JP2005108476A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2005108476A
JP2005108476A JP2003336735A JP2003336735A JP2005108476A JP 2005108476 A JP2005108476 A JP 2005108476A JP 2003336735 A JP2003336735 A JP 2003336735A JP 2003336735 A JP2003336735 A JP 2003336735A JP 2005108476 A JP2005108476 A JP 2005108476A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
ion secondary
lithium ion
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003336735A
Other languages
Japanese (ja)
Inventor
Toshikazu Maejima
敏和 前島
Yuichi Takatsuka
祐一 高塚
Katsunori Suzuki
克典 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2003336735A priority Critical patent/JP2005108476A/en
Publication of JP2005108476A publication Critical patent/JP2005108476A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery capable of suppressing a voltage drop to minimize voltage dispersion. <P>SOLUTION: The lithium ion secondary battery is completed by producing a positive electrode using lithium manganate as a positive electrode active material and a negative electrode using amorphous carbon power as a negative electrode active material, winding the positive electrode and the negative electrode through a separator followed by impregnating in a nonaqueous electrolyte. The nonaqueous electrolyte is prepared by dissolving 1 mol/l of LiPF<SB>6</SB>as a solute to a 1:1 mixed solvent of EC and DMC by volume, further adding VC within the range of 0.3 to 1.5 wt% to the nonaqueous electrolyte. The VC is substantially entirely reduced on the negative electrode surface by initial charging after assembling the battery to generate a proper solid electrolyte membrane on the negative electrode surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はリチウムイオン二次電池に係り、特に、負極活物質に非晶質炭素を主とする炭素材を用いた負極と、正極とを非水電解液に浸潤させたリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery, and more particularly, to a lithium ion secondary battery in which a negative electrode using a carbon material mainly composed of amorphous carbon as a negative electrode active material and a positive electrode are infiltrated with a non-aqueous electrolyte. .

リチウムイオン二次電池に代表されるリチウム二次電池は、高エネルギー密度であるメリットを活かして、主にVTRカメラやノートパソコン、携帯電話などのポータブル機器に使用されている。特に近年は、負極活物質に非晶質炭素や黒鉛系炭素等のリチウムイオンの吸蔵・放出が可能な炭素材を用いたリチウムイオン二次電池が普及している。   Lithium secondary batteries represented by lithium ion secondary batteries are mainly used in portable devices such as VTR cameras, notebook computers, and mobile phones, taking advantage of the high energy density. Particularly in recent years, lithium ion secondary batteries using a carbon material capable of occluding and releasing lithium ions such as amorphous carbon and graphite-based carbon as a negative electrode active material have become widespread.

負極活物質に非晶質炭素を用いると、充放電時の電圧特性に傾きを有するため、電圧測定により電池状態を容易かつ正確に推定可能となるが、不可逆容量が大きく電池での高容量化が難しい。これに対し、黒鉛系材料を用いると、不可逆容量が小さく高容量化が可能であるが、充放電に伴う結晶の体積変化が大きいため、寿命が低下する。これらの炭素材は、電池組立時には、リチウムイオンがいわば放出しきった状態、すなわち放電状態にある。従って、通常は正極にも放電状態の活物質、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)等の遷移金属複酸化物が用いられる。このような正極活物質には十分な電子伝導性がないので、リチウムイオン二次電池の正極には、一般に、正極活物質に加えて、導電剤として黒鉛やカーボンブラック等の低コスト、かつ、電池内で安定な導電性粉末を含有させ、更にバインダ(結着剤)を加え、混合して用いられている。 When amorphous carbon is used as the negative electrode active material, the voltage characteristics during charging and discharging have a slope, so the battery state can be estimated easily and accurately by voltage measurement, but the irreversible capacity is large and the capacity of the battery is increased. Is difficult. On the other hand, when a graphite-based material is used, the irreversible capacity is small and the capacity can be increased. However, since the volume change of the crystal accompanying charge / discharge is large, the life is shortened. These carbon materials are in a state in which lithium ions are completely released, that is, in a discharged state when the battery is assembled. Accordingly, an active material in a discharged state, for example, a transition metal double oxide such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), or lithium manganate (LiMnO 2 ) is usually used for the positive electrode. Since such a positive electrode active material does not have sufficient electronic conductivity, the positive electrode of a lithium ion secondary battery generally has a low cost such as graphite or carbon black as a conductive agent in addition to the positive electrode active material, and In the battery, a stable conductive powder is contained, and a binder (binder) is further added and mixed.

また、リチウムイオン二次電池は、高容量、高出力という利点を有している。このため、近時、電気自動車や内燃機関と電気モータとを併用したハイブリッド電気自動車(以下、両者を電気自動車という。)の電源としても使用されるに至っている。リチウムイオン二次電池を電気自動車の電源とする場合は、高電圧を確保するために、電池モジュールとして複数のリチウムイオン二次電池(セル)を電気的に直列に繋いで使用され、箇々のセルは電池モジュール内の制御回路により電圧等が制御されている。   Moreover, the lithium ion secondary battery has the advantages of high capacity and high output. For this reason, recently, it has also been used as a power source for electric vehicles, hybrid electric vehicles using both an internal combustion engine and an electric motor (hereinafter, both are referred to as electric vehicles). When a lithium ion secondary battery is used as a power source for an electric vehicle, a plurality of lithium ion secondary batteries (cells) are electrically connected in series as a battery module in order to secure a high voltage. The voltage is controlled by a control circuit in the battery module.

電池モジュールを構成するセルのうち、1つでも電圧や容量等の電池特性が他のセルの電池特性と異なったり、経時変化等により電池特性の低下を招くと、この異常特性のセルが他のセルの負荷となって電池モジュール全体の特性を悪化させる。特に、自己放電が異なると、各セルの電圧低下にバラツキが生じ、電池モジュール全体の特性が低下し、寿命が極端に短くなる。また、各セルの電圧低下のバラツキが大きすぎると、上述した制御回路ではセルの電圧等の調整制御ができなくなり、制御回路内のCPUが暴走して電池モジュールの信頼性の低下を招く。このため、一般に、電池組立後にある一定期間、セルの電圧を測定することで、電圧低下に異常を示すセルが取り除かれている。   If one of the cells constituting the battery module has different battery characteristics such as voltage and capacity from other cells, or if the battery characteristics deteriorate due to changes over time, etc., the abnormal characteristics of the cells It becomes a cell load and deteriorates the characteristics of the entire battery module. In particular, when the self-discharge is different, the voltage drop of each cell varies, the characteristics of the entire battery module are lowered, and the life is extremely shortened. If the variation in the voltage drop of each cell is too large, the control circuit described above cannot adjust and control the cell voltage and the like, and the CPU in the control circuit runs out of control, leading to a decrease in the reliability of the battery module. For this reason, in general, by measuring the voltage of a cell for a certain period after the battery is assembled, cells that show an abnormality in voltage drop are removed.

電圧低下の原因としては、正極活物質等の電池材料中に混入した不純物、特に金属性不純物の存在が挙げられる。混入した金属性不純物が電池の充放電等により金属イオンとして非水電解液中に溶出し、溶出した金属イオンが負極に析出しデンドライト状に成長するので、正負極間で微小短絡を起こして自己放電するため、電圧低下が発生する。これを解決するために、出願人は、一般に、正極活物質層や非水電解液中に金属性不純物を実質的に含まないように制限する技術を開示している(例えば、特許文献1参照)。   The cause of the voltage drop is the presence of impurities, particularly metallic impurities, mixed in the battery material such as the positive electrode active material. The mixed metal impurities are eluted into the non-aqueous electrolyte as metal ions due to charging / discharging of the battery, etc., and the eluted metal ions are deposited on the negative electrode and grow in a dendrite shape. As it discharges, a voltage drop occurs. In order to solve this problem, the applicant generally discloses a technique for limiting the positive electrode active material layer and the non-aqueous electrolyte so as not to substantially contain metallic impurities (see, for example, Patent Document 1). ).

特開2002−75460号公報JP 2002-75460 A

しかしながら、負極活物質に非晶質炭素を用いたリチウムイオン二次電池では、電圧低下を示す放電カーブがなだらかであり、電池組立後の初期には比較的大きな電圧低下を生じる。従って、微小短絡が生じている不良電池と、良品電池とを電圧低下により選別するにはかなりの時間を費やす、という問題がある。また、電圧低下の速度にはバラツキが存在するため、良品電池でも電池間に電圧バラツキが生じる。上述した電池モジュールでは、制御回路により電圧を調整されているが、電圧バラツキが大きすぎると制御回路では調整できなくなるので、電池モジュールの信頼性が低下する。   However, in a lithium ion secondary battery using amorphous carbon as the negative electrode active material, the discharge curve indicating a voltage drop is gentle, and a relatively large voltage drop occurs in the initial stage after battery assembly. Therefore, there is a problem that it takes a considerable time to select a defective battery having a micro short circuit and a non-defective battery by a voltage drop. In addition, since there is a variation in the rate of voltage drop, voltage variations occur between batteries even in a non-defective battery. In the battery module described above, the voltage is adjusted by the control circuit. However, if the voltage variation is too large, the control circuit cannot adjust the voltage, so that the reliability of the battery module is lowered.

本発明は上記事案に鑑み、電圧低下を抑制でき電圧バラツキの少ないリチウムイオン二次電池を提供することを課題とする。   An object of the present invention is to provide a lithium ion secondary battery that can suppress voltage drop and has little voltage variation.

上記課題を解決するために、本発明は、負極活物質に非晶質炭素を主とする炭素材を用いた負極と、正極とを非水電解液に浸潤させたリチウムイオン二次電池において、初充電完了前に前記非水電解液に対して0.3重量%〜1.5重量%の範囲でビニレンカーボネートが添加されており、初充電により前記非水電解液に添加された前記ビニレンカーボネートが実質的に全て還元されて前記負極の表面に被膜が生成されていることを特徴とする。   In order to solve the above problems, the present invention provides a negative electrode using a carbon material mainly composed of amorphous carbon as a negative electrode active material, and a lithium ion secondary battery in which a positive electrode is infiltrated with a non-aqueous electrolyte. The vinylene carbonate is added in the range of 0.3% to 1.5% by weight with respect to the non-aqueous electrolyte before completion of the initial charge, and added to the non-aqueous electrolyte by the initial charge. Is substantially all reduced to form a film on the surface of the negative electrode.

本発明では、リチウムイオン二次電池内に混入した金属性不純物の金属イオンが充放電時に正負極に集中析出して微小短絡(自己放電)を引き起こすことが電圧低下の原因の一つであり、リチウムイオン二次電池間に電圧バラツキを生じさせることに着目し、この対策として非水電解液に対して0.3重量%〜1.5重量%の範囲でビニレンカーボネートを添加する。添加されたビニレンカーボネートが初充電により実質的に全て還元されて負極の表面に初充電完了後の還元反応を抑制する被膜を生成する。ビニレンカーボネートが0.3重量%に満たないと、被膜の生成が不十分となり、金属イオンが集中析出して微小短絡を生じるため、電圧低下を招き、反対に、1.5重量%を超えると、被膜の膜厚が増加してリチウムイオンの移動を阻害するため、出力低下を招く。本発明によれば、ビニレンカーボネートが還元されて負極表面に被膜が生成されているので、金属イオンの集中析出が抑制されるため、微小短絡による電圧低下を抑制することができると共に、被膜により負極表面が保護されほぼ均一に充放電されるため、電圧バラツキを低減することができる。   In the present invention, one of the causes of the voltage drop is that metal ions of metallic impurities mixed in the lithium ion secondary battery concentrate and deposit on the positive and negative electrodes during charge and discharge to cause a micro short circuit (self-discharge), Paying attention to voltage variation between lithium ion secondary batteries, vinylene carbonate is added in a range of 0.3 wt% to 1.5 wt% with respect to the non-aqueous electrolyte as a countermeasure. The added vinylene carbonate is substantially entirely reduced by the initial charge, and a film that suppresses the reduction reaction after the completion of the initial charge is generated on the surface of the negative electrode. If vinylene carbonate is less than 0.3% by weight, the formation of the coating is insufficient, and metal ions concentrate and precipitate, resulting in micro short-circuiting, leading to a voltage drop, and conversely, if exceeding 1.5% by weight. Since the film thickness of the coating is increased to inhibit the movement of lithium ions, the output is reduced. According to the present invention, since vinylene carbonate is reduced and a film is formed on the surface of the negative electrode, since concentrated precipitation of metal ions is suppressed, voltage drop due to a micro short circuit can be suppressed, and the negative electrode can be formed by the film. Since the surface is protected and charged and discharged almost uniformly, voltage variation can be reduced.

この場合において、非水電解液に添加するビニレンカーボネートの添加量を1.2重量%以上としてもよい。また、正極の活物質にリチウム遷移金属複酸化物を用いてもよい。   In this case, the amount of vinylene carbonate added to the non-aqueous electrolyte may be 1.2% by weight or more. Moreover, you may use a lithium transition metal double oxide for the active material of a positive electrode.

本発明によれば、ビニレンカーボネートが還元されて負極表面に被膜が生成されているので、金属イオンの集中析出が抑制されるため、微小短絡による電圧低下を抑制することができると共に、被膜により負極表面が保護されほぼ均一に充放電されるため、電圧バラツキを低減することができる、という効果を得ることができる。   According to the present invention, since vinylene carbonate is reduced and a film is formed on the surface of the negative electrode, since concentrated precipitation of metal ions is suppressed, voltage drop due to a micro short circuit can be suppressed, and the negative electrode can be formed by the film. Since the surface is protected and charged and discharged almost uniformly, an effect that voltage variation can be reduced can be obtained.

以下、本発明を、小型民生用リチウムイオン二次電池として広く普及している、直径18mm、高さ65mmの18650型リチウムイオン二次電池に適用した最良の形態について説明する。   Hereinafter, the best mode in which the present invention is applied to an 18650 type lithium ion secondary battery having a diameter of 18 mm and a height of 65 mm, which is widely spread as a small consumer lithium ion secondary battery, will be described.

(正極)
正極活物質としてリチウム遷移金属複酸化物のマンガン酸リチウム(LiMn)を使用した。LiMn粉末80重量%(以下、wt%と表記する。)と、導電剤として炭素粉末15wt%と、バインダとしてポリフッ化ビニリデン(以下、PVDFと表記する。)5wt%とを、分散溶媒のN−メチル−2−ピロリドン(以下、NMPと表記する。)に溶解し、混練してスラリを得た。得られたスラリを、コンマロールを用いて正極集電体となるアルミニウム箔の両面に塗布し、乾燥させて正極活物質層を形成した。この正極活物質層を、80°C〜120°Cに加熱したロールを有するロールプレス機にて、プレス圧0.2〜0.7kg/cmでプレスし正極活物質層のかさ密度2.8g/mとなるまで圧縮した後、50×450mmの帯状に裁断して正極とした。
(Positive electrode)
Lithium transition metal double oxide lithium manganate (LiMn 2 O 4 ) was used as the positive electrode active material. A dispersion solvent containing 80% by weight of LiMn 2 O 4 powder (hereinafter referred to as wt%), 15% by weight of carbon powder as a conductive agent, and 5% by weight of polyvinylidene fluoride (hereinafter referred to as PVDF) as a binder. In N-methyl-2-pyrrolidone (hereinafter referred to as NMP) and kneaded to obtain a slurry. The obtained slurry was applied to both surfaces of an aluminum foil serving as a positive electrode current collector using a comma roll and dried to form a positive electrode active material layer. This positive electrode active material layer was pressed at a press pressure of 0.2 to 0.7 kg / cm with a roll press having a roll heated to 80 ° C. to 120 ° C., and the bulk density of the positive electrode active material layer was 2.8 g. After compression to / m 3 , it was cut into a strip of 50 × 450 mm to obtain a positive electrode.

(負極)
負極活物質にリチウムイオンを挿入、脱挿入できる非晶質炭素粉末を用い、非晶質炭素粉末90wt%とPVDF10wt%との混合物にNMPを加え、混練してスラリを得た。得られたスラリを負極集電体となる銅箔の両面に塗布し、乾燥させて負極活物質層を形成した。この負極活物質層を、80°C〜120°Cに加熱したロールを有するロールプレス機にて、プレス圧0.2〜0.7kg/cmでプレスし負極活物質層のかさ密度1.04g/mとなるまで圧縮した後、50×480mmの帯状に裁断して負極とした。
(Negative electrode)
Using an amorphous carbon powder capable of inserting and removing lithium ions into the negative electrode active material, NMP was added to a mixture of 90 wt% amorphous carbon powder and 10 wt% PVDF and kneaded to obtain a slurry. The obtained slurry was applied to both sides of a copper foil serving as a negative electrode current collector and dried to form a negative electrode active material layer. This negative electrode active material layer was pressed at a press pressure of 0.2 to 0.7 kg / cm with a roll press having a roll heated to 80 ° C. to 120 ° C., and the bulk density of the negative electrode active material layer was 1.04 g. After being compressed to / m 3 , it was cut into a strip of 50 × 480 mm to obtain a negative electrode.

