JP2005108497A - Heating element - Google Patents

Heating element Download PDF

Info

Publication number
JP2005108497A
JP2005108497A JP2003337190A JP2003337190A JP2005108497A JP 2005108497 A JP2005108497 A JP 2005108497A JP 2003337190 A JP2003337190 A JP 2003337190A JP 2003337190 A JP2003337190 A JP 2003337190A JP 2005108497 A JP2005108497 A JP 2005108497A
Authority
JP
Japan
Prior art keywords
heating element
heat generating
heat generation
heating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003337190A
Other languages
Japanese (ja)
Inventor
Masayuki Terakado
誠之 寺門
Kazuyuki Obara
和幸 小原
Takahito Ishii
隆仁 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003337190A priority Critical patent/JP2005108497A/en
Publication of JP2005108497A publication Critical patent/JP2005108497A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating element having a self-security function incorporated in the heating element itself, and equipped with a safety mechanism relatively moderately operated when exceeding a predetermined temperature. <P>SOLUTION: By composing this heating element which is formed of an assembly of a positive resistance temperature characteristic heat generation element composed by electrically serially connecting two or more heating parts each having a heat generation part 6 normally mainly generating heat and having small heat generation width and a heat generation part 5 used as a backup heat generation part and having large heat generation width, the heating element capable of always accurately monitoring presence of abnormality in the whole surface of the heating element itself, internally provided with the security function moderately operated in exceeding a predetermined temperature rather than being operated at the last minute, capable of further improving reliability of the heating element, and safely usable for relatively various applications can be provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、暖房、加熱、乾燥などの熱源として用いることのできる発熱体に関するものである。   The present invention relates to a heating element that can be used as a heat source for heating, heating, drying, and the like.

従来、この種の発熱体としては、常用発熱温度よりも高温の所定温度において、熱分解反応によりガスを生成する常時固体の化合物を、抵抗体の内部に混入するものがある(例えば、特許文献1参照)。   Conventionally, as this type of heating element, there is one in which a solid compound that generates a gas by a pyrolysis reaction is mixed in a resistor at a predetermined temperature higher than a normal heating temperature (for example, Patent Documents). 1).

この発熱体において、抵抗体が何らかの異常によって燃焼したり、電極間のスパークによって燃焼したりすることを想定すると、そのような状態に至る過程で、常用発熱温度を越える高温状態が必ず発生する。この状態では、抵抗体の内部に混入された化合物は熱分解反応を生じ、ガスによる空間を生成し、抵抗体を膨張させるとともに抵抗体に含まれるカーボンブラックの導電経路を遮断する。この作用によって、抵抗体が異常加熱や燃焼などを未然に防止するものであった。
特開昭60−180084号公報
In this heating element, assuming that the resistor burns due to some abnormality or burns due to sparks between the electrodes, a high-temperature state exceeding the normal heating temperature always occurs in the process of reaching such a state. In this state, the compound mixed in the resistor generates a thermal decomposition reaction, generates a space by gas, expands the resistor, and interrupts the conductive path of carbon black contained in the resistor. Due to this action, the resistor prevents abnormal heating and combustion.
Japanese Patent Laid-Open No. 60-180084

しかしながら、前記従来の発熱体の安全機能は、非常に高温の状態が発生したときに初めて作動する瀬戸際的なものであって、本来は、このような状態に至るのを未然に防止するような機構が望まれる。また、正しく設計された面状発熱体の信頼性は優れており、特に、正抵抗温度特性を有する面状発熱体が異常加熱するメカニズムを想定することは難しい。このような観点から、従来の発熱体は、最終安全機構としての一手段ではあるが、機能する場面がほとんど想定されることがないため、安全機構として採用されることはなかった。そのために、従来のこの種の発熱体では、温度制御装置や自己温度制御機能などによって所定の温度域を保持できるように構成されていて、万一、このような温度制御機能が失われたときには温度ヒューズなどの温度過昇防止装置が機能して、所定の温度以上に至らないようする方式が採用されている。しかし、このような保安装置の温度監視範囲には限界があり、発熱面が大面積の場合などは保安装置を数多く設ける必要があった。また、広域を監視できる過熱検知センサー線を張り巡らせたり、面状温度センサーなどを組込む方法があるが、製品構成上の制約があったり、別途、制御回路が必要になるなど、実用面での障害が少なくなかった。   However, the safety function of the conventional heating element is a brilliant function that operates for the first time when a very high temperature condition occurs, and originally prevents such a condition from occurring. A mechanism is desired. Moreover, the reliability of the correctly designed planar heating element is excellent, and it is particularly difficult to assume a mechanism in which the planar heating element having a positive resistance temperature characteristic is abnormally heated. From such a point of view, the conventional heating element is one means as the final safety mechanism, but it has not been adopted as a safety mechanism because almost no functioning scene is assumed. For this reason, the conventional heating element of this type is configured to be able to maintain a predetermined temperature range by a temperature control device, a self-temperature control function, etc., and if such a temperature control function is lost, A system is employed in which an overheat prevention device such as a thermal fuse functions so as not to reach a predetermined temperature. However, there is a limit to the temperature monitoring range of such a safety device, and it is necessary to provide a large number of safety devices when the heat generating surface has a large area. In addition, there are methods to stretch the overheat detection sensor line that can monitor a wide area, or to incorporate a surface temperature sensor, etc., but there are restrictions on the product configuration, a separate control circuit is required, etc. There were many obstacles.

このように、従来の発熱体は、保安機能の作動限界を認識し、構成面の工夫など、総合的な対策を講じて安全性を確保していた。また、従来の発熱体の中で、正抵抗温度特性発熱体は自己保安機能内蔵型という区分で見られがちであるが、このような発熱体であっても、1部品故障時の安全対策として、温度ヒューズなどの保安装置が組込まれることが多かった。現状はこのような状況にあるが、本来は、発熱体と別の離れた位置に保安機構を設けるのではなく、発熱体自身に自己保安機能を内蔵させる方式が望ましい。また、有効に作動する機会が少なく、瀬戸際でしか作動しないような安全機構ではなく、所定の温度を越えたときに、より穏やかに作動する安全機構が望まれる。このような安全機構が実現できれば従来の課題は解消し、これまで使用できなかった環境条件下で発熱体が使用できるようになり、安全性を保障するための構成部材が不要になる一方、品質の向上が図れるなど、非常に大きな価値が見出されるものと考えられる。   As described above, the conventional heating element recognizes the operating limit of the safety function, and secures the safety by taking comprehensive measures such as devising the configuration. In addition, among the conventional heating elements, the positive resistance temperature characteristic heating element is apt to be seen in the category of the self-protection function built-in type, but even with such a heating element, as a safety measure in case of failure of one component Security devices such as thermal fuses were often incorporated. Although the present situation is such a situation, originally, it is desirable not to provide a security mechanism at a position apart from the heating element, but to incorporate a self-security function in the heating element itself. In addition, there is a need for a safety mechanism that operates more gently when the temperature exceeds a predetermined temperature, rather than a safety mechanism that has few opportunities to operate effectively and that operates only on the brink. If such a safety mechanism can be realized, the conventional problems will be solved, and the heating element can be used under environmental conditions that could not be used so far, and no components are required to ensure safety. It is thought that very great value will be found, such as improvement of.

本発明は、前記従来の課題を解決するものであり、発熱体の全面での異常の有無を、発熱体自身が精度良く常時監視するものであり、瀬戸際で作動するのではなく、所定の温度を越えたときに穏やかに作動する保安機能を内蔵する発熱体を提供するもので、発熱体の信頼性をなお一層向上させ、より多様な用途で安心して使用できるようにすることを目的とする。   The present invention solves the above-described conventional problems, and the heating element itself constantly monitors the presence or absence of an abnormality on the entire surface of the heating element with high accuracy and does not operate on the brink, but at a predetermined temperature. The purpose is to provide a heating element with a built-in safety function that operates gently when the temperature exceeds the limit, and to further improve the reliability of the heating element so that it can be used with peace of mind in more diverse applications. .

前記従来の課題を解決するために、本発明の発熱体は、通常時に主体的に発熱する発熱幅の狭い発熱部分と、バックアップ発熱部分となる発熱幅の広い発熱部分とを有する2以上の発熱部分を電気的に直列に接続してなる正抵抗温度特性発熱要素の集合体からなるものである。   In order to solve the above-described conventional problems, the heating element according to the present invention has two or more heat generation elements, each having a heat generation part with a narrow heat generation width that generates heat mainly during normal time and a heat generation part with a large heat generation width that becomes a backup heat generation part. It consists of an assembly of positive resistance temperature characteristic heating elements formed by electrically connecting parts in series.

これにより、発熱体の全面での異常の有無を、発熱体自身が精度良く常時監視するものであり、瀬戸際で作動するのではなく、所定の温度を越えたときに穏やかに作動する保安機能を内蔵する発熱体であり、発熱体の信頼性をなお一層向上させ、より多様な用途で安心して使用できる。   As a result, the heating element itself constantly monitors the presence or absence of an abnormality on the entire surface of the heating element with high accuracy, and does not operate on the brink, but has a security function that operates gently when a predetermined temperature is exceeded. It is a built-in heating element, further improving the reliability of the heating element, and can be used safely in more diverse applications.

本発明の発熱体は、所定の温度を越えたときに穏やかに作動する保安機能を内蔵するものであり、発熱体の信頼性をなお一層向上させ、より多様な用途で安心して使用できる。   The heating element of the present invention has a built-in safety function that operates gently when a predetermined temperature is exceeded, further improving the reliability of the heating element, and can be used safely in more diverse applications.

第1の発明は、通常時に主体的に発熱する発熱幅の狭い発熱部分と、バックアップ発熱部分となる発熱幅の広い発熱部分とを有する2以上の発熱部分を電気的に直列に接続してなる正抵抗温度特性発熱要素の集合体からなる発熱体とすることにより、発熱体の全面での異常の有無を、発熱体自身が精度良く常時監視するものであり、瀬戸際で作動するのではなく、所定の温度を越えたときに穏やかに作動する保安機能を内蔵する発熱体であり、発熱体の信頼性をなお一層向上させ、より多様な用途で安心して使用できる。   The first invention is formed by electrically connecting two or more heat generating portions having a heat generating portion having a narrow heat generating width which generates heat mainly during normal time and a heat generating portion having a large heat generating width serving as a backup heat generating portion in series. By using a heating element composed of an assembly of positive resistance temperature characteristics heating elements, the heating element itself constantly monitors the presence or absence of abnormality on the entire surface of the heating element with high accuracy, and does not operate on the brink. It is a heating element with a built-in safety function that operates gently when the temperature exceeds a predetermined temperature, further improving the reliability of the heating element, and can be used with peace of mind in more diverse applications.

第2の発明は、特に、第1の発明における発熱幅の異なる2以上の発熱部分が前記発熱幅の勾配部分を経て形成されてなることにより、発熱幅の広い発熱部分から発熱幅の狭い発熱部分へ至る部分での電圧勾配、電力密度、温度の急激な変化を抑制し、局所的に高温かつ高抵抗の線状発熱現象が生じる原因を取り除くことができる。   In the second invention, in particular, two or more heat generating portions having different heat generation widths in the first invention are formed through the gradient portion of the heat generation width, so that heat generation having a narrow heat generation width is generated from a heat generation portion having a wide heat generation width. It is possible to suppress a rapid change in voltage gradient, power density, and temperature in the portion leading to the portion, and to eliminate the cause of the occurrence of a locally high temperature and high resistance linear heat generation phenomenon.

第3の発明は、特に、第1の発明における発熱幅の異なる2以上の発熱部分の少なくとも1部分が前記発熱幅の勾配部分で形成されてなることにより、発熱幅の変化量を確保するとともに発熱幅の変化率を緩やかにすることができる。その結果、発熱幅の狭い発熱部分に必要な電圧を印加させることを可能とする一方、電圧勾配、電力密度、温度の急激な変化を抑制し、局所的に高温かつ高抵抗の線状発熱現象の発生を防止できる。   In the third invention, in particular, at least one of the two or more heat generation portions having different heat generation widths in the first invention is formed by the gradient portion of the heat generation width, thereby ensuring a change in the heat generation width. The rate of change of the heat generation width can be made moderate. As a result, it is possible to apply the necessary voltage to the heat generation part with a narrow heat generation width, while suppressing rapid changes in voltage gradient, power density, and temperature, and locally high temperature and high resistance linear heat generation phenomenon Can be prevented.

第4の発明は、特に、第1〜第3のいずれか1つの発明における電極が極性の異なる一対以上の主電極と前記主電極から分岐された複数の枝電極から構成され、極性の異なる前記枝電極を交互に対向させて配置するとともに、前記枝電極の間に発熱要素を形成してなることにより、多くの発熱要素を数多く集合させた面状熱源を形成することができる。すなわち、発熱幅の異なる2以上の発熱部分を直列に接続した発熱要素は、一様な発熱及び熱的結合のために小さな構成寸法であり、このような発熱要素を数多く集合させるためには、電極を狭い間隔で数多く形成する必要がある。数多く配置するためには細い電極が望ましいが、一方では、主電流を流すための太い電極が必要である。一対の主電極と一対の主電極から分岐された枝電極を交互に配置した、いわゆる櫛型電極は、狭い電極間隔で多数の電極を配置するための極めて合理的な形態であり、多くの発熱要素を数多く集合させた面状熱源を形成することができる。   According to a fourth invention, in particular, the electrode according to any one of the first to third inventions is composed of a pair of main electrodes having different polarities and a plurality of branch electrodes branched from the main electrodes, and the polarities differing from each other. By arranging the branch electrodes so as to alternately face each other and forming the heat generating elements between the branch electrodes, a planar heat source in which many heat generating elements are assembled can be formed. That is, the heat generating element in which two or more heat generating parts having different heat generation widths are connected in series has a small configuration size for uniform heat generation and thermal coupling, and in order to collect a large number of such heat generating elements, It is necessary to form a large number of electrodes at a narrow interval. A thin electrode is desirable for many arrangements, but on the other hand, a thick electrode is required for the main current to flow. A so-called comb electrode, in which a pair of main electrodes and branch electrodes branched from a pair of main electrodes are alternately arranged, is a very rational form for arranging a large number of electrodes with a narrow electrode interval, and generates a lot of heat. A planar heat source in which many elements are assembled can be formed.

第5の発明は、特に、第4の発明における発熱幅の異なる2以上の発熱部分が電圧印加方向に向かって交互に形成されてなり、極性の異なる枝電極が前記発熱部分の幅の広い発熱部分及び幅の狭い発熱部分の中央部に交互に形成されてなることにより、飽和時にはほとんど発熱しない幅の広い発熱部分が一つの枝電極を挟んで形成され、隣接する枝電極には飽和時に主体的に発熱する幅の狭い発熱部分が一つの枝電極を挟んで形成される。この幅の広い部分と幅の狭い部分を枝電極を挟んで2個づつ集結させることによって、幅の広い発熱部分と幅の狭い発熱部分を大きなブロックとして形成することができる。抵抗体の面積抵抗値が高い場合に、十分な発熱を得るためには電極間隔を狭く設定するが、電極の間隔が近接すると、幅の広い部分と幅の狭い部分が熱的に一体になってしまい、幅の狭い部分に十分な電圧が配分されない傾向がある。このような場合に、幅の広い発熱部分と幅の狭い発熱部分を大きなブロックとして形成することによって、熱的結合を調整することが可能であり、適切な電圧配分をもたらすことができる。   In the fifth invention, in particular, two or more heat generating portions having different heat generation widths in the fourth invention are alternately formed in the voltage application direction, and branch electrodes having different polarities generate heat having a wide width in the heat generating portions. By alternately forming the central portion of the portion and the narrow heat generating portion, a wide heat generating portion that hardly generates heat at the time of saturation is formed across one branch electrode, and the adjacent branch electrodes are mainly used at the time of saturation. A narrow heat generating portion that generates heat is formed with one branch electrode interposed therebetween. By gathering the wide portion and the narrow portion two by two with the branch electrode in between, a wide heat generating portion and a narrow heat generating portion can be formed as a large block. In order to obtain sufficient heat generation when the area resistance value of the resistor is high, the electrode interval is set narrow, but when the electrode interval is close, the wide portion and the narrow portion are thermally integrated. Therefore, there is a tendency that a sufficient voltage is not distributed to a narrow portion. In such a case, by forming the wide heat generating portion and the narrow heat generating portion as a large block, it is possible to adjust the thermal coupling and to provide an appropriate voltage distribution.

第6の発明は、特に、第4の発明における規則的な欠損部を有する正抵抗温度特性抵抗体を発熱面に形成し、前記欠損部に対応して枝電極を形成されてなることにより、発熱要素は幅の広い発熱部分と幅の狭い発熱部分を直列に接続したものであるが、規則的な欠損部を有する発熱材料を発熱面に形成することによって、欠損部が幅の狭い発熱部分を形成し、欠損部が無い部分が幅の広い発熱部分を形成する。欠損部が無い部分は幅方向に連続であるために、幅の広い発熱部分が形成されないように見えるが、直列に形成される幅の狭い発熱部分からの電位分布を考慮すると、実質的に電気的に独立な幅の広い発熱部分となる。このような幅の広い発熱部分と幅の狭い発熱部分からなる発熱要素の対応する位置に極性の異なる枝電極を形成することによって、多くの発熱要素が集合した発熱面を合理的に形成することができる。   In the sixth invention, in particular, the positive resistance temperature characteristic resistor having regular defects in the fourth invention is formed on the heat generation surface, and branch electrodes are formed corresponding to the defects, The heat generating element is composed of a wide heat generating portion and a narrow heat generating portion connected in series. By forming a heat generating material having a regular defective portion on the heat generating surface, a heat generating portion having a narrow defective portion. And a portion having no defective portion forms a wide heat generating portion. Since the portion without the defect portion is continuous in the width direction, it seems that the wide heat generation portion is not formed, but considering the potential distribution from the narrow heat generation portion formed in series, it is substantially electric It becomes an independent wide heat generating part. By forming branch electrodes with different polarities at the corresponding positions of the heat generating element consisting of such a wide heat generating part and a narrow heat generating part, a heat generating surface in which many heat generating elements are gathered can be rationally formed. Can do.

第7の発明は、特に、第4の発明における欠損部の電圧印加方向寸法は極性が同一の隣接する枝電極の間隔よりも小さく形成され、極性の異なる枝電極が前記欠損部の中央部と前記欠損部間の中央部に交互に形成されてなることにより、一対の枝電極間に欠損部が無い部分が形成され、この部分が実質的に電気的に独立な幅の広い発熱部分となる。欠損部が有る部分は幅の狭い発熱部分となる。欠損部の中央部を通る枝電極は、この枝電極を挟んで2つの幅の狭い発熱部分を形成し、欠損部間の中央部を通る枝電極は、この枝電極を挟んで2つの幅の広い発熱部分を形成する。この幅の広い発熱部分と幅の狭い発熱部分を、枝電極を挟んで2個づつ集結させることによって、それぞれの発熱部分を大きなブロックとして形成することができるため、それぞれの発熱部分の熱的結合を調整することが可能であり、適切な電圧配分をもたらすことができる。また、この構成であれば電極と発熱要素のパターン設定が極めて容易であり、合理的に加工できるようになる。   In the seventh invention, in particular, the voltage application direction dimension of the defect portion in the fourth invention is formed smaller than the interval between adjacent branch electrodes having the same polarity, and the branch electrodes having different polarities are connected to the central portion of the defect portion By being alternately formed in the central part between the defect parts, a part without the defect part is formed between the pair of branch electrodes, and this part becomes a wide heat generation part that is substantially electrically independent. . A portion having a defect portion becomes a heat generation portion having a narrow width. The branch electrode passing through the central part of the defect part forms two narrow heating portions sandwiching the branch electrode, and the branch electrode passing through the central part between the defect parts has two widths across the branch electrode. Form a wide exothermic part. By combining the wide exothermic part and the narrow exothermic part two by two with the branch electrode in between, each exothermic part can be formed as a large block. Can be adjusted to provide an appropriate voltage distribution. Further, with this configuration, the pattern setting of the electrodes and the heat generating elements is extremely easy and can be rationally processed.

第8の発明は、特に、第6または第7の発明における欠損部の形状が電圧印加方向に向かって幅が拡大する部分と幅が縮小する部分から形成されてなることにより、1つの枝電極を欠損部の最大幅の位置に形成し、次の枝電極を欠損部と次の欠損部の中間位置に形成することによって、発熱幅の異なる2以上の発熱部分を有する発熱要素が集合した発熱面を形成することができる。このように欠損部の幅が変化するために、欠損部が電圧印加方向に向かって連続に形成されていても、独立であっても発熱幅の異なる2以上の発熱部分を形成できる。   In the eighth invention, in particular, the shape of the defect portion in the sixth or seventh invention is formed from a portion whose width increases toward the voltage application direction and a portion whose width decreases. Is formed at the position of the maximum width of the defect portion, and the next branch electrode is formed at an intermediate position between the defect portion and the next defect portion, thereby generating heat generated by the heat generation elements having two or more heat generation portions having different heat generation widths. A surface can be formed. Since the width of the defect portion changes in this way, two or more heat generation portions having different heat generation widths can be formed even if the defect portion is formed continuously in the voltage application direction or independent.

第9の発明は、特に、第6または第7の発明における欠損部の形状が電圧印加方向に向かって幅が非直線的に拡大する部分と幅が非直線的に縮小する部分から形成されてなることにより、、1つの枝電極を欠損部の最大幅の位置に形成し、次の枝電極を欠損部と次の欠損部の中間位置に形成することによって、発熱幅の異なる2以上の発熱部分を有する発熱要素が集合した発熱面を形成することができる。また、発熱幅を非直線的に変化させることによって、電圧勾配、電力密度、温度の急激な変化を抑制し、局所的に高温かつ高抵抗の線状発熱現象が生じる原因を取り除くことができる。また、このように欠損部の幅が変化するために、欠損部が電圧印加方向に向かって連続に形成されていても、独立であっても発熱幅の異なる2以上の発熱部分を形成できる。   In the ninth invention, in particular, the shape of the defect portion in the sixth or seventh invention is formed from a portion where the width increases nonlinearly and a portion where the width decreases nonlinearly in the voltage application direction. Thus, by forming one branch electrode at the position of the maximum width of the defective portion and forming the next branch electrode at an intermediate position between the defective portion and the next defective portion, two or more heat generations having different heat generation widths are formed. A heat generating surface in which heat generating elements having portions are gathered can be formed. Further, by changing the heat generation width in a non-linear manner, rapid changes in voltage gradient, power density, and temperature can be suppressed, and the cause of local high temperature and high resistance linear heat generation can be eliminated. In addition, since the width of the defect portion changes in this way, two or more heat generation portions having different heat generation widths can be formed even if the defect portion is formed continuously in the voltage application direction or independent.

第10の発明は、特に、第6または第7の発明における欠損部の形状が略円または略楕円であることにより、円または楕円は非直線的な変化を持つ合理的な形状であり、その中央部では幅の変化が緩やかになり、先端部では急激な変化が得られる。特に、円または楕円欠損部を電圧印加方向に向かって独立に形成し、欠損部の中央と欠損部間に枝電極を交互に形成することによって、欠損部の中央部で枝電極の位置がずれても幅の変化が小さい部分であるために影響を最小限に押えることができる。また、欠損部の先端では幅が急激に変化して閉じるために、欠損部間の枝電極の位置がずれても欠損部に至らないようなパターンを描くことが可能になる。   In the tenth invention, in particular, the shape of the defect in the sixth or seventh invention is a substantially circle or an ellipse, so that the circle or ellipse is a rational shape having a non-linear change. The change in the width is moderate at the center, and an abrupt change is obtained at the tip. In particular, by forming a circular or elliptical defect part independently in the direction of voltage application and alternately forming branch electrodes between the center of the defect part and the defect part, the position of the branch electrode is shifted at the center part of the defect part. However, since the change in the width is small, the influence can be minimized. In addition, since the width of the tip of the defect portion changes suddenly and closes, it is possible to draw a pattern that does not reach the defect portion even if the position of the branch electrode between the defect portions is shifted.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1における発熱体を示すものである。
(Embodiment 1)
FIG. 1 shows a heating element according to Embodiment 1 of the present invention.

図に示すように、基板1は、188μm厚みのポリエチレンテレフタレートフィルムを用いている。一対の主電極2、2´は、エポキシ樹脂中に銀粉末を分散した導電性銀ペーストを、厚膜印刷によって基板1上に形成している。主電極2、2´からは枝電極3、3´が分岐され、一対の枝電極3、3´が交互に対向するように配置されている。また、正抵抗温度特性を有する抵抗体4は、幅の広い発熱部分5と幅の狭い発熱部分6とが直列に接続されて、1つの発熱要素を形成している。正抵抗温度特性を有する抵抗体4はエチレン酢酸ビニル共重合体と低ストラクチャーのカーボンブラックの混練物を、ゴム系のバインダーと高沸点溶剤を用いてペースト化したものを、厚膜印刷によって枝電極3、3´の面に形成している。この正抵抗温度特性を有する2つの発熱部分からなる発熱要素が多数集合することによって発熱体が形成されている。枝電極3、3´の電極間距離は4mmであり、この間に幅の広い発熱部分5と幅の狭い発熱部分6が形成されている。発熱部分5は10mm幅、発熱部分6は8mmの幅であり、電圧印加方向の寸法はそれぞれ2mmである。発熱部分5及び6はそれぞれ非常に小さい領域内に形成することによって一様な温度を保持できるようにしている。また、発熱部分5と発熱部分6も非常に近接して形成されているために1つの発熱要素内では熱的に結合しており、熱が有効に伝達される範囲内に形成されている。このような発熱要素が80個集合することによって本実施の形態の発熱体が形成されている。   As shown in the figure, the substrate 1 uses a polyethylene terephthalate film having a thickness of 188 μm. The pair of main electrodes 2, 2 ′ is formed on the substrate 1 by thick film printing with a conductive silver paste in which silver powder is dispersed in an epoxy resin. Branch electrodes 3 and 3 ′ are branched from the main electrodes 2 and 2 ′, and a pair of branch electrodes 3 and 3 ′ are alternately arranged. Further, the resistor 4 having the positive resistance temperature characteristic has a wide heat generating portion 5 and a narrow heat generating portion 6 connected in series to form one heat generating element. Resistor 4 having a positive resistance temperature characteristic is a branched electrode obtained by thick film printing by pasting a kneaded mixture of ethylene vinyl acetate copolymer and low structure carbon black using a rubber binder and a high boiling point solvent. 3, 3 '. A heating element is formed by aggregating a large number of heating elements composed of two heating portions having the positive resistance temperature characteristic. The distance between the electrodes of the branch electrodes 3 and 3 'is 4 mm, and a wide heat generating portion 5 and a narrow heat generating portion 6 are formed therebetween. The heat generating part 5 has a width of 10 mm, the heat generating part 6 has a width of 8 mm, and the dimension in the voltage application direction is 2 mm. The heating portions 5 and 6 are each formed in a very small area so that a uniform temperature can be maintained. Further, since the heat generating portion 5 and the heat generating portion 6 are also formed very close to each other, they are thermally coupled within one heat generating element, and are formed within a range where heat is effectively transmitted. The heating element of the present embodiment is formed by gathering 80 such heating elements.

この発熱体に通電すると、各発熱要素に電圧が印加され、通電初期は低抵抗であるために大きな電流が流れ、急速に昇温を開始する。通電初期においては発熱部分5と発熱部分6の温度は同一であるために、面積抵抗値は同一であり、抵抗体のパターンに応じた抵抗値となる。発熱部分5と6の抵抗値の比率は1対1.25であり、電流値は同一であるから電力の比率も1対1.25となる。発熱部分の面積当たりの電力、すなわち電力密度は発熱部分6の面積を考慮するとこの2乗の比になるが、面積が小さいために熱が拡散することを考慮すると電力密度の比率は実質的に1対1.25となる。やがて、この電力密度の差によって発熱部分5と6の温度の差が生じてくるために、正抵抗温度係数による面積抵抗値の差異が生じ、抵抗値は1対1.25よりも拡大する。20℃の面積抵抗値12kΩの抵抗体を形成し、12Vを印加して飽和させた結果、発熱部分5は45℃まで昇温し、発熱部分6は53℃であった。発熱部分5と6の電圧を測定すると、それぞれ3.5Vと8.5Vであった。この電圧の比率は抵抗値の比率と同一であるから、1対1.25の比率が1対2.4に拡大したことになる。電力密度もこの比率で拡大しているはずであるが、発熱部分5及び6は非常に近接しているために、発熱部分6から5に熱が移動するのでさほど大きな温度分布は生じない。   When this heating element is energized, a voltage is applied to each heating element, and since the resistance is low at the beginning of energization, a large current flows and the temperature starts to rise rapidly. Since the temperatures of the heat generating portion 5 and the heat generating portion 6 are the same at the initial stage of energization, the area resistance values are the same, and the resistance values correspond to the resistor patterns. The ratio of the resistance values of the heat generating portions 5 and 6 is 1 to 1.25, and the current value is the same, so the ratio of power is also 1 to 1.25. The power per area of the heat generating portion, that is, the power density is a ratio of the squares when the area of the heat generating portion 6 is taken into consideration, but the ratio of the power density is substantially equal considering that heat is diffused because the area is small It becomes 1 to 1.25. Eventually, a difference in temperature between the heat generating portions 5 and 6 occurs due to this difference in power density, so that a difference in sheet resistance value due to the positive resistance temperature coefficient occurs, and the resistance value expands from 1: 1.25. As a result of forming a resistor having an area resistance value of 12 kΩ at 20 ° C. and applying 12 V to saturate, the heating portion 5 was heated to 45 ° C. and the heating portion 6 was 53 ° C. When the voltages of the exothermic portions 5 and 6 were measured, they were 3.5 V and 8.5 V, respectively. Since the voltage ratio is the same as the resistance value ratio, the ratio of 1 to 1.25 is expanded to 1 to 2.4. The power density should also increase at this ratio. However, since the heat generating portions 5 and 6 are very close to each other, heat is transferred from the heat generating portions 6 to 5, so that a very large temperature distribution does not occur.

また、発熱部分6には電圧及び電力密度の大半が集中しているために、高温かつ高抵抗の線状発熱現象が発生することを考慮する必要があるが、発熱部分5及び6は非常に小さい面積で形成されているために、熱拡散が勝り、線状発熱には至らないことを確認した。この発熱部分5と6は非常に小さい面積で、小さい電力しか発生しないが、これを数多く集合させることによって面状の大面積の熱源を形成することができる。また、部分的な電力密度の分布が生じるが、熱拡散によって実用上、支障のない均熱性が得られる。   Further, since most of the voltage and power density are concentrated in the heat generating portion 6, it is necessary to consider the occurrence of a high-temperature and high-resistance linear heat generation phenomenon, but the heat generating portions 5 and 6 are very Since it was formed with a small area, it was confirmed that thermal diffusion was excellent and linear heat generation was not reached. The heat generating portions 5 and 6 have a very small area and generate only a small amount of electric power. However, a large area heat source can be formed by collecting a large number of these heat generating portions 5 and 6. In addition, a partial power density distribution is generated, but thermal uniformity can be obtained without any practical problem by thermal diffusion.

通常、正抵抗温度特性を有する面状の発熱体は外装材によって被覆され、酸素や水などと遮断されて使用されるために相当長期の耐久性が期待できる。また、異常電圧や保温されてもさほど高温に至ることがないために、通常の使用時間内で抵抗体が劣化して危険な状態になるモードを想定することは難しく、促進試験でも確認することは容易ではない。また、想定されるストレスでは安全側に変化することが確認されている。このような発熱体の信頼度は極めて高く、最終、安全装置を組み込んでも、これを実際に作動させて確認するような試験条件は通常見つからない。本実施の形態の発熱体では発熱部分6が主体的に発熱し、電圧ストレスや熱などの劣化要因にさらされるが、これも、通常の使用時間内で抵抗体が劣化して危険な状態になるモードを想定することは難しい。しかしながら、もし発熱体が劣化するのであれば電圧ストレスが大きく、高温の箇所であると想定することは可能である。したがって、発熱部分6は5に比べると劣化に至る確率が高く、劣化するとすればこの部分であると想定できる。もし、発熱部分6が劣化して、所定の温度を越えようとした場合、あるいは抵抗値が低下して所定の電流値を超えた場合、隣接して直列に設けられた発熱部分5に熱が伝えられて発熱するか、発熱部分5自身が発熱するかのいずれかの方法で発熱部分6に印加された電圧を吸収し、発熱部分6にとって代わって発熱するようになる。発熱部分5は発熱部分6と発熱幅が異なるだけでほぼ同等の仕様であるために、ほぼ同などの発熱機能を維持することができる。   Usually, a planar heating element having a positive resistance temperature characteristic is covered with an exterior material, and is used while being shielded from oxygen, water, etc., and therefore, a long-term durability can be expected. In addition, it is difficult to assume a mode in which the resistor deteriorates within normal use time because it does not reach a high temperature even if it is held abnormally or kept warm, and it should be confirmed by an accelerated test. Is not easy. Moreover, it has been confirmed that the stress is changed to a safe side under the assumed stress. The reliability of such a heating element is extremely high, and even if a safety device is finally installed, a test condition for confirming it by actually operating it is usually not found. In the heating element of the present embodiment, the heat generating portion 6 mainly generates heat and is exposed to deterioration factors such as voltage stress and heat. However, this also makes the resistor deteriorated within a normal use time, which is in a dangerous state. It is difficult to assume a mode that However, if the heating element deteriorates, it can be assumed that the voltage stress is large and the part is at a high temperature. Therefore, the heat generation portion 6 has a higher probability of being deteriorated compared to 5, and if it is deteriorated, it can be assumed that it is this portion. If the heat generating part 6 deteriorates and attempts to exceed a predetermined temperature, or if the resistance value decreases and exceeds a predetermined current value, heat is generated in the heat generating part 5 provided in series adjacently. The voltage applied to the heat generating portion 6 is absorbed by either the method of generating heat or the heat generating portion 5 itself generating heat, and heat is generated instead of the heat generating portion 6. Since the heat generating portion 5 has almost the same specifications as the heat generating portion 6 except for the heat generation width, it can maintain substantially the same heat generating function.

このように、幅の狭い発熱部分6が異常を生じる確率は想定できないほど低く、同じ直列回路内にある幅の広い発熱部分5が同様に異常を生じる確率も想定できないほど低いために、この直列回路が異常を生じる確率は実質的に0となり、バックアップ発熱部分による2重安全機構を備えた発熱体として作用する。   In this way, the probability that the narrow heat-generating portion 6 is abnormal cannot be assumed to be low, and the wide heat-generating portion 5 in the same series circuit is similarly low to be unlikely to cause abnormality. The probability that the circuit will be abnormal is substantially zero, and it acts as a heating element with a double safety mechanism by the backup heating part.

なお、本実施の形態では発熱部分5と発熱部分6の発熱幅の比率を10対8としたが、この数値に限定されるものではなく、比率を変えても同などの作用効果が得られる。比率を大きくすると発熱部分6の負荷が増え、発熱面積が減るために飽和電力が低下する傾向となる。比率を小さくすると発熱部分6の負荷が減り、発熱面積が増えるために飽和電力が増加する傾向となる。   In the present embodiment, the ratio of the heat generation width between the heat generating portion 5 and the heat generating portion 6 is 10 to 8. However, the ratio is not limited to this value, and the same effect can be obtained even if the ratio is changed. . When the ratio is increased, the load of the heat generating portion 6 increases and the heat generating area decreases, so that the saturated power tends to decrease. When the ratio is reduced, the load on the heat generating portion 6 is reduced and the heat generation area is increased, so that the saturated power tends to increase.

また、発熱部分5と発熱部分6の電圧印加方向の寸法はそれぞれ2mmであるが、この寸法を変えても同などの作用効果が得られる。面積抵抗値を下げるとともに発熱部分6の電圧印加方向の寸法を大きくすれば発熱部分6の面積が増え、飽和電力が増大するが、万一、発熱部分6が劣化した場合の発熱部分5の負荷が増大する。逆に、面積抵抗値を上げるとともに発熱部分6の電圧印加方向の寸法を小さくすれば発熱部分6の面積が減り、飽和電力が低下するが、万一、発熱部分6が劣化した場合の発熱部分5の負荷が軽減される。また、電圧印加方向の寸法が大きくなると高温かつ高抵抗の線状発熱現象が生じる確率が高まるので、熱拡散が可能な範囲に留める必要がある。   Moreover, although the dimension in the voltage application direction of the heat generating part 5 and the heat generating part 6 is 2 mm, respectively, even if this dimension is changed, the same effect can be obtained. Lowering the area resistance value and increasing the size of the heat generating portion 6 in the voltage application direction increases the area of the heat generating portion 6 and increases the saturation power. However, if the heat generating portion 6 deteriorates, the load on the heat generating portion 5 is increased. Will increase. Conversely, if the area resistance value is increased and the dimension of the heat generating portion 6 in the voltage application direction is reduced, the area of the heat generating portion 6 is reduced and the saturation power is reduced. However, the heat generating portion when the heat generating portion 6 is deteriorated should be reduced. The load of 5 is reduced. In addition, since the probability that a high-temperature and high-resistance linear heat generation phenomenon occurs increases as the size in the voltage application direction increases, it is necessary to keep it within a range where thermal diffusion is possible.

なお、発熱部分6に線状発熱現象が生じて危険な状態に至ることを想定したとしても、その電力なり温度が発熱部分5に反映されるために安全上の問題はない。   Even if it is assumed that a linear heat generation phenomenon occurs in the heat generating portion 6 and reaches a dangerous state, there is no safety problem because the power or temperature is reflected in the heat generating portion 5.

以上、本実施の形態の発熱体は、通常時に主体的に発熱する発熱幅の狭い発熱部分6と、バックアップ発熱部分となる発熱幅の広い発熱部分5とを有する2以上の発熱部分を電気的に直列に接続してなる正抵抗温度特性発熱要素の集合体からなるものである。   As described above, the heating element according to the present embodiment electrically connects two or more heat generating portions including the heat generating portion 6 having a small heat generation width that mainly generates heat in the normal state and the heat generating portion 5 having a wide heat generation width as a backup heat generating portion. And a series of positive resistance temperature characteristic heating elements connected in series.

すなわち、前記発熱部分は略一様な発熱が可能な小さな領域で形成され、前記発熱要素は熱的結合が可能な小さな領域内に形成され、前記発熱要素は一対の電極を経由して電源に接続され、通電開始時点では前記発熱要素内で前記発熱部分は前記発熱幅に略反比例する電力密度で共に発熱するが、飽和時点では、前記発熱部分の中で前記発熱幅の狭い発熱部分6の昇温が勝るために高抵抗化し、大きな電圧配分を受けて主体的に発熱するとともに前記発熱要素内に熱を拡散し、実質的な面状熱源として飽和する一方、前記発熱幅の狭い発熱部分6が正抵抗温度特性から逸脱した発熱あるいは抵抗値を示すことを想定した場合に、前記発熱幅の広い発熱部分5に大半の電圧が移動することによって安全動作することのできる2重安全発熱機能を備えてなるものである。   That is, the heat generating portion is formed in a small region capable of substantially uniform heat generation, the heat generating element is formed in a small region capable of thermal coupling, and the heat generating element is connected to a power source via a pair of electrodes. At the start of energization, the heat generating portion in the heat generating element generates heat at a power density substantially inversely proportional to the heat generation width, but at the time of saturation, the heat generating portion 6 having a narrow heat generation width in the heat generating portion. The temperature rises to increase the resistance, and heat is generated mainly by receiving a large voltage distribution and diffuses heat into the heat generating element to saturate as a substantial planar heat source, while the heat generating portion having a narrow heat generating width Double safety heat generation function that can be operated safely by moving most of the voltage to the heat generation portion 5 having a wide heat generation width, assuming that 6 shows heat generation or resistance value deviating from the positive resistance temperature characteristic. The Is Ete become one.

したがって、発熱体と別の離れた位置に保安機構を設けるのではなく、発熱体自身に保安機能を内蔵させる方式である。このため、従来の技術のように有効に作動する機会が少なく、しかも、瀬戸際でしか作動しないような安全機構ではなく、所定の温度を越えたときに、より穏やかに作動する安全機構である。このような安全機構を備えた発熱体が実現すれば従来の課題は解消し、これまで使用できなかったような過酷な環境などでの使用が可能になり、構成部品が省略化され、薄肉設計や省スペース設計などの設計の自由度を増し、より多様な用途で安全に使用できるようになる。また、離れた位置で異常を検出するのではなく、発熱体自身が検知する安全機構であるために極めて精度が高いものである。しかも、安全機能を付加するために抵抗体や部品を追加する必要がなく、構成のみならず製造工程も簡略化できるなど、極めて優れた特長を併せ持つものである。   Accordingly, a security mechanism is not provided at a position apart from the heating element, but a security function is built in the heating element itself. For this reason, there are few opportunities to operate effectively unlike the prior art, and it is not a safety mechanism that operates only on the brink, but a safety mechanism that operates more gently when a predetermined temperature is exceeded. If a heating element equipped with such a safety mechanism is realized, the conventional problems will be solved, and it will be possible to use it in harsh environments that could not be used so far. And design flexibility such as space-saving design, it can be used safely in more diverse applications. In addition, since it is a safety mechanism that the heating element itself detects rather than detecting an abnormality at a distant position, the accuracy is extremely high. Moreover, it is not necessary to add a resistor or a part to add a safety function, and it has extremely excellent features such as simplifying not only the configuration but also the manufacturing process.

(実施の形態2)
図2は本発明の実施の形態2における発熱体を示すものである。
(Embodiment 2)
FIG. 2 shows a heating element in Embodiment 2 of the present invention.

実施の形態1と異なる点は、正抵抗温度特性を有する抵抗体7によって形成される発熱幅の異なる2つの発熱部分がステップ状に変化するのではなく、勾配部分を経て形成されていることである。   The difference from the first embodiment is that the two heat generating portions having different heat generation widths formed by the resistor 7 having the positive resistance temperature characteristic do not change stepwise but are formed through a gradient portion. is there.

図において、幅の広い発熱部分8と幅の狭い発熱部分9は、幅が縮小する勾配部分を経て接続されている。発熱幅がステップ状に急激に変化すると、電圧勾配、電力密度、温度などの急激な変化が生じ、これに伴う発熱分布が線状発熱現象を引き起こす可能性がある。勾配部分を設けて発熱幅を徐々に変化させることによって電圧勾配、電力密度、温度などの急激な変化を抑制することができる。この結果、これらの要因が引き金になって発生する線状発熱現象を確実に防止することができる。   In the figure, the wide heat-generating portion 8 and the narrow heat-generating portion 9 are connected via a gradient portion whose width decreases. If the heat generation width changes stepwise, abrupt changes such as voltage gradient, power density, temperature, etc. occur, and the heat generation distribution associated therewith may cause a linear heat generation phenomenon. By providing the gradient portion and gradually changing the heat generation width, a rapid change in voltage gradient, power density, temperature, etc. can be suppressed. As a result, it is possible to reliably prevent the linear heat generation phenomenon that is triggered by these factors.

なお、本実施の形態では、幅の広い発熱部分8と幅の狭い発熱部分9は、幅が縮小する勾配部分を経て接続されているが、勾配部分を経て接続されるのではなく、いずれかの発熱部分あるいは双方の発熱部分が勾配を持つものであっても良く、本実施の形態と同などの作用効果を示すものである。また、その勾配は非直線的なものであっても良く、任意の数式に基づくも勾配を選定することもできる。   In the present embodiment, the wide heat generating portion 8 and the narrow heat generating portion 9 are connected via a gradient portion where the width decreases, but they are not connected via a gradient portion. The heat generating part or both of the heat generating parts may have a gradient, and exhibit the same operational effects as in the present embodiment. Further, the gradient may be non-linear, and the gradient can be selected based on an arbitrary mathematical expression.

(実施の形態3)
図3は本発明の実施の形態3における発熱体を示すものである。
(Embodiment 3)
FIG. 3 shows a heating element according to Embodiment 3 of the present invention.

実施の形態1と異なる点は、正抵抗温度特性を有する抵抗体10の面積抵抗値が高抵抗であり、枝電極の間隔が狭められていることと、発熱幅の異なる2つの発熱部分が形成される配列が2個単位の規則性を持つことである。   The difference from the first embodiment is that the resistor 10 having the positive resistance temperature characteristic has a high area resistance value, the distance between the branch electrodes is narrowed, and two heat generating portions having different heat generation widths are formed. The array to be made has regularity of two units.

図において、正抵抗温度特性を有する抵抗体10の20℃の面積抵抗値は16kΩである。また、発熱幅の異なる2つの発熱部分は、幅の広い発熱部分11と幅の狭い発熱部分12が交互に形成されるのではなく、幅の広い発熱部分11が1つの枝電極を挟んで2個形成され、次に、幅の狭い発熱部分12が別の枝電極を挟んで2個形成されるようになっている。また、電圧印加方向の寸法が幅の広い発熱部分11と幅の狭い発熱部分12共に1.5mmで形成され、対向する枝電極3及び3´の間隔は3mmとなっている。   In the figure, the area resistance value at 20 ° C. of the resistor 10 having the positive resistance temperature characteristic is 16 kΩ. In addition, the two heat generating portions having different heat generation widths are not formed by alternately forming the wide heat generating portions 11 and the narrow heat generating portions 12, but the wide heat generating portions 11 are sandwiched between two branch electrodes. Next, two heat generating portions 12 having a narrow width are formed with another branch electrode interposed therebetween. Further, both the heat generating portion 11 having a wide width and the heat generating portion 12 having a small width in the voltage application direction are formed to be 1.5 mm, and the distance between the opposing branch electrodes 3 and 3 ′ is 3 mm.

飽和時にはほとんど発熱しない幅の広い発熱部分11と飽和時に主体的に発熱する幅の狭い発熱部分12が2個単位で形成されているために、電圧印加方向の寸法が縮小されたにもかかわらず、それぞれの領域が大きなブロック単位で形成されるようになっている。抵抗体の面積抵抗値が高い場合に、十分な発熱を得るためには枝電極の間隔を狭く設定する必要があるが、枝電極の間隔を近接させると、幅の広い発熱部分と幅の狭い発熱部分の発熱状態が熱的に一体になってしまい、幅の狭い発熱部分に十分な電圧が配分されない傾向になる。このような場合には、2つの発熱部分をブロック単位まとめることによって熱的に分離させることが可能であり、適切な電圧配分をもたらすことができる。   Even though the size in the voltage application direction is reduced because the wide heat generating portion 11 that hardly generates heat during saturation and the narrow heat generating portion 12 that mainly generates heat during saturation are formed in units of two. Each region is formed in a large block unit. In order to obtain sufficient heat generation when the area resistance value of the resistor is high, it is necessary to set the interval between the branch electrodes to be narrow. The heat generation state of the heat generation part becomes thermally integrated, and there is a tendency that a sufficient voltage is not distributed to the heat generation part having a narrow width. In such a case, the two heat generating portions can be thermally separated by grouping them in units of blocks, and appropriate voltage distribution can be provided.

本実施の形態の発熱体に12Vを印加したところ、幅の広い発熱部分10と幅の狭い発熱部分11の飽和温度は44℃と52℃であり、電圧は3.4Vと8.6Vであった。   When 12V was applied to the heating element of this embodiment, the saturation temperatures of the wide heating portion 10 and the narrow heating portion 11 were 44 ° C. and 52 ° C., and the voltages were 3.4V and 8.6V. It was.

(実施の形態4)
図4は本発明の実施の形態4における発熱体を示すものである。
(Embodiment 4)
FIG. 4 shows a heating element in Embodiment 4 of the present invention.

実施の形態3と異なる点は、正抵抗温度特性を有する抵抗体13の形成パターンである。   The difference from the third embodiment is the formation pattern of the resistor 13 having a positive resistance temperature characteristic.

図において、正抵抗温度特性を有する抵抗体13は発熱面の全面に形成されていて、その面には複数の欠損部14が規則的に設けられている。この欠損部14の中央部には枝電極3´が形成され、欠損部14と次の欠損部14の中央部には極性の異なる枝電極3が形成されている。また、幅の広い発熱部分15は枝電極3方向に連続であり、独立に形成されていないが、幅の狭い発熱部分16は独立に形成されている。枝電極3方向に連続に形成される幅の広い発熱部分15は、隣接する幅の狭い発熱部分16を経由して流れてきた電流を最短経路で通過させる性質があるために、枝電極3方向に流れる電流はわずかであり、実質的に電気的に独立な幅広の発熱部分15と幅の狭い発熱部分16の直列回路が形成される。したがって、本実施の形態は実施の形態3と実質的に同などの発熱特性を示すものである。   In the figure, a resistor 13 having a positive resistance temperature characteristic is formed on the entire heat generating surface, and a plurality of defective portions 14 are regularly provided on the surface. A branch electrode 3 ′ is formed at the center of the defect 14, and branch electrodes 3 having different polarities are formed at the center of the defect 14 and the next defect 14. Further, the wide heat generating portion 15 is continuous in the direction of the branch electrode 3 and is not formed independently, but the narrow heat generating portion 16 is formed independently. The wide exothermic part 15 formed continuously in the direction of the branch electrode 3 has a property of passing the current flowing through the adjacent exothermic part 16 having a narrow width through the shortest path. The current flowing through the circuit is small, and a series circuit of a wide heat generating portion 15 and a narrow heat generating portion 16 which are substantially electrically independent is formed. Therefore, the present embodiment shows heat generation characteristics that are substantially the same as those of the third embodiment.

(実施の形態5)
図5は本発明の実施の形態4における発熱体を示すものである。
(Embodiment 5)
FIG. 5 shows a heating element in Embodiment 4 of the present invention.

実施の形態4と異なる点は、欠損部18の形状である。   The difference from the fourth embodiment is the shape of the defect 18.

図において、正抵抗温度特性を有する抵抗体17は発熱体の全面に形成されていて、その面には楕円形状の欠損部18が規則的に設けられている。この欠損部18の中央部には枝電極3´が形成され、欠損部18と次の欠損部18の中央部には枝電極3が形成されている。また、幅の広い発熱部分19は枝電極3方向に連続であり、独立に形成されていないが、幅の狭い発熱部分20は独立に形成されている。枝電極3方向に連続に形成される幅の広い発熱部分19は、隣接する幅の狭い発熱部分20を経由して流れてきた電流を最短経路で通過させる性質があるために、枝電極3方向に流れる電流はわずかであり、実質的に電気的に独立な幅広の発熱部分19と幅の狭い発熱部分20の直列回路が形成される。   In the figure, the resistor 17 having the positive resistance temperature characteristic is formed on the entire surface of the heating element, and the oval-shaped defect portions 18 are regularly provided on the surface. A branch electrode 3 ′ is formed at the center of the defect 18, and a branch electrode 3 is formed at the center of the defect 18 and the next defect 18. Further, the wide heat generating portion 19 is continuous in the direction of the branch electrode 3 and is not independently formed, but the narrow heat generating portion 20 is formed independently. Since the wide heat generating portion 19 formed continuously in the direction of the branch electrode 3 has a property of passing the current flowing through the adjacent heat generating portion 20 having a narrow width through the shortest path, The current flowing through the circuit is small, and a series circuit of a wide heat generating portion 19 and a narrow heat generating portion 20 which are substantially electrically independent is formed.

本実施の形態では欠損部18の形状が楕円であるために、幅広の発熱部分19と幅の狭い発熱部分20の発熱幅が非直線的に滑らかに変化している。発熱幅が急激に変化すると、電圧勾配、電力密度、温度などの急激な変化が生じ、これに伴う発熱分布が線状発熱現象を引き起こす可能性がある。発熱幅を非直線的に滑らかに変化させることによって電圧勾配、電力密度、温度などの急激な変化を抑制することができる。この結果、これらの要因が引き金になって発生する線状発熱現象を確実に防止することができる。また、楕円形状の欠損部18は非直線的な変化を持つ合理的な形状であり、電圧印加方向に向かうその中央部では幅の変化が緩やかになり、先端部では急激な変化が得られる。このために、幅の狭い発熱部分20では緩やかな発熱幅の変化が得られ、幅の広い発熱部分19にかけては電流の流れに沿って発熱幅が急速に拡大する。また、楕円形状の欠損部18の電圧印加方向に向かう中央部では欠損部18の幅の変化が緩やかであるために、枝電極3´の位置が電圧印加方向にずれても発熱幅が影響を受けにくく、欠損部18の先端に向かってその幅が急激に縮小して閉じるために、枝電極3の位置が電圧印加方向ずれても欠損部18に至らないなど、実用上、非常に価値のあるものである。   In the present embodiment, since the shape of the defect portion 18 is an ellipse, the heat generation widths of the wide heat generation portion 19 and the narrow heat generation portion 20 change smoothly in a non-linear manner. When the heat generation width changes abruptly, a rapid change in voltage gradient, power density, temperature, etc. occurs, and the heat generation distribution associated therewith may cause a linear heat generation phenomenon. Abrupt changes such as voltage gradient, power density, and temperature can be suppressed by smoothly changing the heat generation width in a non-linear manner. As a result, it is possible to reliably prevent the linear heat generation phenomenon that is triggered by these factors. Further, the oval-shaped defect portion 18 has a rational shape having a non-linear change, and the change in the width becomes gentle at the central portion in the voltage application direction, and a rapid change is obtained at the tip portion. For this reason, a gradual change in the heat generation width is obtained in the narrow heat generation portion 20, and the heat generation width rapidly expands along the current flow toward the wide heat generation portion 19. In addition, since the change in the width of the defect portion 18 is gentle in the central portion of the elliptical defect portion 18 in the voltage application direction, even if the position of the branch electrode 3 ′ is shifted in the voltage application direction, the heat generation width has an effect. It is difficult to receive, and since its width is rapidly reduced toward the tip of the defect portion 18 and closed, the defect portion 18 does not reach the defect portion 18 even if the position of the branch electrode 3 is shifted in the voltage application direction. There is something.

なお、本実施の形態では欠損部18の形状は楕円形状であり、電圧印加方向に離れて形成されていたが、電圧印加方向に細長く拡大することによって隣接する欠損部18を接近させることができる。このような構成をとれば、幅広の発熱部分19が枝電極3´方向に連なっている部分が減少するために、電気的により完全な独立回路とすることができる。また、欠損部の形状を電圧印加方向に細長く拡大するのではなく、縮小することも可能であり、この構成であれば、幅の広い発熱部分19から幅の狭い発熱部分20に向かって、発熱幅が非直線的に急速に縮小するパターンを形成できる。これは、枝電極の間隔を近接させたい場合に有利であり、また、枝電極方向の欠損部の形成間隔を開けたい場合にも有利である。このように楕円形状といっても様々な選択可能であり、当然ながら楕円のみならず円も選択可能である。また、正確に楕円を描く必要はなく、楕円状あるいは略楕円でも同などの作用と効果を奏するものである。   In the present embodiment, the shape of the defect 18 is an ellipse and is formed apart in the voltage application direction. However, the adjacent defect 18 can be made closer by being elongated in the voltage application direction. . By adopting such a configuration, since the portion where the wide heat generating portion 19 is continuous in the direction of the branch electrode 3 ′ is reduced, an electrically more completely independent circuit can be obtained. In addition, the shape of the defect portion can be reduced instead of being elongated in the voltage application direction. With this configuration, heat is generated from the wide heat generating portion 19 toward the narrow heat generating portion 20. It is possible to form a pattern whose width is rapidly reduced non-linearly. This is advantageous when it is desired to make the interval between the branch electrodes close to each other, and is also advantageous when it is desired to increase the formation interval of the defect portion in the direction of the branch electrode. In this way, various shapes can be selected even when the shape is an ellipse, and naturally, not only an ellipse but also a circle can be selected. In addition, it is not necessary to accurately draw an ellipse, and an elliptical shape or a substantially elliptical shape has the same functions and effects.

(実施の形態6)
図6は本発明の実施の形態6における発熱体を示すものである。
(Embodiment 6)
FIG. 6 shows a heating element in Embodiment 6 of the present invention.

実施の形態5と異なる点は、欠損部22の形状である。   The difference from the fifth embodiment is the shape of the defect portion 22.

図において、正抵抗温度特性を有する抵抗体21は発熱体の全面に形成されていて、その面には菱形形状の欠損部22が規則的に設けられている。この欠損部22の中央部には枝電極3´が形成され、欠損部22と次の欠損部22の中央部には枝電極3が形成されている。また、幅の広い発熱部分23は枝電極3方向に連続であり、独立に形成されていないが、幅の狭い発熱部分24は独立に形成されている。枝電極3方向に連続に形成される幅の広い発熱部分23は、隣接する幅の狭い発熱部分24を経由して流れてきた電流を最短経路で通過させる性質があるために、枝電極3方向に流れる電流はわずかであり、実質的に電気的に独立な幅広の発熱部分23と幅の狭い発熱部分24の直列回路が形成される。本実施の形態では欠損部22の形状が菱形であるために、幅の広い発熱部分23と幅の狭い発熱部分24の発熱幅が直線的に変化している。発熱幅が急激に変化すると、電圧勾配、電力密度、温度などの急激な変化が生じ、これに伴う発熱分布が線状発熱現象を引き起こす可能性がある。発熱幅を直線的に滑らかに変化させることによって電圧勾配、電力密度、温度などの急激な変化を抑制することができる。この結果、これらの要因が引き金になって発生する線状発熱現象を確実に防止することができる。   In the figure, a resistor 21 having a positive resistance temperature characteristic is formed on the entire surface of the heating element, and rhombus-shaped missing portions 22 are regularly provided on the surface. A branch electrode 3 ′ is formed at the center of the defect 22, and a branch electrode 3 is formed at the center of the defect 22 and the next defect 22. The wide heat generating portion 23 is continuous in the direction of the branch electrode 3 and is not formed independently, but the narrow heat generating portion 24 is formed independently. The wide heat generating portion 23 formed continuously in the direction of the branch electrode 3 has a property of passing the current flowing through the adjacent heat generating portion 24 having a narrow width through the shortest path, and therefore, the direction of the branch electrode 3 Is small, and a series circuit of a wide heat generating portion 23 and a narrow heat generating portion 24 which are substantially electrically independent is formed. In the present embodiment, since the shape of the defect portion 22 is a rhombus, the heat generation widths of the wide heat generation portion 23 and the narrow heat generation portion 24 change linearly. When the heat generation width changes abruptly, a rapid change in voltage gradient, power density, temperature, etc. occurs, and the heat generation distribution associated therewith may cause a linear heat generation phenomenon. Abrupt changes in voltage gradient, power density, temperature, and the like can be suppressed by linearly and smoothly changing the heat generation width. As a result, it is possible to reliably prevent the linear heat generation phenomenon that is triggered by these factors.

また、菱形形状の欠損部22は直線的な変化を持つ合理的な形状であり、電圧印加方向に向かって幅の変化率が一定であるために、幅の広い発熱部分23から幅の狭い発熱部分24にかけて、電流の流れに沿って発熱幅が一定の率で縮小する。したがって、枝電極3´又は3の位置が電圧印加方向にずれても発熱幅の変化率が変わらないために、電圧勾配、電力密度、温度などへの影響を受けにくく、実用上、非常に価値のあるものである。   Further, the diamond-shaped defect portion 22 has a rational shape having a linear change, and since the rate of change in width is constant toward the voltage application direction, the heat generation portion 23 having a narrow width generates heat. Over the portion 24, the heat generation width decreases at a constant rate along the current flow. Therefore, even if the position of the branch electrode 3 ′ or 3 is shifted in the voltage application direction, the rate of change in the heat generation width does not change, so that it is hardly affected by the voltage gradient, power density, temperature, etc. There is something.

なお、本実施の形態では欠損部22の形状は菱形形状であり、電圧印加方向に離れて形成されていたが、電圧印加方向に細長く拡大することによって隣接する欠損部22を接近させるか、重複させることができる。このような構成をとれば、幅広の発熱部分18が枝電極3´方向に連なっている部分が減少するために、電気的により完全な独立回路とすることができる。また、欠損部22の欠損部の形状を電圧印加方向に細長く拡大するのではなく、縮小することも可能であり、この構成であれば、幅の広い発熱部分23から幅の狭い発熱部分24に向かって、発熱幅が直線的に急速に縮小するパターンを形成できる。これは、枝電極の間隔を近接させたい場合に有利であり、また、枝電極方向の欠損部の形成間隔を開けたい場合にも有利である。このように菱形形状といっても様々な選択可能であり、当然ながら菱形のみならず正四辺形も選択可能である。また、正確に菱形を描く必要はなく、菱形状あるいは略菱形でも同などの作用と効果を奏するものである。   In the present embodiment, the shape of the defect portion 22 is a rhombus shape and is formed apart in the voltage application direction. However, the adjacent defect portion 22 is made closer or overlapped by being elongated in the voltage application direction. Can be made. By adopting such a configuration, since the portion where the wide heat generating portion 18 is continuous in the direction of the branch electrode 3 ′ is reduced, an electrically more completely independent circuit can be obtained. In addition, the shape of the defect portion of the defect portion 22 can be reduced instead of being elongated in the voltage application direction. With this configuration, the heat generation portion 23 having a wide width can be reduced to the heat generation portion 24 having a small width. On the other hand, it is possible to form a pattern in which the heat generation width decreases linearly and rapidly. This is advantageous when the interval between the branch electrodes is desired to be close, and is also advantageous when it is desired to increase the formation interval of the defect portion in the direction of the branch electrode. In this way, the rhombus shape can be selected in various ways. Naturally, not only the rhombus shape but also a regular quadrilateral shape can be selected. In addition, it is not necessary to accurately draw a rhombus, and the same operation and effect can be achieved with a rhombus or substantially rhombus.

なお、本実施の形態では欠損部22の形状は菱形であったが、菱形に限らず、電圧印加方向に幅が直線的にあるいは非直線的であっても、増減する形状であれば同などの作用と効果をもたらすことができる。また、幅が電圧印加方向に増減する形状であれば、電圧印加方向に欠損部が重複していても、幅の広い発熱部分と幅の狭い発熱部分を形成することができるために、様々なバリエーション展開が可能である。   In the present embodiment, the shape of the defect portion 22 is a rhombus. However, the shape is not limited to a rhombus, and the shape is the same as long as the shape increases or decreases even if the width is linear or non-linear in the voltage application direction. The effects and effects can be brought about. In addition, if the shape is such that the width increases or decreases in the voltage application direction, it is possible to form a wide heat generating portion and a narrow heat generating portion even if the defect portion overlaps in the voltage application direction. Variations can be developed.

以上、各実施の形態1〜6について説明したが、本発明はこれらの実施の形態に限定されるものではなく、基板、電極、抵抗体の種類が変わっても同などの作用効果が得られる。また、幅の広い発熱部分と幅の狭い発熱部分に形成される発熱幅の変化率、あるいは抵抗体に形成される欠損部の形状については、特定の変化率あるいは形状に限定されるものではなく、実施の形態で示さなかった、多段階ステップ状、特殊な関数に基づく曲線、複数の形状の複合などでも実施の形態と同などの作用効果が得られる。さらに、欠損部の形成間隔、大きさ、形成密度なども実施の形態に限定されるものではなく、熱的な結合を保ち、線状発熱に至らないような発熱と均熱のバランスを維持する限り、より細分化された構成あるいはより統合化された構成においても実施の形態と同などの作用効果が得られるものである。   As mentioned above, although each Embodiment 1-6 was demonstrated, this invention is not limited to these Embodiment, Even if the kind of a board | substrate, an electrode, and a resistor changes, the same effect is obtained. . Further, the rate of change of the heat generation width formed in the wide heat generating portion and the narrow heat generating portion, or the shape of the defective portion formed in the resistor is not limited to a specific rate of change or shape. The same effects as those of the embodiment can be obtained even in a multi-step step shape, a curve based on a special function, a combination of a plurality of shapes, etc., which are not shown in the embodiment. Further, the formation interval, size, formation density, and the like of the defect portions are not limited to those in the embodiment. The thermal coupling is maintained, and the balance between heat generation and soaking that does not lead to linear heat generation is maintained. As long as the configuration is more subdivided or integrated, the same effects as those of the embodiment can be obtained.

以上のように、本発明にかかる発熱体は、所定の温度を越えたときに穏やかに作動する保安機能を内蔵するものであり、発熱体の信頼性をなお一層向上させ、より多様な用途で安心して使用できるものであり、各種の暖房機器、加熱装置、乾燥装置などの熱源として用いることができる。   As described above, the heating element according to the present invention has a built-in safety function that operates gently when a predetermined temperature is exceeded, and further improves the reliability of the heating element for more various uses. It can be used with peace of mind and can be used as a heat source for various types of heating equipment, heating devices, drying devices and the like.

本発明の実施の形態1における発熱体の平面図The top view of the heat generating body in Embodiment 1 of this invention 本発明の実施の形態2における発熱体の平面図Plan view of a heating element in Embodiment 2 of the present invention 本発明の実施の形態3における発熱体の平面図Plan view of a heating element in Embodiment 3 of the present invention 本発明の実施の形態4における発熱体の平面図Plan view of a heating element in Embodiment 4 of the present invention 本発明の実施の形態5における発熱体の平面図The top view of the heat generating body in Embodiment 5 of this invention 本発明の実施の形態6における発熱体の平面図The top view of the heat generating body in Embodiment 6 of this invention

符号の説明Explanation of symbols

1 基板
2、2´ 主電極
3、3´ 枝電極
4、7、10、13、17、21 抵抗体
5、8、11、15、19、23 幅の広い発熱部分
6、9、12、16、20、24 幅の狭い発熱部分
14、18、22 欠損部
DESCRIPTION OF SYMBOLS 1 Board | substrate 2, 2 'Main electrode 3, 3' Branch electrode 4, 7, 10, 13, 17, 21 Resistor 5, 8, 11, 15, 19, 23 Wide heating part 6, 9, 12, 16 , 20, 24 Narrow exothermic part 14, 18, 22 Defect part

Claims (10)

通常時に主体的に発熱する発熱幅の狭い発熱部分と、バックアップ発熱部分となる発熱幅の広い発熱部分とを有する2以上の発熱部分を電気的に直列に接続してなる正抵抗温度特性発熱要素の集合体からなる発熱体。 A positive resistance temperature characteristic heating element in which two or more heating parts having a heating part having a narrow heating range and a heating part having a wide heating range as a backup heating part are electrically connected in series. A heating element consisting of an assembly of 発熱幅の異なる2以上の発熱部分が前記発熱幅の勾配部分を経て形成されてなる請求項1に記載の発熱体。 The heating element according to claim 1, wherein two or more heat generating portions having different heat generation widths are formed through the gradient portion of the heat generation width. 発熱幅の異なる2以上の発熱部分の少なくとも1部分が前記発熱幅の勾配部分で形成されてなる請求項1に記載の発熱体。 2. The heating element according to claim 1, wherein at least one of the two or more heating portions having different heating widths is formed by the gradient portion of the heating width. 電極が極性の異なる一対以上の主電極と前記主電極から分岐された複数の枝電極から構成され、極性の異なる前記枝電極を交互に対向させて配置するとともに、前記枝電極の間に発熱要素を形成してなる請求項1〜3のいずれか1項に記載の発熱体。 The electrodes are composed of a pair of main electrodes having different polarities and a plurality of branch electrodes branched from the main electrodes, and the branch electrodes having different polarities are alternately arranged opposite to each other, and a heating element is provided between the branch electrodes. The heating element according to any one of claims 1 to 3, wherein the heating element is formed. 発熱幅の異なる2以上の発熱部分が電圧印加方向に向かって交互に形成されてなり、極性の異なる枝電極が前記発熱部分の幅の広い発熱部分及び幅の狭い発熱部分の中央部に交互に形成されてなる請求項4に記載の発熱体。 Two or more heat generating portions having different heat generation widths are alternately formed in the voltage application direction, and branch electrodes having different polarities are alternately arranged in the central portion of the heat generating portion having a wide width and the heat generating portion having a small width. The heating element according to claim 4 formed. 規則的な欠損部を有する正抵抗温度特性抵抗体を発熱面に形成し、前記欠損部に対応して枝電極を形成されてなる請求項4に記載の発熱体。 The heating element according to claim 4, wherein a positive resistance temperature characteristic resistor having a regular defect portion is formed on a heat generation surface, and a branch electrode is formed corresponding to the defect portion. 欠損部の電圧印加方向寸法は極性が同一の隣接する枝電極の間隔よりも小さく形成され、極性の異なる枝電極が前記欠損部の中央部と前記欠損部間の中央部に交互に形成されてなる請求項4に記載の発熱体。 The voltage application direction dimension of the defect portion is formed smaller than the interval between adjacent branch electrodes having the same polarity, and branch electrodes having different polarities are alternately formed at the center portion of the defect portion and the center portion between the defect portions. The heating element according to claim 4. 欠損部の形状が電圧印加方向に向かって幅が拡大する部分と幅が縮小する部分から形成されてなる請求項6または7に記載の発熱体。 The heating element according to claim 6 or 7, wherein the shape of the defect portion is formed from a portion whose width increases toward a voltage application direction and a portion whose width decreases. 欠損部の形状が電圧印加方向に向かって幅が非直線的に拡大する部分と幅が非直線的に縮小する部分から形成されてなる請求項6または7に記載の発熱体。 The heating element according to claim 6 or 7, wherein the shape of the defect portion is formed of a portion whose width increases nonlinearly and a portion whose width decreases nonlinearly in the voltage application direction. 欠損部の形状が略円または略楕円である請求項6または7に記載の発熱体。 The heating element according to claim 6 or 7, wherein the shape of the defect portion is substantially a circle or an ellipse.
JP2003337190A 2003-09-29 2003-09-29 Heating element Pending JP2005108497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003337190A JP2005108497A (en) 2003-09-29 2003-09-29 Heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003337190A JP2005108497A (en) 2003-09-29 2003-09-29 Heating element

Publications (1)

Publication Number Publication Date
JP2005108497A true JP2005108497A (en) 2005-04-21

Family

ID=34533085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337190A Pending JP2005108497A (en) 2003-09-29 2003-09-29 Heating element

Country Status (1)

Country Link
JP (1) JP2005108497A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078210A (en) * 2008-09-25 2010-04-08 Panasonic Electric Works Co Ltd Wall heating device for toilet booth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078210A (en) * 2008-09-25 2010-04-08 Panasonic Electric Works Co Ltd Wall heating device for toilet booth

Similar Documents

Publication Publication Date Title
KR970003210B1 (en) Electrical device comprising conductive polymers
SE8402366L (en) LAYER SELF-CONTROL HEATING DEVICE
US11037708B2 (en) PPTC device having resistive component
US11231331B2 (en) Temperature sensing tape
JP2007299546A (en) Planar heating element
EP1473741A2 (en) Thick film current sensing resistor and method for its production
JP2021136448A (en) Self-limiting heater
JP2021136234A (en) Pptc heater and material, having stable power and self-limiting behavior
JP2005108497A (en) Heating element
JP2009079907A (en) Catalytic combustion type gas sensor
JP4946349B2 (en) Planar heating element
JP2007066698A (en) Planar heating element
JP2002507329A (en) Hybrid circuit device with overload protection circuit function
JPH11150003A (en) Method for manufacture electrical device
JP2017017016A (en) heater
JP4277729B2 (en) Planar heating element
CN1856845B (en) Thermistor
JP2003109722A (en) Heating element
CN113906527B (en) Device and use of a device
JP4877390B2 (en) PTC device
JPH02148681A (en) Positive resistance-temperature coefficient heater
JP5014938B2 (en) Contact combustion type gas sensor
JP2011003328A (en) Polymer heating element
JPH09184770A (en) Temperature sensor for detecting excessive heat
JP2007093365A (en) Element and method for sensing voltage