the storage unit and deriving from the map or table the physical property value corresponding to the strain and temperature under the actual use condition of the specific rubber member calculated in step 105 Thus, the physical property value (Young's modulus) of the specific rubber member predicted and calculated in step 108 is updated.

これにより、演算対象の特定ゴム部材の物性値が、実使用条件下での歪及び温度の影響を考慮した値(実使用条件下での値により近い値)へ更新される。また、本実施形態に係る処理ルーチン(図6)では、比較例と同様に、演算対象の特定ゴム部材の設計変数ri を各々Δri ずつ変化させ(ステップ110)、目的関数の感度及び制約条件の感度を各設計変数毎に演算(ステップ112)した後に、全ゴム部材について演算が終了していないと判定された場合(ステップ114の判定が否定された場合)にステップ105に戻り、ステップ114の判定が肯定される迄ステップ105〜ステップ114を繰り返すので、タイヤを構成する全てのゴム部材について、実使用条件下での歪及び温度が各々演算され、実使用条件下での歪及び温度の影響を考慮した物性値が各々設定されることになる。 As a result, the physical property value of the specific rubber member to be calculated is updated to a value that takes into account the effects of strain and temperature under actual use conditions (a value closer to the value under actual use conditions). Further, the processing routine according to the present implementation mode (Fig. 6), similarly to the comparative example, by each [Delta] r i design variables r i operand of a particular rubber member is changed (step 110), the sensitivity of the objective function and After calculating the sensitivity of the constraint condition for each design variable (step 112), when it is determined that the calculation has not been completed for all rubber members (when the determination of step 114 is negative), the process returns to step 105. Steps 105 to 114 are repeated until the determination in step 114 is affirmed. Therefore, the strain and temperature under actual use conditions are calculated for all the rubber members constituting the tire, respectively. Each physical property value considering the influence of temperature is set.

更に、本実施形態に係る処理ルーチン(図6)では、比較例と同様に、ステップ120で目的関数の値が収束していないと判断された場合にステップ104に戻り、ステップ116で求めた加硫条件変数及び設計変数の予測値を初期値として、ステップ120の判定が肯定される迄ステップ104〜ステップ120を繰り返すが、この際、ステップ105で個々のゴム部材毎に行われるゴム部材の歪及び温度の演算は、ゴム部材の物性値(ヤング率)として、当該演算を最初に行う際に用いていた静止状態のタイヤを前提として仮に設定した値に代えて、先のステップ109で実使用条件下でのゴム部材の歪及び温度に基づいて更新した後の値を用いる。 Further, the processing routine according to the present implementation mode (Fig. 6), similarly to the comparative example, the flow returns to step 104 if the value of the objective function is determined not to converge in step 120, calculated in step 116 Steps 104 to 120 are repeated using the predicted values of the vulcanization condition variable and the design variable as initial values until the determination in step 120 is affirmed. At this time, in step 105, the rubber members to be performed for each individual rubber member are repeated. The calculation of strain and temperature is performed in the previous step 109 instead of the value set as a premise of the stationary tire used when the calculation is first performed as the physical property value (Young's modulus) of the rubber member. The updated value is used based on the strain and temperature of the rubber member under the usage conditions.

これにより、ステップ104〜ステップ120が繰り返されることで、ステップ105におけるゴム部材の歪及び温度の演算結果の精度が向上していき(実使用条件下でのゴム部材の実際の歪及び温度との偏差が小さくなっていき)、これに伴ってステップ109で更新されるゴム部材の物性値(ヤング率)も実使用条件下での値により近づいていくことになり、目的関数の値が収束することでステップ120の判定が肯定された段階で、ステップ122において、「ケース剛性が現行同等」等の制約条件を満たし、かつ目的関数としての転がり抵抗値が実使用条件下で最小になるように、設計変数としての各ゴム部材の物性値(ヤング率)及び加硫条件を決定することができる。従って、本実施形態によれば、タイヤ加硫の影響に加え、実使用条件下でのゴム部材の歪及び温度の影響も考慮して目標性能を向上させたタイヤの設計・開発を高効率に行うことができ、前記タイヤを低コストで提供することが可能となる。 As a result, by repeating Step 104 to Step 120, the accuracy of the calculation result of the strain and temperature of the rubber member in Step 105 is improved (with the actual strain and temperature of the rubber member under actual use conditions). Accordingly, the physical property value (Young's modulus) of the rubber member updated in step 109 is closer to the value under actual use conditions, and the value of the objective function converges accordingly. Thus, at the stage where the determination in step 120 is affirmed, in step 122, the constraint condition such as “the case rigidity is equal to the current value” is satisfied, and the rolling resistance value as the objective function is minimized under the actual use conditions. The physical property value (Young's modulus) and vulcanization conditions of each rubber member can be determined as design variables. Therefore, the according to the implementation mode, in addition to the effects of the tire vulcanizing the tire design and development of the effects of strain and temperature of the rubber member also improved the target performance in consideration of the actual use conditions high efficiency The tire can be provided at low cost.