(非水電解液)
非水電解液は次のように調製した。非水電解液の溶媒には、エチレンカーボネート(以下、ECと表記する。)及びジメチルカーボネート(以下、DMCと表記する。)を体積比1:1で混合した混合溶媒を用い、これにビニレンカーボネート(以下、VCと表記する。)を非水電解液に対する添加量が0.3〜1.5wt%の範囲となるように添加混合した。非水電解液の溶質には、6フッ化リン酸リチウム(LiPF)を用い、濃度1.0モル/リットルで混合溶媒に溶解させた。なお、非水電解液中の金属性不純物含有量は1ppm以下となるようにした。
(Nonaqueous electrolyte)
The non-aqueous electrolyte was prepared as follows. As a solvent for the non-aqueous electrolyte, a mixed solvent in which ethylene carbonate (hereinafter referred to as EC) and dimethyl carbonate (hereinafter referred to as DMC) are mixed at a volume ratio of 1: 1 is used. (Hereinafter referred to as VC) was added and mixed so that the amount added to the non-aqueous electrolyte was in the range of 0.3 to 1.5 wt%. As the solute of the nonaqueous electrolytic solution, lithium hexafluorophosphate (LiPF 6 ) was used, and dissolved in a mixed solvent at a concentration of 1.0 mol / liter. The content of metallic impurities in the non-aqueous electrolyte solution was set to 1 ppm or less.

(電池組立)
作製した帯状の正極と負極とを、帯状のセパレータを介して重ねて捲回し、捲回電極体を作製した。この捲回電極体を円筒状の電池缶に入れ、非水電解液を5ml注液後、上蓋を取り付け、封口して、18650型リチウムイオン二次電池を完成させた。
(Battery assembly)
The produced belt-like positive electrode and negative electrode were wound with a belt-like separator overlapped to produce a wound electrode body. This wound electrode body was put into a cylindrical battery can, 5 ml of non-aqueous electrolyte was injected, an upper lid was attached, and the battery was sealed to complete a 18650 type lithium ion secondary battery.

以下、本実施形態に従って作製した実施例の電池について説明する。なお、比較のために作製した比較例の電池についても併記する。   Hereinafter, the battery of the Example produced according to this embodiment is demonstrated. In addition, it describes together about the battery of the comparative example produced for the comparison.

(実施例1〜実施例4)
下表1に示すように、実施例1〜実施例4では、非水電解液に対するVCの添加量を変化させてリチウムイオン二次電池を作製した。実施例1では0.3wt%、実施例2では0.8wt%、実施例3では1.2wt%、実施例4では1.5wt%とした。なお、作製電池数は、各実施例それぞれ100個とした(以下の比較例においても同じ。)。
(Example 1 to Example 4)
As shown in Table 1 below, in Examples 1 to 4, lithium ion secondary batteries were manufactured by changing the amount of VC added to the non-aqueous electrolyte. Example 1 was 0.3 wt%, Example 2 was 0.8 wt%, Example 3 was 1.2 wt%, and Example 4 was 1.5 wt%. The number of fabricated batteries was 100 for each example (the same applies to the following comparative examples).

(比較例1〜比較例2)
表1に示すように、比較例1では、非水電解液にVCを添加せずにリチウムイオン二次電池を作製し、比較例2では、非水電解液に対するVCの添加量を1.8wt%としてリチウムイオン二次電池を作製した。
(Comparative Examples 1 to 2)
As shown in Table 1, in Comparative Example 1, a lithium ion secondary battery was prepared without adding VC to the non-aqueous electrolyte, and in Comparative Example 2, the amount of VC added to the non-aqueous electrolyte was 1.8 wt. As a percentage, lithium ion secondary batteries were produced.

(試験)
作製した実施例及び比較例の各電池を以下の条件による初充電後に放置し、放置1週間目から8週間目までに低下した電圧を測定し、各週ごとに一日あたりの電圧低下量(mV/day)を算出した。電圧低下量のバラツキを比較する上で不良電池の電圧低下量を含まないようにするため、各実施例及び比較例の電池(各100個)について、電圧低下量の小さい順にそれぞれ90個の電池を良品として選別し、良品電池90個の中で電圧低下量の最小値と最大値とを求めた。また、25°Cにて満充電状態から1800mA放電した場合の5秒目の電圧を測定して抵抗値を求めた。下表2に、電圧低下量の最小値、最大値及び抵抗値の試験結果を示す。なお、表2において、各欄の上段の数値は最小値を示し、下段の数値は最大値を示す。
(初充放電条件)
(1)充電:定電圧充電4.1V、制限電流600mA、4h、25°C
(2)放電:定電流放電600mA、終止電圧2.7V、25°C
(3)充電:定電圧充電3.7V、制限電流900mA、3h、25°C
(test)
Each battery of the manufactured example and comparative example was left after the initial charge under the following conditions, the voltage dropped from the first week to the eighth week was measured, and the voltage drop per day (mV) for each week. / Day) was calculated. In order to prevent the voltage drop amount of a defective battery from being included when comparing the variations in the voltage drop amount, the batteries of each of the examples and comparative examples (100 batteries each) were each 90 batteries in order of increasing voltage drop amount. Were selected as non-defective products, and the minimum value and the maximum value of the voltage drop amount were determined among 90 non-defective batteries. Moreover, the resistance value was calculated | required by measuring the voltage of the 5th second at the time of discharging 1800mA from a full charge state at 25 degreeC. Table 2 below shows the test results of the minimum value, maximum value, and resistance value of the voltage drop amount. In Table 2, the upper numerical value of each column indicates the minimum value, and the lower numerical value indicates the maximum value.
(First charge / discharge conditions)
(1) Charging: constant voltage charging 4.1V, limiting current 600mA, 4h, 25 ° C
(2) Discharge: constant current discharge 600 mA, final voltage 2.7 V, 25 ° C.
(3) Charging: constant voltage charging 3.7V, limiting current 900mA, 3h, 25 ° C

また、8週間目の電圧測定後に明らかに電圧低下量が大きい電池と判断できる電池を不良電池とし、その数量を調べた。下表3に不良電池数及び不良電池の放置1週間目から8週間目までの電圧低下量の最小値の試験結果を示す。   Moreover, the battery which can be judged to be a battery whose voltage drop amount is obviously large after the voltage measurement at the 8th week was determined as a defective battery, and the number thereof was examined. Table 3 below shows the test results of the number of defective batteries and the minimum value of the voltage drop amount from the 1st week to the 8th week of leaving the defective batteries.

