JP2005111638A - Stepped end mill, and its manufacturing method - Google Patents

Stepped end mill, and its manufacturing method Download PDF

Info

Publication number
JP2005111638A
JP2005111638A JP2003352143A JP2003352143A JP2005111638A JP 2005111638 A JP2005111638 A JP 2005111638A JP 2003352143 A JP2003352143 A JP 2003352143A JP 2003352143 A JP2003352143 A JP 2003352143A JP 2005111638 A JP2005111638 A JP 2005111638A
Authority
JP
Japan
Prior art keywords
end mill
stepped
cutting edge
small diameter
diameter portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003352143A
Other languages
Japanese (ja)
Other versions
JP4380285B2 (en
Inventor
Seiichiro Kitaura
精一郎 北浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Kobe Tools Corp
Priority to JP2003352143A priority Critical patent/JP4380285B2/en
Publication of JP2005111638A publication Critical patent/JP2005111638A/en
Application granted granted Critical
Publication of JP4380285B2 publication Critical patent/JP4380285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Milling Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a suitable rake angle for cutting edges of both small diameter section and stepped section, in a stepped end mill having a cutting edge section having a small diameter section having a small cutting edge outer diameter and a stepped section having a large cutting edge outer diameter. <P>SOLUTION: The tip of the end mill body 1 rotated about the axis O is provided with a cutting edge section 3 having the small diameter section having a cutting edge with a small outer diameter d and the stepped section 7 having a cutting edge 6 having the large outer diameter continuing from the cutting edge. The rake surface of the small diameter section is formed on a bending surface bending on the cut surface orthogonal to the axis O. The inner peripheral side of the rake surface 10 of the stepped section 7 is set as a bending surface continuously bending on the rake surface of the small diameter section, and the outer peripheral side thereof is bent in the opposite direction via a bending point Q on the cut surface orthogonal to the axis with respect to extension surface to the outer peripheral side of the bending surface formed of the inner peripheral side of the rake surface 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、エンドミル本体の先端部に外径の小さな小径部とこの小径部に連続して外径が大きくなる段付き部とを備えた切刃部が形成されてなる段付きエンドミルおよびその製造方法に関するものである。   The present invention relates to a stepped end mill in which a cutting edge portion including a small diameter portion having a small outer diameter and a stepped portion having a continuously large outer diameter is formed at the tip portion of the end mill main body and its manufacture. It is about the method.

この種の段付きエンドミルとしては、例えば特許文献1にスクロール型圧縮機のスクロール部材を加工するものとして、上記スクロール部材のキー溝の底面および側面を切削する切刃を備えた第一切刃と、この第一切刃の上部に傾斜する段付き形状に形成されて該第一切刃よりも直径が大きくされ、キー溝の面取り部を切削する切刃を備えた第二切刃とを一体に構成したものが知られている。従って、このような段付きエンドミルによれば、キー溝の底面と側面および上端面の面取り部の切削加工を1つのエンドミルで行うことができる。
特開2003−139074号公報
As this type of stepped end mill, for example, as disclosed in Patent Document 1, for processing a scroll member of a scroll compressor, a first blade provided with a cutting blade for cutting the bottom and side surfaces of the key groove of the scroll member; The second cutting blade, which is formed in a stepped shape inclined at the upper part of the first blade, has a diameter larger than that of the first blade, and has a cutting blade for cutting the chamfered portion of the key groove, is integrated with the second cutting blade. It is known what has been configured. Therefore, according to such a stepped end mill, cutting of the chamfered portions of the bottom surface, the side surface, and the upper end surface of the key groove can be performed with one end mill.
Japanese Patent Laid-Open No. 2003-139074

ところで、このように切刃がエンドミルの本体に一体に構成されたエンドミルでは、一般にこの切刃のすくい面を上記軸線に直交する断面においてエンドミル本体の回転方向に対しこの回転方向の後方側に凹む凹曲状に湾曲するように形成し、これにより上記切刃のすくい角を正角側に設定し、すなわち上記断面において切刃と上記軸線とを結ぶ直線に対してすくい面が切刃から内周側に向かうに従い上記回転方向後方側に向かうようにし、該切刃に鋭い切れ味を与えて切削抵抗の低減等を図るようにしている。ただし、切削条件等によっては、これとは逆にすくい面をエンドミル本体の回転方向に凸となる凸状に湾曲形成して、すくい角を負角側に設定することにより切刃の刃先角および刃先強度を確保する場合もある。   By the way, in the end mill in which the cutting edge is configured integrally with the body of the end mill as described above, generally, the rake face of the cutting edge is recessed rearward in the rotational direction with respect to the rotational direction of the end mill body in a cross section perpendicular to the axis. The rake angle of the cutting edge is set to the positive side, that is, the rake face is inward from the cutting edge with respect to the straight line connecting the cutting edge and the axis in the cross section. As it goes to the circumferential side, it goes to the rear side in the rotation direction, and sharpness is given to the cutting edge to reduce cutting resistance. However, depending on cutting conditions, etc., the rake face may be curved and formed in a convex shape that is convex in the rotation direction of the end mill body, and the rake angle is set to the negative angle side so that the cutting edge angle of the cutting edge and In some cases, the cutting edge strength is ensured.

しかしながら、上記特許文献1に記載の段付きエンドミルにおいて、このようにすくい面を凹曲状に湾曲形成して切刃のすくい角を正角側とした場合、例えば切刃外径が小径となる第一切刃側においてそのすくい角が適当な大きさになるように該切刃に連なるすくい面の湾曲の大きさを設定すると、この第一切刃と一体に構成された第二切刃では、すくい面がそのままの湾曲で延長されて切刃外径が大径となる第二切刃に連続させられることとなって、この第二切刃ですくい角が正角側に大きくなりすぎ、逆に第二切刃の刃先角は小さくなって切刃強度が損なわれる結果、切削時に第二切刃に欠損が生じてエンドミル寿命を著しく短縮するおそれがある。また、その一方で、逆にこの第二切刃に適正なすくい角が与えられるようにすくい面の湾曲を設定すると、小径の第一切刃ではすくい角がこれよりも負角側となり、切刃の切れ味が鈍化して切削抵抗の増大を招く結果となる。   However, in the stepped end mill described in Patent Literature 1, when the rake face is curved in a concave shape and the rake angle of the cutting edge is set to the positive side, for example, the outer diameter of the cutting edge becomes a small diameter. In the second cutting edge constructed integrally with this first blade, if the rake face curvature that connects to the cutting blade is set so that the rake angle is an appropriate size on the first blade side. The rake face is extended as it is and is continued to the second cutting edge where the outer diameter of the cutting edge becomes large, and the rake angle becomes too large on the positive angle side with this second cutting edge, Conversely, the cutting edge angle of the second cutting edge is reduced and the cutting edge strength is impaired. As a result, the second cutting edge is damaged during cutting, and the end mill life may be significantly shortened. On the other hand, if the curvature of the rake face is set so that an appropriate rake angle is given to the second cutting edge, the rake angle will be on the negative angle side for the first blade with a small diameter. As a result, the sharpness of the blade becomes dull and the cutting resistance increases.

本発明は、このような背景の下になされたもので、上述のような切刃外径の小さな小径部と切刃外径が大きくなる段付き部とを備えた切刃部が形成されてなる段付きエンドミルにおいて、これら小径部と段付き部との双方の切刃に適正なすくい角を与えることが可能な段付きエンドミルを提供することを目的とし、またこのような段付きエンドミルを複雑な工程を要さずに容易に製造することが可能な段付きエンドミルの製造方法を提供することを目的としている。   The present invention was made under such a background, and a cutting edge portion including a small diameter portion having a small cutting blade outer diameter and a stepped portion having a large cutting blade outer diameter as described above is formed. The purpose of the present invention is to provide a stepped end mill capable of giving an appropriate rake angle to the cutting edges of both the small diameter portion and the stepped portion. It is an object of the present invention to provide a method for manufacturing a stepped end mill that can be easily manufactured without requiring a complicated process.

上記課題を解決して、このような目的を達成するために、本発明の段付きエンドミルは、軸線回りに回転されるエンドミル本体の先端部に、外径の小さな切刃を有する小径部とこの小径部の切刃に連続して該小径部よりも外径が大きな切刃を有する段付き部とを備えた切刃部が形成されてなる段付きエンドミルであって、上記小径部のすくい面を、上記軸線に直交する断面において湾曲する湾曲面に形成するとともに、上記段付き部のすくい面は、その内周側を上記小径部のすくい面に連続して湾曲する湾曲面とし、かつ外周側はこのすくい面の内周側がなす湾曲面の外周側への延長面に対して上記軸線に直交する断面において変曲点を介して反対向きに湾曲するように形成したことを特徴とする。   In order to solve the above-described problems and achieve such an object, the stepped end mill of the present invention includes a small-diameter portion having a small outer diameter cutting edge at a tip portion of an end mill body rotated around an axis, A stepped end mill comprising a cutting edge portion having a stepped portion having a cutting edge having a larger outer diameter than the small diameter portion, and a rake face of the small diameter portion. Is formed on a curved surface that is curved in a cross section orthogonal to the axis, and the rake face of the stepped portion is a curved surface that continuously curves on the inner peripheral side of the rake face of the small diameter portion, and the outer periphery. The side is formed so as to bend in an opposite direction via an inflection point in a cross section perpendicular to the axis with respect to an extended surface to the outer peripheral side of the curved surface formed by the inner peripheral side of the rake face.

従って、例えば上述のように小径部のすくい面がエンドミル本体の回転方向後方側に凹状に湾曲形成されて、その切刃のすくい角が正角とされている場合には、上記段付き部のすくい面は、上記小径部のすくい面がなす凹湾曲面の外周側への延長面に対して変曲点を介して上記エンドミル本体の回転方向に凸状に湾曲形成されることとなる。なお、逆に小径部のすくい面がエンドミル本体回転方向に凸状に湾曲している場合には、段付き部のすくい面は上記変曲点を介してその外周側がエンドミル本体回転方向後方側に凹状に湾曲形成される。なお、上記小径部における切刃のすくい角と上記段付き部における切刃のすくい角との差は、3°以内とされるのが望ましい。   Therefore, for example, as described above, when the rake face of the small diameter portion is formed in a concave shape on the rear side in the rotational direction of the end mill body, and the rake angle of the cutting edge is a positive angle, The rake face is curved and formed in a convex shape in the rotational direction of the end mill main body via an inflection point with respect to an extension surface of the concave curved surface formed by the rake face of the small diameter portion toward the outer peripheral side. Conversely, when the rake face of the small diameter portion is convexly curved in the direction of rotation of the end mill body, the rake face of the stepped portion is positioned on the rear side in the direction of rotation of the end mill body via the inflection point. A concave curve is formed. The difference between the rake angle of the cutting edge in the small diameter portion and the rake angle of the cutting edge in the stepped portion is preferably within 3 °.