なお、本実施形態に係る処理ルーチン(図6)では、ステップ105におけるゴム部材の歪及び温度の演算を個々のゴム部材毎に行っていたが、これに限定されるものではなく、例えば前述した変形計算や発熱計算、伝熱計算を行うことで、タイヤモデルを構成する個々の要素毎に歪及び温度が算出されるので、この演算結果に基づいてタイヤを構成する全てのゴム部材の歪及び温度の演算を一度に行うようにしてもよい。この場合、ステップ105で全てのゴム部材の歪及び温度を演算した後は、ステップ114の判定が肯定される迄の間、個々のゴム部材についてステップ106〜ステップ114を繰り返すようにすればよい。 In processing routine according to the present implementation mode (Fig. 6), had done a calculation of the strain and temperature of the rubber member in the step 105 for each individual rubber members, it is not limited thereto, for example, the aforementioned By performing the deformation calculation, heat generation calculation, and heat transfer calculation, the strain and temperature are calculated for each element that makes up the tire model, so the strain of all rubber members that make up the tire is calculated based on the calculation results. The temperature may be calculated at a time. In this case, after calculating the strain and temperature of all the rubber members in Step 105, Step 106 to Step 114 may be repeated for each rubber member until the determination in Step 114 is affirmed.

また、上記ではゴム部材の歪及び温度に基づいて更新するゴム部材の物性値としてヤング率を例に説明したが、これに限定されるものではなく、ゴム部材の他の物性値を適用することも可能である。   In the above description, the Young's modulus is described as an example of the physical property value of the rubber member to be updated based on the strain and temperature of the rubber member. However, the present invention is not limited to this, and other physical property values of the rubber member may be applied. Is also possible.

次に、本発明の実施例を説明する。本実施例では、より転がり抵抗を向上させたタイヤを設計することを可能としたものである。   Next, examples of the present invention will be described. In the present embodiment, it is possible to design a tire with further improved rolling resistance.

まず、トレッド部ゴム配合を低ロスのものを用いれば、低転がり抵抗のタイヤを得ることができる。ところが、タイヤとしては、トレッド部剛性、ケース部剛性などタイヤヘの入力を考慮しなければならない。ケース剛性が変化すると、トレッドゴムヘの入力が変化するのでタイヤ性能が変化する。また、タイヤを加硫することにより、ケース部材とトレッド部材への熱量が変化するため、タイヤゴム物性のバランスが決定される。   First, a tire with low rolling resistance can be obtained by using a tread rubber blend with a low loss. However, as a tire, input to the tire such as tread portion rigidity and case portion rigidity must be taken into consideration. When the case stiffness changes, the tire performance changes because the input to the tread rubber changes. Further, since the amount of heat to the case member and the tread member changes by vulcanizing the tire, the balance of the tire rubber physical properties is determined.

これらのことから、低ロスなトレッドゴム配合によりタイヤ性能を改良するだけでなく、ケース部剛性、トレッド部への入力、加硫による剛性バランスを加味することが好ましく、これらを総合的に考慮することによって、より転がり抵抗を改良したタイヤを設計することができる。   From these, it is preferable not only to improve tire performance by blending low-loss tread rubber, but also to take into account the rigidity of the case part, the input to the tread part, and the rigidity by vulcanization. Thus, a tire with improved rolling resistance can be designed.

そこで、本実施例では、現行ゴム配合、現行構造を用いて、転がり抵抗を改良する加硫条件を算出する。   Therefore, in this example, vulcanization conditions for improving rolling resistance are calculated using the current rubber composition and the current structure.

対象とするタイヤとして、TBR 11R22.5 Ribパターンのタイヤを用いて有限要素モデルを作成する(図2のステップ100)。目的関数は「タイヤ転がり抵抗を最小にする」とし、制約条件は「ケース剛性を現行同等」とし、加硫条件は「現行条件」としている(図2のステップ102)。   A finite element model is created using a tire having a TBR 11R22.5 Rib pattern as a target tire (step 100 in FIG. 2). The objective function is “minimize tire rolling resistance”, the constraint condition is “case rigidity is currently equivalent”, and the vulcanization condition is “current condition” (step 102 in FIG. 2).

次に、現行タイヤ構造、現行ゴム配合、現行加硫条件において、目的関数(タイヤ転がり抵抗)、制約条件(ケース剛性またはべルト弾性率)の初期値を演算する(図2のステップ104)。   Next, the initial values of the objective function (tire rolling resistance) and constraint conditions (case rigidity or belt elastic modulus) are calculated under the current tire structure, current rubber composition, and current vulcanization conditions (step 104 in FIG. 2).

次に、加硫条件を微小変化させて、熱伝導計算を行う(図2のステップ106)。予めの実験結果からマスター曲線を事前に作成しておき、ゴム部材の各部位の熱伝導計算結果(最高加硫温度、全加硫度)から、ゴム物性を予測する(図2のステップ108)。そして、設計変数(各部材の弾性率、ロス特性)を微小変化させて、目的関数(タイヤ転がり抵抗)、制約条件(ケース剛性:ベルト弾性率)の値を算出し、加硫条件毎に変化幅(感度)を演算する(図2のステップ110〜112)。   Next, heat conduction calculation is performed by slightly changing the vulcanization conditions (step 106 in FIG. 2). A master curve is prepared in advance from the experimental results in advance, and the rubber physical properties are predicted from the heat conduction calculation results (maximum vulcanization temperature, total vulcanization degree) of each part of the rubber member (step 108 in FIG. 2). . The design variables (elastic modulus and loss characteristics of each member) are slightly changed to calculate the objective function (tire rolling resistance) and constraint conditions (case stiffness: belt elastic modulus) and change for each vulcanization condition. The width (sensitivity) is calculated (steps 110 to 112 in FIG. 2).

これらのことを全ゴム部材について演算し(図2のステップ114)、上記感度を用いて、制約条件(ケース剛性やベルト弾性率)を満たしながら、目的関数(タイヤ転がり抵抗)を最小にする加硫条件変化を予測する(図2のステップ116)。予測結果から、加硫条件を修正したモデルを用いて目的関数(タイヤ転がり抵抗)が収束するまで再計算実施し、目的関数(タイヤ転がり抵抗)を最小とするタイヤ加硫条件が決定される(図2のステップ118〜122)。   These are calculated for all rubber members (step 114 in FIG. 2), and the above sensitivity is used to minimize the objective function (tire rolling resistance) while satisfying the constraints (case rigidity and belt elastic modulus). A change in sulfur condition is predicted (step 116 in FIG. 2). From the prediction results, recalculation is performed until the objective function (tire rolling resistance) converges using a model with a corrected vulcanizing condition, and tire vulcanizing conditions that minimize the objective function (tire rolling resistance) are determined ( Steps 118-122 in FIG.

以上のことにより、次の結果を得た。現行条件がIndex 100であるのに対して、上記実施の形態による最適化を行った最適加硫条件はIndex 110(良方向)、という結果であった。   As a result, the following results were obtained. While the current condition is Index 100, the optimum vulcanization condition obtained by the optimization according to the above embodiment is Index 110 (good direction).

また、上記結果は比較例に係る処理ルーチン(図2)に従って目的関数を最小とするタイヤ加硫条件を決定した場合であるが、同一の条件で、実施形態に係る処理ルーチン(図6)に従い、実使用条件下でのゴム部材の歪及び温度を考慮して、目的関数としての転がり抵抗値が実使用条件下で最小になるように設計変数としての各ゴム部材の物性値(ヤング率)及び加硫条件を決定した場合には、Index 115(良方向)という結果が得られた。これにより、加硫条件に加えて実使用条件下でのゴム部材の歪及び温度の影響も考慮することで、実使用条件下での性能が更に向上するようにタイヤを設計・開発できることが確認された。 Further, the results are when determining the tire vulcanization conditions for minimizing the objective function in accordance with the processing routine according to the comparative example (FIG. 2), under the same conditions, the processing routine according to the implementation embodiments (FIG. 6) In consideration of the strain and temperature of the rubber member under actual use conditions, the physical property values (Young's modulus) of each rubber member as design variables so that the rolling resistance value as the objective function is minimized under the actual use conditions ) And vulcanization conditions were determined, the result was Index 115 (good direction). This confirms that tires can be designed and developed to further improve performance under actual use conditions by taking into account the effects of rubber member distortion and temperature under actual use conditions in addition to vulcanization conditions. It was done.

本発明の比較例に使用されるパーソナルコンピュータの概略図である。It is the schematic of the personal computer used for the comparative example of this invention. 本発明の比較例の処理ルーチンを示す流れ図である。It is a flowchart which shows the processing routine of the comparative example of this invention. タイヤ基本モデルを示す線図である。It is a diagram which shows a tire basic model. トレッドゴムロス特性を示す線図である。It is a diagram which shows a tread rubber loss characteristic. ベルトゴム弾性率特性を示す線図である。It is a diagram which shows a belt rubber elastic modulus characteristic. 施形態に係る処理ルーチンを示す流れ図である。Is a flow chart showing a processing routine according to the implementation embodiments. ゴム部材の歪、温度と物性値の対応関係の一例を示す線図である。It is a diagram which shows an example of the correspondence of the distortion of a rubber member, temperature, and a physical-property value.

符号の説明Explanation of symbols

10 キーボード
12 コンピュータ本体
14 CRT
10 Keyboard 12 Computer body 14 CRT

Claims (5)

(a)内部構造を含むタイヤ断面形状を表すタイヤ基本モデルと、タイヤ性能評価用物理量を表す目的関数と、タイヤの各ゴム部材の物性が定まる加硫条件を決定する加硫条件変数と、ゴム部材及び補強材の物性を決定する設計変数と、ゴム部材及び補強材の物性、性能評価用物理量及びタイヤ寸度の少なくとも1つを制約する制約条件を定めるステップ。
(b)加硫条件変数に基づく加硫条件によるタイヤの各ゴム部材に対して付与される熱エネルギを求めると共に求めた熱エネルギに基づいてゴム部材の物性値を求めるステップ。
(c)前記求めた物性値を用いて、制約条件を考慮しながら目的関数の最適値を与える加硫条件変数の値及び設計変数の値を求めるステップ。
(d)目的関数の最適値を与える加硫条件変数及び設計変数に基づいてタイヤを設計するステップ。
上記の各ステップを含む空気入りタイヤの設計方法であって、
前記ステップ(a)を行った後かつ前記ステップ(b)を行う前に、有限要素法から実使用条件下での各ゴム部材の歪及び温度を求めるステップ(e)を行うと共に、
前記ステップ(c)では、前記ステップ(b)で求めたゴム部材の物性値と前記ステップ(e)で求めた各ゴム部材の歪及び温度を用い、各ゴム部材の歪及び温度と物性値との既知の対応関係から前記ゴム部材の物性値を更新した後に、更新した物性値を用いて、制約条件を考慮しながら目的関数の最適値を与える加硫条件変数の値及び設計変数の値を求める空気入りタイヤの設計方法。
(A) a tire basic model representing a tire cross-sectional shape including an internal structure, an objective function representing a physical quantity for tire performance evaluation, a vulcanization condition variable for determining a vulcanization condition for determining physical properties of each rubber member of the tire, and rubber Determining a design variable that determines physical properties of the member and the reinforcing material, and a constraint condition that restricts at least one of the physical properties of the rubber member and the reinforcing material, the physical quantity for performance evaluation, and the tire size.
(B) obtaining physical properties of the rubber member based on the obtained thermal energy while obtaining the thermal energy applied to each rubber member of the tire under the vulcanizing condition based on the vulcanization condition variable.
(C) A step of obtaining the value of the vulcanization condition variable and the value of the design variable that give the optimum value of the objective function while considering the constraint condition using the obtained physical property value.
(D) Designing the tire based on the vulcanization condition variable and the design variable that give the optimum value of the objective function.
A pneumatic tire design method including the above steps,
After performing the step (a) and before performing the step (b), performing a step (e) of obtaining strain and temperature of each rubber member under actual use conditions from a finite element method,
In the step (c), using the physical property value of the rubber member obtained in the step (b) and the strain and temperature of each rubber member obtained in the step (e), the strain, temperature and physical property value of each rubber member are After updating the physical property value of the rubber member from the known correspondence relationship, the value of the vulcanization condition variable and the design variable value that gives the optimum value of the objective function while considering the constraint condition using the updated physical property value. Desired pneumatic tire design method.
前記ステップ(b)では、前記熱エネルギを求めるために、ゴム配合の熱伝導度、比熱、密度の温度依存性、および加硫中に発生する加硫反応熱量の影響を考慮して熱伝達予測を行い、タイヤ各部材の得られる熱量及び最高到達温度を熱エネルギとして該熱エネルギに基づいてゴム部材の物性値を求めることを特徴とする請求項1の空気入りタイヤの設計方法。In the step (b), in order to obtain the heat energy, heat transfer prediction is performed in consideration of the thermal conductivity of the rubber compound, the specific heat, the temperature dependence of the density, and the influence of the heat of vulcanization reaction generated during vulcanization. 2. The method for designing a pneumatic tire according to claim 1, wherein the physical property value of the rubber member is obtained based on the heat energy obtained from the amount of heat and the maximum attainable temperature of each tire member. 前記ステップ(c)では、加硫条件変数の単位変化量に対する目的関数の変化量の割合である目的関数の感度及び加硫条件の単位変化量に対する制約条件の変化量の割合である制約条件の感度と、設計変数の単位変化量に対する目的関数の変化量の割合である目的関数の感度及び設計変数の単位変化量に対する制約条件の変化量の割合である制約条件の感度とに基づいて、In step (c), the sensitivity of the objective function, which is the ratio of the change amount of the objective function to the unit change amount of the vulcanization condition variable, and the constraint condition, which is the ratio of the change amount of the constraint condition to the unit change amount of the vulcanization condition. Based on the sensitivity and the sensitivity of the objective function, which is the ratio of the change amount of the objective function to the unit change amount of the design variable, and the sensitivity of the constraint condition, which is the ratio of the change amount of the constraint condition to the unit change amount of the design variable,
制約条件を考慮しながら目的関数の最適値を与える加硫条件変数の変化量及び設計変数の変化量を予測すると共に、While predicting the amount of change in the vulcanization condition variable and design variable that give the optimum value of the objective function while taking into account the constraints,
加硫条件変数を予測量に相当する量変化させたときの目的関数の値及び設計変数を予測量に相当する量変化させたときの制約条件の値と、設計変数を予測量に相当する量変化させたときの目的関数の値及び設計変数を予測量に相当する量変化させたときの制約条件の値と、を演算し、The value of the objective function when the vulcanization condition variable is changed by the amount corresponding to the predicted amount, the value of the constraint condition when the design variable is changed by the amount corresponding to the predicted amount, and the amount corresponding to the predicted amount of the design variable The value of the objective function when it is changed and the value of the constraint condition when the design variable is changed by an amount corresponding to the predicted amount are calculated,
予測値と演算値とに基づいて、制約条件を考慮しながら目的関数の最適値を与える加硫条件変数の値及び設計変数の値を求める請求項1の空気入りタイヤの設計方法。The method for designing a pneumatic tire according to claim 1, wherein the value of the vulcanization condition variable and the value of the design variable that give the optimum value of the objective function are obtained based on the predicted value and the calculated value while considering the constraint conditions.
前記加硫条件変数は、タイヤモールド側温度、ブラダー側温度及び加硫時間の少なくとも1つを表すことを特徴とする請求項1の空気入りタイヤの設計方法。The method for designing a pneumatic tire according to claim 1, wherein the vulcanization condition variable represents at least one of a tire mold side temperature, a bladder side temperature, and a vulcanization time. 前記設計変数は、ゴムのヤング率、ポアソン比、及び異方性補強材の各方向のヤング率またはポアソン比の少なくとも1つを表すことを特徴とする請求項1の空気入りタイヤの設計方法。2. The pneumatic tire design method according to claim 1, wherein the design variable represents at least one of a Young's modulus of rubber, a Poisson's ratio, and a Young's modulus or Poisson's ratio in each direction of the anisotropic reinforcing material.
JP2007149720A 2006-11-08 2007-06-05 Pneumatic tire design method Expired - Fee Related JP5128853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007149720A JP5128853B2 (en) 2006-11-08 2007-06-05 Pneumatic tire design method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006303044 2006-11-08
JP2006303044 2006-11-08
JP2007149720A JP5128853B2 (en) 2006-11-08 2007-06-05 Pneumatic tire design method

Publications (2)

Publication Number Publication Date
JP2008137635A JP2008137635A (en) 2008-06-19
JP5128853B2 true JP5128853B2 (en) 2013-01-23

Family

ID=39599547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007149720A Expired - Fee Related JP5128853B2 (en) 2006-11-08 2007-06-05 Pneumatic tire design method

Country Status (1)

Country Link
JP (1) JP5128853B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5239595B2 (en) * 2008-07-30 2013-07-17 横浜ゴム株式会社 Viscoelastic body simulation method
JP5239593B2 (en) * 2008-07-30 2013-07-17 横浜ゴム株式会社 Structure simulation method and apparatus
JP5811625B2 (en) * 2011-06-22 2015-11-11 横浜ゴム株式会社 Simulation method and simulation apparatus
JP6159181B2 (en) * 2013-07-11 2017-07-05 住友ゴム工業株式会社 Tire model creation method and tire simulation method
JP7264698B2 (en) * 2019-04-02 2023-04-25 株式会社ブリヂストン CONTINUUM BEHAVIOR ANALYSIS DEVICE, CONTINUUM BEHAVIOR ANALYSIS METHOD, AND PROGRAM

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3686107B2 (en) * 1993-10-06 2005-08-24 株式会社ブリヂストン Pneumatic tire design method
US5680315A (en) * 1995-03-20 1997-10-21 Pirelli Coordinamento Pneumatici S.P.A. System for optimizing cure and assuring quality of reversion susceptible rubber articles
JP2006205452A (en) * 2005-01-26 2006-08-10 Yokohama Rubber Co Ltd:The Determination method of vulcanizing condition

Also Published As

Publication number Publication date
JP2008137635A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
US6430993B1 (en) Method of estimating tire performance
JP4339808B2 (en) Structure design method
JP5128853B2 (en) Pneumatic tire design method
JPH11321257A (en) Method for designing pneumatic tire to rolling state
JP4782392B2 (en) Tire wear simulation method, apparatus, program, and medium
JP5297223B2 (en) Tire model creation method and tire simulation method
JP2001050848A (en) Design of pneumatic tire, optimization analyzer and storage medium storing optimization analyzing program
JP2007210527A (en) Temperature distribution prediction method of tire and temperature distribution prediction computing program of tire
Nakajima Application of computational mechanics to tire design—yesterday, today, and tomorrow
JP4285991B2 (en) Tire temporal change prediction method, tire characteristic prediction method, tire design method, tire manufacturing method, and program
JP3133738B2 (en) Tire performance prediction method, fluid simulation method, tire design method, tire vulcanization mold design method, tire vulcanization mold production method, pneumatic tire production method, recording medium recording tire performance prediction program
JP2005306174A (en) Tire performance predicting method
JP4928086B2 (en) Tire performance prediction method and design method
JP2009269557A (en) Method for designing tire and program therefor
JP4486420B2 (en) Tire temporal change prediction method, apparatus, program, and medium
JP2001124667A (en) Method for designing pneumatic tire, method for designing vulcanization metal mold for tire, method of manufacturing vulcanization metal mold for tire, method of manufacturing for pneumatic tire, optimization analytic device, and storage medium stored with optimization analytic program of tire
JP2008262367A (en) Method for preparing tire model
JP2008089454A (en) Creation method of tire model, device, and program
JP4452085B2 (en) Tire simulation method and tire manufacturing method
JP2006076404A (en) Tire model, tire behavior simulation method, program, and recording medium
JP4318971B2 (en) Tire performance simulation method and tire design method
JP2006111168A (en) Method of predicting tire performance, method of simulating tire, tire performance predicting program, and recording medium
JP6039210B2 (en) Prediction method of tire durability
JP6025304B2 (en) Tire performance simulation method, tire performance simulation apparatus, and tire performance simulation program
JP4800581B2 (en) Tire design method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5128853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees