JP2005106778A - Filter chip, method for observing flow characteristics of cells and particles using the cells - Google Patents

Filter chip, method for observing flow characteristics of cells and particles using the cells Download PDF

Info

Publication number
JP2005106778A
JP2005106778A JP2003344388A JP2003344388A JP2005106778A JP 2005106778 A JP2005106778 A JP 2005106778A JP 2003344388 A JP2003344388 A JP 2003344388A JP 2003344388 A JP2003344388 A JP 2003344388A JP 2005106778 A JP2005106778 A JP 2005106778A
Authority
JP
Japan
Prior art keywords
filter chip
flow path
cells
passing
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003344388A
Other languages
Japanese (ja)
Inventor
Yoshiki Sakaino
佳樹 境野
Toshifuru Ito
敏古 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2003344388A priority Critical patent/JP2005106778A/en
Publication of JP2005106778A publication Critical patent/JP2005106778A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filter chip used for observing the shapes of cells and/or floating particles, contained in a sample liquid passing through a fine processed flow channel provided to a substrate under suction pressure or pressure and is capable of clearing the shapes of the cells and/or floating particles small in shadow in the fine processed flow channel and passing through this flow channel and reducing the destruction of cells or the like. <P>SOLUTION: This filter chip has a difference between the upper and lower widths of the cross section, in the direction of crossing the fine flow channel of the protruded part of the fine flow channel is about 4 μm or smaller and has no acute angle shape in the surface opposite to the flow of the sample liquid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、細胞及び粒子の流れ特性の測定に使用するフィルターチップ、そのフィルターチップを用いた流れ特性の観察方法及び測定装置に関する。   The present invention relates to a filter chip used for measuring flow characteristics of cells and particles, a flow characteristic observation method and a measurement apparatus using the filter chip.

例えば、血液の一成分である赤血球は、血液中で外力を受けて、種々の形に変形しながら毛細血管のような微小循環領域を流れている。特に、赤血球の直径(7〜8μm)の半分以下の直径を持つ末梢血管中を流れる際には、赤血球の変形が不可欠である。従って、赤血球の変形し易さ(以下、変形能という)は、健康維持にとって非常に重要であり、循環器系の疾患の診断等において、変形能の迅速かつ的確な測定が望まれている。   For example, erythrocytes, which are components of blood, flow through microcirculation regions such as capillaries while receiving external forces in the blood and deforming into various shapes. In particular, deformation of red blood cells is indispensable when flowing in a peripheral blood vessel having a diameter of half or less of the diameter of red blood cells (7 to 8 μm). Therefore, the ease of deformation of red blood cells (hereinafter referred to as deformability) is very important for maintaining health, and rapid and accurate measurement of deformability is desired in the diagnosis of cardiovascular diseases and the like.

特許文献1には、吸引圧力下あるいは加圧下で、微細加工流路例えばフィルタないし回路を通過する細胞および粒子浮遊液の通過速度によって、細胞および粒子の流れ特性を測定するにあたり、測定すべき試料浮遊液の通過前に前記微細加工流路に試料浮遊液の媒体または粒子を浮遊させるのに用いた液体を通過させ、その後連続して試料浮遊液を通過させることで媒体と試料浮遊液の通過速度をそれぞれ連続して測定する細胞および粒子の流れ特性測定方法、及びこの方法に基づく流れ特性測定装置が開示されている。   Patent Document 1 discloses a sample to be measured in measuring the flow characteristics of cells and particles by the passage speed of cells and particle suspensions passing through a microfabrication channel such as a filter or a circuit under suction pressure or pressure. Pass the sample suspension liquid or the liquid used to suspend the sample suspension liquid through the microfabrication channel before passing the suspension liquid, and then pass the sample suspension liquid continuously by passing the medium and the sample suspension liquid. Disclosed are a method for measuring flow characteristics of cells and particles, each of which continuously measures velocity, and a flow characteristic measuring apparatus based on this method.

上記明細書において、微細加工流路としては、例えばシリコンや水晶基板上に流路部(V溝)を設けたフィルターチップが開示されている。圧力差により、例えば赤血球を含む試料液をフィルターチップ上に流し、赤血球がV溝を流れるときの様子を反射型の顕微鏡を用いて観察している。この方法によれば、血液細胞および微粒子の通過速度観察によって赤血球変形能、白血球活性度、血小板凝集能、リポゾームの流動性および微小粒体の流動性の測定が可能である。   In the above specification, as a finely processed flow path, for example, a filter chip in which a flow path portion (V groove) is provided on silicon or a quartz substrate is disclosed. For example, a sample solution containing red blood cells is caused to flow on the filter chip due to the pressure difference, and the state of the red blood cells flowing through the V-groove is observed using a reflection microscope. According to this method, it is possible to measure erythrocyte deformability, leukocyte activity, platelet aggregation ability, liposome fluidity and microparticle fluidity by observing the passing speed of blood cells and microparticles.