また、本発明の段付きエンドミルの製造方法は、
切刃部の外周に上記小径部から上記段付き部に亙って上記軸線回りに捩れる切屑排出溝が形成され、中心軸回りに回転させられる円板状砥石の外周部をこの切屑排出溝の捩れに略沿うように該切屑排出溝内に挿入して、この切屑排出溝の上記エンドミル本体の回転方向を向く壁面を研削することにより、上記すくい面を形成する上記段付きエンドミルの製造方法であって、上記小径部の上記段付き部と反対側の部分では、上記軸線と上記中心軸との位置関係を一定に保ちつつ上記円板状砥石を上記エンドミル本体に対して相対的に上記切屑排出溝の捩れに合わせて上記軸線回りに回転させながら上記軸線方向に移動させることにより、上記小径部のすくい面を形成し、該小径部の段付き部側から該段付き部に亙る部分では、そのまま上記円板状砥石を上記エンドミル本体に対して相対的に回転移動させて、この段付き部における切屑排出溝のエンドミル本体回転方向を向く壁面を研削し始めつつ、該壁面の外周側に上記円板状砥石の端面を干渉させ、しかる後このエンドミル本体と円板状砥石との相対的な軸線方向への移動を停止するとともに、上記円板状砥石を、上記エンドミル本体に対して上記軸線回りに相対的に回転させ続けながら、あるいはこの相対回転も停止させて、相対的に外周側に引き上げることにより、上記段付き部のすくい面を形成することを特徴とする。
In addition, the manufacturing method of the stepped end mill of the present invention,
A chip discharge groove that is twisted around the axis from the small diameter part to the stepped part is formed on the outer periphery of the cutting edge part, and the outer periphery of the disc-shaped grindstone that is rotated around the central axis is formed on the chip discharge groove. The stepped end mill for forming the rake face is formed by inserting the chip discharge groove into the chip discharge groove so as to substantially follow the twist of the chip and grinding the wall surface of the chip discharge groove facing the rotation direction of the end mill body. In the portion of the small-diameter portion opposite to the stepped portion, the disc-shaped grindstone is relatively moved with respect to the end mill main body while keeping the positional relationship between the axis and the central axis constant. The rake face of the small diameter portion is formed by moving in the axial direction while rotating around the axis according to the twist of the chip discharge groove, and the portion extending from the stepped portion side of the small diameter portion to the stepped portion. Then, as it is the above disk While rotating the grindstone relative to the end mill main body and starting to grind the wall surface facing the end mill main body rotation direction of the chip discharge groove at the stepped portion, the disc-shaped grindstone is placed on the outer peripheral side of the wall surface. The end face is made to interfere, and then the movement of the end mill main body and the disc-shaped grindstone in the relative axial direction is stopped, and the disc-shaped grindstone is relatively moved around the axis with respect to the end mill main body. The rake face of the stepped portion is formed by continuing the rotation or stopping the relative rotation and pulling it up relatively to the outer peripheral side.

そして、特にこのような製造方法によって製造される段付きエンドミルでは、上記切刃部の上記軸線に直交する断面に内接する心厚円の直径が、上記小径部の上記段付き部とは反対側で一定で、該小径部の上記段付き部側から該段付き部に亙って漸次大きくなるようにされる。   In particular, in a stepped end mill manufactured by such a manufacturing method, the diameter of the core thick circle inscribed in the cross section perpendicular to the axis of the cutting edge portion is opposite to the stepped portion of the small diameter portion. And is gradually increased from the stepped portion side of the small diameter portion to the stepped portion.

本発明の段付きエンドミルでは、軸線に直交する断面で切刃外径の小さな小径部のすくい面が凹状あるいは凸状に湾曲形成されていても、切刃外径が大きくなる段付き部のすくい面は、この小径部のすくい面を延長した大きく湾曲する状態のままでその外周側辺稜部の切刃に達することはなく、小径部の湾曲面を延長した延長面に対し、変曲点を介して途中でその湾曲の向きが反対向きとなるようにされる。従って、小径部において切刃に適正なすくい角が与えられるようにその湾曲を設定しても、上記段付き部のすくい面は上記軸線に直交する断面において、外周側に向けて小径部のすくい面に連続して同じ向きにその湾曲が大きくなるように延びた後、上記変曲点を介してこの湾曲が反対向きとなって湾曲の大きさは逆に小さくなるように延びて切刃に達するので、段付き部における切刃のすくい角が小径部に比べて正角側あるいは負角側に大きくなりすぎることがなくなる。   In the stepped end mill of the present invention, even if the rake face of the small-diameter portion having a small cutting edge outer diameter is concavely or convexly curved in a cross section perpendicular to the axis, the rake of the stepped portion having a large cutting edge outer diameter is used. The surface does not reach the cutting edge of the outer peripheral side ridge part while maintaining a large curved state extending the rake face of the small diameter part, and an inflection point with respect to the extended surface extending the curved surface of the small diameter part The direction of the curve is made to be opposite in the middle through the. Therefore, even if the curvature is set so that an appropriate rake angle is given to the cutting edge in the small diameter portion, the rake face of the stepped portion is raked in the small diameter portion toward the outer periphery in the cross section perpendicular to the axis. After the surface is continuously extended in the same direction so that the curvature becomes larger, the curvature is reversed through the inflection point, and the curvature is reduced so that the curvature becomes smaller. Therefore, the rake angle of the cutting edge in the stepped portion does not become excessively larger on the positive angle side or the negative angle side than the small diameter portion.

このため、上述のように小径部の切刃のすくい角が正角とされて、そのすくい面がエンドミル本体の回転方向後方側に凹状に湾曲形成されていても、段付き部のすくい面は、この小径部のすくい面がなす凹湾曲面の外周側への延長面に対して変曲点を介し、エンドミル本体回転方向に凸状に湾曲形成されるので、この段付き部における切刃のすくい角が正角側に大きくなりすぎるのを防ぐことができ、これに伴い該段付き部の切刃の刃先角および刃先強度を確保して切削時の欠損等を防止し、エンドミル寿命の延長を図ることが可能となる。また、逆に小径部のすくい面がエンドミル本体回転方向に凸状に湾曲しても、段付き部のすくい面は上記変曲点を介して外周側に向けてエンドミル本体回転方向後方側に凹状に湾曲形成されるので、この段付き部における切刃のすくい角が負角側に大きくなりすぎるのを防ぐことができ、該切刃の切れ味が鈍くなるのを防止して切削抵抗の低減を図ることが可能となる。   For this reason, even if the rake angle of the cutting edge of the small diameter portion is a positive angle as described above and the rake surface is curved concavely on the rear side in the rotation direction of the end mill body, the rake surface of the stepped portion is Since the curved surface formed by the rake face of the small diameter portion is curved in a convex shape in the direction of rotation of the end mill body through the inflection point, the cutting edge of the stepped portion is The rake angle can be prevented from becoming too large on the positive side, and along with this, the edge angle and edge strength of the cutting edge of the stepped portion are secured to prevent chipping during cutting and extend the end mill life. Can be achieved. Conversely, even if the rake face of the small-diameter portion is convexly curved in the direction of rotation of the end mill body, the rake face of the stepped portion is concave toward the rear side in the direction of rotation of the end mill body through the inflection point. Therefore, the rake angle of the cutting edge at this stepped portion can be prevented from becoming too large on the negative angle side, and the cutting edge of the cutting edge can be prevented from becoming dull and the cutting resistance can be reduced. It becomes possible to plan.

なお、このように切刃のすくい角を正角側に設定するか負角側に設定するかは、専ら切削条件によって切れ味重視か刃先強度重視かによるが、いずれにしても例えば段付き部の上記断面における変曲点の位置が外周側にあって段付き部の切刃に近すぎたりすると、該変曲点で湾曲が反対向きとなっても、上記切削条件に応じて適正に設定された小径部の切刃のすくい角に段付き部の切刃のすくい角を近づけることができなくなるおそれが生じる。そして、このように小径部に対して段付き部の切刃のすくい角が正または負角側に大きくなりすぎると、切削条件が切れ味重視の場合は段付き部に欠損が生じ易くなり、刃先強度重視の場合は段付き部で切削抵抗の増大を招くおそれがあるので、上記小径部における切刃のすくい角と上記段付き部における切刃のすくい角との差は、上述のように3°以内とされるのが望ましい。   Whether the rake angle of the cutting edge is set to the positive angle side or the negative angle side depends on whether the cutting edge is important or the cutting edge strength is important, depending on the cutting conditions. If the position of the inflection point in the cross section is on the outer peripheral side and is too close to the cutting edge of the stepped part, even if the curvature is in the opposite direction at the inflection point, it is set appropriately according to the cutting conditions. There is a possibility that the rake angle of the cutting edge of the stepped portion cannot be brought close to the rake angle of the cutting edge of the small diameter portion. And if the rake angle of the cutting edge of the stepped portion becomes too large on the positive or negative angle side with respect to the small diameter portion in this way, if the cutting condition is focused on sharpness, the stepped portion is likely to be damaged, and the cutting edge In the case of emphasis on strength, there is a risk of increasing cutting resistance at the stepped portion, so the difference between the rake angle of the cutting edge at the small diameter portion and the rake angle of the cutting edge at the stepped portion is 3 as described above. It is desirable to be within °.

