JP2005109344A - Charged particle beam projection aligner and method of manufacturing semiconductor device - Google Patents

Charged particle beam projection aligner and method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2005109344A
JP2005109344A JP2003343495A JP2003343495A JP2005109344A JP 2005109344 A JP2005109344 A JP 2005109344A JP 2003343495 A JP2003343495 A JP 2003343495A JP 2003343495 A JP2003343495 A JP 2003343495A JP 2005109344 A JP2005109344 A JP 2005109344A
Authority
JP
Japan
Prior art keywords
charged particle
shielding plate
particle beam
conductive shielding
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003343495A
Other languages
Japanese (ja)
Inventor
Teruo Iwasaki
照雄 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Leading Edge Technologies Inc
Original Assignee
Semiconductor Leading Edge Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Leading Edge Technologies Inc filed Critical Semiconductor Leading Edge Technologies Inc
Priority to JP2003343495A priority Critical patent/JP2005109344A/en
Publication of JP2005109344A publication Critical patent/JP2005109344A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent resist evaporation spattered particles from adhering to the internal wall of a sample chamber. <P>SOLUTION: In an electron beam projection aligner for irradiating a substrate 6 retained on a stage 9 in the sample chamber 10 with electron beams 3 discharged from an electron gun 2 via lenses 4, 5, a conductive shielding film 12, having a through hole through which the electron beams 3 pass, is removably provided on the inner surface of the sample chamber 10 opposite to the substrate 6. A retention mechanism 13 for retaining the conductive shielding film 12 is provided on the inner surface of the sample chamber 10. An arm 14 is provided in the sample chamber 10, where the arm 14 inserts/extracts and conveys the conductive shielding film 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、荷電粒子線露光装置に係り、特に電子線露光装置及びそれを用いた半導体装置の製造方法に関する。   The present invention relates to a charged particle beam exposure apparatus, and more particularly to an electron beam exposure apparatus and a semiconductor device manufacturing method using the same.

図5は、従来の荷電粒子線露光装置としての電子線露光装置を説明するための概略図である。
図5に示すように、真空保持されたカラム31内には、電子ビーム33を放出する電子銃32、放出された電子ビーム33を所定方向に照射する照射レンズ34、照射された電子ビーム33を基板等の試料36表面に収束させる収束レンズ35等が収納されている。カラム31と同様に真空保持された試料室40内には、XY方向に移動自在なステージ39が配置され、このステージ39上に試料36が保持されている。試料36上には、感光材料としてのレジスト37が塗布されている。
試料36上の電子ビーム33の照射領域は、収束レンズ35により細く絞られるため、微小領域となる。
FIG. 5 is a schematic diagram for explaining an electron beam exposure apparatus as a conventional charged particle beam exposure apparatus.
As shown in FIG. 5, an electron gun 32 that emits an electron beam 33, an irradiation lens 34 that irradiates the emitted electron beam 33 in a predetermined direction, and an irradiated electron beam 33 are contained in a column 31 that is held in vacuum. A converging lens 35 that converges on the surface of a sample 36 such as a substrate is accommodated. Similar to the column 31, a stage 39 that is movable in the X and Y directions is disposed in a sample chamber 40 that is held in a vacuum, and a sample 36 is held on the stage 39. On the sample 36, a resist 37 as a photosensitive material is applied.
Since the irradiation region of the electron beam 33 on the sample 36 is narrowed down by the converging lens 35, it becomes a minute region.

しかしながら、レジスト37に電子ビーム33が微小領域で照射されると、電子ビーム33の加熱エネルギーによって照射を受けたレジスト37が瞬時に高温になり、レジスト37の一部が粒子状となって蒸発し周囲に飛散してしまう。周囲に飛散したレジスト37の一部は、その対向面であり、収束レンズ35の下部磁極(図示せず)付近の試料室40内壁面に、飛散粒子41として付着する。
この飛散粒子41の付着量は、基板1枚程度の処理数では微量であるが、例えば、数十枚/時間程度の高スループットで露光装置を連続稼働させると無視できない量になる。付着した飛散粒子41は、電気的に絶縁物であるため、電子ビーム33の位置ドリフトの要因となり、電子ビーム33の位置制御精度が低下してしまうという問題があった。このため、飛散粒子41が多量に付着した状態で露光を続けると、回路パターンの露光精度が著しく低下してしまうという問題があった。
飛散粒子41の一部は、排気動作によって除去されるが、経験的には、電子ビーム33の照射部を中心として半径数十mmの領域に付着する。目視できない量の飛散粒子は、それよりも広い範囲で付着していると予想される。よって、飛散粒子の影響度合は、電子ビームの最大ショットサイズや偏向サイズや電流密度にも依存する。
また、飛散粒子41が付着する試料室40内壁面は、数百kg程度の全体重量を有するカラム31本体の最下部に位置する。よって、付着した飛散粒子41を洗浄除去するには、カラム31内を大気開放し解体しなければならず、露光装置のダウンタイムが長くなってしまうという問題があった。
However, when the resist 37 is irradiated with the electron beam 33 in a minute region, the resist 37 irradiated with the heating energy of the electron beam 33 instantaneously becomes high temperature, and a part of the resist 37 evaporates as particles. It will be scattered around. A part of the resist 37 scattered around is a facing surface and adheres as scattered particles 41 to the inner wall surface of the sample chamber 40 near the lower magnetic pole (not shown) of the converging lens 35.
The amount of scattered particles 41 attached is very small when the number of processing is about one substrate, but becomes an amount that cannot be ignored when the exposure apparatus is continuously operated at a high throughput of about several tens of sheets / hour, for example. Since the adhering scattered particles 41 are electrically insulating, there is a problem that the position control accuracy of the electron beam 33 is lowered due to the position drift of the electron beam 33. For this reason, there has been a problem that if the exposure is continued in a state where a large amount of scattered particles 41 are adhered, the exposure accuracy of the circuit pattern is remarkably lowered.
Part of the scattered particles 41 is removed by the exhaust operation, but empirically, the scattered particles 41 adhere to a region having a radius of several tens of millimeters around the irradiation portion of the electron beam 33. An invisible amount of scattered particles is expected to adhere in a wider range. Therefore, the degree of influence of scattered particles also depends on the maximum shot size, deflection size, and current density of the electron beam.
The inner wall surface of the sample chamber 40 to which the scattered particles 41 adhere is located at the lowermost part of the main body of the column 31 having an overall weight of about several hundred kg. Therefore, in order to clean and remove the adhering scattered particles 41, the inside of the column 31 must be opened to the atmosphere and disassembled, resulting in a problem that the downtime of the exposure apparatus becomes long.

本発明は、上記従来の課題を解決するためになされたもので、レジスト蒸発飛散粒子の試料室内壁面への付着を防止することを目的とする。また、本発明は、高品質な回路パターンを基板上に形成することを目的とする。   The present invention has been made to solve the above-described conventional problems, and an object thereof is to prevent adhesion of resist evaporation scattering particles to the wall surface of a sample chamber. Another object of the present invention is to form a high-quality circuit pattern on a substrate.

本発明に係る荷電粒子線露光装置は、荷電粒子線を試料室内に保持された基板に照射する荷電粒子線露光装置であって、
前記基板と対向する前記試料室の内壁面に、前記荷電粒子線が通過する貫通穴を有する導電性遮蔽板を着脱可能に設けたことを特徴とするものである。
A charged particle beam exposure apparatus according to the present invention is a charged particle beam exposure apparatus that irradiates a substrate held in a sample chamber with a charged particle beam,
A conductive shielding plate having a through hole through which the charged particle beam passes is detachably provided on an inner wall surface of the sample chamber facing the substrate.

本発明に係る荷電粒子線露光装置において、前記導電性遮蔽板の外形寸法は、前記基板の寸法以上であることが好適である。   In the charged particle beam exposure apparatus according to the present invention, it is preferable that an outer dimension of the conductive shielding plate is equal to or larger than a dimension of the substrate.

本発明に係る荷電粒子線露光装置において、前記導電性遮蔽板は、前記基板と対向する表面に導電性薄膜又は導電性フィルムを備えたことが好適である。   In the charged particle beam exposure apparatus according to the present invention, it is preferable that the conductive shielding plate includes a conductive thin film or a conductive film on a surface facing the substrate.

本発明に係る荷電粒子線露光装置において、前記導電性遮蔽板は、前記導電性薄膜又は導電性フィルムの下層に、荷電粒子線の散乱係数が小さい材料からなる薄膜を更に備えたことが好適である。   In the charged particle beam exposure apparatus according to the present invention, it is preferable that the conductive shielding plate further includes a thin film made of a material having a small scattering coefficient of the charged particle beam, below the conductive thin film or the conductive film. is there.

本発明に係る荷電粒子線露光装置において、前記試料室に隣接して設けられ、前記導電性遮蔽板を一時的に収納する予備排気室と、
前記導電性遮蔽板の着脱、及び、前記予備排気室と前記試料室との間の前記導電性遮蔽板の搬送を行うアームと、
を更に備えたことが好適である。
In the charged particle beam exposure apparatus according to the present invention, a preliminary exhaust chamber that is provided adjacent to the sample chamber and temporarily stores the conductive shielding plate;
An arm for attaching and detaching the conductive shielding plate, and transporting the conductive shielding plate between the preliminary exhaust chamber and the sample chamber;
It is preferable to further include

本発明に係る半導体装置の製造方法は、上記荷電粒子線露光装置を用いて、基板上のレジストに荷電粒子線を照射し回路パターンを形成する工程を含むことを特徴とするものである。   A method of manufacturing a semiconductor device according to the present invention includes a step of irradiating a resist on a substrate with a charged particle beam to form a circuit pattern using the charged particle beam exposure apparatus.

本発明によれば、以上説明したように、レジスト蒸発飛散粒子の試料室内壁面への付着を防止することができる。また、本発明によれば、高品質な回路パターンを基板上に形成することができる。   According to the present invention, as described above, it is possible to prevent the resist evaporation scattered particles from adhering to the wall surface of the sample chamber. Further, according to the present invention, a high-quality circuit pattern can be formed on a substrate.

実施の形態1.
図1は、本発明の実施の形態1による荷電粒子線露光装置を説明するための概略図である。詳細には、図1は、電子線露光装置を説明するための概略図である。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram for explaining a charged particle beam exposure apparatus according to Embodiment 1 of the present invention. Specifically, FIG. 1 is a schematic diagram for explaining an electron beam exposure apparatus.

図1に示すように、真空保持されたカラム1内には、電子ビーム3を放出する電子銃2、電子銃2から放出された電子ビーム3を所定方向に照射する照射レンズ4、照射レンズ4により照射された電子ビーム3を試料6表面に偏向し収束させる収束レンズ5等が収納されている。
カラム1と同様に真空保持された試料室10内には、XY方向に移動自在なステージ9が配置され、このステージ9上に試料としての基板6が保持されている。基板6上には、感光材料であるレジスト7が塗布されている。収束レンズ5及びステージ9を駆動制御することにより、基板6の所望の位置に電子ビーム3が照射され、レジスト7に回路パターンが転写される。
As shown in FIG. 1, an electron gun 2 that emits an electron beam 3, an irradiation lens 4 that irradiates the electron beam 3 emitted from the electron gun 2 in a predetermined direction, and an irradiation lens 4 in a column 1 that is held in vacuum. A converging lens 5 for deflecting and converging the electron beam 3 irradiated by the above to the surface of the sample 6 is accommodated.
Similar to the column 1, a stage 9 that is movable in the XY directions is disposed in a sample chamber 10 that is held in vacuum, and a substrate 6 as a sample is held on the stage 9. On the substrate 6, a resist 7 which is a photosensitive material is applied. By driving and controlling the converging lens 5 and the stage 9, the electron beam 3 is irradiated to a desired position on the substrate 6, and the circuit pattern is transferred to the resist 7.

基板6表面と対向する試料室10内壁面に、レジスト7の蒸発飛散粒子を付着させる導電性遮蔽板12が着脱可能に設けられている。導電性遮蔽板12は、付着した飛散粒子のチャージアップを防止するため、導電性を有することが必須である。導電性遮蔽板12の着脱はアーム14(後述)により行われる。収束レンズ5の下部磁極(図示せず)付近の上記内壁面には、ストッパや収納ガイド等からなる保持機構13が設けられ、この保持機構13により導電性遮蔽板12が保持される。
試料室10の側面には、基板6用の予備排気室8と、導電性遮蔽板12用の予備排気室11とが設けられている。各予備排気室8,11には、ベント機構及び排気機構(図示せず)が設けられている。導電性遮蔽板12の交換は予備排気室11を介して行われ、基板6の搬出入は予備排気室8を介して行われる。
また、試料室10内には、導電性遮蔽板12の脱着及び搬送を行うアーム14と、基板6の搬送を行うアーム15が設けられている。これらのアーム14,15は、図中矢印で示すように、上下伸縮自在である。
On the inner wall surface of the sample chamber 10 facing the surface of the substrate 6, a conductive shielding plate 12 for attaching evaporated and scattered particles of the resist 7 is detachably provided. It is essential that the conductive shielding plate 12 has conductivity in order to prevent the adhering scattered particles from being charged up. The conductive shielding plate 12 is attached and detached by an arm 14 (described later). On the inner wall surface in the vicinity of the lower magnetic pole (not shown) of the converging lens 5, a holding mechanism 13 including a stopper and a storage guide is provided, and the conductive shielding plate 12 is held by the holding mechanism 13.
On the side surface of the sample chamber 10, a preliminary exhaust chamber 8 for the substrate 6 and a preliminary exhaust chamber 11 for the conductive shielding plate 12 are provided. Each of the preliminary exhaust chambers 8 and 11 is provided with a vent mechanism and an exhaust mechanism (not shown). The replacement of the conductive shielding plate 12 is performed via the preliminary exhaust chamber 11, and the substrate 6 is carried in and out via the preliminary exhaust chamber 8.
In the sample chamber 10, an arm 14 for removing and transporting the conductive shielding plate 12 and an arm 15 for transporting the substrate 6 are provided. These arms 14 and 15 are vertically extendable as shown by arrows in the figure.

図2は、図1に示した導電性遮蔽板12を説明するための図である。詳細には、図2(a)は導電性遮蔽板を説明するための断面図であり、図2(b)は上面図である。図2(a)は、図2(b)のa−a’断面を示す図である。
図2に示すように、導電性遮蔽板12は、例えば、厚さが数mm、直径が8インチ(200mm)の燐青銅からなる円板であり、その中央には電子ビーム3が通るための貫通穴12aを有する。導電性遮蔽板12の外形寸法は、少なくとも直径が数十mm以上であることが必要であり、基板6の寸法以上であることが好適である。基板6の寸法以上にすることにより、目視できない程度の量の飛散粒子も導電性遮蔽板12に付着させることができる。また、導電性遮蔽板12の外周には、位置決め用溝12bが形成されている。この位置決め用溝12bを、上記保持機構13に設けられた突起部(図示せず)に嵌め込むことにより、導電性遮蔽板12の位置決めが行われる。
FIG. 2 is a view for explaining the conductive shielding plate 12 shown in FIG. Specifically, FIG. 2A is a cross-sectional view for explaining the conductive shielding plate, and FIG. 2B is a top view. FIG. 2A is a diagram showing a cross section taken along the line aa ′ of FIG.
As shown in FIG. 2, the conductive shielding plate 12 is, for example, a disc made of phosphor bronze having a thickness of several millimeters and a diameter of 8 inches (200 mm), and the electron beam 3 passes through the center thereof. It has a through hole 12a. The outer dimension of the conductive shielding plate 12 needs to be at least several tens of millimeters in diameter, and is preferably larger than the dimension of the substrate 6. By making the size of the substrate 6 or larger, scattered particles in an amount that cannot be visually observed can be attached to the conductive shielding plate 12. A positioning groove 12 b is formed on the outer periphery of the conductive shielding plate 12. The conductive shielding plate 12 is positioned by fitting the positioning groove 12b into a protrusion (not shown) provided in the holding mechanism 13.

図3は、導電性遮蔽板の他の例を説明するための上面図である。
図3に示す導電性遮蔽板16は、図1の収束レンズ5の下部磁極付近に反射電子検出器を備える場合に用いられるものである。導電性遮蔽板16は、上記導電性遮蔽板12と同様に、中央に電子ビーム通過用の貫通穴16aを有し、外周に位置決め用溝16bを有する。さらに、導電性遮蔽板16には、XY方向の4分割型検出器に対応した4つの検出穴16cが形成されている。基板6で反射した電子はこの検出穴16cを通って検出器により検出される。
なお、導電性遮蔽板12,16の外形形状は、上述した円形に限られず、矩形であってもよい。また、検出穴16cの数は、検出器に応じて適宜変更可能である。
FIG. 3 is a top view for explaining another example of the conductive shielding plate.
The conductive shielding plate 16 shown in FIG. 3 is used when a backscattered electron detector is provided near the lower magnetic pole of the converging lens 5 shown in FIG. Similar to the conductive shielding plate 12, the conductive shielding plate 16 has a through hole 16 a for passing an electron beam at the center and a positioning groove 16 b on the outer periphery. Furthermore, four detection holes 16c corresponding to the four-divided detectors in the XY directions are formed in the conductive shielding plate 16. The electrons reflected by the substrate 6 are detected by the detector through the detection hole 16c.
Note that the outer shape of the conductive shielding plates 12 and 16 is not limited to the circular shape described above, and may be a rectangular shape. Further, the number of detection holes 16c can be appropriately changed according to the detector.

以下、上記荷電粒子線露光装置の動作について説明する。
先ず、通常行われる基板へのパターン露光動作について説明する。
図示しない搬送機構により予備排気室8に基板6を搬送し、該予備排気室8内を排気する。予備排気室8内が所定の真空度になった後、試料室10側のゲートを開け、アーム15により基板6をステージ9上に搬送する。その後、ゲートを閉じる。
基板6搬送後、カラム1内の電子銃2から電子ビーム3が放出され、この放出された電子ビーム3を照射レンズ4により所定方向に照射した後、更に収束レンズ5により電子ビーム3をレジスト7の所望位置へ照射することにより、パターン露光が行われる。
露光後、ゲートを開け、アーム15により基板6を予備排気室8に搬送する。そして、ゲートを閉じた後、予備排気室8内を大気圧までベントし、基板6を予備排気室8から搬送する。
Hereinafter, the operation of the charged particle beam exposure apparatus will be described.
First, a pattern exposure operation on a substrate that is normally performed will be described.
The substrate 6 is transferred to the preliminary exhaust chamber 8 by a transfer mechanism (not shown), and the inside of the preliminary exhaust chamber 8 is exhausted. After the inside of the preliminary exhaust chamber 8 reaches a predetermined degree of vacuum, the gate on the sample chamber 10 side is opened, and the substrate 6 is transferred onto the stage 9 by the arm 15. Then close the gate.
After transporting the substrate 6, an electron beam 3 is emitted from the electron gun 2 in the column 1, and the emitted electron beam 3 is irradiated in a predetermined direction by the irradiation lens 4, and then the electron beam 3 is further resisted by the converging lens 5. Pattern exposure is performed by irradiating the desired position.
After the exposure, the gate is opened and the substrate 6 is transferred to the preliminary exhaust chamber 8 by the arm 15. Then, after the gate is closed, the inside of the preliminary exhaust chamber 8 is vented to the atmospheric pressure, and the substrate 6 is transferred from the preliminary exhaust chamber 8.

かかるパターン露光動作を続けていくと、導電性遮蔽板12に付着した飛散粒子の量が増加する。そこで、電子ビーム3の位置制御精度が低下する前に、後述する導電性遮蔽板12の交換作業を行う。なお、導電性遮蔽板12の交換は、定期的に行えばよい。また、飛散粒子の付着量をモニタするモニタ装置を試料室10内に設け、そのモニタ装置から得られるモニタ結果に応じて、導電性遮蔽板12を交換してもよい。   As the pattern exposure operation continues, the amount of scattered particles attached to the conductive shielding plate 12 increases. Therefore, before the position control accuracy of the electron beam 3 is lowered, the conductive shielding plate 12 described later is exchanged. The conductive shielding plate 12 may be replaced periodically. Further, a monitor device for monitoring the amount of scattered particles attached may be provided in the sample chamber 10, and the conductive shielding plate 12 may be replaced according to the monitoring result obtained from the monitor device.

次に、導電性遮蔽板12の交換作業について説明する。
上述したように試料室10から基板6を搬出した後、アーム14により保持機構13から導電性遮蔽板12を取り外す。予備排気室11の試料室10側のゲートを開けた後、上記取り外した導電性遮蔽板12をアーム14により予備排気室11に搬送する。そして、ゲートを閉じた後、予備排気室11内を大気圧までベントし、導電性遮蔽板12を予備排気室11から取り出す。飛散粒子が付着した導電性遮蔽板12は、図示しない洗浄装置により洗浄した後、乾燥して再利用することができる。
次に、洗浄後又は新品の導電性遮蔽板12を予備排気室11内に入れ、該予備排気室11内を排気する。予備排気室11内が所定の真空度になった後、試料室10側のゲートを開け、アーム14により導電性遮蔽板12を試料室10内に搬入し、さらに該アーム14により導電性遮蔽板12を保持機構13に取り付ける。このとき、導電性遮蔽板12の位置決め用溝12b(図2参照)を、保持機構13の突起部に嵌め込むことにより、導電性遮蔽板12の位置決めが正確に行われる。なお、露光前に導電性遮蔽板12を最初に取り付ける作業も、上述した取り付け作業と同様である。
このように導電性遮蔽板12を交換した後、上述した通常のパターン露光動作を行う。
Next, replacement work of the conductive shielding plate 12 will be described.
As described above, after the substrate 6 is unloaded from the sample chamber 10, the conductive shielding plate 12 is removed from the holding mechanism 13 by the arm 14. After the gate on the sample chamber 10 side of the preliminary exhaust chamber 11 is opened, the removed conductive shielding plate 12 is transferred to the preliminary exhaust chamber 11 by the arm 14. Then, after closing the gate, the inside of the preliminary exhaust chamber 11 is vented to atmospheric pressure, and the conductive shielding plate 12 is taken out from the preliminary exhaust chamber 11. The conductive shielding plate 12 to which the scattered particles adhere can be dried and reused after being cleaned by a cleaning device (not shown).
Next, after cleaning or a new conductive shielding plate 12 is placed in the preliminary exhaust chamber 11, and the preliminary exhaust chamber 11 is exhausted. After the inside of the preliminary exhaust chamber 11 reaches a predetermined degree of vacuum, the gate on the sample chamber 10 side is opened, and the conductive shielding plate 12 is carried into the sample chamber 10 by the arm 14, and the conductive shielding plate is further moved by the arm 14. 12 is attached to the holding mechanism 13. At this time, the conductive shielding plate 12 is accurately positioned by fitting the positioning groove 12b (see FIG. 2) of the conductive shielding plate 12 into the protrusion of the holding mechanism 13. In addition, the operation | work which attaches the electroconductive shielding board 12 first before exposure is the same as the attachment operation | work mentioned above.
After replacing the conductive shielding plate 12 in this way, the normal pattern exposure operation described above is performed.

以上説明したように、本実施の形態1では、基板6と対向する試料室10内壁に導電性遮蔽板12を脱着可能に配置し、この導電性遮蔽板12に飛散粒子を付着させることとした。そして、飛散粒子が付着した導電性遮蔽板12を新品又は洗浄後の導電性遮蔽板12と交換することとした。
よって、基板6と対向する試料室10内壁へのレジスト飛散粒子の付着を防止することができる。このため、試料室10内壁の洗浄を行う必要がないため、カラム1内を大気開放して解体する必要がなくなり、露光装置のダウンタイムを大幅に低減することができる。
また、導電性遮蔽板12を定期的に交換することにより、電子ビーム3の位置制御を高精度に行うことができるため、高品質な回路パターンを基板上に形成することができる。
As described above, in the first embodiment, the conductive shielding plate 12 is detachably disposed on the inner wall of the sample chamber 10 facing the substrate 6, and scattered particles are attached to the conductive shielding plate 12. . Then, the conductive shielding plate 12 with the scattered particles attached was replaced with a new or washed conductive shielding plate 12.
Therefore, adhesion of resist scattering particles to the inner wall of the sample chamber 10 facing the substrate 6 can be prevented. For this reason, since it is not necessary to clean the inner wall of the sample chamber 10, it is not necessary to disassemble the column 1 by opening it to the atmosphere, and the downtime of the exposure apparatus can be greatly reduced.
Moreover, since the position control of the electron beam 3 can be performed with high accuracy by periodically exchanging the conductive shielding plate 12, a high-quality circuit pattern can be formed on the substrate.

なお、本実施の形態1では、電子線露光装置について説明したが、イオンビームのような他の荷電粒子線を用いた露光装置にも適用することができる(後述する実施の形態2についても同様)。   Although the electron beam exposure apparatus has been described in the first embodiment, the present invention can also be applied to an exposure apparatus using other charged particle beams such as an ion beam (the same applies to the second embodiment described later). ).

実施の形態2.
本実施の形態2と前述した実施の形態1との相違点は、異なる導電性遮蔽板を用いる点である。この相違点以外は、実施の形態1と同様であるので、説明を省略する。
Embodiment 2. FIG.
The difference between the second embodiment and the first embodiment described above is that a different conductive shielding plate is used. Except for this difference, the second embodiment is the same as the first embodiment, and a description thereof will be omitted.

図4は、本発明の実施の形態2において、導電性遮蔽板を説明するための図である。詳細には、図4(a)は導電性遮蔽板を説明するための断面図であり、図4(b)は上面図である。図4(a)は、図4(b)のb−b’断面を示す図である。
図4に示すように、本実施の形態2で用いられる導電性遮蔽板17は、導電性基材18の表面、すなわち飛散粒子付着面に、導電性フィルム19を形成してなるものである。詳細には、導電性フィルム19は、導電性基材18の表面に、導電性テープやねじ等により固定されている。これにより、レジストの蒸発飛散粒子が、導電性フィルム19に付着する。なお、導電性フィルム19に代えて、導電性薄膜を用いることができる。また、導電性基材18は用いず、導電性フィルム19だけで構成されていてもよい。
導電性遮蔽板17は、実施の形態1の導電性遮蔽板12,16と同様に、中央に電子ビーム通過用の貫通穴17aを有し、外周に位置決め用溝17bを有する。なお、導電性遮蔽板16と同様に、導電性遮蔽板17に複数の検出穴を設けてもよい。
FIG. 4 is a diagram for explaining the conductive shielding plate in the second embodiment of the present invention. Specifically, FIG. 4A is a cross-sectional view for explaining the conductive shielding plate, and FIG. 4B is a top view. FIG. 4A is a view showing a bb ′ cross section of FIG.
As shown in FIG. 4, the conductive shielding plate 17 used in Embodiment 2 is formed by forming a conductive film 19 on the surface of the conductive substrate 18, that is, the scattered particle adhesion surface. Specifically, the conductive film 19 is fixed to the surface of the conductive substrate 18 with a conductive tape, a screw, or the like. Thereby, the evaporated particles of the resist adhere to the conductive film 19. In place of the conductive film 19, a conductive thin film can be used. Moreover, the electroconductive base material 18 is not used, but you may be comprised only with the electroconductive film 19. FIG.
As with the conductive shielding plates 12 and 16 of the first embodiment, the conductive shielding plate 17 has a through hole 17a for passing an electron beam at the center and a positioning groove 17b on the outer periphery. Similar to the conductive shielding plate 16, a plurality of detection holes may be provided in the conductive shielding plate 17.

なお、導電性基材18と導電性フィルム19の間に、例えば、カーボン膜のような電子ビームの散乱係数が小さい材料からなる薄膜を介在させてもよい。これにより、電子の散乱を防ぐことができ、いわゆる広範な領域への「かぶり」現象を防ぐことができる。   In addition, you may interpose the thin film which consists of material with a small scattering coefficient of an electron beam like a carbon film between the electroconductive base material 18 and the electroconductive film 19, for example. Thereby, scattering of electrons can be prevented, and so-called “fogging” phenomenon to a wide area can be prevented.

実施の形態1では、飛散粒子が付着した導電性遮蔽板12を洗浄及び乾燥して再利用することとした。これに対して、本実施の形態2では、実施の形態1と同様の方法で導電性遮蔽板17を保持機構13から取り外し、該導電性遮蔽板17を構成する飛散粒子が付着した導電性フィルム19を、新しい導電性フィルム19と交換すればよい。   In the first embodiment, the conductive shielding plate 12 to which the scattered particles adhere is washed and dried for reuse. On the other hand, in the second embodiment, the conductive shielding plate 17 is detached from the holding mechanism 13 by the same method as in the first embodiment, and the conductive film to which the scattered particles constituting the conductive shielding plate 17 are attached. 19 may be replaced with a new conductive film 19.

以上説明したように、本実施の形態2では、基板6と対向する試料室10内壁に導電性遮蔽板17を脱着可能に配置し、この導電性遮蔽板17に飛散粒子を付着させることとした。よって、実施の形態1と同様の効果が得られる。
また、本実施の形態2では、導電性遮蔽板17を導電性基材18と導電性フィルム19との積層構造とし、飛散粒子が付着した導電性フィルム19を新しい導電性フィルム19と交換するようにした。導電性フィルム19は、安価であり、取り扱いが容易である。よって、実施の形態1のように導電性遮蔽板12を洗浄する場合に比べて、運用コストを低減することができ、作業時間(フィルム交換時間)を大幅に短縮することができる。
As described above, in the second embodiment, the conductive shielding plate 17 is detachably disposed on the inner wall of the sample chamber 10 facing the substrate 6, and scattered particles are attached to the conductive shielding plate 17. . Therefore, the same effect as in the first embodiment can be obtained.
In the second embodiment, the conductive shielding plate 17 has a laminated structure of the conductive base material 18 and the conductive film 19, and the conductive film 19 with scattered particles attached is replaced with a new conductive film 19. I made it. The conductive film 19 is inexpensive and easy to handle. Therefore, compared with the case where the conductive shielding plate 12 is washed as in the first embodiment, the operation cost can be reduced and the working time (film exchange time) can be greatly shortened.

本発明の実施の形態1による荷電粒子線露光装置を説明するための概略図である。It is the schematic for demonstrating the charged particle beam exposure apparatus by Embodiment 1 of this invention. 図1に示す導電性遮蔽板を説明するための図である。It is a figure for demonstrating the electroconductive shielding board shown in FIG. 本発明の実施の形態1において、導電性遮蔽板の他の例を説明するための上面図である。In Embodiment 1 of this invention, it is a top view for demonstrating the other example of an electroconductive shielding board. 本発明の実施の形態2において、導電性遮蔽板を説明するための図である。In Embodiment 2 of this invention, it is a figure for demonstrating a conductive shielding board. 従来の荷電粒子線露光装置を説明するための概略図である。It is the schematic for demonstrating the conventional charged particle beam exposure apparatus.

符号の説明Explanation of symbols

1 カラム
2 電子銃
3 電子ビーム
4 照射レンズ
5 収束レンズ
6 試料(基板)
7 レジスト
8 予備排気室(試料用)
9 ステージ
10 試料室
11 予備排気室(導電性遮蔽板用)
12 導電性遮蔽板
12a 貫通穴
12b 位置決め用溝
13 保持機構
14,15 アーム
16 導電性遮蔽板
16a 貫通穴
16b 位置決め用溝
16c 検出穴
17 導電性遮蔽板
17a 貫通穴
17b 位置決め用溝
18 導電性基材
19 導電性フィルム、導電性薄膜
1 Column 2 Electron Gun 3 Electron Beam 4 Irradiation Lens 5 Converging Lens 6 Sample (Substrate)
7 Resist 8 Pre-exhaust chamber (for sample)
9 Stage 10 Sample chamber 11 Pre-exhaust chamber (for conductive shield)
12 Conductive shielding plate 12a Through hole 12b Positioning groove 13 Holding mechanism 14, 15 Arm 16 Conductive shielding plate 16a Through hole 16b Positioning groove 16c Detection hole 17 Conductive shielding plate 17a Through hole 17b Positioning groove 18 Conductive base Material 19 Conductive Film, Conductive Thin Film

Claims (6)

荷電粒子線を試料室内に保持された基板に照射する荷電粒子線露光装置であって、
前記基板と対向する前記試料室の内壁面に、前記荷電粒子線が通過する貫通穴を有する導電性遮蔽板を着脱可能に設けたことを特徴とする荷電粒子線露光装置。
A charged particle beam exposure apparatus for irradiating a charged particle beam onto a substrate held in a sample chamber,
A charged particle beam exposure apparatus, wherein a conductive shielding plate having a through hole through which the charged particle beam passes is detachably provided on an inner wall surface of the sample chamber facing the substrate.
請求項1に記載の荷電粒子線露光装置において、
前記導電性遮蔽板の外形寸法は、前記基板の寸法以上であることを特徴とする荷電粒子線露光装置。
The charged particle beam exposure apparatus according to claim 1,
The charged particle beam exposure apparatus, wherein an outer dimension of the conductive shielding plate is equal to or larger than a dimension of the substrate.
請求項1又は2に記載の荷電粒子線露光装置において、
前記導電性遮蔽板は、前記基板と対向する表面に導電性薄膜又は導電性フィルムを備えたことを特徴とする荷電粒子線露光装置。
In the charged particle beam exposure apparatus according to claim 1 or 2,
The charged particle beam exposure apparatus, wherein the conductive shielding plate includes a conductive thin film or a conductive film on a surface facing the substrate.
請求項3に記載の荷電粒子線露光装置において、
前記導電性遮蔽板は、前記導電性薄膜又は導電性フィルムの下層に、荷電粒子線の散乱係数が小さい材料からなる薄膜を更に備えたことを特徴とする荷電粒子線露光装置。
In the charged particle beam exposure apparatus according to claim 3,
The charged particle beam exposure apparatus, wherein the conductive shielding plate further includes a thin film made of a material having a small scattering coefficient of a charged particle beam, below the conductive thin film or the conductive film.
請求項1から4の何れかに記載の荷電粒子線露光装置において、
前記試料室に隣接して設けられ、前記導電性遮蔽板を一時的に収納する予備排気室と、
前記導電性遮蔽板の着脱、及び、前記予備排気室と前記試料室との間の前記導電性遮蔽板の搬送を行うアームと、
を更に備えたことを特徴とする荷電粒子露光装置。
In the charged particle beam exposure apparatus according to any one of claims 1 to 4,
A preliminary exhaust chamber provided adjacent to the sample chamber and temporarily storing the conductive shielding plate;
An arm for attaching and detaching the conductive shielding plate, and transporting the conductive shielding plate between the preliminary exhaust chamber and the sample chamber;
A charged particle exposure apparatus, further comprising:
請求項1から5の何れかに記載の荷電粒子線露光装置を用いて、基板上のレジストに荷電粒子線を照射し回路パターンを形成する工程を含むことを特徴とする半導体装置の製造方法。   6. A method for manufacturing a semiconductor device, comprising: using the charged particle beam exposure apparatus according to claim 1 to form a circuit pattern by irradiating a resist on a substrate with a charged particle beam.
JP2003343495A 2003-10-01 2003-10-01 Charged particle beam projection aligner and method of manufacturing semiconductor device Pending JP2005109344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003343495A JP2005109344A (en) 2003-10-01 2003-10-01 Charged particle beam projection aligner and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003343495A JP2005109344A (en) 2003-10-01 2003-10-01 Charged particle beam projection aligner and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2005109344A true JP2005109344A (en) 2005-04-21

Family

ID=34537443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343495A Pending JP2005109344A (en) 2003-10-01 2003-10-01 Charged particle beam projection aligner and method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2005109344A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027604A (en) * 2014-06-24 2016-02-18 株式会社荏原製作所 Surface processing apparatus
JP7546153B2 (en) 2020-09-17 2024-09-05 カール・ツァイス・エスエムティー・ゲーエムベーハー Apparatus and method for analyzing and/or processing a sample with a particle beam - Patents.com

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027604A (en) * 2014-06-24 2016-02-18 株式会社荏原製作所 Surface processing apparatus
JP7546153B2 (en) 2020-09-17 2024-09-05 カール・ツァイス・エスエムティー・ゲーエムベーハー Apparatus and method for analyzing and/or processing a sample with a particle beam - Patents.com

Similar Documents

Publication Publication Date Title
US7598499B2 (en) Charged-particle exposure apparatus
JP5185506B2 (en) Charged particle beam pattern measurement system
JP2009014709A (en) In-situ stem sample preparation method
US20020053353A1 (en) Methods and apparatus for cleaning an object using an electron beam, and device-fabrication apparatus comprising same
TWI484522B (en) Charged particle - ray device
TWI684202B (en) Surface treatment apparatus
US20160263625A1 (en) Method of cleaning mask cover and cleaning board
US20020145714A1 (en) Reticle chucks and methods for holding a lithographic reticle utilizing same
JP4943629B2 (en) Ion beam for target repair
JP5465674B2 (en) Ion implanter
JP2005109344A (en) Charged particle beam projection aligner and method of manufacturing semiconductor device
JP2008041464A (en) Charged particle beam device
JPH0557020B2 (en)
JPH0687170B2 (en) How to fix pattern defects
EP2758981B1 (en) Method and apparatus for predicting a growth rate of deposited contaminants
JP2009038170A (en) Optical lens barrel, electron irradiation method, and manufacturing method of mask drawing pattern
JP2009128007A (en) Inspection device, inspection method and memory medium
JP2010003596A (en) Charged particle beam machining apparatus
JP2004095981A (en) Method and device for charged particle beam exposure
TW202323974A (en) Method and apparatus for calibrating an operation on a photomask
JP2001257150A (en) Method for cleaning mask and method of manufacturing device using it, and electron beam exposure system
JP2009146884A (en) Electron gun, and electron beam device
JP2002184689A (en) Electron beam proximity exposure system
JPS61292322A (en) Electron beam transfer equipment
JP2001242106A (en) Auger electron spectroscope and auger electron spectroscopy

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050331