更に、不良電池を解体し、短絡原因について、異種金属による短絡、電極エッジの突起による短絡、製造不具合による短絡のそれぞれの数量を調べた。電池内に混入した異種金属がセパレータ上に析出すると黒い痕跡を示すことから、良品電池の中で電圧低下量が平均的な電池を解体してセパレータの観察を実施し、電池内の金属イオンの析出量(セパレータについた黒点の痕跡数)を調べた。下表4に、短絡原因別の不良電池数及び良品電池の黒点痕跡数の試験結果を示す。   Furthermore, the defective batteries were disassembled, and the number of shorts caused by different metals, shorts caused by protrusions on electrode edges, and shorts caused by manufacturing defects were investigated for causes of short circuits. Dissimilar metals mixed in the battery show black traces when they are deposited on the separator. Therefore, disassemble the batteries with the average voltage drop in non-defective batteries, observe the separator, and observe the metal ions in the battery. The amount of precipitation (the number of traces of black spots on the separator) was examined. Table 4 below shows the test results of the number of defective batteries for each cause of short circuit and the number of black spots on good batteries.

表2に示すように、非水電解液にVCを添加していない比較例1の電池では、良品電池の1週間目の電圧低下量は最大値4.30mV/day、最小値4.10mV/dayを示し、各週ごとの最大値と最小値との差、すなわち電圧低下量のバラツキは0.18〜0.22mV/dayを示した。これに対して、非水電解液に0.3〜1.5wt%の範囲のVCを添加した実施例1〜実施例4の電池では、1週間目の電圧低下量が最大値、最小値ともに小さくなり、各週ごとの電圧低下量のバラツキも低減した。非水電解液に対するVCの添加量を0.3wt%とした実施例1の電池では、1週間目の電圧低下量が若干大きい値を示した。また、非水電解液に対して1.8wt%のVCを添加した比較例2の電池では、1週間目の電圧低下量が小さく、各週ごとの電圧低下量のバラツキも低減しているが、抵抗値が大きくなった。このことから、非水電解液に対するVCの添加量が0.3〜1.5wt%の範囲であれば、初期の電圧低下量が小さくなり、8週間目までの電圧低下量のバラツキも小さくなることが判明した。添加量を1.2〜1.5wt%の範囲とすれば、電圧低下量のバラツキが更に小さくなる。   As shown in Table 2, in the battery of Comparative Example 1 in which VC was not added to the non-aqueous electrolyte, the voltage drop amount for the first week of the non-defective battery was 4.30 mV / day at the maximum value and 4.10 mV / day at the minimum value. The difference between the maximum value and the minimum value for each week, that is, the variation in the voltage drop amount was 0.18 to 0.22 mV / day. On the other hand, in the batteries of Examples 1 to 4 in which VC in the range of 0.3 to 1.5 wt% was added to the non-aqueous electrolyte, the voltage drop amount in the first week was both the maximum value and the minimum value. It became smaller, and the variation of the voltage drop every week was also reduced. In the battery of Example 1 in which the amount of VC added to the non-aqueous electrolyte was 0.3 wt%, the voltage drop amount in the first week showed a slightly large value. Further, in the battery of Comparative Example 2 in which 1.8 wt% of VC was added to the non-aqueous electrolyte, the voltage drop amount in the first week was small, and the variation in the voltage drop amount for each week was reduced. The resistance value has increased. From this, when the amount of VC added to the non-aqueous electrolyte is in the range of 0.3 to 1.5 wt%, the initial voltage drop amount becomes small, and the variation in the voltage drop amount up to the eighth week becomes small. It has been found. If the addition amount is in the range of 1.2 to 1.5 wt%, the variation in the voltage drop amount is further reduced.

表3に示すように、比較例1の電池では、不良電池数7であったのに対して、実施例1〜実施例2の電池では不良電池数4と低減し、実施例3〜実施例4の電池では不良電池数2〜3と更に低減した。また、電圧低下量について、表3の不良電池の最小値と、表2に示した良品電池の最大値とを比較すると、比較例1の電池では、4週間目以降に不良電池の最小値が良品電池の最大値より大きくなっている。これに対して、実施例1及び実施例2の電池では2週間目以降、実施例3及び実施例4の電池では1週間目から不良電池の最小値が良品電池の最大値より大きくなっている。このことから、実施例1〜実施例4の各電池では、初期の段階から不良電池と良品電池との電圧低下量の差がはっきり現れることが判明した。   As shown in Table 3, the number of defective batteries was 7 in the battery of Comparative Example 1, whereas the number of defective batteries was reduced to 4 in the batteries of Examples 1 to 2, and Examples 3 to Examples. In the battery of 4, the number of defective batteries was further reduced to 2-3. Further, when the voltage drop amount is compared with the minimum value of the defective battery in Table 3 and the maximum value of the non-defective battery shown in Table 2, the battery of Comparative Example 1 has a minimum value of the defective battery after the fourth week. It is larger than the maximum value of a good battery. On the other hand, the minimum value of the defective battery is larger than the maximum value of the non-defective battery from the second week onward in the batteries of Example 1 and Example 2, and from the first week in the batteries of Example 3 and Example 4. . From this, in each battery of Examples 1 to 4, it was found that the difference in voltage drop between the defective battery and the non-defective battery clearly appears from the initial stage.

表4に示すように、電極エッジ突起による短絡及び製造不具合による短絡が原因の不良電池数は、実施例及び比較例の電池でほぼ同数であった。また、比較例1の電池では、不良電池のほとんどが異種金属による短絡が原因であり、良品電池で観察された黒点痕跡数が13個であった。これに対して、実施例1〜実施例4の各電池では、異種金属による短絡が原因の不良電池数は0〜1と少なかった。また、黒点痕跡数については、実施例1〜実施例2の電池では6〜4個と少なく、実施例3〜実施例4の電池では1〜2個と更に少なかった。このことから、実施例1〜実施例4の電池では、異種金属の析出が少なく、微小短絡の発生が少ないことが判明した。   As shown in Table 4, the number of defective batteries due to the short circuit due to the electrode edge protrusion and the short circuit due to the manufacturing failure was almost the same in the batteries of the example and the comparative example. Further, in the battery of Comparative Example 1, most of the defective batteries were caused by short circuits due to different metals, and the number of black spot traces observed in the non-defective battery was 13. On the other hand, in each battery of Examples 1 to 4, the number of defective batteries due to short-circuiting with different metals was as small as 0 to 1. Further, the number of sunspot traces was as small as 6 to 4 in the batteries of Examples 1 to 2, and was further as 1 to 2 in the batteries of Examples 3 to 4. From this, it was found that in the batteries of Examples 1 to 4, there was little precipitation of dissimilar metals and the occurrence of minute short circuits was small.

リチウムイオン二次電池の非水電解液にVCを添加すると、VCがビニレン基の二重結合を有するため、充電により負極表面で速やかに還元され固体電解質膜(被膜)を生成する。生成した固体電解質膜が非水電解液と負極の炭素材との接触を妨げるため、固体電解質膜の表面では還元反応が抑制され金属イオンの集中析出や非水電解液の分解が生じにくくなる。また、固体電解質膜の膜厚が薄いとリチウムイオンが通過可能であるが、膜厚が増加すると抵抗成分となりリチウムイオンの移動を阻害する。このことから、非水電解液に対するVCの添加量が0.3wt%に満たないと、固体電解質膜の生成が不十分であるため、還元反応を抑制することができず、反対に、添加量が1.5wt%を超えると、生成する固体電解質膜の膜厚が増加するため、リチウムイオンの移動を阻害して出力の低下を招く。   When VC is added to the non-aqueous electrolyte of the lithium ion secondary battery, VC has a vinylene group double bond, so that it is rapidly reduced on the negative electrode surface by charging to produce a solid electrolyte membrane (film). Since the generated solid electrolyte membrane prevents contact between the non-aqueous electrolyte and the carbon material of the negative electrode, the reduction reaction is suppressed on the surface of the solid electrolyte membrane, so that concentrated precipitation of metal ions and decomposition of the non-aqueous electrolyte are less likely to occur. Further, when the solid electrolyte membrane is thin, lithium ions can pass through. However, as the thickness increases, it becomes a resistance component and inhibits movement of lithium ions. Therefore, if the amount of VC added to the non-aqueous electrolyte is less than 0.3 wt%, the reduction reaction cannot be suppressed because the formation of the solid electrolyte membrane is insufficient. When the content exceeds 1.5 wt%, the thickness of the solid electrolyte membrane to be generated increases, so that the migration of lithium ions is inhibited and the output is reduced.

本実施形態のリチウムイオン二次電池では、電池組立時(初充電完了前)に、非水電解液に対して0.3〜1.5wt%の範囲でVCが添加される。このため、電池組立後の初充電によりVCが負極表面で実質的に全て還元され、負極表面に適正な固体電解質膜が生成される。初充電完了後には、この固体電解質膜により負極表面での金属イオンの集中析出による微小短絡の発生や非水電解液の分解による抵抗成分の増加が抑制されるので、電圧の低下を抑制することができると共に、電池間の電圧のバラツキを低減することができる。従って、電池作製の歩留まりを向上させることができ、電池モジュールとして使用しても、電池の信頼性を確保することができる。   In the lithium ion secondary battery of the present embodiment, VC is added in the range of 0.3 to 1.5 wt% with respect to the non-aqueous electrolyte at the time of battery assembly (before completion of the initial charge). For this reason, VC is substantially entirely reduced on the negative electrode surface by the initial charge after battery assembly, and an appropriate solid electrolyte membrane is generated on the negative electrode surface. After the initial charge is completed, this solid electrolyte membrane suppresses the occurrence of micro short-circuits due to the concentrated precipitation of metal ions on the negative electrode surface and the increase in resistance component due to the decomposition of the non-aqueous electrolyte, thereby suppressing the voltage drop. And the variation in voltage between the batteries can be reduced. Therefore, the yield of battery production can be improved, and the reliability of the battery can be ensured even when used as a battery module.

また、負極活物質の非晶質炭素は、放電初期に特徴的な比較的大きな電圧低下を示し、電圧低下速度(一日あたりの電圧低下量)にバラツキもある。このため、良品電池の電圧低下速度を測定しても、微小短絡を起こしている不良電池との選別が難しく、選別に長期間を要する。本実施形態のリチウムイオン二次電池では、生成した固体電解質膜により負極表面が保護されるため、非晶質炭素の初期劣化を緩和することができる。このため、初期劣化に伴う電圧低下速度が遅くなると共に、電圧低下速度のバラツキが小さくなるので、良品電池と微小短絡の発生した不良電池とでは、電圧低下速度に明らかな差が生じることから、良品電池の選別精度を向上させることができる。また、良品電池と不良電池との差が短期間で生じるので、選別期間を短縮することができる。   Amorphous carbon of the negative electrode active material exhibits a relatively large voltage drop characteristic in the early stage of discharge, and there is a variation in the voltage drop rate (voltage drop amount per day). For this reason, even if the voltage drop rate of a non-defective battery is measured, it is difficult to select a defective battery causing a micro short circuit, and it takes a long time for the selection. In the lithium ion secondary battery of this embodiment, the surface of the negative electrode is protected by the generated solid electrolyte membrane, so that the initial deterioration of amorphous carbon can be mitigated. For this reason, the voltage drop rate associated with the initial deterioration becomes slow and the variation in the voltage drop rate becomes small.Therefore, a clear difference occurs in the voltage drop rate between the non-defective battery and the defective battery in which the micro short circuit occurs. The sorting accuracy of non-defective batteries can be improved. In addition, since the difference between the non-defective battery and the defective battery occurs in a short period, the selection period can be shortened.

なお、本実施形態では、非水電解液にECとDMCとを混合した溶液にLiPFを溶解し、所定量のVCを添加したものを例示したが、本発明はこれに限定されるものではなく、所定量のVCが添加されていればよい。本実施形態以外の非水電解液としては、有機溶媒には、プロピレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルカーボネート、γ−ブチルラクトン、テトラヒドロフラン、ジエチルエーテル、スルホラン、アセトニトリル等の単独もしくはこれらのうち二種類以上を混合した混合溶媒を使用することができ、電解質には、LiClO、LiBF、LiCl、LiBr、CHSOLi、LiAsF等を使用することができる。 In the present embodiment, LiPF 6 is dissolved in a solution obtained by mixing EC and DMC in a nonaqueous electrolytic solution, and a predetermined amount of VC is added. However, the present invention is not limited to this. It is sufficient that a predetermined amount of VC is added. As a non-aqueous electrolyte other than the present embodiment, organic solvents include propylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl carbonate, γ-butyllactone, tetrahydrofuran, diethyl ether, sulfolane, A single solvent such as acetonitrile or a mixed solvent in which two or more of these are mixed can be used, and LiClO 4 , LiBF 4 , LiCl, LiBr, CH 3 SO 3 Li, LiAsF 6, etc. can be used as the electrolyte. Can do.

また、本実施形態では、負極活物質に非晶質炭素を例示したが、本発明はこれに限定されるものではなく、非晶質炭素特有の放電カーブを有するものであれば適用可能である。例えば、非晶質炭素と黒鉛系炭素との混合系炭素材、非晶質炭素の表面を黒鉛系炭素で被覆したような複合黒鉛でも本発明の効果を同様に得ることができ、また、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。   Further, in the present embodiment, amorphous carbon is exemplified as the negative electrode active material, but the present invention is not limited to this, and can be applied as long as it has a discharge curve peculiar to amorphous carbon. . For example, the effects of the present invention can be obtained in the same way even in a mixed carbon material of amorphous carbon and graphite-based carbon, and composite graphite in which the surface of amorphous carbon is coated with graphite-based carbon. The particle shape is not particularly limited, such as a scale shape, a spherical shape, a fiber shape, or a lump shape.

更に、本実施形態では、正極活物質にリチウム遷移金属複酸化物のマンガン酸リチウムを例示したが、これ以外に使用可能なリチウム遷移金属複酸化物としては、Li、V、Cr、Fe、Co、Ni、Mn、W、Zn、B、Mgから選択される少なくとも一種類以上の金属元素でマンガン酸リチウムのマンガンサイト又はリチウムサイトを置換したリチウムマンガン複酸化物を使用するようにしてもよい。また、リチウムマンガン複酸化物に限らず、リチウムコバルト複酸化物やリチウムニッケル複酸化物を正極活物質に使用する場合にも本発明の適用が可能であり、更に、コバルトサイト、ニッケルサイト、リチウムサイトを上述した一種以上の金属元素で置換したリチウム遷移金属複酸化物にも適用可能である。更に、リチウム遷移金属複酸化物の結晶構造についてもスピネル結晶構造、層状結晶構造等、特に制限されるものではない。   Furthermore, in the present embodiment, lithium transition metal double oxide lithium manganate is exemplified as the positive electrode active material. However, other usable lithium transition metal double oxides include Li, V, Cr, Fe, and Co. Alternatively, a manganese site of lithium manganate or a lithium manganese complex oxide obtained by substituting the lithium site with at least one metal element selected from Ni, Mn, W, Zn, B, and Mg may be used. Further, the present invention is applicable not only to lithium manganese complex oxide but also to lithium cobalt complex oxide or lithium nickel complex oxide as a positive electrode active material, and further, cobalt site, nickel site, lithium The present invention can also be applied to lithium transition metal double oxides in which sites are substituted with one or more metal elements described above. Further, the crystal structure of the lithium transition metal double oxide is not particularly limited, such as a spinel crystal structure or a layered crystal structure.

また更に、本実施形態では、18650型リチウムイオン二次電池について例示したが、本発明は電池の形状、サイズについては限定されず、角形、その他の多角形の電池にも適用可能である。また、本発明の適用可能な構造としては、上述した電池容器に電池蓋を取り付けて封口されている構造の電池以外であっても構わない。このような構造の一例として正負外部端子が電池蓋を貫通し、電池容器内で軸芯を介して正負外部端子が押し合っている状態の電池を挙げることができる。更に本発明は、正極及び負極を捲回式の構造とせず、積層式の構造としたリチウムイオン二次電池にも適用可能である。   Furthermore, in the present embodiment, the 18650 type lithium ion secondary battery has been exemplified, but the present invention is not limited to the shape and size of the battery, and can be applied to a battery having a rectangular shape or other polygons. Further, the structure to which the present invention can be applied may be other than a battery having a structure in which a battery lid is attached to the battery container and sealed. As an example of such a structure, a battery in which positive and negative external terminals penetrate the battery lid and the positive and negative external terminals are pressed against each other via an axis in the battery container can be cited. Further, the present invention can be applied to a lithium ion secondary battery in which the positive electrode and the negative electrode are not wound structures but have a stacked structure.

更にまた、バインダとしては、本実施形態で例示したPVDFの他に、例えば、イソブチルアクリレート、オクチルアクリレート、ノニルアクリレート、ブチルメタクリレート及び2−エチルヘキシルメタクリレート等のアクリル酸、及び/又は、メタクリル酸の炭素数C4〜C12のアルキルエステルと、メタクリル酸、イタコン酸、マレイン酸、フマル酸やアクリルアミド及びメタクリルアミド等のポリアクリル酸等のカルボキシル基又はアミド基の官能基を有する不飽和単量体との共重合体や、ポリアミドやポリアミドイミドやポリアミドビスマレイミドやポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステルなどを挙げることができ、これら単独のほか併用して使用することができる。   Furthermore, as the binder, in addition to the PVDF exemplified in this embodiment, for example, acrylic acid such as isobutyl acrylate, octyl acrylate, nonyl acrylate, butyl methacrylate and 2-ethylhexyl methacrylate, and / or carbon number of methacrylic acid Copolymerization of C4-C12 alkyl ester with unsaturated monomer having a functional group of carboxyl group or amide group such as polyacrylic acid such as methacrylic acid, itaconic acid, maleic acid, fumaric acid, acrylamide and methacrylamide Examples thereof include polyester, polyamide, polyamideimide, polyamide bismaleimide, polybutylene terephthalate, polyethylene terephthalate, etc., and these can be used alone or in combination.