ところで、このように切刃を連続してエンドミル本体に形成したエンドミルにおいては、通常このエンドミル本体先端部の切刃部の外周に、上記小径部から上記段付き部に亙って上記軸線回りに捩れる切屑排出溝を形成し、この切屑排出溝のエンドミル本体回転方向を向く壁面をすくい面として所定の形状に成形して製造するのが一般的である。そして、さらに、こうして切屑排出溝の上記壁面を所定の形状に成形するには、中心軸回りに回転させられる円板状砥石を用いて、この円板状砥石の外周部を切屑排出溝の捩れに略沿うように該切屑排出溝内に挿入し、この切屑排出溝の上記エンドミル本体の回転方向を向く壁面を研削することにより上記すくい面を成形するのも一般的であり、このときエンドミル本体の上記軸線と円板状砥石の上記中心軸との位置関係を一定に保ちつつ、エンドミル本体を円板状砥石に対して相対的に切屑排出溝の捩れに合わせて回転させながら軸線方向に移動させることで、この相対的に回転移動する円板状砥石の外周部の軌跡に応じてすくい面が凹状あるいは凸状に湾曲形成される。   By the way, in the end mill in which the cutting blades are continuously formed in the end mill body as described above, the outer periphery of the cutting blade portion at the end portion of the end mill body is usually around the axis line from the small diameter portion to the stepped portion. In general, a twisted chip discharge groove is formed, and a wall surface facing the end mill main body rotation direction of the chip discharge groove is formed into a predetermined shape as a rake face. Further, in order to form the wall surface of the chip discharge groove into a predetermined shape in this manner, a disk-shaped grindstone rotated around the central axis is used, and the outer periphery of the disk-shaped grindstone is twisted in the chip discharge groove. It is also common to form the rake face by grinding the wall surface of the chip discharge groove that faces the rotation direction of the end mill body so as to substantially follow the chip discharge groove. While maintaining the positional relationship between the axis of the disc and the central axis of the disc-shaped grindstone, the end mill body moves relative to the disc-shaped grindstone in the axial direction while rotating relative to the twist of the chip discharge groove. By doing so, the rake face is curvedly formed in a concave shape or a convex shape according to the locus of the outer peripheral portion of the disk-shaped grindstone that rotates relatively.

しかるに、このような製造方法に基づいて、上記構成の段付きエンドミルを製造する場合、例えば小径部のすくい面を凹曲状として切刃すくい角を正角側とし、段付き部のすくい面外周側をこの小径部のすくい面の延長面に対して変曲点を有して凸曲するように成形するには、一旦これら小径部から段付き部に亙る切刃部の全長で断面が全体的に凹状に湾曲するすくい面を形成し、このうち上記段付き部のすくい面の外周側を後工程で研削するなどして凸曲するように成形することも可能ではあるが、そのような製造方法では2工程の研削加工が必要となって製造効率の低下を招くおそれがある。   However, when manufacturing a stepped end mill having the above-described configuration based on such a manufacturing method, for example, the rake face of the small diameter portion is concave, the rake angle of the cutting edge is a positive angle side, and the rake surface outer periphery of the stepped portion is In order to mold the side so as to be curved with an inflection point with respect to the extended surface of the rake face of the small diameter portion, the entire cross section is formed with the entire length of the cutting edge portion extending from the small diameter portion to the stepped portion. It is also possible to form a rake face that is curved in a concave shape, and among these, the outer peripheral side of the rake face of the stepped portion can be formed to be curved by grinding in a subsequent step, but such In the manufacturing method, two steps of grinding are required, which may cause a reduction in manufacturing efficiency.

そこで、本発明の製造方法では、上記小径部の上記段付き部と反対側の部分では、エンドミル本体の上記軸線と円板状砥石の上記中心軸との位置関係を一定に保ちつつ、円板状砥石をエンドミル本体に対して相対的に切屑排出溝の捩れに合わせて回転させながら上記軸線方向に移動させることにより、上記小径部のすくい面を形成する一方、該小径部の段付き部側からこの段付き部に亙る部分では、そのまま円板状砥石をエンドミル本体に対して相対的に回転移動させて、この段付き部における切屑排出溝のエンドミル本体回転方向を向く壁面を研削し始めつつ、該壁面の外周側に円板状砥石の端面を干渉させ、しかる後このうち円板状砥石とエンドミル本体との相対的な軸線方向への移動を停止するとともに、円板状砥石をエンドミル本体に対して相対的に軸線回りに回転しながら外周側に引き上げることにより、あるいはこの円板状砥石のエンドミル本体に対する相対的な回転も停止して円板状砥石をエンドミル本体に対して外周側に引き上げることにより、この段付き部のすくい面を、その外周側の断面が変曲点を有して小径部の湾曲とは反対向きに湾曲するように形成している。従って、このような製造方法によれば、小径部のすくい面から段付き部のすくい面にかけてを1工程の研削加工によって連続的に成型することが可能であり、効率的である。   Therefore, in the manufacturing method of the present invention, the portion of the small diameter portion on the side opposite to the stepped portion maintains the positional relationship between the axis of the end mill body and the central axis of the disc-shaped grindstone while maintaining a constant disk. A rake face of the small-diameter portion is formed by moving the whetstone in the axial direction while rotating in accordance with the twist of the chip discharge groove relative to the end mill body, while the stepped portion side of the small-diameter portion is formed. In the portion extending from the stepped portion to the stepped portion, the disc-shaped grindstone is rotated and moved relative to the end mill body as it is, and grinding of the wall surface of the stepped portion facing the end mill body rotation direction of the chip discharge groove is started. The end face of the disc-shaped grindstone interferes with the outer peripheral side of the wall surface, and after that, the movement of the disc-shaped grindstone and the end mill body in the relative axial direction is stopped, and the disc-shaped grindstone is moved to the end mill main body. On the other hand, the disc-shaped grinding wheel is pulled up to the outer peripheral side with respect to the end mill main body by pulling up to the outer peripheral side while rotating around the axis or stopping the relative rotation of the disc-shaped grinding stone with respect to the end mill main body. Thus, the rake face of the stepped portion is formed such that the outer peripheral cross section has an inflection point and curves in the direction opposite to the curvature of the small diameter portion. Therefore, according to such a manufacturing method, it is possible to form continuously from the rake face of the small diameter portion to the rake face of the stepped portion by one-step grinding, which is efficient.

また、特にこうして製造される段付きエンドミルでは、小径部の段付き部と反対側の部分でエンドミル本体の軸線と円板状砥石の中心軸との位置関係が一定で、上記小径部の段付き部側からこの段付き部に亙る部分では、エンドミル本体と円板状砥石との相対的な移動が停止されて円板状砥石がエンドミル本体に対し外周側に引き上げられることにより、上記切刃部の上記軸線に直交する断面に内接する心厚円の直径は、小径部の段付き部とは反対側で一定で、該小径部の段付き部側からこの段付き部に亙っては漸次大きくなるようにされることとなる。   In particular, in the stepped end mill manufactured in this way, the positional relationship between the axis of the end mill body and the central axis of the disc-shaped grindstone is constant in the portion opposite to the stepped portion of the small diameter portion, and the step of the small diameter portion is stepped. In the portion extending from the part side to the stepped part, the relative movement between the end mill body and the disc-shaped grindstone is stopped, and the disc-shaped grindstone is pulled up to the outer peripheral side with respect to the end mill body, thereby The diameter of the core thick circle inscribed in the cross section perpendicular to the axis is constant on the side opposite to the stepped portion of the small diameter portion, and gradually increases from the stepped portion side of the small diameter portion to the stepped portion. It will be made bigger.

従って、そのような段付きエンドミルによれば、切刃外径が小さくて周方向の切刃間の間隔も小さく、すなわち切屑排出溝の溝幅を確保し難い小径部では、この切屑排出溝の溝深さを確保して十分なチップポケット容量を得ることができる一方、逆に切刃外径が大きくなるのに伴い周方向の切刃間の間隔も大きくなって切屑排出溝の溝幅を広くできる段付き部では、小径部から連続した切屑排出溝のチップポケット容量を十分確保しながらも、心厚円直径が漸次大きくなるので高い剛性を得ることができ、切削時に優れた切屑排出性を維持しつつ切刃部の振れ等を抑えて加工精度の向上を図ることができるという利点が得られる。   Therefore, according to such a stepped end mill, the outer diameter of the cutting blade is small and the interval between the cutting blades in the circumferential direction is small, that is, in the small diameter portion where it is difficult to secure the groove width of the chip discharging groove, While ensuring the groove depth and obtaining a sufficient chip pocket capacity, conversely as the cutting blade outer diameter increases, the spacing between the cutting edges in the circumferential direction also increases and the groove width of the chip discharge groove is increased. The stepped part that can be widened, while ensuring sufficient chip pocket capacity of the chip discharge groove that continues from the small diameter part, the core thickness circle diameter gradually increases, so that high rigidity can be obtained, and excellent chip discharge performance during cutting The advantage that the machining accuracy can be improved by suppressing the deflection of the cutting edge while maintaining the above is obtained.

図1ないし図6は、本発明の段付きエンドミルの一実施形態を示すものである。本実施形態において、エンドミル本体1は、超硬合金等の硬質材料によって一体に形成され、その後端部(図1および図2において右側部分)は軸線Oを中心とした外径が一定の概略円柱状とされてシャンク部2とされるとともに、先端部(図1および図2において左側部分)が切刃部3とされ、軸線O回りに図中に符号Tで示す回転方向に回転させられて、この切刃部3により切削加工に供される。   1 to 6 show an embodiment of the stepped end mill of the present invention. In the present embodiment, the end mill body 1 is integrally formed of a hard material such as a cemented carbide, and the rear end portion (the right side portion in FIGS. 1 and 2) has a substantially circular shape with a constant outer diameter around the axis O. A columnar shape is used as a shank portion 2, and a tip end portion (left side portion in FIGS. 1 and 2) is a cutting blade portion 3, which is rotated around an axis O in a rotation direction indicated by a symbol T in the drawing. The cutting blade portion 3 is used for cutting.

そして、この切刃部3の外形は、シャンク部2から先端側に向けて、その外径が先端側に向かうに従い漸次縮径する第1のテーパ部と、この第1のテーパ部の先端の外径が一定とされた第1の円柱状部と、この第1の円柱状部の先端の外径が先端側に向かうに従いさらに漸次縮径する第2のテーパ部と、この第2のテーパ部の先端の外径が第1の円柱状部よりも小径で一定とされた第2の円柱状部とから概略構成されており、この第2の円柱状部に外径の小さな切刃4を有する小径部5が形成されるとともに、第2の円柱状部には、この小径部5の切刃4に連続して外径が大きくなる切刃6を有する段付き部7が形成されている。従って、本実施形態では、小径部5の切刃4は該小径部5の全長に亙ってその外径が一定とされる一方、段付き部7の切刃6はその外径が切刃4に連続するその先端から後端側に向けて一定の割合で漸次拡径する面取り刃状に形成される。   The outer shape of the cutting edge portion 3 is such that the first taper portion gradually decreases in diameter from the shank portion 2 toward the tip side, and the outer diameter thereof toward the tip side, and the tip end of the first taper portion. A first columnar portion having a constant outer diameter, a second taper portion that further gradually decreases in diameter as the outer diameter of the tip of the first columnar portion approaches the tip side, and the second taper The outer diameter of the tip of the part is roughly composed of a second cylindrical part whose diameter is smaller than that of the first cylindrical part, and the cutting edge 4 having a smaller outer diameter is formed in the second cylindrical part. And a stepped portion 7 having a cutting edge 6 having an outer diameter that is continuous with the cutting edge 4 of the small diameter portion 5 is formed in the second cylindrical portion. Yes. Therefore, in this embodiment, the cutting edge 4 of the small diameter portion 5 has a constant outer diameter over the entire length of the small diameter portion 5, while the cutting edge 6 of the stepped portion 7 has a cutting diameter of the cutting edge 4. 4 is formed in the shape of a chamfered blade that gradually increases in diameter at a constant rate from the front end to the rear end side.

