JP2005106432A - Solar light collection and heat collection device - Google Patents

Solar light collection and heat collection device Download PDF

Info

Publication number
JP2005106432A
JP2005106432A JP2003343170A JP2003343170A JP2005106432A JP 2005106432 A JP2005106432 A JP 2005106432A JP 2003343170 A JP2003343170 A JP 2003343170A JP 2003343170 A JP2003343170 A JP 2003343170A JP 2005106432 A JP2005106432 A JP 2005106432A
Authority
JP
Japan
Prior art keywords
sunlight
reflecting mirror
mirror
parabolic main
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003343170A
Other languages
Japanese (ja)
Inventor
Mikio Takano
三樹男 高野
Takahiro Narita
孝宏 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003343170A priority Critical patent/JP2005106432A/en
Publication of JP2005106432A publication Critical patent/JP2005106432A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tracking type solar light collection and heat collection device capable of obtaining high heat collection ratio in a relatively small installation area. <P>SOLUTION: The solar light collection and heat collection device is equipped with a parabola main reflection mirror 1 which is mirror-finished to an extent that a reflecting face allows specular reflection for solar light and a heat collection body 3 integrally provided with the parabola main reflection mirror to be positioned in a focal area of solar light falling on its reflecting face. A mounting mechanism 4 for supporting the parabola main reflecting mirror so that the incident direction of solar light to the reflecting face of the parabola main reflecting mirror can be adjusted to direct in a predetermined azimuthal angle region and a predetermined elevation angle while the parabola main reflecting mirror is integrated with the heat collection body. When the incident direction to the reflecting face of the parabola main reflecting mirror is directed to a direction of solar light on the mounting mechanism, the solar light is collected to the heat collection body 3 and converted into thermal energy to achieve heat collection. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、太陽熱利用システムにおける太陽熱の集光集熱に関する。   The present invention relates to solar heat collection in a solar heat utilization system.

我が国における太陽の輻射エネルギは、地表で概略1KW/m2 前後とそのエネルギ密度は低い。
従って、太陽エネルギ利用システムとして、従来太陽の熱エネルギを捕捉するための光学的手段を用いた集熱器が提案されている(例えば、特許文献1参照)。
特公昭61−2852号公報 特開平10−281565号公報
The radiation energy of the sun in Japan is about 1 KW / m 2 on the ground surface, and its energy density is low.
Therefore, as a solar energy utilization system, a heat collector using optical means for capturing solar thermal energy has been proposed (see, for example, Patent Document 1).
Japanese Examined Patent Publication No. 61-2852 Japanese Patent Laid-Open No. 10-281565

従来、太陽熱の集熱は、太陽の位置が軌道上で時々刻々と移動するため、地上の任意の位置から太陽の軌道を追尾して集熱する「追尾型」と「非追尾型」即ち、固定型との2種に大別される。   Conventionally, the solar heat collection, the position of the sun moves from moment to moment on the orbit, so that tracking the solar orbit from any position on the ground to collect heat "tracking type" and "non-tracking type" There are two main types: fixed type.

固定型は、地表でのエネルギ密度の概略が1KW/m2 前後と低いため、集熱量を増加させるために比較的広大な土地面積を必要としている。
このため、集熱面積の拡張が試みられているが、面積の拡張に伴い集熱した熱量の熱輸送路が長大化し、熱損失も増加することから、システムの総合効率は著しく低下すると共にコストの膨張が避けられず、太陽熱利用システムの発展を大きく阻害していた。
また、固定型は、非集光方式による図4(a)に示す平板型及び集光方式による図4(b)に示すサイドミラ型が試みられているが、何れも集光比が1〜10程度と低いため、高い熱温度が得られず集熱量の増大を意図する場合、集熱面積の拡張を余儀なくされていた。図4(a)において、7は平板型パネル、8は集熱板、9は流体が流れる管路、10は集熱管、11はガラス板、12は断熱材である。また、図4(b)において、7は平板型パネル、13は平面鏡である。
The fixed type has a low energy density on the ground surface as low as about 1 kW / m 2, and therefore requires a relatively large land area to increase the amount of heat collected.
For this reason, expansion of the heat collection area has been attempted, but since the heat transport path for the amount of heat collected as the area is expanded and the heat loss increases, the overall efficiency of the system is significantly reduced and the cost is reduced. The expansion of solar power was unavoidable and greatly hindered the development of solar heat utilization system.
Moreover, as the fixed type, a flat plate type shown in FIG. 4 (a) by a non-condensing method and a side mirror type shown in FIG. 4 (b) by a condensing method have been tried. Because of the low temperature, if a high heat temperature cannot be obtained and the amount of heat collection is intended to increase, the heat collection area has to be expanded. In FIG. 4A, 7 is a flat panel, 8 is a heat collecting plate, 9 is a conduit through which a fluid flows, 10 is a heat collecting tube, 11 is a glass plate, and 12 is a heat insulating material. In FIG. 4B, 7 is a flat panel, and 13 is a plane mirror.

一方、追尾型では図5に示す「フレネルレンズ型」や線集光(熱)方式による図6に示す「円筒放物面鏡型」等が古くから試みられていたが集熱比は、10〜40程度と追尾した割りには高いエネルギ密度が得られず大きな効果が得られていない。図5において、14はフレネルレンズ、15は集熱部である。また、図6において、16は反射鏡(円筒放物面鏡)、17は集熱管、18はガラス円筒、19は流体入口、20は流体出口である。   On the other hand, in the tracking type, the “Fresnel lens type” shown in FIG. 5 and the “cylindrical parabolic mirror type” shown in FIG. A high energy density is not obtained for the tracking of about ˜40, and a great effect is not obtained. In FIG. 5, 14 is a Fresnel lens, and 15 is a heat collecting part. In FIG. 6, 16 is a reflecting mirror (cylindrical parabolic mirror), 17 is a heat collecting tube, 18 is a glass cylinder, 19 is a fluid inlet, and 20 is a fluid outlet.

また、点集光方式による図7に示す「回転放物面鏡型」等による大型集光反射鏡を用いた手法でも、集熱比は100〜500程度であって、更に大規模化が試みられて1000倍以上の高い集熱比が得られているものの、何れも広い土地面積と大型の設備を必要とし、コスト膨張を余儀なくされ、太陽熱利用システムの実用的な発展を阻害している。図7において、21は反射鏡(回転放物面鏡)である。   Further, even with a technique using a large-sized condensing reflector such as the “rotating parabolic mirror type” shown in FIG. 7 by the point condensing method, the heat collection ratio is about 100 to 500, and further enlargement is attempted. Although a high heat collection ratio of 1000 times or more has been obtained, all of them require a large land area and large-scale equipment, which necessitates a cost expansion, impeding the practical development of a solar heat utilization system. In FIG. 7, reference numeral 21 denotes a reflecting mirror (rotating parabolic mirror).

本発明の目的は、前記従来手法が集熱の為の広大な土地面積を必要とする欠点を除き、太陽エネルギを効果的に集熱する追尾型の集熱器として、比較的小さな専有面積で高い集熱比を得ることができるソーラ集光集熱器を提供することにある。   The object of the present invention is to eliminate the disadvantage that the conventional method requires a large land area for collecting heat, and as a tracking type collector that effectively collects solar energy, it has a relatively small exclusive area. An object of the present invention is to provide a solar concentrator that can obtain a high heat collection ratio.

この目的を達成するために、本発明による太陽光を集光集熱するソーラ集光集熱器は、
反射面が該太陽光に対して鏡面反射をする程度に鏡面仕上げされたパラボラ主反射鏡と、
該パラボラ主反射鏡の前記反射面に入射した前記太陽光の焦点領域に位置するように該パラボラ主反射鏡と一体化された集熱体と、
前記パラボラ主反射鏡の前記反射面への前記太陽光の入射方向を、該パラボラ主反射鏡が前記集熱体と一体化された状態で、所定の方位角範囲内と所定の仰角範囲内で指向調整可能なように支持するマウント機構とを備え、
前記パラボラ主反射鏡の前記反射面への前記入射方向が前記マウント機構上で前記太陽光の方向に指向されたときに、該太陽光が前記集熱体に集光され熱エネルギに変換されて集熱されるように構成されている。
In order to achieve this object, a solar concentrator that collects and collects sunlight according to the present invention includes:
A parabolic main reflecting mirror that is mirror-finished so that the reflecting surface reflects the sunlight.
A heat collector integrated with the parabolic main reflecting mirror so as to be located in a focal region of the sunlight incident on the reflecting surface of the parabolic main reflecting mirror;
The incident direction of the sunlight to the reflecting surface of the parabolic main reflecting mirror is within a predetermined azimuth angle range and a predetermined elevation angle range in a state where the parabolic main reflecting mirror is integrated with the heat collector. With a mounting mechanism that supports the orientation adjustment,
When the incident direction to the reflecting surface of the parabolic main reflector is directed to the direction of sunlight on the mount mechanism, the sunlight is condensed on the heat collector and converted into thermal energy. It is configured to collect heat.

また、本発明による太陽光を集光集熱するソーラ集光集熱器は、
反射面が該太陽光に対して鏡面反射をする程度に鏡面仕上げされたパラボラ主反射鏡と、
該太陽光に対して鏡面反射をする程度に鏡面仕上げされた双曲面または楕円面の反射面を有し、該パラボラ主反射鏡と該パラボラ主反射鏡の前記反射面に入射した前記太陽光の頂部焦点との中間に位置するように該パラボラ主反射鏡と一体化された副反射鏡と、
該副反射鏡の前記反射面から反射した前記太陽光の焦点領域に位置するように該パラボラ主反射鏡と一体化された集熱体と、
前記パラボラ主反射鏡の前記反射面への前記太陽光の入射方向を、該パラボラ主反射鏡が前記副反射鏡および前記集熱体と一体化された状態で、所定の方位角範囲内と所定の仰角範囲内で指向調整可能なように支持するマウント機構とを備え、
前記パラボラ主反射鏡の前記反射面への前記入射方向が前記マウント機構上で前記太陽光の方向に指向されたときに、該太陽光が前記集熱体に集光され熱エネルギに変換されて集熱されるように構成されている。
Moreover, the solar concentrator which collects and collects sunlight according to the present invention is
A parabolic main reflecting mirror that is mirror-finished so that the reflecting surface reflects the sunlight.
A reflecting surface of a hyperboloid or an elliptical surface that is mirror-finished to such a degree that it is specularly reflected with respect to the sunlight, the parabolic main reflecting mirror and the sunlight incident on the reflecting surface of the parabolic main reflecting mirror; A sub-reflector integrated with the parabolic main reflector so as to be in the middle of the top focus;
A heat collector integrated with the parabolic main reflector so as to be located in a focal region of the sunlight reflected from the reflecting surface of the sub-reflector;
The incident direction of the sunlight on the reflecting surface of the parabolic main reflecting mirror is set within a predetermined azimuth range with the parabolic main reflecting mirror integrated with the sub-reflecting mirror and the heat collector. And a mounting mechanism that supports the orientation adjustment within an elevation angle range of
When the incident direction to the reflecting surface of the parabolic main reflector is directed to the direction of sunlight on the mount mechanism, the sunlight is condensed on the heat collector and converted into thermal energy. It is configured to collect heat.

前記パラボラ主反射鏡の前記反射面への前記太陽光の入射方向が、該パラボラ主反射鏡の主軸方向であるように構成することができる。
また、前記パラボラ主反射鏡の前記反射面への前記太陽光の入射方向が、該パラボラ主反射鏡の主軸方向から所望の鋭角だけオフセットされた方向であるように構成することができる。
It can comprise so that the incident direction of the said sunlight to the said reflective surface of the said parabolic main reflector may be the principal axis direction of this parabolic main reflector.
Further, the incident direction of the sunlight to the reflecting surface of the parabolic main reflecting mirror can be configured to be a direction offset by a desired acute angle from the main axis direction of the parabolic main reflecting mirror.

前記マウント機構は、前記所定の方位角範囲内で旋回自在な水平回転支持構造と、該水平回転支持構造上で前記所定の仰角範囲内で旋回自在な仰角回転支持構造とを備え、前記太陽の黄道方程式による軌道情報により得られる独立のディジタル制御信号により、前記水平回転支持構造と前記仰角回転支持構造とが個別に制御されて、前記パラボラ主反射鏡の前記反射面への前記入射方向が前記マウント機構上で前記太陽光の方向に指向されるように構成することができる。   The mount mechanism includes a horizontal rotation support structure that is rotatable within the predetermined azimuth angle range, and an elevation rotation support structure that is rotatable within the predetermined elevation angle range on the horizontal rotation support structure. The horizontal rotation support structure and the elevation rotation support structure are individually controlled by an independent digital control signal obtained from orbit information by the ecliptic equation, and the incident direction to the reflection surface of the parabolic main reflector is the It can be configured to be directed in the direction of the sunlight on the mount mechanism.

前記太陽の黄道方程式による軌道情報は、さらに、時刻情報により修正された修正軌道情報により前記独立のディジタル制御信号が修正されるように構成することができる。
前記太陽の黄道方程式による軌道情報は、さらに、時刻情報および当該ソーラ集光集熱器が配置された位置情報により修正された修正軌道情報により前記独立のディジタル制御信号が修正されるように構成することができる。
The orbit information based on the solar ecliptic equation can be further configured such that the independent digital control signal is corrected by the corrected orbit information corrected by the time information.
The trajectory information by the solar ecliptic equation is further configured such that the independent digital control signal is corrected by the time information and the corrected trajectory information corrected by the position information where the solar collector is arranged. be able to.

本発明によるソーラ集光・集熱器により、集光・集熱の利得に比例した等価エネルギ密度を得ることができ、パラボラ集熱反射鏡の直径に類似の土地面積で効果的に太陽熱を集熱することが可能となり、従来方式の隘路である広大な土地面積が不要となる。また、集熱したエネルギの熱輸送路(伝送路)も短く形成されることから、集熱した熱エネルギの損失を低減し、高いシステム効率を得ることが可能となる。   The solar collector / collector according to the present invention can obtain an equivalent energy density proportional to the gain of the collector / collector, and can effectively collect solar heat in a land area similar to the diameter of the parabolic collector reflector. It becomes possible to heat, and the vast land area which is a conventional Kushiro road becomes unnecessary. Further, since the heat transport path (transmission path) for the collected energy is also formed short, loss of the collected heat energy can be reduced and high system efficiency can be obtained.

いま、前記パラボラ集熱反射鏡を用いて1m2 の面積に入射する太陽光(熱)を10cm2 の面積に集光(熱)したとすると、その集熱面積におけるエネルギ密度は、
1kw/m2×1m2/(10-3)m2=1000KW/m2 (1)
と、面積比に比例して上昇する。即ち、集熱能率を100%とすると、
集熱比(集光倍率)=太陽光の入射面積/集熱受光面積 (2)
だけ等価的にエネルギ密度を上昇させることができる。
Assuming that sunlight (heat) incident on an area of 1 m 2 is condensed (heated) into an area of 10 cm 2 using the parabolic heat collecting reflector, the energy density in the heat collection area is
1kw / m 2 × 1m 2 / (10 -3 ) m 2 = 1000KW / m 2 (1)
And rises in proportion to the area ratio. That is, assuming that the heat collection efficiency is 100%,
Heat collection ratio (condensing magnification) = sunlight incident area / heat collection light receiving area (2)
Only the energy density can be increased equivalently.

ここでは、マイクロ波通信に用いられているパラボラ空中線と同様の概念で特に、集熱比(集光倍率)を「集熱利得」と以下呼称し、1KW/m2 を基準値1とし、集熱比として相対値で表す。 Here, the concept is the same as that of the parabolic antenna used in microwave communication. In particular, the heat collection ratio (condensation magnification) is hereinafter referred to as “heat collection gain”, and 1 kW / m 2 is set as the reference value 1, It is expressed as a relative value as a heat ratio.

例えば、集熱比が100であれば集熱利得は、基準値1に対し、100倍の相対利得となり、等価的エネルギ密度は、100KW/m2 を得る。 For example, if the heat collection ratio is 100, the heat collection gain is 100 times the relative gain with respect to the reference value 1, and the equivalent energy density is 100 KW / m 2 .

Figure 2005106432
Figure 2005106432

この表1で集熱利得(相対値)のdB値は
集熱利得(dB値)=10log10 (集熱比)(dBr) (3)
と示すことが出来、等価エネルギ密度の上昇に寄与する利得の物理的意味の度合いを示すことが出来る。
In this Table 1, the dB value of the heat collection gain (relative value) is the heat collection gain (dB value) = 10 log 10 (heat collection ratio) (dBr) (3)
The degree of the physical meaning of the gain that contributes to the increase of the equivalent energy density can be shown.

図1(a)は、本発明を実施した「ペンシルビーム型」の集熱反射鏡の基本構成例図である。
1は直達入射太陽光(熱)を直接反射する反射効率を高めたパラボラ型主反射鏡、3はその焦点に位置して熱吸収効率を高めた円錐状の集熱部を示す。
主反射鏡1の概略直径は例えば数m以下(1〜3m)と比較的小さく、集熱部3と組合せて点集光し、各種の集熱利得を確保し、所要の熱エネルギ密度に対応したものである。
FIG. 1A is a diagram showing an example of the basic configuration of a “pencil beam type” heat collecting reflector in which the present invention is implemented.
Reference numeral 1 denotes a parabolic main reflecting mirror that increases the reflection efficiency for directly reflecting direct incident sunlight (heat), and 3 denotes a conical heat collecting portion that is located at the focal point and has an increased heat absorption efficiency.
The approximate diameter of the main reflector 1 is relatively small, for example, several meters or less (1 to 3 m), and in combination with the heat collecting section 3, point condensing is performed to ensure various heat collecting gains and to correspond to the required thermal energy density It is a thing.

図1(b)は、本発明を実施した「カセグレン型」の集熱反射鏡の基本構成例図である。
1は直達入射太陽光(熱)を直接反射する反射効率を高めたパラボラ型主反射鏡、2はパラボラ型主反射鏡1とその頂部焦点との中間に位置する副反射鏡を示し、これにより、再び主反射鏡中央部に焦点を持つ集熱部3で構成するカセグレン望遠鏡の原理に基づく集熱反射鏡系を構成する。
FIG. 1B is a basic configuration diagram of a “Cassegrain type” heat collecting reflector in which the present invention is implemented.
1 is a parabolic main reflector that directly reflects direct incident sunlight (heat) and has a high reflection efficiency, and 2 is a sub-reflector located between the parabolic main reflector 1 and its top focal point. Then, a heat collecting reflector system based on the principle of the Cassegrain telescope constituted by the heat collecting section 3 having a focal point at the central portion of the main reflector is formed again.

また、本発明に用いる集熱反射鏡は、図1c及び図1dに示すように、パラボラ主反射鏡1の反射面への太陽光の入射方向が、そのパラボラ主反射鏡1の主軸方向から所望の鋭角だけオフセットされた方向となるように構成することができる。この場合には、パラボラ主反射鏡1の主軸方向が太陽の方角から僅かにオフセットされた方向となるので、若干のエネルギーの取込みロスがあるが、副反射鏡2により主反射鏡1の表面が太陽光に対して遮蔽されることがないので、構造上の自由度がある。また、集熱部3の位置も主反射鏡1の外縁などに自由に配置することができる。   In addition, as shown in FIGS. 1 c and 1 d, the heat collecting reflector used in the present invention has a desired incident direction of sunlight on the reflecting surface of the parabolic main reflecting mirror 1 from the main axis direction of the parabolic main reflecting mirror 1. It can be configured to be in a direction offset by an acute angle. In this case, since the main axis direction of the parabolic main reflector 1 is slightly offset from the direction of the sun, there is a slight energy loss, but the surface of the main reflector 1 is subtracted by the sub-reflector 2. Since it is not shielded against sunlight, there is a structural freedom. Further, the position of the heat collecting unit 3 can be freely arranged on the outer edge of the main reflecting mirror 1 or the like.

本反射鏡の集熱部3は、主反射鏡中央部に位置した焦点に設置されており、集熱反射鏡の主反射鏡中央部外側に焦点を結ぶことが可能なことから、主反射鏡の頂部で集熱する集熱反射鏡の制約から開放され、比較的大型の集熱部3を設備することが可能である。   The heat collecting part 3 of the present reflecting mirror is installed at a focal point located in the central part of the main reflecting mirror and can be focused outside the central part of the main reflecting mirror of the heat collecting reflecting mirror. Thus, it is possible to install a relatively large heat collecting section 3 that is free from the restriction of the heat collecting reflector that collects heat at the top.

主反射鏡1の概略直径は、例えば数m以上(2〜6m)と比較的大きく、集熱部3と組合せて、各種の熱エネルギ密度に対応した集熱利得を得ることができる。   The approximate diameter of the main reflecting mirror 1 is relatively large, for example, several meters or more (2 to 6 m), and in combination with the heat collecting unit 3, heat collecting gains corresponding to various thermal energy densities can be obtained.

図1(a)(b)(c)(d)は何れも追尾型の点集光(熱)方式によるAz(Azimuth)軸,及びEL (Elevation )軸で位置を制御する可動型の集熱反射鏡を形成し、比較的小さな面積で高い集熱利得を有する。 1 (a), (b), (c), and (d) are movable collections whose positions are controlled by an Az (Azimuth) axis and an E L (Elevation) axis by a tracking type point condensing (thermal) method. It forms a heat reflecting mirror and has a high heat collecting gain in a relatively small area.

次に、図2の構成モデルを用いて、本発明によるパラボラ集熱反射鏡の集熱利得(集熱比)について、数式を用いて具体的に説明する。
図2のモデルにおいて、
・集熱利得(相対値) : Gr (倍率)又は(dBr 値)
・主反射鏡の直径 : Dφ(m)
・主反射鏡の面積 : SD (m2 )=(π/4)D2
・集熱器の直径 : dφ(m)
・集熱器の面積 : Sd (m2 )=(π/4)d2
・集熱能率 : η (%)
・集光面積比 : M=SD /Sd
・基準エネルギ密度 ; Pr =1KW/m2
・等価エネルギ密度 ; Pe (KW/m2
Gr =η・M=η・(SD /Sd )=η・(D2 /d2 )=η・(D/d)2
Pe =Gr ・Pr =Gr (KW/m2
即ち、パラボラ集熱反射鏡の集熱利得は、主反射鏡1及び集熱器6の集光面積比に集熱能率を乗じたもので表される。
Next, the heat collection gain (heat collection ratio) of the parabolic heat collecting reflector according to the present invention will be specifically described with reference to the configuration model of FIG.
In the model of FIG.
-Heat collection gain (relative value): Gr (magnification) or (dBr value)
-Diameter of the main reflector: Dφ (m)
-Area of the main reflector: S D (m 2 ) = (π / 4) D 2
・ Diameter of collector: dφ (m)
-Area of the heat collector: Sd (m 2 ) = (π / 4) d 2
-Heat collection efficiency: η (%)
・ Condensation area ratio: M = SD / Sd
Reference energy density: Pr = 1 KW / m 2
・ Equivalent energy density: Pe (KW / m 2 )
Gr = η · M = η · (S D / Sd) = η · (D 2 / d 2 ) = η · (D / d) 2
Pe = Gr · Pr = Gr (KW / m 2 )
That is, the heat collecting gain of the parabolic heat collecting reflector is expressed by multiplying the light collecting area ratio of the main reflecting mirror 1 and the heat collector 6 by the heat collecting efficiency.

本発明に用いる主反射鏡1の鏡面は、回転放物面の曲面成形された軽金属、例えば、アルミニウム合金等または合成樹脂、例えばFRPで作られ、金属または合成樹脂による軽量化された骨組構造体で支持されている。
この主反射鏡1の反射面は太陽からの直達エネルギの反射効率を高めて鏡面反射をする程度に鏡面仕上げするために、例えばニッケル等でメッキが施され、頂部焦点に設備される集熱部3又は副反射鏡2へ太陽光(熱)を反射させる。
The mirror surface of the main reflecting mirror 1 used in the present invention is a light-weighted frame structure made of a light metal having a curved paraboloid surface, such as an aluminum alloy or a synthetic resin, such as FRP, and reduced in weight by the metal or the synthetic resin. It is supported by.
The reflecting surface of the main reflecting mirror 1 is plated with, for example, nickel to improve the reflection efficiency of direct energy from the sun and mirror-reflect, and is provided at the top focal point. 3 or the sub-reflector 2 reflects sunlight (heat).

副反射鏡2の鏡面は、カセグレン望遠鏡の原理に基づいて、回転双曲面の曲面成形された軽金属、例えば、アルミニウム合金、または合成樹脂、例えばFRPで作られている。
また、主反射鏡1で反射されたエネルギの反射効率を高めて鏡面反射をする程度に鏡面仕上げするため、例えば、ニッケル等により、メッキが施され、再び主反射鏡1の中央部焦点位置に設備される集熱部3へ反射される。
The mirror surface of the sub-reflecting mirror 2 is made of a light metal, such as an aluminum alloy, or a synthetic resin such as FRP, which is a curved surface of a rotating hyperboloid, based on the principle of the Cassegrain telescope.
Further, in order to improve the reflection efficiency of the energy reflected by the main reflecting mirror 1 and to give a mirror finish to the extent that it is specularly reflected, for example, it is plated with nickel or the like, and again at the focal position of the central portion of the main reflecting mirror 1. It is reflected to the heat collecting unit 3 to be installed.

主反射鏡1の固定部4は、水平旋回(AZ 軸)支持構造と、EL 軸で支持されて仰角回転を受ける機構とを有し、集熱パラボラアンテナ総合体はAZ 軸−EL 軸の各々独立したディジタル制御信号により、太陽エネルギ捕捉の最適位置に駆動制御する駆動機構である。 Fixing portion 4 of the main reflector 1, a horizontal pivot (A Z-axis) has a support structure, and a mechanism is supported by E L axis undergoes an elevation angle rotation, the heat collecting dish overall body A Z-axis -E It is a drive mechanism that drives and controls the solar energy capture to the optimum position by the L- axis independent digital control signals.

図3は、この駆動機構の一例を示す側面図であり、固定主柱32はその下端が図示しない取付け台上に例えばステイバーを用いて取付けされ、その上端が水平台座33を水平に支持しており、その水平台座33の上表面上にターンテーブル34が回動自在に保持されている。この回動のために、ターンテーブル34の周縁に例えばラックが設けられ、水平台座33にはそのラックと歯合する歯車(例えば、はすば歯車)を含む水平駆動機構40が取付けられている。このターンテーブル34の上表面には、駆動機構台座35が搭載されている。31はパラボラ主反射鏡1を支持するための環状支持構造体であり、パラボラ主反射鏡1の背面中央部に取付けられている。環状支持構造体31の水平方向の直径の両端位置に設けられた回動支持部36の結合孔に、駆動機構台座35の端部に取付けられた支持部材41の上端に設けられた回動軸が回動自在に挿入されている。
さらに、38は仰角調整ロッドであって、その上端に取付けられたピン軸は環状支持構造体31の頂部に設けられた回動支持部37の結合孔に回動自在に結合している。また仰角調整ロッド38の下端部は駆動機構台座35の他端側に取り付けられた仰角調整駆動機構39に駆動自在に支持されている。
このような構成により、水平回動機構40を例えば電気駆動したときに、ターンテーブル34は水平台座33上で±90°に水平回動可能であり、パラボラ主反射鏡1も同様の±90°の水平回転がなされる。また、例えば、油圧駆動によって仰角調整駆動機構39を駆動することにより、仰角調整ロッド38が回動支持部37と仰角調整駆動機構39間の長さを伸長または短縮するように駆動され、パラボラ主反射鏡1の環状支持構造体31が図示の状態で両回動支持部36を通る回動軸を中心に前傾回転または後傾回転するので、これによりパラボラ主反射鏡1も±45°の仰角範囲で回動可能である。その仰角範囲は実用上20°〜80°程度で太陽の軌道の追尾が可能である。
以上の構成において、水平回動駆動機構40が水平回動のための制御信号により制御される制御モーター等により回動制御され、仰角調整駆動機構39が仰角回動のための制御信号により制御される油圧制御モーター等により回動制御されることにより、太陽軌道の自動制御が可能である。
FIG. 3 is a side view showing an example of the drive mechanism. The lower end of the fixed main column 32 is mounted on a mounting base (not shown) by using, for example, a stay bar, and the upper end thereof supports the horizontal base 33 horizontally. The turntable 34 is rotatably held on the upper surface of the horizontal pedestal 33. For this rotation, for example, a rack is provided on the periphery of the turntable 34, and a horizontal drive mechanism 40 including a gear (for example, a helical gear) that meshes with the rack is attached to the horizontal base 33. . A drive mechanism base 35 is mounted on the upper surface of the turntable 34. Reference numeral 31 denotes an annular support structure for supporting the parabolic main reflecting mirror 1, and is attached to the center of the back surface of the parabolic main reflecting mirror 1. A rotation shaft provided at the upper end of the support member 41 attached to the end of the drive mechanism base 35 in the coupling hole of the rotation support portion 36 provided at both ends of the diameter in the horizontal direction of the annular support structure 31. Is rotatably inserted.
Further, reference numeral 38 denotes an elevation angle adjusting rod, and a pin shaft attached to the upper end of the rod is rotatably coupled to a coupling hole of a rotational support portion 37 provided on the top of the annular support structure 31. The lower end portion of the elevation angle adjustment rod 38 is supported by an elevation angle adjustment drive mechanism 39 attached to the other end side of the drive mechanism base 35 so as to be freely driven.
With such a configuration, when the horizontal rotation mechanism 40 is electrically driven, for example, the turntable 34 can be horizontally rotated on the horizontal pedestal 33 by ± 90 °, and the parabolic main reflector 1 has the same ± 90 °. Is rotated horizontally. Further, for example, by driving the elevation angle adjustment drive mechanism 39 by hydraulic drive, the elevation angle adjustment rod 38 is driven so as to extend or shorten the length between the rotation support portion 37 and the elevation angle adjustment drive mechanism 39, and the parabolic main Since the annular support structure 31 of the reflecting mirror 1 rotates forward or backward about the rotation axis passing through the both rotation supporting portions 36 in the illustrated state, the parabolic main reflecting mirror 1 is also ± 45 °. It can be rotated in an elevation angle range. The elevation angle range is practically about 20 ° to 80 °, and tracking of the solar orbit is possible.
In the above configuration, the horizontal rotation drive mechanism 40 is controlled to rotate by a control motor or the like controlled by a control signal for horizontal rotation, and the elevation angle adjustment drive mechanism 39 is controlled by a control signal for elevation rotation. The solar trajectory can be automatically controlled by being controlled by a hydraulic control motor or the like.

この駆動機構は、太陽の軌道情報(黄道方程式)及び365日の時情報、即ち四季情報(春,夏,秋,冬)、月情報(1月・2月・・・12月等)、日情報(日の出・日中・日没等)及び24時間の時刻情報(時・分・秒)を入力条件とした制御アルゴリズムにより、プログラマブル位置情報により制御駆動される。   This drive mechanism is based on solar orbit information (equatorial equation) and 365-day time information, that is, seasonal information (spring, summer, autumn, winter), moon information (January / February ... December, etc.), sun Control driven by programmable position information by a control algorithm using information (sunrise, daytime, sunset, etc.) and 24-hour time information (hour, minute, second) as input conditions.

太陽からの直達日射エネルギを吸収するパラボラ集熱アンテナの主反射鏡1の頂部焦点に配置する集熱部3または副反射鏡2の焦点に配置する集熱部3は、円錐ホーン5及び集熱器6により構成される。
円錐ホーン5は、主反射鏡又は副反射鏡による反射光(熱)に対して、導光(熱)器として作用することから、主反射鏡1や副反射鏡2の製作誤差や歪による若干の焦点の乱れに対して矯正効果を有する等化器として働き、入射太陽光(熱)を集熱器6へ効率的に集光・集熱する。
A heat collecting part 3 arranged at the top focal point of the main reflector 1 of the parabolic heat collecting antenna 1 that absorbs direct solar radiation energy from the sun, or a conical horn 5 and a heat collecting part arranged at the focal point of the sub-reflecting mirror 2. The device 6 is configured.
Since the conical horn 5 acts as a light guide (heat) for the reflected light (heat) from the main reflector or the sub-reflector, it is slightly caused by manufacturing errors and distortions of the main reflector 1 and the sub-reflector 2. It acts as an equalizer having a correction effect on the focal point disturbance, and efficiently collects and collects incident sunlight (heat) to the heat collector 6.

集熱器6は液体例えば水やオイルを流入・流出するパイプに直結され、円錐ホーン5の出力端に配置され、集光(熱)された太陽エネルギを吸収するために、例えば球状吸収体表面に設けたディンプル(dimple)又はニードル(needle)及びその複合組合せによる吸収を促す乱吸収を助長する構造の黒体集熱器を構成し、加熱された液体を蓄熱槽へ循環させ太陽エネルギを蓄熱する。   The heat collector 6 is directly connected to a pipe through which liquid such as water or oil flows in and out, and is disposed at the output end of the conical horn 5 to absorb the concentrated (heated) solar energy. A black body heat collector with a structure that promotes turbulent absorption that promotes absorption by dimples or needles and a combination of them is installed in the circulator, and the heated liquid is circulated to the heat storage tank to store solar energy. To do.

以上では、集熱部3は主反射鏡1の焦点位置に配置されるものとして説明されたが、集熱部3には実効上熱変換機能を有している理論上の焦点より広い領域を有しているので、集光された太陽光がこの領域以内に照射される範囲(焦点領域という)に集熱部3を配置しても、同様の効果を得ることができる。   In the above description, the heat collecting unit 3 has been described as being disposed at the focal position of the main reflecting mirror 1, but the heat collecting unit 3 has an area wider than the theoretical focal point having an effective heat conversion function. Therefore, the same effect can be obtained even if the heat collecting part 3 is arranged in a range (referred to as a focal region) where the condensed sunlight is irradiated within this region.

本発明によるソーラ集光・集熱器は、地表に到達している太陽光に含まれているエネルギを捕捉して有効に利用するものであって、集光集熱の動作段階では、化石燃料を利用する場合に避けられないCO2 等の環境に有害な物質の発生はないから、自然環境に悪影響を与えることなしに、捕捉された太陽エネルギを蓄熱槽を経由して、例えば、熱・電気変換等の利用対象物に与えて利用することができる。
この場合の利用対象としては、家庭又は小規模事業所における水又はオイル等の液体その他の対象物の加熱又はペルティエ効果(Peltier effect)素子及びゼーベック効果(Seebeac effect)素子の如き蓄熱等による熱・電気変換を利用する熱発電や空調等の小規模エネルギ変換に有効にかつ広範に利用することができる。
The solar concentrator / heat collector according to the present invention captures and effectively uses the energy contained in the sunlight that reaches the ground surface. In the operation stage of the concentrated heat collection, the fossil fuel is used. Since there is no generation of substances harmful to the environment such as CO 2 that is unavoidable when using the solar energy, the captured solar energy is transferred to the thermal storage tank without adversely affecting the natural environment, for example, It can be used by giving it to objects to be used such as electrical conversion.
The target of use in this case is heating of liquid or other objects such as water or oil in homes or small-scale establishments, or heat by heat storage such as Peltier effect element and Seebeac effect element. It can be effectively and widely used for small-scale energy conversion such as thermal power generation and air conditioning using electrical conversion.

本発明の実施例を示す「ペンシルビーム型」(a),「カセグレン型」(b)、オフセット「ペンシルビーム型」(c),及びオフセット「カセグレン型」(d)の各集熱反射鏡の基本構成例図である。The “pencil beam type” (a), the “cassegrain type” (b), the offset “pencil beam type” (c), and the offset “cassegrain type” (d) showing the embodiments of the present invention. It is a basic composition example figure. 図1(a),(b)に示すのパラボラ集熱反射鏡の集熱利得(集熱比)を説明するためのモデル図である。It is a model figure for demonstrating the heat collection gain (heat collection ratio) of the parabolic heat collection reflective mirror shown to Fig.1 (a), (b). 本発明に用いるアンテナ支持構造例を説明するための側面図である。It is a side view for demonstrating the example of an antenna support structure used for this invention. 従来の固定型/非集光の「平板型」集光器(a)及び平面鏡による固定型/集光の「平板型」集光器(b)を示す各斜視図である。FIG. 4 is a perspective view showing a conventional fixed / non-condensing “flat plate” concentrator (a) and a fixed / condensing “flat plate” concentrator (b) using a plane mirror. 従来の追尾型/点集光の「フレネルレンズ型」集光器を示す略図である。1 schematically illustrates a conventional tracking / point focusing “Fresnel lens” concentrator. 従来の追尾型/線集光の「円筒放物面鏡型」集光器を示す斜視図である。FIG. 6 is a perspective view showing a conventional tracking / line focusing “cylindrical parabolic mirror type” concentrator. 従来の追尾型/点集光の「回転放物面鏡型」集光器を示す斜視図である。FIG. 6 is a perspective view showing a conventional tracking / point focusing “rotating paraboloidal mirror” concentrator.

符号の説明Explanation of symbols

1 パラボラ主反射鏡
2 副反射鏡
3 集熱部
4 固定部
5 円錐ホーン
6 集熱器
7 平面型パネル
8 集熱板
9 流体管路
10 集熱管
11 ガラス板
12 断熱材
13 平面鏡
14 フレネルレンズ
15 集熱部
16 反射鏡(円筒放物面鏡)
17 集熱管
18 ガラス円筒
19 流体入口
20 流体出口
21 反射鏡(回転放物面型)
31 環状支持構造体
32 固定主柱
33 水平台座
34 ターンテーブル
35 駆動機構台座
36 回動支持部
37 回動支持部
38 仰角調整ロッド
39 仰角調整駆動機構
40 水平回動駆動機構
41 支持部材
DESCRIPTION OF SYMBOLS 1 Parabola main reflecting mirror 2 Sub reflecting mirror 3 Heat collecting part 4 Fixed part 5 Conical horn 6 Heat collector 7 Flat panel 8 Heat collecting plate 9 Fluid pipe line 10 Heat collecting tube 11 Glass plate 12 Heat insulating material 13 Flat mirror 14 Fresnel lens 15 Heat collector 16 Reflector (Cylindrical parabolic mirror)
17 Heat collection tube 18 Glass cylinder 19 Fluid inlet 20 Fluid outlet 21 Reflector (rotating paraboloid type)
DESCRIPTION OF SYMBOLS 31 Annular support structure 32 Fixed main pillar 33 Horizontal base 34 Turntable 35 Drive mechanism base 36 Rotation support part 37 Rotation support part 38 Elevation angle adjustment rod 39 Elevation angle adjustment drive mechanism 40 Horizontal rotation drive mechanism 41 Support member

Claims (7)

太陽光を集光集熱するソーラ集光集熱器であって、
反射面が該太陽光に対して鏡面反射をする程度に鏡面仕上げされたパラボラ主反射鏡と、
該パラボラ主反射鏡の前記反射面に入射した前記太陽光の焦点領域に位置するように該パラボラ主反射鏡と一体化された集熱体と、
前記パラボラ主反射鏡の前記反射面への前記太陽光の入射方向を、該パラボラ主反射鏡が前記集熱体と一体化された状態で、所定の方位角範囲内と所定の仰角範囲内で指向調整可能なように支持するマウント機構とを備え、
前記パラボラ主反射鏡の前記反射面への前記入射方向が前記マウント機構上で前記太陽光の方向に指向されたときに、該太陽光が前記集熱体に集光され熱エネルギに変換されて集熱されるように構成されたソーラ集光集熱器。
A solar concentrator that collects and collects sunlight,
A parabolic main reflecting mirror that is mirror-finished so that the reflecting surface reflects the sunlight.
A heat collector integrated with the parabolic main reflecting mirror so as to be located in a focal region of the sunlight incident on the reflecting surface of the parabolic main reflecting mirror;
The incident direction of the sunlight to the reflecting surface of the parabolic main reflecting mirror is within a predetermined azimuth angle range and a predetermined elevation angle range in a state where the parabolic main reflecting mirror is integrated with the heat collector. With a mounting mechanism that supports the orientation adjustment,
When the incident direction to the reflecting surface of the parabolic main reflector is directed to the direction of sunlight on the mount mechanism, the sunlight is condensed on the heat collector and converted into thermal energy. A solar concentrator that is configured to collect heat.
太陽光を集光集熱するソーラ集光集熱器であって、
反射面が該太陽光に対して鏡面反射をする程度に鏡面仕上げされたパラボラ主反射鏡と、
該太陽光に対して鏡面反射をする程度に鏡面仕上げされた双曲面または楕円面の反射面を有し、該パラボラ主反射鏡と該パラボラ主反射鏡の前記反射面に入射した前記太陽光の頂部焦点との中間に位置するように該パラボラ主反射鏡と一体化された副反射鏡と、
該副反射鏡の前記反射面から反射した前記太陽光の焦点領域に位置するように該パラボラ主反射鏡と一体化された集熱体と、
前記パラボラ主反射鏡の前記反射面への前記太陽光の入射方向を、該パラボラ主反射鏡が前記副反射鏡および前記集熱体と一体化された状態で、所定の方位角範囲内と所定の仰角範囲内で指向調整可能なように支持するマウント機構とを備え、
前記パラボラ主反射鏡の前記反射面への前記入射方向が前記マウント機構上で前記太陽光の方向に指向されたときに、該太陽光が前記集熱体に集光され熱エネルギに変換されて集熱されるように構成されたソーラ集光集熱器。
A solar concentrator that collects and collects sunlight,
A parabolic main reflecting mirror that is mirror-finished so that the reflecting surface reflects the sunlight.
A reflecting surface of a hyperboloid or an elliptical surface that is mirror-finished to such a degree that it is specularly reflected with respect to the sunlight, the parabolic main reflecting mirror and the sunlight incident on the reflecting surface of the parabolic main reflecting mirror; A sub-reflector integrated with the parabolic main reflector so as to be in the middle of the top focus;
A heat collector integrated with the parabolic main reflector so as to be located in a focal region of the sunlight reflected from the reflecting surface of the sub-reflector;
The incident direction of the sunlight on the reflecting surface of the parabolic main reflecting mirror is set within a predetermined azimuth range with the parabolic main reflecting mirror integrated with the sub-reflecting mirror and the heat collector. And a mounting mechanism that supports the orientation adjustment within an elevation angle range of
When the incident direction to the reflecting surface of the parabolic main reflector is directed to the direction of sunlight on the mount mechanism, the sunlight is condensed on the heat collector and converted into thermal energy. A solar concentrator that is configured to collect heat.
前記パラボラ主反射鏡の前記反射面への前記太陽光の入射方向が、該パラボラ主反射鏡の主軸方向であることを特徴とする請求項1または2に記載のソーラ集光集熱器。   The solar concentrator according to claim 1 or 2, wherein an incident direction of the sunlight to the reflecting surface of the parabolic main reflecting mirror is a main axis direction of the parabolic main reflecting mirror. 前記パラボラ主反射鏡の前記反射面への前記太陽光の入射方向が、該パラボラ主反射鏡の主軸方向から所望の鋭角だけオフセットされた方向であることを特徴とする請求項1または2に記載のソーラ集光集熱器。   The incident direction of the sunlight to the reflecting surface of the parabolic main reflecting mirror is a direction that is offset by a desired acute angle from the main axis direction of the parabolic main reflecting mirror. Solar concentrator. 前記マウント機構は、前記所定の方位角範囲内で旋回自在な水平回転支持構造と、該水平回転支持構造上で前記所定の仰角範囲内で旋回自在な仰角回転支持構造とを備え、前記太陽の黄道方程式による軌道情報により得られる独立のディジタル制御信号により、前記水平回転支持構造と前記仰角回転支持構造とが個別に制御されて、前記パラボラ主反射鏡の前記反射面への前記入射方向が前記マウント機構上で前記太陽光の方向に指向されるように構成されたことを特徴とする請求項1乃至4のいずれかに記載のソーラ集光集熱器。   The mount mechanism includes a horizontal rotation support structure that is rotatable within the predetermined azimuth angle range, and an elevation rotation support structure that is rotatable within the predetermined elevation angle range on the horizontal rotation support structure. The horizontal rotation support structure and the elevation rotation support structure are individually controlled by an independent digital control signal obtained from orbit information by the ecliptic equation, and the incident direction to the reflection surface of the parabolic main reflector is the The solar concentrator according to any one of claims 1 to 4, wherein the solar collector is configured to be directed toward the sunlight on a mount mechanism. 前記太陽の黄道方程式による軌道情報は、さらに、時刻情報により修正された修正軌道情報により前記独立のディジタル制御信号が修正されるように構成されたことを特徴とする請求項5に記載のソーラ集光集熱器。   6. The solar collection according to claim 5, wherein the orbit information by the solar ecliptic equation is further configured such that the independent digital control signal is corrected by the corrected orbit information corrected by time information. Light collector. 前記太陽の黄道方程式による軌道情報は、さらに、時刻情報および当該ソーラ集光集熱器が配置された位置情報により修正された修正軌道情報により前記独立のディジタル制御信号が修正されるように構成されたことを特徴とする請求項5に記載のソーラ集光集熱器。   The trajectory information by the solar ecliptic equation is further configured such that the independent digital control signal is corrected by time information and corrected trajectory information corrected by position information where the solar collector is arranged. The solar concentrator according to claim 5, wherein
JP2003343170A 2003-10-01 2003-10-01 Solar light collection and heat collection device Pending JP2005106432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003343170A JP2005106432A (en) 2003-10-01 2003-10-01 Solar light collection and heat collection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003343170A JP2005106432A (en) 2003-10-01 2003-10-01 Solar light collection and heat collection device

Publications (1)

Publication Number Publication Date
JP2005106432A true JP2005106432A (en) 2005-04-21

Family

ID=34537225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343170A Pending JP2005106432A (en) 2003-10-01 2003-10-01 Solar light collection and heat collection device

Country Status (1)

Country Link
JP (1) JP2005106432A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007134536A1 (en) * 2006-05-22 2007-11-29 Qiu Xia A high-performance solar energy device
JP2009522607A (en) * 2006-01-06 2009-06-11 玉晶光電(廈門)有限公司 Solar energy optical collection system
JP2009139761A (en) * 2007-12-07 2009-06-25 Mitaka Koki Co Ltd Sun tracing light condensing device
KR100972424B1 (en) 2010-03-10 2010-07-26 박상희 Multidirectional Solar Concentrator
JP2011525965A (en) * 2008-06-27 2011-09-29 ザ・ボーイング・カンパニー Solar power device
US8147076B2 (en) 2007-10-31 2012-04-03 Mitsui Engineering & Shipbuilding Co., Ltd. Beam-down type solar ray lighting device
JP2013028953A (en) * 2011-07-28 2013-02-07 Hiroshi Teramachi Solar power generating apparatus
US8573792B2 (en) 2009-03-18 2013-11-05 Konica Minolta Opto, Inc. Reflective mirror for solar thermal power generation
KR101443059B1 (en) * 2011-05-02 2014-09-26 원종호 Apparatus for generating gases by a photolysis reaction
JP2015508484A (en) * 2011-12-29 2015-03-19 クアントリル エステート インコーポレイテッド Device for concentrating energy
KR101594001B1 (en) * 2014-07-24 2016-02-15 오계현 Solar heat collection device installed on the balcony railing
CN106123368A (en) * 2016-07-27 2016-11-16 佛山市开信光电有限公司 A kind of novel dish type solar energy hot systems and installation method thereof
CN117470179A (en) * 2023-12-27 2024-01-30 绿诺科技有限公司 Optimal heat collection direction measuring device of solar water heater

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522607A (en) * 2006-01-06 2009-06-11 玉晶光電(廈門)有限公司 Solar energy optical collection system
WO2007134536A1 (en) * 2006-05-22 2007-11-29 Qiu Xia A high-performance solar energy device
US8147076B2 (en) 2007-10-31 2012-04-03 Mitsui Engineering & Shipbuilding Co., Ltd. Beam-down type solar ray lighting device
JP2009139761A (en) * 2007-12-07 2009-06-25 Mitaka Koki Co Ltd Sun tracing light condensing device
JP2011525965A (en) * 2008-06-27 2011-09-29 ザ・ボーイング・カンパニー Solar power device
US8573792B2 (en) 2009-03-18 2013-11-05 Konica Minolta Opto, Inc. Reflective mirror for solar thermal power generation
KR100972424B1 (en) 2010-03-10 2010-07-26 박상희 Multidirectional Solar Concentrator
KR101443059B1 (en) * 2011-05-02 2014-09-26 원종호 Apparatus for generating gases by a photolysis reaction
JP2013028953A (en) * 2011-07-28 2013-02-07 Hiroshi Teramachi Solar power generating apparatus
JP2015508484A (en) * 2011-12-29 2015-03-19 クアントリル エステート インコーポレイテッド Device for concentrating energy
KR101594001B1 (en) * 2014-07-24 2016-02-15 오계현 Solar heat collection device installed on the balcony railing
CN106123368A (en) * 2016-07-27 2016-11-16 佛山市开信光电有限公司 A kind of novel dish type solar energy hot systems and installation method thereof
CN117470179A (en) * 2023-12-27 2024-01-30 绿诺科技有限公司 Optimal heat collection direction measuring device of solar water heater
CN117470179B (en) * 2023-12-27 2024-03-26 绿诺科技有限公司 Optimal heat collection direction measuring device of solar water heater

Similar Documents

Publication Publication Date Title
CN101806502B (en) Solar energy collecting system of heliostat
CN103238033B (en) Solar energy collector system
CN2913955Y (en) Heat self-dissipating solar energy accumulation type photovoltaic electricity generating system
US9140468B2 (en) Solar power unit
JP3678424B2 (en) Radiant energy collector
JP2003534518A (en) Double reflection solar beam concentrator
EP1679478A1 (en) A device for collecting and use solar energy
US20100051016A1 (en) Modular fresnel solar energy collection system
CN102135333A (en) Disc type solar heat collecting system
CN202066219U (en) Disc type solar energy heat collection system
JP2008025871A (en) Solar energy collector
CN101098112A (en) Self-radiation solar energy accumulation type photovoltaic generator
JPS58502163A (en) How to maximize solar radiation collection and use
JP2005106432A (en) Solar light collection and heat collection device
CN103199743A (en) Controllable double-state light-reflection light-gathering solar heat collection generating set
JP2002081760A (en) Solar energy utilizing system
US20100043777A1 (en) Solar collector system
Natarajan et al. Experimental analysis of a two‐axis tracking system for solar parabolic dish collector
Kalogirou Recent patents in solar energy collectors and applications
CN102466329A (en) Solar energy collection device
Arulkumaran et al. Experimental analysis of non-tracking solar parabolic dish concentrating system for steam generation
CN108981190B (en) Omnibearing tracking parabolic mirror heat energy absorption system
JP2004271063A (en) Solar power generation device
CN111624755B (en) Solar light condensing device
RU2569423C1 (en) Solar heater with protection against precipitation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909