また、本実施形態では、正負極作製のプレス工程で加熱処理を行うときにロールを用いて加熱する例を示したが、バインダを溶融固化することができれば他の加熱処理により加熱するようにしてもよい。   Further, in the present embodiment, an example in which heating is performed using a roll when performing the heat treatment in the press step for producing the positive and negative electrodes is shown. However, if the binder can be melted and solidified, it is heated by another heat treatment. Also good.

本発明に係るリチウムイオン二次電池によれば、電圧低下を抑制でき電圧バラツキが少ないため、電池の信頼性を確保することができるので、製造、販売等に寄与し、産業上利用することができる。   According to the lithium ion secondary battery according to the present invention, since the voltage drop can be suppressed and the voltage variation is small, the reliability of the battery can be secured, so that it contributes to manufacturing, sales, etc., and can be used industrially. it can.

Claims (3)

負極活物質に非晶質炭素を主とする炭素材を用いた負極と、正極とを非水電解液に浸潤させたリチウムイオン二次電池において、初充電完了前に前記非水電解液に対して0.3重量%〜1.5重量%の範囲でビニレンカーボネートが添加されており、初充電により前記非水電解液に添加された前記ビニレンカーボネートが実質的に全て還元されて前記負極の表面に被膜が生成されていることを特徴とするリチウムイオン二次電池。   In a lithium ion secondary battery in which a negative electrode using a carbon material mainly composed of amorphous carbon as a negative electrode active material and a positive electrode are infiltrated in a non-aqueous electrolyte, before the completion of initial charge, The vinylene carbonate is added in the range of 0.3 wt% to 1.5 wt%, and the vinylene carbonate added to the non-aqueous electrolyte by the initial charge is substantially all reduced, and the surface of the negative electrode A lithium ion secondary battery characterized in that a film is formed on the lithium ion secondary battery. 前記非水電解液に対する前記ビニレンカーボネートの添加量が1.2重量%以上であることを特徴とする請求項1に記載のリチウムイオン二次電池。   2. The lithium ion secondary battery according to claim 1, wherein the amount of the vinylene carbonate added to the non-aqueous electrolyte is 1.2 wt% or more. 前記正極の活物質がリチウム遷移金属複酸化物であることを特徴とする請求項1又は請求項2に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the active material of the positive electrode is a lithium transition metal double oxide.
JP2003336735A 2003-09-29 2003-09-29 Lithium ion secondary battery Pending JP2005108476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003336735A JP2005108476A (en) 2003-09-29 2003-09-29 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003336735A JP2005108476A (en) 2003-09-29 2003-09-29 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2005108476A true JP2005108476A (en) 2005-04-21

Family

ID=34532745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336735A Pending JP2005108476A (en) 2003-09-29 2003-09-29 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2005108476A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218065A (en) * 2008-03-10 2009-09-24 Hitachi Ltd Lithium secondary battery and method for manufacturing the same
JP2016021301A (en) * 2014-07-14 2016-02-04 トヨタ自動車株式会社 Method for manufacturing nonaqueous secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218065A (en) * 2008-03-10 2009-09-24 Hitachi Ltd Lithium secondary battery and method for manufacturing the same
US8192871B2 (en) 2008-03-10 2012-06-05 Hitachi, Ltd. Lithium secondary battery and production method of the same
JP2016021301A (en) * 2014-07-14 2016-02-04 トヨタ自動車株式会社 Method for manufacturing nonaqueous secondary battery
CN106537677A (en) * 2014-07-14 2017-03-22 丰田自动车株式会社 Method of manufacturing nonaqueous secondary battery
KR101930178B1 (en) * 2014-07-14 2018-12-17 도요타지도샤가부시키가이샤 Method of manufacturing nonaqueous secondary battery
US10249915B2 (en) 2014-07-14 2019-04-02 Toyota Jidosha Kabushiki Kaisha Method of manufacturing nonaqueous secondary battery
CN106537677B (en) * 2014-07-14 2019-08-09 丰田自动车株式会社 The method for manufacturing non-aqueous secondary batteries

Similar Documents

Publication Publication Date Title
US9843044B2 (en) Positive electrode
JP4213687B2 (en) Nonaqueous electrolyte battery and battery pack
JP4314223B2 (en) Regenerative power storage system, storage battery system and automobile
JP5438299B2 (en) Nonaqueous electrolyte battery and battery pack
US8597837B2 (en) Method for producing nonaqueous electrolyte lithium-ion secondary battery
JP3866740B2 (en) Non-aqueous electrolyte secondary battery, assembled battery and battery pack
US9368995B2 (en) Lithium ion battery charging method and battery-equipped device
JP2007018881A (en) Non-aqueous electrolyte battery and battery pack
JP2007080738A (en) Nonaqueous electrolyte battery and battery pack
US8431267B2 (en) Nonaqueous secondary battery
JP2017073331A (en) Secondary battery device
JP2016033898A (en) Nonaqueous electrolyte battery and battery pack
JP5203632B2 (en) Non-aqueous electrolyte battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
JP2006216305A (en) Secondary battery
US8980482B2 (en) Nonaqueous electrolyte lithium ion secondary battery
JP5150095B2 (en) Non-aqueous electrolyte battery
JP2001357874A (en) Nonaqueous electrolyte secondary battery
JP2014035924A (en) Nonaqueous electrolyte secondary battery
JP2003036887A (en) Inspection method for lithium secondary battery
JP2002075460A (en) Lithium secondary cell
WO2004042861A1 (en) Method for charging nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell
JP5774670B2 (en) Nonaqueous electrolyte battery and battery pack
JP2005108476A (en) Lithium ion secondary battery
CN100541903C (en) Electrolyte and battery