ここで、この切刃部3には、その先端側の上記小径部5の先端から後端側の上記第1のテーパ部にかけて、後端側に向かうに従い上記回転方向Tの後方側に捩れる切屑排出溝8が、周方向に等間隔に複数条(本実施形態では3条)形成されており、これらの切屑排出溝8の回転方向T側を向く壁面が上記切刃4,6のそれぞれすくい面9,10とされ、言い換えればこれらのすくい面9,10の外周側辺稜部がそれぞれ上記切刃4,6とされる。また、この切刃4,6を介してすくい面9,10と交差する切刃部3の外周面は、該切刃4,6から回転方向Tの後方側に向かうに従い内周側に漸次後退する逃げ面11,12とされる。   Here, the cutting edge portion 3 is twisted to the rear side in the rotational direction T from the front end of the small diameter portion 5 on the front end side to the first tapered portion on the rear end side toward the rear end side. A plurality of strip discharge grooves 8 (three strips in the present embodiment) are formed at equal intervals in the circumferential direction, and the wall surfaces of the chip discharge grooves 8 facing the rotation direction T are the respective cutting blades 4 and 6. The rake faces 9 and 10, in other words, the outer peripheral side ridges of these rake faces 9 and 10 are the cutting edges 4 and 6, respectively. Further, the outer peripheral surface of the cutting edge portion 3 intersecting with the rake surfaces 9 and 10 via the cutting edges 4 and 6 gradually retreats toward the inner peripheral side from the cutting edges 4 and 6 toward the rear side in the rotation direction T. The flank faces 11 and 12 to be used.

なお、切刃部3の先端、すなわち上記小径部5の先端には、図3に示すように切刃4の先端から上記軸線O側に向けて延びるように底刃13が形成されている。ここで、この小径部5の先端面には切屑排出溝8の先端側開口部から内周側に延びるようにギャッシュ14が形成されており、上記底刃13は、このギャッシュ14の回転方向T側を向く壁面および上記すくい面9の先端側辺稜部に形成されることとなる。また、小径部5の先端面の底刃13から回転方向T後方側に連なる部分は、この回転方向T後方側に向かうに従いエンドミル本体1の後端側に漸次後退する先端逃げ面15とされる。   A bottom blade 13 is formed at the distal end of the cutting blade portion 3, that is, the distal end of the small diameter portion 5 so as to extend from the distal end of the cutting blade 4 toward the axis O as shown in FIG. Here, a gash 14 is formed on the front end surface of the small diameter portion 5 so as to extend from the front end side opening of the chip discharge groove 8 to the inner peripheral side, and the bottom blade 13 has a rotation direction T of the gash 14. It will be formed in the wall surface facing the side and the ridge portion on the tip side of the rake face 9. Further, the portion of the distal end surface of the small diameter portion 5 that continues from the bottom blade 13 to the rear side in the rotation direction T is a front end flank 15 that gradually moves backward toward the rear end side of the end mill body 1 toward the rear side in the rotation direction T. .

さらに、小径部5の上記すくい面9は、図4に示すように該小径部5の軸線Oに直交する断面において湾曲するように形成されている。ここで、本実施形態では、このすくい面9は、エンドミル本体1の上記回転方向Tに対してその後方側に凹む凹状に湾曲形成されており、特に該断面において軸線Oと切刃4とを結ぶ直線Lよりも回転方向T後方側に凹曲する滑らかな凹曲面とされている。従って、すくい面9は外周側では切刃4から内周側に向かうに従い直線Lに対して回転方向T後方側に漸次後退することとなり、この切刃4の位置においてすくい面9が上記直線Lに対してなす角度、すなわち小径部5の切刃4のすくい角αは0°を上回る正角とされる。   Furthermore, the rake face 9 of the small diameter portion 5 is formed to be curved in a cross section perpendicular to the axis O of the small diameter portion 5 as shown in FIG. Here, in the present embodiment, the rake face 9 is formed in a concave shape that is recessed rearward with respect to the rotational direction T of the end mill body 1, and in particular, the axis O and the cutting edge 4 are formed in the cross section. It is a smooth concave curved surface that is concave toward the rear side in the rotational direction T from the connecting straight line L. Accordingly, the rake face 9 gradually moves backward in the rotational direction T with respect to the straight line L toward the inner peripheral side from the cutting edge 4 on the outer peripheral side. The rake angle α of the cutting edge 4 of the small diameter portion 5 is a positive angle exceeding 0 °.

一方、上記段付き部7におけるすくい面10は、その内周側が小径部5のすくい面9と滑らかに連続するようにして、図5に示すように該段付き部7の軸線Oに直交する断面において該小径部5のすくい面9と略同様の湾曲、すなわち曲率で回転方向Tの後方側に凹む凹状に湾曲形成されている。そして、この段付き部7のすくい面10の外周側、すなわち上記小径部5の切刃4の外径dよりも外周側に延びる部分では、図6に示すように該すくい面10の上記内周側の凹湾曲形状を外周側に延長した延長面Pに対して、僅かに該延長面Pに沿って凹状に延びた後に、変曲点Qを介して内周側とは反対向きに湾曲するように、本実施形態では回転方向Tに凸となる凸湾曲形状を描くようにして切刃6に達するように形成されている。   On the other hand, the rake face 10 in the stepped portion 7 is perpendicular to the axis O of the stepped portion 7 as shown in FIG. 5 so that the inner peripheral side thereof is smoothly continuous with the rake face 9 of the small diameter portion 5. In the cross section, it is formed in a curved shape that is substantially the same as that of the rake face 9 of the small diameter portion 5, that is, a concave shape that is concave toward the rear side in the rotation direction T with a curvature. At the outer peripheral side of the rake face 10 of the stepped portion 7, that is, at the outer peripheral side of the outer diameter d of the cutting edge 4 of the small diameter portion 5, the inner side of the rake face 10 as shown in FIG. After extending slightly concave along the extended surface P with respect to the extended surface P obtained by extending the circumferential concave curve shape to the outer peripheral side, the curved surface is bent in the direction opposite to the inner peripheral side via the inflection point Q. Thus, in this embodiment, it forms so that the cutting edge 6 may be reached so that the convex curve shape which may become convex in the rotation direction T may be drawn.

このように構成された段付き部7の切刃6においては、そのすくい面10が小径部5のすくい面9と略同様に湾曲する内周側から上記延長面Pに沿って外周側に凹状に延びた後に、変曲点Qを介してその湾曲の向きが反対向きの凸状とされるため、すくい面10上の各位置におけるすくい角は、外周側に向けて上記変曲点Qまでは小径部5の切刃4のすくい角αから正角側に漸次大きくなった後、変曲点Qから外周側では逆に漸次小さくなって(負角側に大きくなって)、切刃6のすくい角βとなるようにされる。そして、こうして得られる段付き部7の切刃6のすくい角βと上記小径部5の切刃4のすくい角αとの差は、3°以内とされている。   In the cutting edge 6 of the stepped portion 7 configured as described above, the rake face 10 is concave from the inner peripheral side, which is curved in the same manner as the rake face 9 of the small diameter part 5, from the inner peripheral side to the outer peripheral side along the extended surface P. Since the direction of curvature of the curved surface is convex through the inflection point Q, the rake angle at each position on the rake face 10 reaches the inflection point Q toward the outer peripheral side. Is gradually increased from the rake angle α of the cutting edge 4 of the small-diameter portion 5 to the positive angle side, and then gradually decreased from the inflection point Q to the outer peripheral side (increased toward the negative angle side). The rake angle β is set to be. The difference between the rake angle β of the cutting edge 6 of the stepped portion 7 thus obtained and the rake angle α of the cutting edge 4 of the small diameter portion 5 is within 3 °.

なお、切刃部3の上記小径部5の先端から段付き部7を経て第1のテーパ部に至る上記切屑排出溝8は、その溝底の位置が、図2に破線で示すように小径部5の段付き部7とは反対側、すなわち先端側では軸線Oに対して一定の位置とされ、この小径部5の後端側、すなわち小径部5中の段付き部7側で後端側に向かうに従い漸次外周側に向かうように切り上げられている。従って、この切刃部5の上記軸線Oに直交する断面に内接する心厚円も、上記小径部5の段付き部7とは反対側すなわち先端側の、小径部5の軸線O方向の長さよりも短い長さMの範囲で一定直径の心厚円Cとされ、該小径部5の段付き部7側から該段付き部7に亙っての部分では図5に示すようにこの一定とされた先端側の心厚円Cの直径よりも漸次大きくなるようにされる。   The chip discharge groove 8 extending from the tip of the small diameter part 5 of the cutting edge part 3 to the first taper part through the stepped part 7 has a small diameter as shown by a broken line in FIG. On the opposite side of the stepped portion 7 of the portion 5, that is, on the distal end side, the position is fixed with respect to the axis O, and the rear end side of the small diameter portion 5, that is, the stepped portion 7 side in the small diameter portion 5. It is rounded up gradually toward the outer peripheral side as it goes to the side. Therefore, the center thick circle inscribed in the cross section perpendicular to the axis O of the cutting edge portion 5 is also the length of the small diameter portion 5 in the direction of the axis O of the small diameter portion 5 on the side opposite to the stepped portion 7, that is, the tip side. The core thickness circle C has a constant diameter in the range of a length M shorter than the length, and this constant diameter portion 5 extends from the stepped portion 7 side to the stepped portion 7 as shown in FIG. It is made to become gradually larger than the diameter of the core thick circle C on the tip side.