しかしながら、上記明細書に開示されたV溝を有するフィルターチップを使用すると、顕微鏡による観察時に、V溝を形成する凸部の周囲に影が形成され、観察の障害となる場合がある。また、この凸部の両端が鋭い角度を有するため、試料液内の細胞や粒子がここに衝突して破壊される恐れがある。   However, when the filter chip having the V-groove disclosed in the above specification is used, a shadow may be formed around the convex portion forming the V-groove during observation with a microscope, which may obstruct observation. In addition, since both ends of the convex portion have a sharp angle, there is a possibility that cells or particles in the sample liquid collide with it to be destroyed.

特開平11−118819号公報JP-A-11-118819

本発明は、反射型の顕微鏡で観察したときに、微細加工流路内に影を生じない微細加工流路を有するフィルターチップ提供することを課題とする。また、本発明は、試料液を流したときに、試料液内の細胞や粒子が破壊される恐れの少ない微細加工流路を有するフィルターチップ提供することを課題とする。更に、本発明は、前記フィルターチップを使用した、細胞及び粒子の流れ特性を観察する方法及び測定装置に関する。   It is an object of the present invention to provide a filter chip having a microfabricated flow path that does not cause a shadow in the microfabricated flow path when observed with a reflection microscope. Another object of the present invention is to provide a filter chip having a microfabricated flow path that is less likely to destroy cells and particles in the sample solution when the sample solution is flowed. Furthermore, the present invention relates to a method and a measuring apparatus for observing the flow characteristics of cells and particles using the filter chip.

本発明者等は、上記課題を解決すべく鋭意研究の結果、観察の障害となる影は、フィルターチップ上の流路の断面形状の改良により防止できること、および、流路を形成するための凸部との衝突による試料液内の細胞や粒子の破壊は、凸部の形状の改良により防止できることを見いだし、本発明を完成した。   As a result of diligent research to solve the above problems, the present inventors have been able to prevent shadows that obstruct observation by improving the cross-sectional shape of the flow path on the filter chip, and the convexity for forming the flow path. It was found that the destruction of cells and particles in the sample liquid due to the collision with the portion can be prevented by improving the shape of the convex portion, and the present invention has been completed.

更に本発明者等は、血液等の流れ特性の観察と、血液中の成分の測定を並行して行うことにより、臨床検査の分野において従来得られなかった知見を得ることができることを見いだした。   Furthermore, the present inventors have found that knowledge that has not been obtained in the field of clinical examinations can be obtained by observing the flow characteristics of blood or the like and measuring components in the blood in parallel.

即ち、本発明の課題は、1)吸引圧力あるいは加圧下で、微細加工流路を通過する試料液中の細胞や浮遊粒子の形状を反射型の顕微鏡で観察するために使用するフィルターチップにおいて、前記微細加工流路を形成する凸部の上部と下部の幅の差が約4μm以下であることを特徴とするフィルターチップ、及びそのフィルターチップを用いた細胞及び/又は粒子の流れ特性の観察方法、2)前記微細加工流路を形成するための凸部の、流路に対向する、少なくとも流路入り口側の辺が、平面視ほぼ二等辺鈍角三角形又は直線からなることを特徴とするフィルターチップ、およびそのフィルターチップを用いた細胞及び/又は粒子の流れ特性の観察方法、3)一台の中に、前記微細加工流路が形成されたフィルターチップを使用する細胞及び/又は粒子の流れ特性の観察と、血液中の成分の測定を並行して行うことができる機能を持つ測定装置、により達成された。   That is, the problems of the present invention are as follows: 1) In a filter chip used for observing the shape of cells and suspended particles in a sample solution passing through a microfabrication channel under a suction pressure or pressurization with a reflective microscope, The difference between the width of the upper part and the lower part of the convex part forming the microfabricated flow path is about 4 μm or less, and the method for observing the flow characteristics of cells and / or particles using the filter chip 2) A filter chip characterized in that at least a side of the convex portion for forming the microfabricated flow channel facing the flow channel and on the flow channel entrance side is substantially an isosceles obtuse triangle or a straight line in plan view. And a method for observing the flow characteristics of cells and / or particles using the filter chip, and 3) cells using the filter chip in which the microfabricated flow path is formed in one unit and / or It was achieved and observed for flow properties of the particles, measuring device having a function that can perform in parallel measurements of components in the blood, by.

本発明の微細加工流路が形成されたフィルターチップを用いると、流路を形成する凸部の、観察の障害となるような影が流路内に生じることがないので、反射型の顕微鏡により、流路を通過する際の細胞及び/又は粒子の形状まで明瞭に観察することができる。   When the filter chip with the microfabricated flow channel of the present invention is used, the projections forming the flow channel do not cause shadows in the flow channel that obstruct the observation. The shape of the cells and / or particles when passing through the flow path can be clearly observed.

また、流路を形成する凸部の、少なくとも細胞及び/又は粒子が流入する側の辺を、平面視ほぼ鈍角二等辺三角形よりも平らに形成してあるので、細胞及び/又は粒子がこの辺に衝突して破壊される危険性が大幅に低減される。   In addition, since at least the side where the cells and / or particles flow into the convex portion forming the flow path is formed to be flatter than the obtuse isosceles triangle in plan view, the cells and / or particles are on this side. The risk of being destroyed by collision is greatly reduced.

本発明のフィターチップによる細胞及び/又は粒子の流れ特性と、血液中の特定成分の定量を並行して実施するこくとが可能な本発明の測定装置を用いると、これらのデータの相関から、従来得られなかった臨床検査における新たな知見を得ることが可能になる。   By using the measuring apparatus of the present invention that can perform the flow characteristics of cells and / or particles by the fitter chip of the present invention and the quantification of specific components in blood in parallel, the correlation between these data indicates that It is possible to obtain new findings in clinical tests that could not be obtained.

本発明になるフィルターチップは、図1に示すような平面基本形状を有する。即ち基板上に、微細加工により、ほぼ一定の形状を有し、かつほぼ等間隔に配置された一群の凸部が形成されている。吸引または加圧により、細胞及び/又は粒子を含む試料液はこの凸部の間の隙間を通過する。微細加工をするには、例えば半導体チップの製造分野で公知の方法を使用できる。基板としては、ガラス、水晶、シリコン等、微細加工が可能な任意の材料を使用できる。   The filter chip according to the present invention has a basic planar shape as shown in FIG. That is, a group of convex portions having a substantially constant shape and arranged at almost equal intervals are formed on the substrate by fine processing. By suction or pressurization, the sample liquid containing cells and / or particles passes through the gap between the convex portions. For fine processing, for example, a known method in the field of manufacturing semiconductor chips can be used. As the substrate, any material that can be finely processed, such as glass, quartz, and silicon, can be used.

凸部の大きさ、及び間隔は、観察対象とする細胞及び/又は粒子の性状に応じて、種々選択することができる。例えば、図1において、3個のフィルターチップの流路の幅は、左からそれぞれ2μm、6μm及び10μmに形成されている。   The size and interval of the convex portions can be variously selected according to the properties of the cells and / or particles to be observed. For example, in FIG. 1, the widths of the flow paths of three filter chips are 2 μm, 6 μm, and 10 μm from the left, respectively.

本発明のフィルターチップは、上記凸部の形状に特徴を有し、凸部の、微細流路に直交する方向の断面形状において、上部の幅と下部の幅の差が約4μm以下になるように、即ち、微細流路に平行な壁面が基板から垂直に近い角度で立ち上がっている。   The filter chip of the present invention is characterized by the shape of the convex part, and in the cross-sectional shape of the convex part in the direction perpendicular to the fine flow path, the difference between the upper width and the lower width is about 4 μm or less. In other words, the wall surface parallel to the fine channel rises from the substrate at an angle close to perpendicular.

図2に、従来本分野において使用されているフィルターチップ及び本発明になるフィルターチップにおいて、微細流路を形成する凸部の、微細流路に直交する方向の断面形状を模式的に示す。本発明になるフィルターチップでは、凸部の上底と下底の幅の差が小さい。   FIG. 2 schematically shows a cross-sectional shape in a direction perpendicular to the fine flow path of the convex portion forming the fine flow path in the filter chip conventionally used in this field and the filter chip according to the present invention. In the filter chip according to the present invention, the difference in width between the upper and lower bases of the convex portion is small.

図3に、従来本分野において使用されているフィルターチップ及び本発明になるフィルターチップを用いて全血を流動させたときの顕微鏡写真を示す。凸部の頂上において測定した流路の幅は同じである。これから明らかな通り、本発明になるフィルターチップにおいては、流路に落ちる凸部の影が小さいので、流路内にある細胞及び/又は粒子を容易に、かつ明瞭に観察できる。   FIG. 3 shows a photomicrograph when whole blood is flowed using a filter chip conventionally used in this field and the filter chip according to the present invention. The width of the channel measured at the top of the convex part is the same. As is clear from the above, in the filter chip according to the present invention, the shadow of the convex portion falling in the flow channel is small, so that cells and / or particles in the flow channel can be easily and clearly observed.

また、図3は、2種のフィルターチップにおける凸部の平面形状の相違を表している。図3から明らかな通り、従来のフィルターチップにおける凸部は、試料液の流れに対向する辺に鋭い角があり、試料液中の細胞及び/又は粒子がこれに衝突して破損される恐れがある。これに対して本発明になるフィルターチップでは、試料液の流れに対向する辺がほぼ直線状であるため、この恐れが大きく低減される。   Moreover, FIG. 3 represents the difference in the planar shape of the convex part in two types of filter chips. As is apparent from FIG. 3, the convex portion of the conventional filter chip has a sharp corner on the side facing the flow of the sample solution, and there is a risk that cells and / or particles in the sample solution will collide with this and be damaged. is there. On the other hand, in the filter chip according to the present invention, since the side facing the sample liquid flow is substantially linear, this fear is greatly reduced.

ただし、上記試料液の流れに対向する辺は直線状である必要はなく、平面視で、この辺を斜辺とするほぼ鈍角二等辺三角形の形状まで、凸部の外側に突出していてもよい。前記鈍角二等辺三角形の頂点は丸められていることが好ましい。   However, the side opposite to the flow of the sample solution does not need to be linear, and may protrude outside the convex portion in a plan view up to a substantially obtuse isosceles triangular shape with the side as an oblique side. The vertices of the obtuse isosceles triangle are preferably rounded.

試料液の流れに沿う凸部の辺は直線状である必要はなく、目的に応じて、凸部の平面形状がほぼ菱形、ほぼ鼓形等になるように形成してもよい。   The sides of the convex portions along the flow of the sample liquid do not need to be linear, and may be formed so that the planar shape of the convex portions is approximately a rhombus, a drum shape, or the like depending on the purpose.

また、試料液の入り口と出口を区別せずにフィルターチップを使用できるためには、凸部の、上記試料液の流れに対向する面の反対側の面も、同様の形状を有することが好ましい。   Further, in order to be able to use the filter chip without distinguishing the inlet and outlet of the sample solution, it is preferable that the surface of the convex portion opposite to the surface facing the flow of the sample solution has the same shape. .

いずれの形状においても、凸部は、平面視で角がないように丸められていることが好ましい。   In any shape, the convex portion is preferably rounded so as not to have a corner in plan view.

本発明になるフィルターチップにおいて、凸部の間隔、即ち微細流路の幅及び凸部の高さ、即ち微細流路の深さは、測定する対象に応じて適宜選択できるが、一般的には、微細流路の幅が約1〜20μm、深さが約1〜20μmの範囲にあるように、凸部を形成する。更に、これらは一枚のフィルターチップ上で一定である必要はなく、変化させてもよい。これにより、一枚のフィルターチップを用いて、細胞及び/又は粒子の流れ特性に関する多くの情報を得ることができる。   In the filter chip according to the present invention, the interval between the convex portions, that is, the width of the fine channel and the height of the convex portion, that is, the depth of the fine channel can be appropriately selected according to the object to be measured. The convex portions are formed so that the width of the fine channel is in the range of about 1 to 20 μm and the depth is about 1 to 20 μm. Furthermore, they do not have to be constant on a single filter chip and may vary. Thereby, a lot of information about the flow characteristics of cells and / or particles can be obtained using a single filter chip.

凸部の横幅、即ち微細流路が形成されるピッチは、微細加工が可能な範囲において、特に制限はない。   The lateral width of the convex portion, that is, the pitch at which the fine flow path is formed is not particularly limited as long as fine processing is possible.

本発明になる装置、即ち本発明になるフィルターチップを使用した流体の流れ特性の測定と、血液中の成分の測定を並行して実施できる装置により、臨床検査分野において従来得られなかった知見が得られるが、これについては、実施例において詳述する。   With the device according to the present invention, that is, the device capable of performing the measurement of the fluid flow characteristics using the filter chip according to the present invention and the measurement of the components in the blood in parallel, knowledge that has not been obtained in the clinical laboratory field has been obtained. This will be described in detail in the Examples.

以下実施例により本発明を更に詳細に説明するが、本発明の技術的範囲はこれら実施例に限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the technical scope of the present invention is not limited to these examples.

血液の流れを観察して計測する装置MC−FAN(日立原町電子工業株式会社製)を用いて、赤血球などの細胞が微細流路を通過する際の変形を観察し、全血,血漿,血清などの液体の流れを計測した。この際、本発明になる、微細流路を形成する凸部の上下の幅の差が約4μm以下のフィルターチップ(以下、カスタムチップという)を使用した。カスタムチップは、以下の仕様で作成した。   Using a device MC-FAN (manufactured by Hitachi Haramachi Electronics Co., Ltd.) that observes and measures blood flow, the deformation of cells such as red blood cells when passing through a fine channel is observed, and whole blood, plasma, and serum The flow of liquid such as was measured. At this time, a filter chip (hereinafter referred to as a custom chip) in which the difference in the vertical width of the convex portions forming the fine flow path according to the present invention is about 4 μm or less was used. The custom chip was created with the following specifications.

Figure 2005106778
Figure 2005106778

表1に示したチップ6及び従来のフィルターチップを用いて、全血の流速を測定し、赤血球の変形を画像として観察した結果を図3に示す。この図から明らかな通り、本発明のチップを用いると、凸部により流路に形成される影が少なくなり、流路を通過する赤血球の形状を明瞭に観察できることが判る。   FIG. 3 shows the results of measuring the flow rate of whole blood using the chip 6 shown in Table 1 and the conventional filter chip and observing the deformation of red blood cells as an image. As is apparent from this figure, it can be seen that when the chip of the present invention is used, the shadow formed in the flow path by the convex portion is reduced, and the shape of red blood cells passing through the flow path can be clearly observed.

なお、カスタムチップと従来のフィルターチップの平面視凸部形状の違いは、上記図3に示した通りである。   The difference in the shape of the convex portion in plan view between the custom chip and the conventional filter chip is as shown in FIG.

表1に示したチップ2からチップ10を用い、実施例1で使用したMC−FANを用いて、ヘパリンリチウムを抗凝固剤として健常人の男性から採血した全血,それを遠心分離して得た血漿,および生理的食塩水(生食)の流れを計測した。計測結果を図4に示す。   Using the chip 2 to the chip 10 shown in Table 1 and the MC-FAN used in Example 1, using heparin lithium as an anticoagulant, whole blood collected from a healthy male, and obtained by centrifugation Plasma and physiological saline (saline) flow were measured. The measurement results are shown in FIG.

図4から、流路の幅が広いほど全血,血漿,生食共通過速度が大きくなるが、血漿の通過速度と全血の通過速度の比をとると、驚くべきことに、流路幅4μm以上のときは比が約2と一定であり、流路幅が3μm以下になると比が急激に大きくなることがわかる。   From FIG. 4, the larger the flow path width, the larger the common blood, plasma, and saline consumption overspeed. When the ratio of the plasma passage speed and the whole blood passage speed is taken, it is surprising that the flow path width is 4 μm. In the above case, the ratio is constant at about 2, and it can be seen that the ratio increases rapidly when the flow path width is 3 μm or less.

これらチップの流路の深さは4.5μmだから、通常8μmの大きさの赤血球がこのような断面の小さい流路を通過する場合には、変形する必要がある。この方法によれば、赤血球が通過できる微細流路の幅を明確に定めることができ、これに基づき、試料液中の赤血球の変形し易さを、赤血球の通過速度を単独に測定した場合よりも、明確に比較することができる。   Since the depth of the flow path of these chips is 4.5 μm, it is necessary to deform when an erythrocyte having a size of 8 μm normally passes through the flow path having such a small cross section. According to this method, the width of the fine channel through which red blood cells can pass can be clearly defined, and based on this, the ease of deformation of red blood cells in the sample solution can be determined more than when the passage speed of red blood cells is measured alone. Can also be compared clearly.

表1に示したチップ6を用い、実施例1で使用したMC−FANを用いて、ヘパリンリチウムを抗凝固剤として健常人の男性12名から採血した全血,それを遠心分離して得た血漿,および生理的食塩水の流れを計測した。全血については、ヘマトクリット管でヘマトクリット値(Hct値)を求めた。計測結果の一例を図5に示す。   Using the chip 6 shown in Table 1, using the MC-FAN used in Example 1, heparin lithium as an anticoagulant and obtained by centrifuging whole blood collected from 12 healthy males Plasma and saline flow were measured. For whole blood, the hematocrit value (Hct value) was determined with a hematocrit tube. An example of the measurement result is shown in FIG.

図5から、全血の通過速度はHct値依存が大きく、Hct値が高いほど通過速度が遅くなること、Hct値が0の血漿でも通過速度に検体差があり、Hct値が変わってもこの差が維持されること、及び、血漿と全血の速度比をとると検体差がなくなり、全血の通過速度はHct値が0の血漿の速度とHct値で決まることがわかった。これから、本発明の方法を用いることにより、全血の流れがどのような因子で決定されるのかを明確に計測することができることがわかる。   From FIG. 5, the passage speed of whole blood is highly dependent on the Hct value. The higher the Hct value, the slower the passage speed, and even in plasma with a Hct value of 0, there is a difference in specimens in the passage speed. It was found that the difference was maintained, and that the specimen difference disappeared when the rate ratio between plasma and whole blood was taken, and the passage speed of whole blood was determined by the plasma speed and Hct value of Hct value 0. From this, it can be seen that by using the method of the present invention, it is possible to clearly measure what factor determines the flow of whole blood.

実施例3で用いた血漿について、更に、臨床自動分析装置7170(日立製作所)を用いて成分量を測定し、その値と血漿の通過速度とを比較をした。結果を図6に示す。図6の横軸において、TCHOは総コレステロール,LDLは低密度コレステロール,HDLは高密度コレステロール,TPは総タンパク,ALBはアルブミン,TGは中性脂肪を示す。低密度コレステロールの値は、総コレステロール濃度,高密度コレステロール濃度,中性脂肪濃度からフリードワルド式によって求めた。   For the plasma used in Example 3, the component amount was further measured using a clinical automatic analyzer 7170 (Hitachi, Ltd.), and the value was compared with the plasma passage speed. The results are shown in FIG. In the horizontal axis of FIG. 6, TCHO indicates total cholesterol, LDL indicates low density cholesterol, HDL indicates high density cholesterol, TP indicates total protein, ALB indicates albumin, and TG indicates neutral fat. The value of low density cholesterol was determined by the Friedwald equation from the total cholesterol concentration, high density cholesterol concentration, and neutral fat concentration.

図6から、血漿の通過速度は、総コレステロール濃度,低密度コレステロール濃度,総タンパク濃度と負の相関があること、及び高密度コレステロール濃度,アルブミン濃度,中性脂肪濃度とは相関が見られないことが判る。   From FIG. 6, the plasma passage speed has a negative correlation with total cholesterol concentration, low density cholesterol concentration, and total protein concentration, and no correlation with high density cholesterol concentration, albumin concentration, and neutral fat concentration. I understand that.

図5の結果と図6の結果を合わせて考えると、全血が微細流路を通過する速度がHct値と総コレステロール濃度,低密度コレステロール濃度,総タンパク濃度で決まる可能性があることを明らかにすることができた。図6の結果から明らかなように、本発明の方法を用いることにより、全血、血漿、血清などが微細流路を通過する際の速度を決める因子を明確にすることができることがわかる。   When the results of FIG. 5 and FIG. 6 are considered together, it is clear that the speed at which whole blood passes through the fine channel may be determined by the Hct value, total cholesterol concentration, low density cholesterol concentration, and total protein concentration. I was able to. As is apparent from the results of FIG. 6, it can be seen that by using the method of the present invention, the factors that determine the speed at which whole blood, plasma, serum, etc. pass through the fine channel can be clarified.

更に、図6に示した血漿中の成分量と血漿の流速の相関および図5に示した全血の流速のHct依存をもとに、全血中のHct値、総コレステロール濃度、総タンパク濃度から全血の流速を推定する。この推定した全血の流速と実際に測定した全血の流速を比較して、実際に測定した全血の流速が有意に遅い場合には、ケガ,血液の凝固に関する疾患などで全血中の血小板の活性,赤血球の活性が高くなり、血液の流れが悪くなったなどの、今までの臨床検査の情報では考えることのできなかった臨床的な知見を得ることができる。   Further, based on the correlation between the plasma component amount and the plasma flow rate shown in FIG. 6 and the Hct dependence of the whole blood flow rate shown in FIG. 5, the Hct value, total cholesterol concentration, and total protein concentration in whole blood are shown. To estimate the flow rate of whole blood. Compare the estimated whole blood flow rate with the actual measured whole blood flow rate. If the actual measured whole blood flow rate is significantly slow, It is possible to obtain clinical findings that could not be considered by the information of clinical tests so far, such as platelet activity and erythrocyte activity increased and blood flow deteriorated.

この相関は、全血の流速と血漿中の成分量を比較するだけに限定する必要はなく、血小板数と血漿中の成分量などを組み合わせるなど、幅広い臨床検査に応用することが可能である。   This correlation need not be limited to just comparing the flow rate of whole blood and the amount of components in plasma, but can be applied to a wide range of clinical tests, such as combining the platelet count and the amount of components in plasma.

このように、本発明の装置、即ち、一台の中に、本発明になるフィルターチップを用いた流体の流れ特性と血液中成分の測定を並行して実施できる機能を持つ装置により、臨床検査分野で新たな知見を得ることができる。   As described above, the apparatus according to the present invention, that is, the apparatus having the function of performing the measurement of the fluid flow characteristics and the blood components in parallel using the filter chip according to the present invention in one unit is used for clinical examination. New knowledge can be obtained in the field.

本発明になるフィルターチップを使用して、全血、血漿等の液体試料がフィルターチップを通過する速度を測定することにより、これら試料に含まれる成分を求めることができる。また、赤血球の変形のし易さを比較することができ、これらの結果は、臨床検査に適用できる。   By using the filter chip according to the present invention, the components contained in these samples can be determined by measuring the speed at which a liquid sample such as whole blood or plasma passes through the filter chip. Moreover, the ease of deformation of erythrocytes can be compared, and these results can be applied to clinical examinations.

本発明になるフィルターチップ(カスタムチップ)の凸部形状を示す平面図。The top view which shows the convex part shape of the filter chip | tip (custom chip | tip) which becomes this invention. カスタムチップと従来のフィルターチップの凸部形状の違いを示す模式図。The schematic diagram which shows the difference in the convex part shape of a custom chip | tip and the conventional filter chip | tip. カスタムチップと従来のフィルターチップの凸部形状を示す平面図。左側が従来のフィルターチップ、右側がカスタムチップ。The top view which shows the convex part shape of a custom chip | tip and the conventional filter chip | tip. The left side is a conventional filter chip, and the right side is a custom chip. 流路幅の異なるカスタムチップを用いて測定した全血、血漿及び生理食塩水の流路通過速度。Flow rate of whole blood, plasma and physiological saline through channels measured using custom tips with different channel widths. 流路幅が6.0±0.5のカスタムチップ(表1のチップ6)を用いて測定した全血、血漿及び生理食塩水の流路通過速度。Flow rate of whole blood, plasma, and physiological saline passage measured using a custom chip (chip 6 in Table 1) having a channel width of 6.0 ± 0.5. 表1のチップ6を用いて測定した血漿の流路通過速度と血漿内成分量との相関の有無。Whether or not there is a correlation between the flow rate of plasma flow path and the amount of components in plasma measured using the chip 6 of Table 1.

Claims (8)

吸引圧力又は加圧下で、基板上に設けられた微細加工流路を通過する試料液に含まれる細胞及び/又は浮遊粒子の形状を観察するために使用するフィルターチップにおいて、前記微細流路が基板上に設けられた複数の凸部により形成され、前記凸部の、前記微細流路に直交する方向の断面の上部と下部の幅の差が約4μm以下であることを特徴とするフィルターチップ。 In a filter chip used for observing the shape of cells and / or suspended particles contained in a sample liquid passing through a microfabricated flow path provided on a substrate under suction pressure or pressurization, the fine flow path is a substrate A filter chip formed by a plurality of convex portions provided on the top, wherein a difference in width between an upper portion and a lower portion of a cross section of the convex portion in a direction orthogonal to the fine flow path is about 4 μm or less. 一枚のフィルターチップ内で、前記微細加工流路の長さ、深さ及びピッチを一定に保ち、かつ幅を1μm以上20μm以下の範囲で段階的に変えたことを特徴とする請求項1に記載のフィルターチップ。 The length, depth, and pitch of the microfabricated flow path are kept constant in one filter chip, and the width is changed stepwise within a range of 1 μm to 20 μm. The filter chip as described. 一枚のフィルターチップ内で、前記微細加工流路の長さ、幅及びピッチを一定に保ち、かつ深さを1μm以上20μm以下の範囲で段階的に変えたことを特徴とする請求項1に記載のフィルターチップ。 The length, width and pitch of the microfabricated flow path are kept constant in one filter chip, and the depth is changed stepwise within a range of 1 μm to 20 μm. The filter chip as described. 吸引圧力又は加圧下で、基板上に設けられた微細加工流路を通過する試料液に含まれる細胞及び/又は浮遊粒子の形状を観察するために使用されるフィルターチップにおいて、前記微細流路が基板上に設けられた複数の凸部により形成され、かつ試料液の流れ方向に対向する前記凸部の平面視の辺が、ほぼ鈍角二等辺三角形又は前記流れ方向に直角な直線であることを特徴とするフィルターチップ。 In a filter chip used for observing the shape of cells and / or suspended particles contained in a sample solution passing through a microfabricated flow path provided on a substrate under suction pressure or pressurization, the fine flow path is The side in plan view of the convex portion formed by a plurality of convex portions provided on the substrate and facing the flow direction of the sample liquid is substantially an obtuse isosceles triangle or a straight line perpendicular to the flow direction. A featured filter chip. 前記凸部の前記ほぼ鈍角二等辺三角形の頂角、又は鈍角二等辺三角形が形成されていない多角形である凸部においてはその角の少なくとも一つが、平面視で丸められていることを特徴とする請求項4に記載のフィルターチップ。 In the convex part that is a polygon in which the apex angle of the substantially obtuse isosceles triangle or the obtuse angle isosceles triangle is not formed, at least one of the corners is rounded in a plan view. The filter chip according to claim 4. 請求項1から5のいずれかに記載のフィルターチップを用い、吸引圧力又は加圧下で、前記フィルターチップの微細加工流路を通過する全血の通過速度と、血漿及び/又は血清の通過速度を連続的に及び/又は間欠的に測定し、前記全血の通過速度と、血漿及び/又は血清の通過速度の比又は逆比を求めることを特徴とする血液の流れ特性測定方法。 Using the filter chip according to any one of claims 1 to 5, under the suction pressure or pressurization, the passing speed of whole blood passing through the microfabricated flow path of the filter chip and the passing speed of plasma and / or serum are determined. A method for measuring blood flow characteristics, characterized by measuring continuously and / or intermittently and determining a ratio or inverse ratio of the passage speed of whole blood and the passage speed of plasma and / or serum. 請求項1から5のいずれかに記載のフィルターチップを用い、吸引圧力又は加圧下で、前記フィルターチップの微細加工流路を通過する全血及び/又は血漿及び/又は血清の通過速度を連続的に及び/又は間欠的に測定することを特徴とする血液の流れ特性測定方法。 Using the filter chip according to any one of claims 1 to 5, the passing speed of whole blood and / or plasma and / or serum passing through the microfabricated flow path of the filter chip is continuously applied under suction pressure or pressurization. And / or intermittently measuring the blood flow characteristics. 請求項1から5のいずれかに記載のフィルターチップを使用した流体の流れ特性の測定と、血液中の成分の測定を並行して実施できる測定装置。 A measurement apparatus capable of performing measurement of fluid flow characteristics using the filter chip according to claim 1 and measurement of components in blood in parallel.
JP2003344388A 2003-10-02 2003-10-02 Filter chip, method for observing flow characteristics of cells and particles using the cells Pending JP2005106778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003344388A JP2005106778A (en) 2003-10-02 2003-10-02 Filter chip, method for observing flow characteristics of cells and particles using the cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003344388A JP2005106778A (en) 2003-10-02 2003-10-02 Filter chip, method for observing flow characteristics of cells and particles using the cells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007271951A Division JP2008064766A (en) 2007-10-19 2007-10-19 Filter tip and method for observing flow characteristics of cell and particle

Publications (1)

Publication Number Publication Date
JP2005106778A true JP2005106778A (en) 2005-04-21

Family

ID=34538040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003344388A Pending JP2005106778A (en) 2003-10-02 2003-10-02 Filter chip, method for observing flow characteristics of cells and particles using the cells

Country Status (1)

Country Link
JP (1) JP2005106778A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069418A1 (en) * 2007-11-28 2009-06-04 Konica Minolta Opto, Inc. Blood fluidity measurement apparatus and blood fluidity measurement method
WO2009069417A1 (en) * 2007-11-28 2009-06-04 Konica Minolta Opto, Inc. Blood fluidity measurement system and blood fluidity measurement method
WO2010007856A1 (en) * 2008-07-16 2010-01-21 コニカミノルタオプト株式会社 Blood property analysis system
WO2010137470A1 (en) * 2009-05-29 2010-12-02 コニカミノルタオプト株式会社 Device for measuring deformability and method for measuring deformability
WO2010137471A1 (en) * 2009-05-29 2010-12-02 コニカミノルタオプト株式会社 Device for measuring amount of agglutinated blood cells and method for measuring amount of agglutinated blood cells
WO2011010569A1 (en) * 2009-07-24 2011-01-27 コニカミノルタオプト株式会社 Microchip and speed-measuring device
JP5423671B2 (en) * 2008-04-30 2014-02-19 コニカミノルタ株式会社 Blood aggregating capacity measuring device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069418A1 (en) * 2007-11-28 2009-06-04 Konica Minolta Opto, Inc. Blood fluidity measurement apparatus and blood fluidity measurement method
WO2009069417A1 (en) * 2007-11-28 2009-06-04 Konica Minolta Opto, Inc. Blood fluidity measurement system and blood fluidity measurement method
JP5146463B2 (en) * 2007-11-28 2013-02-20 コニカミノルタアドバンストレイヤー株式会社 Blood fluidity measuring device and blood fluidity measuring method
JP5146462B2 (en) * 2007-11-28 2013-02-20 コニカミノルタアドバンストレイヤー株式会社 Blood fluidity measurement system
JP5423671B2 (en) * 2008-04-30 2014-02-19 コニカミノルタ株式会社 Blood aggregating capacity measuring device
WO2010007856A1 (en) * 2008-07-16 2010-01-21 コニカミノルタオプト株式会社 Blood property analysis system
WO2010137470A1 (en) * 2009-05-29 2010-12-02 コニカミノルタオプト株式会社 Device for measuring deformability and method for measuring deformability
WO2010137471A1 (en) * 2009-05-29 2010-12-02 コニカミノルタオプト株式会社 Device for measuring amount of agglutinated blood cells and method for measuring amount of agglutinated blood cells
JP5541280B2 (en) * 2009-05-29 2014-07-09 コニカミノルタ株式会社 Deformability measuring device and deformability measuring method
WO2011010569A1 (en) * 2009-07-24 2011-01-27 コニカミノルタオプト株式会社 Microchip and speed-measuring device

Similar Documents

Publication Publication Date Title
Fitzgibbon et al. In vitro measurement of particle margination in the microchannel flow: effect of varying hematocrit
US20220113293A1 (en) Spatial separation of particles in a particle containing solution for biomedical sensing and detection
Evander et al. Microfluidic impedance cytometer for platelet analysis
EP2291509B1 (en) Microfluidic isolation of tumor cells or other rare cells from whole blood or other liquids
Moon et al. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP)
Tomaiuolo et al. Red blood cell clustering in Poiseuille microcapillary flow
AU2016238956B2 (en) Methods for segregating particles using an apparatus with a size-discriminating separation element having an elongate leading edge
Simon et al. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer
WO2009117664A2 (en) Method and apparatus for determining red blood cell indices of a blood sample utilizing the intrinsic pigmentation of hemoglobin contained within the red blood cells
Robinson et al. Rapid isolation of blood plasma using a cascaded inertial microfluidic device
Blattert et al. Separation of blood in microchannel bends
Holcar et al. Blood nanoparticles–influence on extracellular vesicle isolation and characterization
Bao et al. Single-cell electrical lysis of erythrocytes detects deficiencies in the cytoskeletal protein network
Lee et al. A simple method for activating the platelets used in microfluidic platelet aggregation tests: Stirring-induced platelet activation
JP6326582B2 (en) Microchannel chip for particle separation, particle separation system using the chip, and particle separation method
JP2005106778A (en) Filter chip, method for observing flow characteristics of cells and particles using the cells
JPH03257366A (en) Blood circuit and blood measuring apparatus and method
Chen et al. Pool–dam structure based microfluidic devices for filtering tumor cells from blood mixtures
Recktenwald et al. Cell-free layer of red blood cells in a constricted microfluidic channel under steady and time-dependent flow conditions
JP2008064766A (en) Filter tip and method for observing flow characteristics of cell and particle
Reinhart The influence of iron deficiency on erythrocyte deformability
KR20180017621A (en) Microfluidic channel based hydrodynamic activated microparticle sorting biochip
EP3581917A1 (en) Particle detection device and particle detection method
Laxmi et al. Effect of various parameters on the distribution and extraction of platelets in a microfluidic system
Kang Simultaneous measurement method of erythrocyte sedimentation rate and erythrocyte deformability in resource-limited settings

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060424

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070705

A521 Written amendment

Effective date: 20070730

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070903

A521 Written amendment

Effective date: 20071002

Free format text: JAPANESE INTERMEDIATE CODE: A523