次に、このような段付きエンドミルの製造方法の一実施形態について、図7を用いて説明する。この図7に示すように、本実施形態では、中心軸X回りに回転される円板状砥石Gの砥粒層が形成された外周部を、エンドミル本体1の切刃部3外周に形成された上記切屑排出溝8の捩れに沿うように該切屑排出溝8内に挿入し、この円板状砥石G外周部の上記砥粒層によってこの切屑排出溝8の回転方向Tを向く壁面を研削することにより、上記小径部5から段付き部7にかけてのすくい面9,10を連続して上述のような形状に成形し、その外周側の逃げ面11,12との交差稜線部に切刃4,6を形成してゆく。   Next, an embodiment of a method for manufacturing such a stepped end mill will be described with reference to FIG. As shown in FIG. 7, in this embodiment, the outer peripheral portion on which the abrasive layer of the disc-shaped grindstone G rotated around the central axis X is formed on the outer periphery of the cutting edge portion 3 of the end mill body 1. Inserted into the chip discharge groove 8 so as to follow the twist of the chip discharge groove 8, and the wall surface facing the rotation direction T of the chip discharge groove 8 is ground by the abrasive layer on the outer periphery of the disc-shaped grindstone G. As a result, the rake surfaces 9 and 10 from the small diameter portion 5 to the stepped portion 7 are continuously formed into the shape as described above, and a cutting edge is formed at the intersection ridge line portion with the flank surfaces 11 and 12 on the outer peripheral side. 4 and 6 are formed.

ここで、上記円板状砥石Gは、まず切刃部3において小径部5の段付き部7とは反対側、すなわち先端側からその外周部が切屑排出溝8内に挿入され、この小径部5先端側の直径一定の心厚円Cとされる上記長さMの範囲では、上記中心軸Xと軸線Oとの位置関係が一定に保たれるようにしつつ、円板状砥石Gをエンドミル本体1に対して相対的に切屑排出溝8の捩れに合わせて軸線O回りに回転させながら該軸線O方向に移動させる(通常は、円板状砥石Gの中心軸Xを固定しておいて、エンドミル本体1を回転移動させる)ことにより、この円板状砥石G外周部の周面Hと上記回転方向Tを向く壁面に対向する端面(側面)J、およびこれら周面Hと端面Jとの交差稜線部Kとによって上記すくい面9を含めた切屑排出溝8の壁面および溝底面を凹曲面状に湾曲形成してゆく。なお、このとき、軸線Oおよび中心軸Xに直交する側面視において、中心軸Xに直交する直線Nが軸線Oに対してなす角度、すなわち砥石取付角θは、図7に示すように切屑排出溝8の捩れ角よりも通常僅かに大きくされる。   Here, the disk-shaped grindstone G is inserted into the chip discharge groove 8 at the outer periphery of the cutting edge portion 3 from the side opposite to the stepped portion 7 of the small diameter portion 5, that is, from the tip side. 5 In the range of the length M, which is a core thickness circle C with a constant diameter on the tip side, the disc-shaped grindstone G is used as an end mill while the positional relationship between the central axis X and the axis O is kept constant. Move in the direction of the axis O while rotating around the axis O in accordance with the twist of the chip discharge groove 8 relative to the main body 1 (normally, the central axis X of the disc-shaped grindstone G is fixed) , The end mill body 1 is rotated and moved), the peripheral surface H of the outer periphery of the disc-shaped grindstone G, the end surface (side surface) J facing the wall surface facing the rotation direction T, and the peripheral surface H and the end surface J Wall surface of the chip discharge groove 8 including the rake face 9 and Slide into curved in concavely curved bottom surface. At this time, in a side view orthogonal to the axis O and the central axis X, the angle formed by the straight line N orthogonal to the central axis X with respect to the axis O, that is, the grindstone mounting angle θ is the chip discharge as shown in FIG. Usually, it is made slightly larger than the twist angle of the groove 8.

そして、このように円板状砥石Gをエンドミル本体1に対して軸線O方向に相対移動させて、円板状砥石Gの外周部が切刃部3において小径部5の段付き部7側(後端側)から該段付き部7に亙ったところでは、まずそのまま円板状砥石Gをエンドミル本体1に対して相対回転移動させ続けることにより、この段付き部7における切屑排出溝8の上記回転方向Tを向く壁面を研削し始めつつ、この壁面の外周側の部分に円板状砥石Gの上記端面Jを干渉させ、しかる後このエンドミル本体1と円板状砥石Gとの相対的な軸線O方向への移動を停止するとともに、円板状砥石Gをエンドミル本体1に対して軸線O回りに相対的に回転させ続けながらその外周側に引き上げ、あるいはこの相対回転をも停止させて円板状砥石Gをエンドミル本体1に対して相対的に外周側に引き上げることにより、干渉した円板状砥石Gの端面Jの砥粒層によって上記壁面の外周側部分が内周側の湾曲とは反対向きに湾曲するように成形される。従って、これにより、段付き部7においてはそのすくい面10の外周側が、内周側の凹湾曲形状の延長面Pに対し変曲点Qを介して凸湾曲形状をなすように形成される。   Then, the disc-shaped grindstone G is relatively moved in the direction of the axis O with respect to the end mill body 1 in this way, and the outer peripheral portion of the disc-shaped grindstone G is on the stepped portion 7 side of the small diameter portion 5 in the cutting edge portion 3 ( In the place where the stepped portion 7 extends from the rear end side, first, the disc-shaped grindstone G is continuously rotated and moved relative to the end mill body 1 as it is. While starting to grind the wall surface facing the rotation direction T, the end face J of the disc-shaped grindstone G is caused to interfere with the outer peripheral portion of the wall surface, and then the end mill body 1 and the disc-shaped grindstone G are relative to each other. The movement in the direction of the axis O is stopped, and the disc-shaped grindstone G is lifted to the outer peripheral side while continuing to rotate relative to the end mill body 1 around the axis O, or the relative rotation is also stopped. The disc-shaped grinding wheel G is turned into the end mill body 1 On the other hand, by pulling up relatively toward the outer peripheral side, the outer peripheral side portion of the wall surface is shaped in a direction opposite to the inner peripheral side curvature by the abrasive layer of the end face J of the disc-shaped grindstone G that has interfered. The Accordingly, the stepped portion 7 is formed such that the outer peripheral side of the rake face 10 forms a convex curve shape via the inflection point Q with respect to the inner curved side extension surface P.

なお、ここで、この小径部5から段付き部7に亙る部分で円板状砥石Gの端面Jを壁面に干渉させた後に、円板状砥石Gを相対回転させ続けながら外周側に引き上げるか、相対回転をも停止して引き上げるかは、円板状砥石Gの外径や切屑排出溝8の捩れ角、小径部5の外径dや段付き部7の外径、心厚円Cの直径、あるいは小径部5の切刃4や段付き部7の切刃6に与えられるべきすくい角α,βなどにもよるが、この端面Jが壁面と干渉しすぎてしまうと、すくい面10の外周側が内周側の凹湾曲形状の延長面Pに対して大きく凸湾曲しすぎて、本実施形態では段付き部7の切刃6のすくい角βが負角側に大きくなりすぎてしまうので、そのような場合には円板状砥石Gのエンドミル本体1に対する相対回転も停止して外周側に引き上げればよい。一方、円板状砥石Gを相対回転させ続けながら外周側に引き上げるときは、場合によっては端面Jが壁面と干渉し始める前に円板状砥石Gを引き上げて、その途中で端面Jを壁面の外周側部分に干渉させることにより、すくい面10の外周側を凸湾曲形状に形成することも可能である。   Here, after the end surface J of the disc-shaped grindstone G interferes with the wall surface at the portion extending from the small diameter portion 5 to the stepped portion 7, the disc-shaped grindstone G is pulled up to the outer peripheral side while continuing to rotate relatively. Whether the relative rotation is also stopped and pulled up depends on the outer diameter of the disc-shaped grindstone G, the twist angle of the chip discharge groove 8, the outer diameter d of the small diameter portion 5, the outer diameter of the stepped portion 7, and the core thickness circle C. Depending on the rake angles α and β to be given to the cutting edge 4 of the diameter or the small diameter portion 5 or the cutting edge 6 of the stepped portion 7, if this end face J interferes too much with the wall surface, the rake face 10. The outer peripheral side of the cutting edge 6 is excessively curved with respect to the extended surface P having a concave curved shape on the inner peripheral side, and in this embodiment, the rake angle β of the cutting edge 6 of the stepped portion 7 becomes too large on the negative angle side. Therefore, in such a case, the relative rotation of the disc-shaped grindstone G with respect to the end mill body 1 is also stopped and pulled up to the outer peripheral side. Good. On the other hand, when pulling up the disc-shaped grindstone G to the outer peripheral side while continuing to relatively rotate, the disc-shaped grindstone G is pulled up before the end surface J starts to interfere with the wall surface in some cases, and the end surface J is It is also possible to form the outer peripheral side of the rake face 10 in a convex curve shape by interfering with the outer peripheral side portion.

また、こうして小径部5の先端側では中心軸Xが軸線Oに対して一定の位置関係とされた円板状砥石Gが、その外周部が小径部5から段付き部7に亙ったところで軸線O方向への相対移動が停止されて外周側に引き上げられることにより、切屑排出溝8の溝底の位置も、小径部5の先端側では軸線Oに対して一定の位置にあったものが、後端側ではこの円板状砥石Gの外周部の形状に合わせて小径部5中の段付き部7側から後端に向けて切り上げられることとなり、これにより切刃部3の心厚円も、その直径が上述のように小径部5の段付き部7とは反対側(先端側)の長さMの範囲で一定直径の心厚円Cとされ、該長さMの範囲より後端側に向けて小径部5の段付き部7側から該段付き部7に亙っては、この先端側の心厚円Cよりもその直径が漸次大きくなるようにされる。   In this way, the disc-shaped grindstone G in which the central axis X is in a fixed positional relationship with respect to the axis O on the distal end side of the small diameter portion 5 is located where the outer peripheral portion extends from the small diameter portion 5 to the stepped portion 7. When the relative movement in the direction of the axis O is stopped and pulled up to the outer peripheral side, the position of the groove bottom of the chip discharge groove 8 is also at a fixed position with respect to the axis O on the tip side of the small diameter portion 5. On the rear end side, the disc-shaped grindstone G is rounded up from the stepped portion 7 side in the small diameter portion 5 toward the rear end in accordance with the shape of the outer peripheral portion of the disc-shaped grindstone G. As described above, the diameter of the small-diameter portion 5 is the core thickness circle C having a constant diameter in the range of the length M on the side opposite to the stepped portion 7 of the small-diameter portion 5 (the tip side). From the stepped portion 7 side of the small diameter portion 5 to the stepped portion 7 toward the end side, it is more directly than the core thickness circle C on the distal end side. There is so gradually increases.

しかして、例えばこのような製造方法によって製造される上記構成の段付きエンドミルにおいては、段付き部7におけるすくい面10が、その内周側が小径部5のすくい面9に連続した湾曲形状をなしているのに対して、外周側は軸線Oに直交する断面においてこの内周側の湾曲の延長面Pとは変曲点Qを介して反対向きに湾曲させられていて、これにより、該延長面Pの外周に切刃が形成された場合に比べ、この段付き部7の切刃6のすくい角βが小径部5の切刃4のすくい角αに対して正角側あるいは負角側に大きくなりすぎるのを避けることができる。   Thus, for example, in the stepped end mill having the above-described configuration manufactured by such a manufacturing method, the rake face 10 in the stepped portion 7 has a curved shape in which the inner peripheral side is continuous with the rake face 9 of the small diameter portion 5. On the other hand, the outer peripheral side is curved in the opposite direction to the curved extension surface P on the inner peripheral side through an inflection point Q in the cross section orthogonal to the axis O, and thereby the extension Compared with the case where the cutting edge is formed on the outer periphery of the surface P, the rake angle β of the cutting edge 6 of the stepped portion 7 is on the positive or negative side with respect to the rake angle α of the cutting edge 4 of the small diameter portion 5. To avoid becoming too large.

すなわち、小径部5のすくい面9が凹状に湾曲して切刃4のすくい角αが正角とされた上記実施形態の段付きエンドミルでは、段付き部7でもその切刃が上記延長面P上にあるとすくい角が正角側に大きくなりすぎて刃先角は小さくなり、刃先強度が確保できずに切削時に切刃が欠損してエンドミル寿命が短縮されるおそれがあるが、本実施形態のように段付き部7の外周側ですくい面10が内周側とは逆に凸湾曲するように形成されていると、その切刃6のすくい角βが正角側に大きくなりすぎることはなく、図6に示されるように刃先角を小径部5と略同等に大きく確保することが可能となって切刃6の欠損等を防止し、エンドミル寿命の延長を図って円滑な切削を行うことができる。   That is, in the stepped end mill of the above embodiment in which the rake face 9 of the small diameter portion 5 is concavely curved and the rake angle α of the cutting edge 4 is a positive angle, the cutting edge of the stepped portion 7 also has the extended surface P. If it is above, the rake angle becomes too large on the positive side and the edge angle becomes small, and the edge strength may not be ensured and the cutting edge may be lost during cutting, which may shorten the end mill life. When the rake face 10 is formed on the outer peripheral side of the stepped portion 7 so as to be convexly curved opposite to the inner peripheral side, the rake angle β of the cutting edge 6 is too large on the positive side. As shown in FIG. 6, it is possible to ensure the edge angle substantially as large as that of the small diameter portion 5 to prevent the cutting edge 6 from being damaged and to smooth the cutting by extending the end mill life. It can be carried out.

また、上記実施形態では、こうして小径部5のすくい面9が凹曲状に湾曲されるとともに、段付き部7のすくい面10は内周側から外周側に向けて変曲点Qを介して凹曲から凸曲にその湾曲の向きが逆となるようにされているが、これとは逆に、小径部5のすくい面9がエンドミル本体1の回転方向Tに凸状に湾曲形成されるとともに、段付き部7においてはそのすくい面10の内周側が上記すくい面9に連続して凸状に湾曲形成され、外周側ではこの凸湾曲した内周側からの延長面Pに対して軸線Oに直交する断面において変曲点Qを介し回転方向Tの後方側に凹状に湾曲するように、その湾曲の向きが反対向きとなるようにされていてもよい。   Further, in the above embodiment, the rake face 9 of the small diameter portion 5 is curved in a concave shape, and the rake face 10 of the stepped portion 7 is passed through the inflection point Q from the inner peripheral side toward the outer peripheral side. The direction of the curve is reversed from the concave curve to the convex curve, but on the contrary, the rake face 9 of the small diameter portion 5 is formed in a convex shape in the rotational direction T of the end mill body 1. At the stepped portion 7, the inner peripheral side of the rake face 10 is curved in a convex shape continuously with the rake face 9, and on the outer peripheral side, the axis line with respect to the extended surface P from the convexly curved inner peripheral side. In the cross section orthogonal to O, the direction of the curve may be opposite so that the curve is curved concavely toward the rear side in the rotation direction T via the inflection point Q.

しかるに、この場合には、上記延長面P上に切刃6が形成されていると、小径部5の切刃4のすくい角αが負角である場合は勿論、0°あるいは正角であっても、これに対して段付き部7の切刃6のすくい角βが負角側に大きくなり、その切れ味が鈍化して切削抵抗の増大を招いたりするおそれがあるが、上記構成を適用することにより、これらすくい角α,βの差が大きくなりすぎるのを防ぐことができ、従って段付き部7においても鋭い切れ味を確保して切削抵抗の抑制等を図ることが可能となる。すなわち、上記構成の段付きエンドミルによれば、例えば切削条件等に応じて適正なすくい角α,βを小径部5と段付き部7との切刃4,6に与えることが可能となる。   However, in this case, if the cutting edge 6 is formed on the extended surface P, the rake angle α of the cutting edge 4 of the small diameter portion 5 is of course a 0 ° or a positive angle when the rake angle α is a negative angle. However, the rake angle β of the cutting edge 6 of the stepped portion 7 is increased to the negative angle side, and the sharpness may be dulled to increase the cutting resistance. However, the above configuration is applied. By doing so, it is possible to prevent the difference between the rake angles α and β from becoming too large. Therefore, it becomes possible to secure a sharp sharpness even in the stepped portion 7 to suppress cutting resistance. That is, according to the stepped end mill having the above-described configuration, appropriate rake angles α and β can be given to the cutting edges 4 and 6 of the small diameter portion 5 and the stepped portion 7 in accordance with, for example, cutting conditions.

なお、上記実施形態では上述のように小径部5のすくい面9が凹状に湾曲形成されてその切刃4と段付き部7の切刃6とのすくい角α,βがともに正角とされているが、上記のように小径部5のすくい面9が凸状に湾曲形成されている場合も含めて、該すくい角α,βは、こうしてともに正角あるいは負角であってもよく、また切削条件等によっては一方が0°あるいは正角で他方が0°あるいは負角であってもよい。ただし、これらすくい角α,βの差が大きすぎると、上述の切刃欠損の防止や切削抵抗の抑制といった効果が確実に奏功されなくなるおそれが生じるので、その差は上記実施形態のように3°以内とされるのが望ましい。勿論、これらのすくい角α,βが等しい角度とされていても構わない。   In the above embodiment, as described above, the rake face 9 of the small-diameter portion 5 is formed in a concave shape, and the rake angles α and β between the cutting edge 4 and the cutting edge 6 of the stepped portion 7 are both positive. However, including the case where the rake face 9 of the small diameter portion 5 is convexly curved as described above, the rake angles α and β may both be positive or negative. Depending on cutting conditions, one may be 0 ° or a positive angle and the other may be 0 ° or a negative angle. However, if the difference between the rake angles α and β is too large, there is a possibility that the effects of preventing the above-mentioned cutting edge defect and suppressing the cutting resistance may not be achieved, so the difference is 3 as in the above embodiment. It is desirable to be within °. Of course, these rake angles α and β may be equal.

さらに、上記実施形態の段付きエンドミルでは、特に上述のような実施形態の製造方法によって製造されることにより、切刃部3の軸線Oに直交する断面に内接する心厚円が、小径部5の段付き部7とは反対側(先端側)の長さMの範囲で一定の直径の心厚円Cとされ、この長さMの範囲よりも後端側、つまり該小径部5の途中の段付き部7側から該段付き部7に亙っては上記心厚円Cよりも直径が漸次大きくなるようにされている。すなわち、言い換えれば、この切刃部3の先端から直径が一定の心厚円Cが形成される部分の軸線O方向の長さMが、小径部5の切刃4の軸線O方向の長さつまり小径部5自体の長さよりも短くされていて、段付き部7の手前から心厚円の直径が大きくなるようにされている。   Furthermore, in the stepped end mill of the above-described embodiment, the core thick circle inscribed in the cross section perpendicular to the axis O of the cutting edge portion 3 is produced by the manufacturing method of the above-described embodiment in particular. The core thickness circle C has a constant diameter in the range of the length M on the side opposite to the stepped portion 7 (the tip side), and the rear end side of the range of the length M, that is, in the middle of the small diameter portion 5. From the stepped portion 7 side to the stepped portion 7, the diameter is gradually larger than the core thickness circle C. That is, in other words, the length M in the axis O direction of the portion where the core thick circle C having a constant diameter is formed from the tip of the cutting edge portion 3 is the length in the axis O direction of the cutting edge 4 of the small diameter portion 5. That is, it is shorter than the length of the small-diameter portion 5 itself, and the diameter of the thick heart circle is increased from the front of the stepped portion 7.

このため、本実施形態の段付きエンドミルによれば、切刃4の外径dが小径であるために切刃4間の周方向の間隔も小さく、従って切屑排出溝8の溝幅も確保し難い反面、切屑の生成量も少ない小径部5においては、切屑排出溝8の溝深さを上記外径dに対して比較的大きくすることができ、生成される切屑に対して十分なチップポケット容量を確保して切屑詰まりの発生などを防止することができる。その一方で、逆に切刃6の外径が大きくなるために切屑排出溝8の溝幅も確保し易く、しかも加工溝等の開口部を切削するために切屑排出が容易な段付き部7にあっては、先端側の直径一定とされた心厚円Cよりも大きな心厚円直径となることにより、高い剛性および強度を切刃部3に与えることが可能となり、従って切削時に小径部5側から送り出される切屑を該段付き部7で生成された切屑とともに円滑に排出しつつも、該切刃部3における振れやビビリ振動等を抑えて高い加工精度を得ることが可能となる。   For this reason, according to the stepped end mill of this embodiment, since the outer diameter d of the cutting blade 4 is small, the circumferential interval between the cutting blades 4 is small, and therefore the groove width of the chip discharge groove 8 is secured. On the other hand, in the small-diameter portion 5 where the amount of generated chips is small, the depth of the chip discharge groove 8 can be made relatively large with respect to the outer diameter d, and sufficient chip pockets are provided for the generated chips. Capacity can be secured to prevent chip clogging. On the other hand, on the other hand, the outer diameter of the cutting blade 6 is increased, so that the groove width of the chip discharge groove 8 is easily secured, and the stepped portion 7 is easily discharged for cutting the opening such as the machining groove. In this case, since the core thickness circle diameter is larger than the core thickness circle C whose diameter on the tip side is constant, it becomes possible to give the cutting blade portion 3 high rigidity and strength. It is possible to obtain high machining accuracy by suppressing runout and chatter vibration in the cutting edge portion 3 while smoothly discharging the chips fed from the 5 side together with the chips generated in the stepped portion 7.

一方、上記実施形態のように小径部5から段付き部7の内周側ですくい面9,10が凹状に湾曲形成されるとともに、段付き部7のすくい面10の外周側では凸状に湾曲形成された段付きエンドミルは、例えば小径部5から段付き部7の全長に亙って上記円板状砥石Gの中心軸Xとエンドミル本体1の軸線Oとの位置関係を一定としたまま切屑排出溝8の捩れに沿って円板状砥石Gとエンドミル本体1とを相対的に軸線O回りに回転しつつ該軸線O方向に移動させて、そのすくい面9,10を段付き部7のすくい面10外周側でも上記延長面Pに沿って凹状に湾曲するように形成し、しかる後この段付き部7のすくい面10外周側を研削等によって凸状に湾曲するように研削成形して製造したりすることも可能ではあり、そのように製造された段付きエンドミルも本発明の範疇であると言える。ただし、そのような製造方法では、1つの切屑排出溝8についてすくい面9,10の研削が2工程となってしまうため、製造効率の低下を招くこととなる。   On the other hand, the rake surfaces 9 and 10 are formed in a concave shape on the inner peripheral side of the stepped portion 7 from the small diameter portion 5 as in the above-described embodiment, and are convex on the outer peripheral side of the rake surface 10 of the stepped portion 7. The stepped end mill formed in a curved shape maintains the positional relationship between the center axis X of the disc-shaped grindstone G and the axis O of the end mill main body 1 from the small diameter portion 5 to the entire length of the stepped portion 7, for example. The disc-shaped grindstone G and the end mill body 1 are moved in the direction of the axis O while relatively rotating around the axis O along the twist of the chip discharge groove 8, and the rake faces 9, 10 are moved to the stepped portion 7. The outer surface of the rake face 10 is formed so as to be concavely curved along the extended surface P, and thereafter, the outer surface of the rake face 10 of the stepped portion 7 is ground and molded so as to be convexly curved by grinding or the like. It is also possible to manufacture Stepped end mill can also be said to be the scope of the present invention. However, in such a manufacturing method, grinding of the rake faces 9 and 10 for one chip discharge groove 8 is performed in two steps, resulting in a decrease in manufacturing efficiency.

ところが、これに対して上記実施形態の段付きエンドミルの製造方法によれば、上述のように切削条件等に応じた適正なすくい角α,βの切刃4,6を有するすくい面9,10を、上記砥石取付角θを適宜調整したりすることにより、小径部5から段付き部7にかけて1つの切屑排出溝8について円板状砥石Gによる1工程の研削で形成可能であり、上述のような優れた効果を奏する段付きエンドミルを効率的に製造することが可能となる。また、特に上述のように切刃部3の心厚円が小径部5の段付き部7とは反対側で一定の直径の心厚円Cとされるとともに、小径部5の段付き部7側から該段付き部7に亙ってこの一定直径の心厚円Cよりも直径が漸次大きくなるようにされた段付きエンドミルも、上記円板状砥石Gをエンドミル本体1に対して相対的に外周側に引き上げる位置を適宜調整して上記長さMを適正に設定したりすることで、容易に製造することができる。   However, according to the manufacturing method of the stepped end mill of the above embodiment, the rake faces 9 and 10 having the cutting edges 4 and 6 having the appropriate rake angles α and β according to the cutting conditions as described above. Can be formed by one-step grinding with the disc-shaped grindstone G for one chip discharge groove 8 from the small diameter portion 5 to the stepped portion 7 by appropriately adjusting the grindstone mounting angle θ. It is possible to efficiently manufacture a stepped end mill that exhibits such excellent effects. In particular, as described above, the core thickness circle of the cutting edge portion 3 is set to a core thickness circle C having a constant diameter on the opposite side of the stepped portion 7 of the small diameter portion 5, and the stepped portion 7 of the small diameter portion 5. The stepped end mill whose diameter is gradually larger than the constant-thickness core thickness circle C from the side to the stepped portion 7 is also relative to the end mill main body 1 with respect to the disk-shaped grindstone G. By appropriately adjusting the position to be pulled up to the outer peripheral side and appropriately setting the length M, it can be easily manufactured.

例えば、切屑排出溝8の捩れ角が30°、小径部5の切刃4の外径dが1.8mm、切刃4の軸線O方向の長さが3mm、段付き部7の切刃6の最大外径が2.5mm、切刃6の軸線Oに対する角度が30°の場合、外径100mm、幅1.32mmの円板状砥石(平砥石)を用いて、その砥石取付角θを33°とし、切刃部3に一定の直径の心厚円Cが形成される部分の軸線O方向の長さMを小径部5の先端から2.7mmとすると、小径部5の切刃4のすくい角αが約+6°であるのに対し、段付き部7の切刃6のすくい角βも約+6°と、略等しい角度とすることができる。   For example, the chip discharge groove 8 has a twist angle of 30 °, the outer diameter d of the cutting edge 4 of the small diameter portion 5 is 1.8 mm, the length of the cutting edge 4 in the axis O direction is 3 mm, and the cutting edge 6 of the stepped portion 7. When the maximum outer diameter is 2.5 mm and the angle of the cutting edge 6 with respect to the axis O is 30 °, a disc-shaped grindstone (flat grindstone) having an outer diameter of 100 mm and a width of 1.32 mm is used. If the length M in the direction of the axis O is 2.7 mm from the tip of the small-diameter portion 5, the cutting edge 4 of the small-diameter portion 5 is set to 33 °. While the rake angle α is approximately + 6 °, the rake angle β of the cutting edge 6 of the stepped portion 7 can also be approximately equal to + 6 °.

なお、上記実施形態では図1に示すように小径部5の切刃4と上記底刃13とが軸線O回りの回転軌跡において略直交するようにされたスクエアタイプの切刃とされるとともに、上記段付き部7の切刃6は軸線O回りの回転軌跡が該軸線Oに対して一定の傾斜角をなす面取り刃状とされているが、例えばこの段付き部7についても軸線O回りの回転軌跡が軸線Oに垂直な底刃とこの底刃に直交する切刃とから構成されるようにして、小径部5によって加工された加工溝の開口部にざぐり状の段付き部を形成するような段付きエンドミルとしてもよい。また、小径部5の切刃についても、上記スクエアタイプ以外の刃型としてもよい。   In the above embodiment, as shown in FIG. 1, the cutting blade 4 of the small diameter portion 5 and the bottom blade 13 are a square type cutting blade in which the rotation trajectory around the axis O is substantially orthogonal, The cutting edge 6 of the stepped portion 7 has a chamfered blade shape in which the rotation trajectory around the axis O forms a constant inclination angle with respect to the axis O. For example, the stepped portion 7 also rotates around the axis O. A counterbore stepped portion is formed at the opening of the machining groove machined by the small diameter portion 5 so that the rotation locus is constituted by a bottom blade perpendicular to the axis O and a cutting blade perpendicular to the bottom blade. It is good also as such a stepped end mill. Also, the cutting blade of the small diameter portion 5 may be a blade type other than the square type.

本発明の段付きエンドミルの一実施形態を示す側面視の概略図である。It is the schematic of the side view which shows one Embodiment of the stepped end mill of this invention. 図1に示す実施形態の切刃部3の拡大側面図である。It is an enlarged side view of the cutting blade part 3 of embodiment shown in FIG. 図1に示す実施形態の小径部5先端の正面図である。It is a front view of the small diameter part 5 front-end | tip of embodiment shown in FIG. 図2におけるYY断面図である。It is YY sectional drawing in FIG. 図2におけるZZ断面図である。It is ZZ sectional drawing in FIG. 図5におけるすくい面10の外周側を示す拡大断面図である。It is an expanded sectional view which shows the outer peripheral side of the rake face 10 in FIG. 本発明の段付きエンドミルの製造方法の一実施形態を説明する切刃部3側面視の概略図である。It is the schematic of the cutting blade part 3 side view explaining one Embodiment of the manufacturing method of the stepped end mill of this invention.

符号の説明Explanation of symbols

1 エンドミル本体
3 切刃部
4,6 切刃
5 小径部
7 段付き部
8 切屑排出溝
9,10 すくい面
O エンドミル本体1の軸線
T エンドミル本体1の回転方向
C 小径部5の一定直径とされる心厚円
M 小径部5の先端から一定直径の心厚円Cが形成される長さ
P 段付き部7のすくい面10内周側の湾曲面の外周側への延長面
Q 延長面Pからすくい面10外周側が反対向きに湾曲する変曲点
G 円板状砥石
X 円板状砥石Gの中心軸
J 円板状砥石Gの端面
α,β 切刃4,6のすくい角
DESCRIPTION OF SYMBOLS 1 End mill main body 3 Cutting edge part 4,6 Cutting edge 5 Small diameter part 7 Stepped part 8 Chip discharge groove 9,10 Rake face O End mill main body 1 axis T Rotation direction of end mill main body C Small diameter part 5 constant diameter Core thick circle M Length of core thick circle C having a constant diameter formed from the tip of small diameter portion 5 Extension surface P of stepped portion 7 on rake surface 10 inner peripheral side to outer peripheral side Q Extension surface P Inflection point at which the outer peripheral side of the rake face 10 curves in the opposite direction G Disk-shaped grinding wheel X Center axis of the disk-shaped grinding wheel G J End face α of the disk-shaped grinding stone G α, β Rake angle of the cutting edges 4, 6

Claims (5)

軸線回りに回転されるエンドミル本体の先端部に、外径の小さな切刃を有する小径部とこの小径部の切刃に連続して該小径部よりも外径が大きな切刃を有する段付き部とを備えた切刃部が形成されてなる段付きエンドミルであって、上記小径部のすくい面は、上記軸線に直交する断面において湾曲する湾曲面に形成されるとともに、上記段付き部のすくい面は、その内周側が上記小径部のすくい面に連続して湾曲する湾曲面とされ、かつ外周側はこのすくい面の内周側がなす湾曲面の外周側への延長面に対して上記軸線に直交する断面において変曲点を介して反対向きに湾曲するように形成されていることを特徴とする段付きエンドミル。 A stepped portion having a small-diameter portion having a cutting blade with a small outer diameter and a cutting blade having a larger outer diameter than the small-diameter portion continuously at the cutting edge of the small-diameter portion at the tip of the end mill body rotated around the axis. And a rake face of the small diameter portion is formed into a curved surface that is curved in a cross section perpendicular to the axis, and the rake of the stepped portion is formed. The surface is a curved surface whose inner peripheral side is continuously curved to the rake face of the small-diameter portion, and the outer peripheral side is the axis line with respect to the extended surface to the outer peripheral side of the curved surface formed by the inner peripheral side of the rake face A stepped end mill, wherein the step end mill is formed so as to bend in an opposite direction through an inflection point in a cross section perpendicular to the cross section. 上記小径部のすくい面は上記エンドミル本体の回転方向後方側に凹状に湾曲形成されてその切刃のすくい角が正角とされるとともに、上記段付き部のすくい面は、上記小径部のすくい面がなす凹湾曲面の外周側への延長面に対して変曲点を介して上記エンドミル本体の回転方向に凸状に湾曲形成されていることを特徴とする請求項1に記載の段付きエンドミル。 The rake face of the small diameter portion is formed in a concave shape on the rear side in the rotational direction of the end mill body so that the rake angle of the cutting edge is a positive angle, and the rake face of the stepped portion is the rake face of the small diameter portion. The step according to claim 1, wherein a curved surface is formed in a convex shape in a rotation direction of the end mill body via an inflection point with respect to a surface extending from the concave curved surface to the outer peripheral side. End mill. 上記小径部における切刃のすくい角と上記段付き部における切刃のすくい角との差が、3°以内とされていることを特徴とする請求項1または請求項2に記載の段付きエンドミル。 The stepped end mill according to claim 1 or 2, wherein a difference between a rake angle of the cutting edge in the small diameter portion and a rake angle of the cutting edge in the stepped portion is within 3 °. . 上記切刃部の上記軸線に直交する断面に内接する心厚円の直径が、上記小径部の上記段付き部とは反対側で一定で、該小径部の上記段付き部側から該段付き部に亙って漸次大きくなるようにされていることを特徴とする請求項1ないし請求項3のいずれかに記載の段付きエンドミル。 The diameter of the core thick circle inscribed in the cross section perpendicular to the axis of the cutting edge is constant on the side opposite to the stepped portion of the small diameter portion, and the stepped portion from the stepped portion side of the small diameter portion The stepped end mill according to any one of claims 1 to 3, wherein the stepped end mill is configured to gradually increase over a portion. 上記切刃部の外周に上記小径部から上記段付き部に亙って上記軸線回りに捩れる切屑排出溝が形成され、中心軸回りに回転させられる円板状砥石の外周部をこの切屑排出溝の捩れに略沿うように該切屑排出溝内に挿入して、この切屑排出溝の上記エンドミル本体の回転方向を向く壁面を研削することにより、上記すくい面を形成する請求項1ないし請求項4のいずれかに記載の段付きエンドミルの製造方法であって、上記小径部の上記段付き部と反対側の部分では、上記軸線と上記中心軸との位置関係を一定に保ちつつ上記円板状砥石を上記エンドミル本体に対して相対的に上記切屑排出溝の捩れに合わせて上記軸線回りに回転させながら上記軸線方向に移動させることにより、上記小径部のすくい面を形成し、該小径部の段付き部側から該段付き部に亙る部分では、そのまま上記円板状砥石を上記エンドミル本体に対して相対的に回転移動させて、この段付き部における切屑排出溝のエンドミル本体回転方向を向く壁面を研削し始めつつ、該壁面の外周側に上記円板状砥石の端面を干渉させ、しかる後このエンドミル本体と円板状砥石との相対的な軸線方向への移動を停止するとともに、上記円板状砥石を、上記エンドミル本体に対して上記軸線回りに相対的に回転させ続けながら、あるいはこの相対回転も停止させて、相対的に外周側に引き上げることにより、上記段付き部のすくい面を形成することを特徴とする段付きエンドミルの製造方法。
A chip discharge groove that is twisted around the axis from the small diameter portion to the stepped portion is formed on the outer periphery of the cutting blade portion, and the outer periphery of the disc-shaped grindstone that is rotated about the central axis is discharged to the chip. The rake face is formed by inserting the chip discharge groove into the chip discharge groove so as to substantially follow the twist of the groove, and grinding the wall surface of the chip discharge groove facing the rotation direction of the end mill body. 4. The method of manufacturing a stepped end mill according to any one of claims 4 to 4, wherein the disk portion while maintaining a constant positional relationship between the axis and the central axis at a portion of the small diameter portion opposite to the stepped portion. A rake face of the small diameter portion is formed by moving the whetstone in the axial direction while rotating around the axis in accordance with the twist of the chip discharge groove relative to the end mill body, and the small diameter portion From the stepped side of the In the part extending over the attached portion, the disk-shaped grindstone is rotated and moved relative to the end mill body as it is, and the wall facing the end mill body rotation direction of the chip discharge groove in the stepped portion is started to be ground, The end face of the disc-shaped grindstone is caused to interfere with the outer peripheral side of the wall surface, and then the movement of the end mill body and the disc-shaped grindstone in the relative axial direction is stopped, and the disc-shaped grindstone is The rake face of the stepped portion is formed by continuing to rotate relative to the end mill body around the axis or by stopping the relative rotation and pulling it up relatively to the outer peripheral side. To manufacture a stepped end mill.
JP2003352143A 2003-10-10 2003-10-10 Stepped end mill and manufacturing method thereof Expired - Fee Related JP4380285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003352143A JP4380285B2 (en) 2003-10-10 2003-10-10 Stepped end mill and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003352143A JP4380285B2 (en) 2003-10-10 2003-10-10 Stepped end mill and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005111638A true JP2005111638A (en) 2005-04-28
JP4380285B2 JP4380285B2 (en) 2009-12-09

Family

ID=34543172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003352143A Expired - Fee Related JP4380285B2 (en) 2003-10-10 2003-10-10 Stepped end mill and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4380285B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315115A (en) * 2005-05-11 2006-11-24 Toyota Motor Corp Cutting tool, vehicular instrument panel, device for forming air bag tear line, and method of forming the same
JP2011504818A (en) * 2007-11-27 2011-02-17 ティーディーワイ・インダストリーズ・インコーポレーテッド Rotating bar made of cemented carbide
CN102489765A (en) * 2011-12-07 2012-06-13 苏州阿诺精密切削技术股份有限公司 Non-slot-shared step cutter
KR20150115782A (en) * 2013-02-13 2015-10-14 이스카 엘티디. End mill having an asymmetric index angle arrangement for machining titanium
US20170189973A1 (en) * 2016-01-05 2017-07-06 The Boeing Company Variable rake fatigue enhancing orbital drilling cutter
CN110253056A (en) * 2019-07-24 2019-09-20 巴恩斯注塑工业(江苏)有限公司 A kind of thread integrated molding drill mill
CN113458472A (en) * 2021-07-15 2021-10-01 江门市中刀精密科技有限公司 Multi-step multi-profile coating forming reaming milling cutter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101700796B1 (en) * 2015-05-22 2017-01-31 (주)성산툴스 Form tool for cutting a fitting joint

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315115A (en) * 2005-05-11 2006-11-24 Toyota Motor Corp Cutting tool, vehicular instrument panel, device for forming air bag tear line, and method of forming the same
JP2011504818A (en) * 2007-11-27 2011-02-17 ティーディーワイ・インダストリーズ・インコーポレーテッド Rotating bar made of cemented carbide
CN102489765A (en) * 2011-12-07 2012-06-13 苏州阿诺精密切削技术股份有限公司 Non-slot-shared step cutter
KR20150115782A (en) * 2013-02-13 2015-10-14 이스카 엘티디. End mill having an asymmetric index angle arrangement for machining titanium
JP2016506875A (en) * 2013-02-13 2016-03-07 イスカル リミテッド End mill for titanium machining with asymmetric index angle arrangement
KR101970045B1 (en) * 2013-02-13 2019-04-17 이스카 엘티디. End mill having an asymmetric index angle arrangement for machining titanium
US20170189973A1 (en) * 2016-01-05 2017-07-06 The Boeing Company Variable rake fatigue enhancing orbital drilling cutter
US9889510B2 (en) * 2016-01-05 2018-02-13 The Boeing Company Variable rake fatigue enhancing orbital drilling cutter
CN110253056A (en) * 2019-07-24 2019-09-20 巴恩斯注塑工业(江苏)有限公司 A kind of thread integrated molding drill mill
CN113458472A (en) * 2021-07-15 2021-10-01 江门市中刀精密科技有限公司 Multi-step multi-profile coating forming reaming milling cutter

Also Published As

Publication number Publication date
JP4380285B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP2007030074A (en) Radius end mill and cutting method
WO2005102572A1 (en) Ball end mill
JP2004074402A (en) Drill bit or milling tool and its manufacturing method
CN107073588B (en) Method for grinding a parting blade and parting blade
JP5845218B2 (en) Ball end mill
JP2007050477A (en) Drill with extra-high pressure sintered body chip
JP5220979B2 (en) Cutting tool and method and apparatus for manufacturing the cutting tool
JP4380285B2 (en) Stepped end mill and manufacturing method thereof
JP2006110683A (en) End mill
JP5470796B2 (en) Overall cutter
JP5021882B2 (en) Method and apparatus for manufacturing a cutting tool having a groove
JP3759098B2 (en) Ball end mill
CN113102813B (en) Rotary cutting tool
JP3474550B2 (en) End mill
JP5994800B2 (en) Metal saw and processing method using the metal saw
JP3307681B2 (en) End mill
JPH0615512A (en) Drill and formation of cutting blade of drill
JP4752551B2 (en) Total cutter and method for manufacturing the total cutter
JP4346878B2 (en) Double-cutting cutting tool
JP4876539B2 (en) Ball end mill
JP2006015419A (en) Ball end mill
JP3335401B2 (en) End mill
JP6968933B2 (en) Cutter head structure and cutting tools
JP3657546B2 (en) drill
CN217749517U (en) Forming milling cutter suitable for scroll plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4380285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees