JP2005106005A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2005106005A
JP2005106005A JP2003343318A JP2003343318A JP2005106005A JP 2005106005 A JP2005106005 A JP 2005106005A JP 2003343318 A JP2003343318 A JP 2003343318A JP 2003343318 A JP2003343318 A JP 2003343318A JP 2005106005 A JP2005106005 A JP 2005106005A
Authority
JP
Japan
Prior art keywords
nox
rich
rich operation
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003343318A
Other languages
Japanese (ja)
Inventor
Daisuke Haruhara
大輔 春原
Susumu Koketsu
晋 纐纈
Shinji Nakayama
真治 中山
Yoshiki Tanabe
圭樹 田邊
Minehiro Murata
峰啓 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2003343318A priority Critical patent/JP2005106005A/en
Publication of JP2005106005A publication Critical patent/JP2005106005A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine capable of reducing the NOx storage amount of an NOx storage catalyst while suppressing the occurrence of NOx slip when the NOx stored amount is increased. <P>SOLUTION: This exhaust emission control device performs a second rich operation by dividing an operation time into a plurality of parts or the second rich operation is performed by gradually increasing the reduction density of exhaust gas flowing into the NOx storage catalyst to a target reduction density when an operation cannot be moved to a normal intermittent first rich operation, NOx storage amount stored in the NOx storage catalyst 33 is increased more than normal, and then the operation can be moved to the rich operation. Thus, since the stored NOx is gradually discharged, the NOx storage amount can be reduced while suppressing the occurrence of NOx slip to which reducing reaction cannot follow up. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、NOx吸蔵触媒を用いて排ガスを浄化する内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine that purifies exhaust gas using a NOx storage catalyst.

自動車に搭載されるエンジン(内燃機関)では、排ガス対策として、NOx吸蔵触媒を用いた排気浄化装置を装備して、エンジンの排ガス中に含まれるNOxを浄化させることが進められている。特にNox吸蔵触媒は、NOx吸蔵触媒に流入する排ガスの空燃比がリーン(理論空燃比より希薄)のときにNOxを吸蔵し、排ガスの空燃比がリッチ(理論空燃比を含む過濃)のときに吸蔵されたNOxを放出して還元する特性をもつために、通常、排ガスの空燃比がリーンで運転される傾向の高いディーゼルエンジンやリーンバーンガソリンエンジンなどで多く採用される。   In an engine (internal combustion engine) mounted on an automobile, as an exhaust gas countermeasure, an exhaust gas purification device using a NOx storage catalyst is equipped to purify NOx contained in the exhaust gas of the engine. In particular, the NOx storage catalyst stores NOx when the air-fuel ratio of the exhaust gas flowing into the NOx storage catalyst is lean (lean from the stoichiometric air-fuel ratio), and when the air-fuel ratio of the exhaust gas is rich (excessive concentration including the stoichiometric air-fuel ratio). In general, it is often used in diesel engines, lean burn gasoline engines, and the like, in which the exhaust gas has a high tendency to operate lean, because it has a characteristic of releasing and reducing NOx stored in the exhaust gas.

排気浄化装置のNOx吸蔵触媒は、エンジンが通常のリーン運転状態のときに、排気中のNOxを吸蔵するが、NOx吸蔵触媒の吸蔵能力には限りがあるために、ある時期に吸蔵されたNOxを放出還元させるべくリッチ運転を実施して、NOx吸蔵触媒を再生する必要がある(例えば特許文献1を参照)。再生の多くは、リーン運転中、定期的、具体的にはリーン運転時間を積算した時間がある一定時間になると、エンジンを所定時間だけリッチ運転に切り換えて、NOx吸蔵触媒からNOxを放出して還元させている。   The NOx occlusion catalyst of the exhaust purification device occludes NOx in the exhaust when the engine is in a normal lean operation state, but the NOx occlusion catalyst has a limited occlusion capacity, so the NOx occluded at a certain time is limited. It is necessary to regenerate the NOx storage catalyst by performing a rich operation in order to release and reduce the NOx (see, for example, Patent Document 1). Many regenerations are performed periodically during lean operation, specifically, when the accumulated lean operation time reaches a certain time, the engine is switched to rich operation for a predetermined time, and NOx is released from the NOx storage catalyst. It is reduced.

ところで、NOx吸蔵触媒は、触媒温度が極端に低い場合には機能しない。そのため、低温時にリッチ運転を実施しても吸蔵したNOxの放出・還元効果は期待できず、無駄なリッチ運転となり燃費悪化が増大するため、こうした温度状態のときはリッチ運転へは移行しない。また触媒温度が極端に高い場合には、還元作用で生ずる温度上昇により、NOx吸蔵触媒が損傷するおそれがあるため、こうした温度状態のときはリッチ運転へは移行しない。   By the way, the NOx storage catalyst does not function when the catalyst temperature is extremely low. Therefore, even if the rich operation is performed at a low temperature, the effect of releasing / reducing stored NOx cannot be expected, and the fuel consumption deteriorates due to the useless rich operation. Therefore, the rich operation is not shifted to such a temperature state. Further, when the catalyst temperature is extremely high, the NOx storage catalyst may be damaged due to the temperature rise caused by the reduction action. Therefore, in such a temperature state, the rich operation is not shifted.

しかし、例えば図12に示されるような触媒温度がリッチ運転へ移行する温度を下回るリッチ不可能な状態が長引くと(例えばディーゼル車が渋滞の市街地を走行するときなど)、同図中のA部に示されるように間欠的な通常のリッチ運転により放出還元されるはずのNOx吸蔵量が時間の経過と共に蓄積されて、通常再生時の吸蔵量を大きく上回る吸蔵量までNOxが吸蔵される。   However, for example, when the non-rich state where the catalyst temperature is lower than the temperature at which the catalyst shifts to the rich operation as shown in FIG. 12 is prolonged (for example, when a diesel vehicle travels in a congested urban area), the A part in FIG. As shown in FIG. 5, the NOx occlusion amount that should be released and reduced by intermittent normal rich operation is accumulated with time, and NOx is occluded to an occlusion amount that greatly exceeds the occlusion amount during normal regeneration.

このような場合、従来、図13中のB部に示されるように、間欠的に行う通常のリッチ運転より、リッチ度の深いリッチ運転、例えば長い運転期間を実施して、図13中のC部に示す多量のNOx吸蔵量を一気に減少させるようにしている(例えば特許文献2を参照)。
特開平11−148337号公報 特開平06−272540号公報
In such a case, as shown in part B of FIG. 13, conventionally, a rich operation having a deeper degree of richness, for example, a longer operation period is performed than the normal rich operation performed intermittently. The large amount of NOx occlusion shown in the section is reduced at once (for example, see Patent Document 2).
JP 11-148337 A Japanese Patent Laid-Open No. 06-272540

NOx吸蔵触媒の再生は、周知のように排気中に含まれる還元剤(CO,HCなど)により、吸蔵剤からNOxが放出され、この放出されたNOxが貴金属(Ptなど)上で、排気中の還元剤と反応して無害な窒素に還元されることで行われる。   As is well known, the regeneration of the NOx storage catalyst is performed by releasing NOx from the storage agent by a reducing agent (CO, HC, etc.) contained in the exhaust gas, and this released NOx is exhausted on the noble metal (Pt, etc.). It is carried out by reacting with the reducing agent and reducing it to harmless nitrogen.

ところが、NOx吸蔵量が増大したときの再生は、図13中のE部に示されるように一気に吸蔵剤からNOxが放出される。このため、NOx吸蔵量増大時は、放出したNOxが多すぎて還元反応が追いつかないという現象が生じる。同現象は、NOxスリップと呼ばれる。NOxスリップが生じると、還元しきれないNOxが一時的に多量に排出され、NOxの浄化率を悪化させてしまう。   However, the regeneration when the NOx occlusion amount increases causes NOx to be released from the occlusion agent all at once, as shown in part E in FIG. For this reason, when the NOx occlusion amount increases, a phenomenon occurs in which the reduction reaction cannot catch up because too much NOx is released. This phenomenon is called NOx slip. When NOx slip occurs, a large amount of NOx that cannot be reduced is temporarily discharged in a large amount, thereby deteriorating the NOx purification rate.

そこで、本発明の目的は、NOx吸蔵量増大時、NOxスリップの発生を抑えつつ、NOx吸蔵触媒のNOx吸蔵量が減らせる内燃機関の排気ガス浄化装置を提供することにある。   Accordingly, an object of the present invention is to provide an exhaust gas purification device for an internal combustion engine that can reduce the NOx occlusion amount of a NOx occlusion catalyst while suppressing the occurrence of NOx slip when the NOx occlusion amount increases.

請求項1に記載の発明は、上記目的を達成するために、間欠的な通常の第1リッチ運転が移行不可能で、NOx吸蔵量が通常時より増加し、その後リッチ移行可能となったとき、NOxスリップを抑えるべく、複数に運転期間を分割させて第2リッチ運転を実行する構成を採用した。   According to the first aspect of the present invention, in order to achieve the above object, when the intermittent normal first rich operation cannot be shifted, the NOx occlusion amount increases from the normal time, and then the rich shift becomes possible. In order to suppress the NOx slip, a configuration in which the second rich operation is executed by dividing the operation period into a plurality of times is adopted.

請求項2に記載の発明は、上記目的に加え、さらに最適な第2リッチ運転が実施されるよう、NOx吸蔵触媒におけるNOx吸蔵およびNOx還元をモデル化して前記NOx触媒に吸蔵するNOx吸蔵量を推定するNOx吸蔵量推定手段を用いて、NOx吸蔵推定手段で推定されたNOx吸蔵量が、NOxスリップの発生を規定するNOxスリップ発生閾値以上まで増加し、その後リッチ移行可能となったときに、推定したNOx吸蔵量が徐々に放出されるよう、第2リッチ運転が実行されるようにした。   In addition to the above-mentioned object, the invention according to claim 2 models the NOx occlusion amount stored in the NOx catalyst by modeling NOx occlusion and NOx reduction in the NOx occlusion catalyst so that further optimal second rich operation is performed. When the NOx occlusion amount estimated by the NOx occlusion estimation means is increased to a NOx slip occurrence threshold value or more that regulates the occurrence of NOx slip using the estimated NOx occlusion estimation means, The second rich operation is performed so that the estimated NOx occlusion amount is gradually released.

請求項3に記載の発明は、上記目的に加え、さらに迅速に吸蔵したNOxを減少させることが可能となるよう、第2リッチ運転を分割させながら実行しているとき、NOx吸蔵推定手段がNOxスリップ発生閾値を下回るまでNOx吸蔵量が減少したと推定したときは、それ以降は、残りのNOx吸蔵量を一気に減少すべく1回のリッチ運転が実行されるようにした。   In the invention according to claim 3, in addition to the above object, when the second rich operation is executed while being divided so that the NOx occluded can be reduced more quickly, the NOx occlusion estimation means is configured to perform NOx occlusion estimation. When it is estimated that the NOx occlusion amount has decreased until it falls below the slip generation threshold, after that, one rich operation is executed to reduce the remaining NOx occlusion amount all at once.

請求項4に記載の発明は、さらに上記目的に加え、さらに請求項2のときと同様、最適な第2リッチ運転が実施されるよう、内燃機関のリーン運転時間の積算にもとづいてNOx触媒のリッチ移行時期を判定する手段を用いて、積算されたリーン運転時間が、NOxスリップの発生を規定するNOxスリップ発生閾値に相当する時間以上まで増加し、その後リッチ移行可能となったとき、吸蔵したNOxが徐々に放出されるよう、第2リッチ運転が実行されるようにした。   In addition to the above object, the invention as set forth in claim 4 further provides the NOx catalyst based on the accumulation of the lean operation time of the internal combustion engine so that the optimum second rich operation is performed as in the case of claim 2. Using the means for determining the rich transition time, the accumulated lean operation time is increased to a time corresponding to the NOx slip occurrence threshold that defines the occurrence of NOx slip, and then stored when the rich transition becomes possible. The second rich operation is performed so that NOx is gradually released.

請求項5に記載の発明は、上記目的に加え、さらに無駄な第2リッチ運転が実行されないよう、第2リッチ運転は、積算されたリーン運転時間にもとづき必要分割回数が設定され、当該設定された分割回数にしたがって実行されるようにした。   According to the fifth aspect of the present invention, in addition to the above-mentioned object, the necessary number of divisions is set for the second rich operation based on the accumulated lean operation time so that the unnecessary second rich operation is not executed. Executed according to the number of divisions.

請求項6に記載の発明は、上記目的に加え、さらに簡単な制御で第2リッチ運転が実行されるよう、第2リッチ運転は、間欠的に行う通常の第1リッチ運転を複数回繰り返す、あるいは第1リッチ運転よりリッチ度を弱めた運転を複数回繰り返す運転で実行されるようにした。   In the invention according to claim 6, in addition to the above object, the second rich operation repeats the normal first rich operation performed intermittently a plurality of times so that the second rich operation is executed with simpler control. Or it was made to perform by the operation which repeats the operation which weakened the richness from the 1st rich operation a plurality of times.

請求項7に記載の発明は、上記目的を上記請求項1とは異なる手法で達成するために、間欠的な通常の第1リッチ運転が移行不可能で、NOx吸蔵量が通常時より増加し、その後リッチ移行可能となったとき、NOxスリップを抑えるべく、内燃機関でNOx吸蔵触媒に流入する排ガスを徐々に還元濃度を高めながら目標還元濃度にする第2リッチ運転を実行する構成を採用した。   In order to achieve the above object by a method different from that of the first aspect of the invention, the intermittent normal first rich operation cannot be shifted, and the NOx occlusion amount increases from the normal time. Then, when the rich transition becomes possible, the second rich operation in which the exhaust gas flowing into the NOx occlusion catalyst in the internal combustion engine is made to be the target reduction concentration while gradually increasing the reduction concentration is adopted to suppress the NOx slip. .

請求項8に記載の発明は、上記目的に加え、さらに最適な第2リッチ運転が実施されるよう、NOx吸蔵触媒におけるNOx吸蔵およびNOx還元をモデル化して前記NOx触媒に吸蔵するNOx吸蔵量を推定するNOx吸蔵量推定手段を用いて、NOx吸蔵量推定手段で推定されたNOx吸蔵量が、NOxスリップの発生を規定するNOxスリップ発生閾値以上まで増加し、その後リッチ移行可能となったとき、推定した吸蔵NOx量が徐々に放出されるよう、第2リッチ運転が実行されるようにした。   In addition to the above-described object, the invention according to claim 8 models the NOx occlusion amount stored in the NOx catalyst by modeling NOx occlusion and NOx reduction in the NOx occlusion catalyst so that further optimal second rich operation is performed. When the NOx occlusion amount estimated by the NOx occlusion amount estimation means increases to a NOx slip occurrence threshold value or more that prescribes the occurrence of NOx slip, and then the rich transition becomes possible, using the estimated NOx occlusion amount estimation means, The second rich operation is performed so that the estimated storage NOx amount is gradually released.

請求項9に記載の発明は、同じく、内燃機関のリーン運転時間の積算にもとづいてNOx触媒のリッチ移行時期を判定する手段を用いて、積算されたリーン運転時間が、NOxスリップの発生を規定するNOxスリップ発生閾値に相当する時間以上まで増加し、その後リッチ移行可能となったとき、吸蔵NOxが徐々に放出されるよう、第2リッチ運転が実行されるようにした。   The invention according to claim 9 similarly uses the means for determining the rich transition timing of the NOx catalyst based on the accumulation of the lean operation time of the internal combustion engine, and the accumulated lean operation time defines the occurrence of NOx slip. The second rich operation is executed so that the stored NOx is gradually released when it increases to the time corresponding to the NOx slip occurrence threshold to be reached and then rich transition becomes possible.

請求項10に記載の発明は、上記目的に加え、より最適に第2リッチ運転が実施されるよう、徐々に還元濃度を高める第2リッチ運転の度合いを、NOx吸蔵推定手段で推定されるNOx吸蔵量に応じた傾き、あるいはリーン運転時間の積算時間に応じた傾きで設定し、当該傾きにならって第2リッチ運転が実行されるようにした。   According to the tenth aspect of the present invention, in addition to the above object, the NOx storage estimating means estimates the degree of the second rich operation that gradually increases the reduction concentration so that the second rich operation is more optimally performed. The inclination is set according to the amount of occlusion or the inclination according to the accumulated time of the lean operation time, and the second rich operation is executed in accordance with the inclination.

請求項11に記載の発明は、上記目的に加え、迅速に吸蔵したNOxを減少させることが可能となるよう、徐々に還元濃度を高める第2リッチ運転を実行しているとき、NOx吸蔵触媒の温度が所定の温度値まで上昇したとき、それ以降は、目標還元濃度まで一気に還元濃度を高める運転が実行されるようにした。   According to the eleventh aspect of the present invention, in addition to the above object, when the second rich operation in which the reduction concentration is gradually increased is executed so that the NOx stored can be rapidly reduced, the NOx storage catalyst When the temperature rises to a predetermined temperature value, after that, an operation for increasing the reduction concentration at a stretch to the target reduction concentration is performed.

請求項12に記載の発明は、上記目的に加え、簡単な制御で第2リッチ運転が実行されるよう、第2リッチ運転は、NOx吸蔵触媒に流入する排ガスの空気過剰率を変えることによって、排ガスを徐々に還元濃度を高めながら目標還元濃度にする運転で構成した。   In the invention according to claim 12, in addition to the above object, the second rich operation is performed by changing the excess air ratio of the exhaust gas flowing into the NOx storage catalyst so that the second rich operation is executed with simple control. The exhaust gas was configured to operate at the target reduction concentration while gradually increasing the reduction concentration.

請求項1および請求項7に記載の発明によれば、NOx吸蔵量増大時の再生は、第2リッチ運転により、吸蔵されたNOxが一気に放出されずに徐々にNOxが放出されるようになるので、還元反応が追いつかなくなるNOxスリップの発生を抑えることができる。   According to the first and seventh aspects of the invention, the regeneration when the NOx occlusion amount increases is caused by the second rich operation so that the occluded NOx is not released at once but gradually released. Therefore, it is possible to suppress the occurrence of NOx slip where the reduction reaction cannot catch up.

それ故、NOxスリップの発生を抑制しつつ、NOx吸蔵触媒のNOx吸蔵量を減少させることができ、NOxが一時的に多量に排出させるのを防ぐことができる。   Therefore, it is possible to reduce the NOx occlusion amount of the NOx occlusion catalyst while suppressing the occurrence of NOx slip, and to prevent NOx from being temporarily discharged in large quantities.

請求項2、請求項4、請求項8および請求項9に記載の発明によれば、さらに、推定されるNOx吸蔵量により、NOx吸蔵量増大時のNOx吸蔵状況に合わせて、最適に第2リッチ運転を実行させることができる。   According to the second, fourth, eighth, and ninth aspects of the present invention, the second optimally stored in accordance with the NOx occlusion state when the NOx occlusion amount increases is further determined based on the estimated NOx occlusion amount. Rich operation can be executed.

請求項3に記載の発明によれば、さらに、NOxスリップの発生が見られない通常時のときと同じ状況からは、一気にNOx量が減少(放出)されるので、迅速に吸蔵したNOxを減少させることが可能となる。   According to the third aspect of the present invention, the NOx amount is reduced (released) at a stretch from the same situation as in the normal state where no occurrence of NOx slip is observed. It becomes possible to make it.

請求項5に記載の発明によれば、さらに、推定されるNOx吸蔵量により定められる必要分割回数にしたがった第2リッチ運転の実行により、無駄なく第2リッチ運転が行われ、燃費悪化の抑制を図ることができる。   According to the fifth aspect of the present invention, the second rich operation is performed without waste by the execution of the second rich operation according to the required number of divisions determined by the estimated NOx occlusion amount, and the deterioration of fuel consumption is suppressed. Can be achieved.

請求項6に記載の発明によれば、さらに、簡単な制御で、第2リッチ運転が実行できる。   According to the sixth aspect of the present invention, the second rich operation can be executed with simple control.

請求項10に記載の発明によれば、さらに、還元濃度を徐々に高める第2リッチ運転を、よりNOx吸蔵量の状況に合わせて、最適に実行させることができる。   According to the invention described in claim 10, the second rich operation for gradually increasing the reduction concentration can be optimally executed in accordance with the state of the NOx occlusion amount.

請求項11に記載の発明によれば、さらに、還元濃度を徐々に高める第2リッチ運転を、NOx吸蔵触媒が十分に機能する状態に合わせて実行させることができ、迅速に吸蔵したNOxを減少させることが可能となる。   According to the eleventh aspect of the present invention, the second rich operation in which the reduction concentration is gradually increased can be executed in accordance with the state in which the NOx storage catalyst functions sufficiently, and the stored NOx is rapidly reduced. It becomes possible to make it.

請求項12に記載の発明によれば、さらに、簡単な制御で、還元濃度を徐々に高める第2リッチ運転が実行できる。   According to the twelfth aspect of the present invention, the second rich operation in which the reduction concentration is gradually increased can be executed with simple control.

[第1の実施形態]
以下、本発明を図1〜図4に示す第1の実施形態にもとづいて説明する。
[First Embodiment]
Hereinafter, the present invention will be described based on a first embodiment shown in FIGS.

図1は、自動車(車両)に搭載される内燃式のエンジン、例えば4サイクルのディーゼルエンジンの主要部を示し、同図中1は、シリンダブロック2とシリンダヘッド3とで構成されるエンジン本体部、4はシリンダブロック2に形成されたシリンダ、5はシリンダ4内に往復動可能に設けられたピストン、8,9はシリンダヘッド3に設けられた吸・排気ポート、6,7は吸・排気ポート8,9を開閉する吸・排気弁、10はシリンダヘッド3に設けられたインジェクタである。このうち、吸気ポート8は、同吸気ポート8から延びる第1吸気通路12を介して、ターボ過給機13のコンプレッサ14の吐出部が接続してある。なお、コンプレッサ14の吸込部は、エアクリーナー(図示しない)へ向かう第2吸気通路15に接続してある。但し、17は第1吸気通路12に介装されたインタクーラである。排気ポート9は、同排気ポート9から延びる第1排気通路18を介して、ターボ過給機13のタービン19の入口部に接続してある。タービン19の出口部は、大気開放の第2排気通路20が接続してある。またインジェクタ10は、制御部を構成するECU21に接続されている。このインジェクタ10の噴射動作は、予めECU21に設定されている、エンジンの運転状態に応じた噴射タイミング、燃料噴射量にしたがい制御され、同制御によりエンジンが所定のサイクル(吸入、圧縮、膨張、排気の4サイクル)で運転されるようにしている。   FIG. 1 shows a main part of an internal combustion engine mounted on an automobile (vehicle), for example, a four-cycle diesel engine. In FIG. 1, reference numeral 1 denotes an engine main body composed of a cylinder block 2 and a cylinder head 3. 4 is a cylinder formed in the cylinder block 2, 5 is a piston provided in a reciprocating manner in the cylinder 4, 8 and 9 are intake / exhaust ports provided in the cylinder head 3, and 6 and 7 are intake / exhaust ports. The intake / exhaust valves 10 for opening and closing the ports 8 and 9 are injectors provided in the cylinder head 3. Among these, the intake port 8 is connected to the discharge portion of the compressor 14 of the turbocharger 13 via the first intake passage 12 extending from the intake port 8. In addition, the suction part of the compressor 14 is connected to the 2nd intake passage 15 which goes to an air cleaner (not shown). However, 17 is an intercooler interposed in the first intake passage 12. The exhaust port 9 is connected to an inlet portion of the turbine 19 of the turbocharger 13 via a first exhaust passage 18 extending from the exhaust port 9. A second exhaust passage 20 that is open to the atmosphere is connected to the outlet of the turbine 19. Moreover, the injector 10 is connected to ECU21 which comprises a control part. The injection operation of the injector 10 is controlled in accordance with the injection timing and the fuel injection amount that are set in the ECU 21 in advance according to the operating state of the engine, and the engine performs a predetermined cycle (suction, compression, expansion, exhaust) by this control. 4 cycles).

なお、第1吸気通路12の下流側と第1排気通路部分との間には、EGR装置22を構成する各機器、例えばEGRクーラ23が介装されたEGR通路24、同EGR通路24を開閉するEGR弁25、EGR通路24の出口より上流で新気吸入量を制御する電動式の新気量制御弁26が設けてある。   Incidentally, between the downstream side of the first intake passage 12 and the first exhaust passage portion, each device constituting the EGR device 22, for example, an EGR passage 24 in which an EGR cooler 23 is interposed, and the EGR passage 24 are opened and closed. The EGR valve 25 and the electric fresh air amount control valve 26 for controlling the fresh air intake amount upstream from the outlet of the EGR passage 24 are provided.

こうしたディーゼルエンジンの排気系に、排気ガス浄化装置30が組付けられている。排気ガス浄化装置30は、ケーシング32内蔵のNOx吸蔵触媒33と、還元剤を供給する還元剤添加部34と、例えばECU21を用いて再生制御を行う制御系35とを組み合わせた構成が用いてある。   An exhaust gas purification device 30 is assembled in the exhaust system of such a diesel engine. The exhaust gas purification device 30 uses a configuration in which a NOx storage catalyst 33 with a built-in casing 32, a reducing agent addition unit 34 that supplies a reducing agent, and a control system 35 that performs regeneration control using the ECU 21, for example, are used. .

具体的には、NOx吸蔵触媒33は、第2排気通路20の途中に介装されている。その構造には、例えば担体に、例えば白金(Pt)のような貴金属と、吸蔵剤としての例えばバリウム(Ba)とを担持させた構造が用いられる。同構造により、NOx吸蔵触媒33に流入する排ガスの空燃比がリーン(理論空燃比より希薄)のときは、図2(a)に示されるように排気中のNOxが白金(Pt)上で酸素と反応して、硝酸イオンの形でバリウム(Ba)に吸収され、NOx吸蔵触媒33に流入する排ガスの空燃比がリッチ(理論空燃を含む過濃)のときは、反対に図2(b)に示されるようにバリウム(Ba)内の硝酸イオンがNOxの形で放出し、放出したNOxを白金(Pt)上で排ガス中の未燃HC、COなどと反応して窒素に還元させる機能をもたらしている。   Specifically, the NOx storage catalyst 33 is interposed in the middle of the second exhaust passage 20. As the structure, for example, a structure in which a carrier is supported with a noble metal such as platinum (Pt) and barium (Ba) as an occlusion agent is used. With this structure, when the air-fuel ratio of the exhaust gas flowing into the NOx storage catalyst 33 is lean (lean than the stoichiometric air-fuel ratio), NOx in the exhaust is oxygenated on platinum (Pt) as shown in FIG. When the air-fuel ratio of the exhaust gas that is absorbed by barium (Ba) in the form of nitrate ions and flows into the NOx storage catalyst 33 is rich (overconcentration including theoretical air fuel), the reaction is reversed in FIG. ) The nitrate ion in barium (Ba) is released in the form of NOx as shown in Fig. 3), and the released NOx reacts with unburned HC, CO, etc. in the exhaust gas on platinum (Pt) and is reduced to nitrogen Has brought.

還元剤添加部34には、例えばNOx吸蔵触媒33の上流側の排気路部分に設置した、還元剤として例えば燃料(例えば軽油)を供給する還元剤用のインジェクタ36と、先のEGR装置22と新気量制御弁26とを併用した構造が用いられる。これにより、リッチ運転、すなわちインジェクタ36からの燃料と、EGR装置22と新規量制御弁26とによる新気量を抑制したEGRガスの還流とを用いて、必要なときに、未燃HC,COを多量に含むリッチ(過濃)の排ガスがNOx吸蔵触媒33に流入されるようにしてある。なお、リッチの度合い(還元濃度)は、インジェクタ36の噴射量、EGRガスの量や濃度の調整により可変可能としてある。   In the reducing agent adding section 34, for example, a reducing agent injector 36 that supplies, for example, fuel (for example, light oil) as a reducing agent, which is installed in an exhaust passage portion upstream of the NOx storage catalyst 33, and the previous EGR device 22, A structure using the new air amount control valve 26 in combination is used. This makes it possible to perform unburned HC, CO when necessary, using the rich operation, that is, the fuel from the injector 36 and the recirculation of the EGR gas in which the amount of fresh air is suppressed by the EGR device 22 and the new amount control valve 26. Rich exhaust gas containing a large amount of gas is allowed to flow into the NOx storage catalyst 33. Note that the degree of richness (reduction concentration) can be varied by adjusting the injection amount of the injector 36 and the amount and concentration of EGR gas.

制御系35には、NOx吸蔵触媒33のNOx吸蔵量を推定する機能を利用した制御が採用されている。同推定機能は、本出願人が先に出願した特願2003−059007の中で開示されているように、例えばNOx吸蔵触媒33の上流側の排気部分に設置した排ガス流量センサ38からの排ガス流量、同じく排ガス温度センサ39からの排ガス温度を受けて、リーン運転時のNOx吸蔵量とリッチ運転時のNOx放出量とを独立して演算して、これらのNOx吸蔵量およびNOx放出量から、逐次、NOx吸蔵触媒33におけるNOx吸蔵量を推定するものである。具体的には、NOx吸蔵触媒33に流入する排ガスのガス流速、NOx吸蔵触媒33の上流側のNOx濃度、NOx吸蔵触媒33の上流側の還元剤濃度、演算により得られたNOx吸蔵触媒33の下流側のNOx濃度、演算により得られたNOx吸蔵触媒33の下流側の還元剤濃度に基いて、次式(1)により、NOx吸蔵触媒33のNOx吸蔵量を推定するようにしてある。この与式(1)がECU21に設定してある。なお、NOx吸蔵触媒33の下流側に設置したNOxセンサ39から出力されるNOx濃度は、NOx吸蔵量の初期値を補正するのに用いるものである。ここでは、NOx吸蔵量の推定が行える点だけを示し、NOx吸蔵触媒33のNOx吸蔵量の推定の詳しい方法の説明は省略した。   The control system 35 employs control using a function for estimating the NOx occlusion amount of the NOx occlusion catalyst 33. As disclosed in Japanese Patent Application No. 2003-059007 filed earlier by the present applicant, the estimation function is, for example, an exhaust gas flow rate from an exhaust gas flow rate sensor 38 installed in an exhaust portion upstream of the NOx storage catalyst 33. Similarly, by receiving the exhaust gas temperature from the exhaust gas temperature sensor 39, the NOx occlusion amount during lean operation and the NOx emission amount during rich operation are independently calculated, and from these NOx occlusion amount and NOx release amount, The NOx occlusion amount in the NOx occlusion catalyst 33 is estimated. Specifically, the gas flow rate of the exhaust gas flowing into the NOx storage catalyst 33, the NOx concentration upstream of the NOx storage catalyst 33, the reducing agent concentration upstream of the NOx storage catalyst 33, the NOx storage catalyst 33 obtained by the calculation. Based on the downstream NOx concentration and the reducing agent concentration on the downstream side of the NOx storage catalyst 33 obtained by the calculation, the NOx storage amount of the NOx storage catalyst 33 is estimated by the following equation (1). This equation (1) is set in the ECU 21. Note that the NOx concentration output from the NOx sensor 39 installed on the downstream side of the NOx storage catalyst 33 is used to correct the initial value of the NOx storage amount. Here, only the point where the NOx occlusion amount can be estimated is shown, and the detailed method for estimating the NOx occlusion amount of the NOx occlusion catalyst 33 is omitted.

NOx吸蔵量=α1Σガス流速×{(上流NOx濃度−下流NOx濃度)−(上流還元剤濃度−下流側還元剤濃度)}…(1)
但し、α1は定数であり、上流側NOx濃度および上流還元濃度はエンジン運転の状況から求まるものである。
NOx occlusion amount = α1Σ gas flow rate × {(upstream NOx concentration−downstream NOx concentration) − (upstream reducing agent concentration−downstream reducing agent concentration)} (1)
However, α1 is a constant, and the upstream NOx concentration and the upstream reduction concentration are obtained from the state of engine operation.

ECU21には、このNOx吸蔵触媒33のモデル式から推定されるNOx吸蔵量を用いて、リーン運転から定期的なリッチ運転へ移行するため、その閾値として、通常リッチ移行閾値(Th0)が設定してある。さらにECU21には、推定NOx吸蔵量が通常リッチ移行閾値(Th0)に達したときが、NOx吸蔵触媒33が十分に機能する状態であるか否か、すなわち極端に触媒温度が低い、極端に触媒温度が高い状態以外であるか否かから、リーン運転から通常のリッチ運転へ移行可能かを判定する判定機能(リッチ移行判定手段に相当)が設定されている。加えてECU21には、移行可能と判定したとき、例えば通常リッチ移行閾値(Th0)までのNOx吸蔵量を一気に放出させるリッチ具合の通常リッチ運転を1回実行させる機能が設定されていて、リーン運転から、間欠的に通常リッチ運転が行われるようにしている(通常再生)。   The ECU 21 uses the NOx occlusion amount estimated from the model equation of the NOx occlusion catalyst 33 to shift from lean operation to periodic rich operation. Therefore, a normal rich transition threshold (Th0) is set as the threshold. It is. Further, the ECU 21 determines whether or not the NOx occlusion catalyst 33 is in a sufficiently functioning state when the estimated NOx occlusion amount reaches the normal rich transition threshold (Th0), that is, the catalyst temperature is extremely low. A determination function (corresponding to rich transition determination means) is set for determining whether or not the lean operation can be shifted to the normal rich operation based on whether or not the temperature is other than a high state. In addition, when the ECU 21 determines that the shift is possible, for example, the ECU 21 has a function to execute the rich normal rich operation once to release the NOx occlusion amount up to the normal rich shift threshold (Th0) at once. Therefore, the normal rich operation is intermittently performed (normal regeneration).

またECU21には、NOx吸蔵触媒33のモデル式から推定されるNOx吸蔵量を用いて、NOx吸蔵量増大時に最適にリッチ運転が行われる制御が設定してある。すなわち、ECU21には、NOxスリップ(還元しきれないNOxが一時的に多量に排出される状況)の発生を規定する閾値として、NOxスリップ発生閾値(Th1)が設定され、さらにリッチ運転の終了を規定する閾値として、リッチ終了閾値(Th2)が設定されている(Th1>Th2)。加えてECU21には、推定されるNOx吸蔵量が、NOxスリップ発生閾値(Th1)以上になると、リッチ終了閾値(Th2)になるまで、リッチ運転(第2リッチ運転に相当)を実行させる機能が設定してある(第2リッチ運転手段に相当)。このリッチ運転の実行には、一気にリッチ運転期間をNOx吸蔵量に応じて長くするのではなく、長くなる運転期間を複数に分割して、リッチ運転を実行する制御が採用されている。ここでは、例えば間欠的な通常リッチ運転よりリッチ度を弱めたリッチ運転を繰り返し行う制御が設定してある。これにより、NOx吸蔵量増大時のリッチ運転には、NOx吸蔵触媒33からNOxが徐々に放出されるようにしている。   Further, the ECU 21 is set to perform control so that the rich operation is optimally performed when the NOx storage amount increases, using the NOx storage amount estimated from the model expression of the NOx storage catalyst 33. That is, the ECU 21 is set with a NOx slip occurrence threshold (Th1) as a threshold that regulates the occurrence of NOx slip (a situation in which NOx that cannot be fully reduced is temporarily discharged), and further terminates the rich operation. A rich end threshold value (Th2) is set as a prescribed threshold value (Th1> Th2). In addition, when the estimated NOx occlusion amount becomes equal to or greater than the NOx slip occurrence threshold (Th1), the ECU 21 has a function of executing a rich operation (corresponding to the second rich operation) until the rich end threshold (Th2) is reached. It is set (equivalent to the second rich operation means). For the execution of the rich operation, a control for executing the rich operation by dividing the longer operation period into a plurality of parts, instead of extending the rich operation period in accordance with the NOx occlusion amount, is adopted. Here, for example, control is set to repeatedly perform rich operation with a lower degree of richness than intermittent normal rich operation. Thus, NOx is gradually released from the NOx storage catalyst 33 in the rich operation when the NOx storage amount increases.

こうしたNOx吸蔵触媒33の再生制御が図3のフローチャートに示されている。   Such regeneration control of the NOx storage catalyst 33 is shown in the flowchart of FIG.

同フローチャートを参照して、排気ガス浄化装置30の作用を説明すると、今、ディーゼルエンジンが通常運転されるとする(リーン運転)。このときは、NOx吸蔵触媒33に流入される排ガスの空燃比はリーンであるから、図2(a)に示されるように排ガスに含まれるNOxが白金(Pt)上で酸素と反応して、硝酸イオンの形でバリウム(Ba)に吸収される。つまり、排ガス中のNOxが吸蔵剤としてのバリウム(Ba)に吸蔵される。   The operation of the exhaust gas purification device 30 will be described with reference to the flowchart. It is assumed that the diesel engine is normally operated (lean operation). At this time, since the air-fuel ratio of the exhaust gas flowing into the NOx storage catalyst 33 is lean, the NOx contained in the exhaust gas reacts with oxygen on platinum (Pt) as shown in FIG. It is absorbed by barium (Ba) in the form of nitrate ions. That is, NOx in the exhaust gas is stored in barium (Ba) as the storage agent.

こうしたリーン運転中、ECU21では、NOx吸蔵触媒33のモデル式(与式(1))を用いた演算により、ディーゼルエンジンの運転状態を考慮して、逐次、NOx吸蔵触媒33に吸蔵されるNOx吸蔵量を推定している。   During such lean operation, the ECU 21 sequentially stores the NOx stored in the NOx storage catalyst 33 in consideration of the operation state of the diesel engine by the calculation using the model expression of the NOx storage catalyst 33 (the given equation (1)). The amount is estimated.

推定されるNOx吸蔵量が通常リッチ移行閾値(Th0)に達し、NOx吸蔵触媒33が十分にその機能を発揮できる状態(触媒温度が極端に低い状態、極端に高い状態を除く触媒状態)であると、ECU21は、NOx吸蔵触媒33を再生する時期になったと判定する。すると、リーン運転から再生のためのリッチ運転への移行を求める信号が出力される(ステップS1)。   The estimated NOx occlusion amount normally reaches the rich transition threshold value (Th0), and the NOx occlusion catalyst 33 can sufficiently perform its function (catalyst state excluding a state where the catalyst temperature is extremely low and an extremely high state). Then, the ECU 21 determines that it is time to regenerate the NOx storage catalyst 33. Then, a signal for requesting a shift from lean operation to rich operation for regeneration is output (step S1).

ここで、これまで推定されるNOx吸蔵量は、NOxスリップをもたらす吸蔵量には達していないから(ステップS2)、ECU21は、図4(a)のように通常リッチ運転を行うためのリッチ信号αを出力する。すると、リッチ信号αを受けて、例えばEGR弁25が「開」、新気制御弁26が「閉」となり、還元用のインジェクタ36から還元のための燃料、ここでは軽油が排気通路20内へ噴射される。これにより、NOx吸蔵触媒33へには、未燃HC,CO(いずれも還元剤)などを含む還元雰囲気の排ガス、すなわちリッチな排ガスが流入され、通常リッチ運転が1回実行される。   Here, since the NOx occlusion amount estimated so far does not reach the occlusion amount that causes NOx slip (step S2), the ECU 21 is a rich signal for performing the normal rich operation as shown in FIG. 4A. α is output. Then, in response to the rich signal α, for example, the EGR valve 25 is “open” and the fresh air control valve 26 is “closed”, and fuel for reduction, light oil here, enters the exhaust passage 20 from the reduction injector 36. Be injected. Thereby, exhaust gas in a reducing atmosphere containing unburned HC, CO (both are reducing agents), that is, rich exhaust gas, flows into the NOx storage catalyst 33, and the normal rich operation is executed once.

すると、NOx吸蔵触媒33では、先のNOx吸蔵とは反対の反応が行われる。すなわち、図2(b)に示されるように排ガスがリッチのときは、バリウム(Ba)内の硝酸イオンがNOxの形で放出し、放出したNOxを白金(Pt)上で排ガス中の未燃HC、COなどの還元剤と反応して、窒素に還元させる。この放出と還元により、図4(b),(c)中のβ,γに示されるように外部にNOxが排出されるのを抑えながら、NOx吸蔵触媒33に吸蔵されたNOx吸蔵量が一気に減少する。   Then, in the NOx storage catalyst 33, a reaction opposite to the previous NOx storage is performed. That is, as shown in FIG. 2B, when exhaust gas is rich, nitrate ions in barium (Ba) are released in the form of NOx, and the released NOx is unburned in the exhaust gas on platinum (Pt). It reacts with a reducing agent such as HC and CO to be reduced to nitrogen. As a result of this release and reduction, the NOx occlusion amount occluded in the NOx occlusion catalyst 33 is reduced at a stretch while suppressing NOx from being discharged to the outside as shown by β and γ in FIGS. 4B and 4C. Decrease.

NOx吸蔵触媒33のモデル式(与式(1))では、このようなNOxの放出と還元がもたらすNOx吸蔵量の減少も考慮している。   In the model equation (the equation (1)) of the NOx occlusion catalyst 33, a decrease in the NOx occlusion amount caused by such NOx release and reduction is also considered.

リーン運転中は、NOx吸蔵触媒33の機能が十分に発揮できる状態が継続する限り、こうした通常リッチが間欠的に行われる。   During the lean operation, such normal rich operation is intermittently performed as long as the state in which the function of the NOx storage catalyst 33 can be sufficiently exerted continues.

一方、触媒温度に極端に低い状態、あるいは極端に高い状態が見られ、通常リッチ運転の実行ができない状態(例えば渋滞の市街地を走行するときなど)が長引いて、推定されるNOx吸蔵触媒33のNOx吸蔵量が、図4(c)に示されるようにNOxスリップの発生を規定しているNOxスリップ発生閾値(Th1)以上にまで増加したとする。   On the other hand, a state in which the catalyst temperature is extremely low or extremely high is observed, and a state in which the normal rich operation cannot be performed (for example, when traveling in a congested urban area) is prolonged, and the estimated NOx storage catalyst 33 It is assumed that the NOx occlusion amount has increased to a value equal to or greater than the NOx slip occurrence threshold (Th1) that regulates the occurrence of NOx slip as shown in FIG.

その後、リッチ可能となったときに、ECU21は、例えば運転期間を短くしてリッチ度を弱めた(通常リッチに比べて)リッチ信号を、モデル式で推定されるNOx吸蔵量が、リッチ終了閾値(Th2)以下となるまで、複数回、繰り返し実行する。   Thereafter, when the rich becomes possible, the ECU 21 determines that the rich signal whose richness is reduced by shortening the operation period (compared to the normal rich), for example, the NOx occlusion amount estimated by the model formula is the rich end threshold value. (Th2) It is repeatedly executed a plurality of times until it becomes the following.

これにより、バリウムBa内の硝酸イオンは、NOxの形で、一気に放出されずに、図4(b)に示されるように、分割したリッチ運転により、徐々に放出される。この放出されたNOxが、図2(b)に示されるように白金(Pt)上で排ガス中の還元成分のHC、COなどと反応して還元される(窒素)。これにより、図4(c)に示されるようにNOx吸蔵量は、還元反応に合わせて、徐々に放出、すなわち減少する。むろん、モデル式で推定されるNOx吸蔵量も徐々に減少(放出)する。   As a result, the nitrate ions in the barium Ba are not released at once in the form of NOx, but are gradually released by the divided rich operation, as shown in FIG. 4B. The released NOx reacts with the reducing components HC, CO, etc. in the exhaust gas and is reduced (nitrogen) on platinum (Pt) as shown in FIG. Thereby, as shown in FIG. 4C, the NOx occlusion amount is gradually released, that is, decreased in accordance with the reduction reaction. Of course, the NOx occlusion amount estimated by the model equation also gradually decreases (releases).

したがって、還元反応が追いつかなくなるNOxスリップの発生を抑制しつつ、NOx吸蔵触媒33のNOx吸蔵量を減少させることができ、図4(b)に示されるようにNOxが一時的に多量に排出させずにすむ。   Therefore, it is possible to reduce the NOx occlusion amount of the NOx occlusion catalyst 33 while suppressing the occurrence of NOx slip where the reduction reaction cannot catch up. As shown in FIG. 4B, a large amount of NOx is temporarily discharged. I'm sorry.

特にNOx吸蔵触媒33のNOx吸蔵およびNOx還元をモデル化して、NOx吸蔵触媒33に吸蔵するNOx吸蔵量を推定し、この推定されたNOx吸蔵量が、徐々に減少されるよう、NOx吸蔵量増大時のリッチ運転を実行するようにしてあるので、NOx吸蔵量増大時のNOx吸蔵状況に合わせて、最適なリッチ運転を実施でき、燃費が無駄に損なわれることはない。しかも、NOx吸蔵量増大時のリッチ運転は、通常時よりリッチ度を弱めたリッチ運転を複数回繰り返すだけなので、簡単な制御ですむ。   In particular, the NOx occlusion amount of the NOx occlusion catalyst 33 is modeled to estimate the NOx occlusion amount to be occluded in the NOx occlusion catalyst 33, and the NOx occlusion amount is increased so that the estimated NOx occlusion amount is gradually decreased. Since the rich operation at the time is executed, the optimal rich operation can be performed in accordance with the NOx occlusion state when the NOx occlusion amount increases, and the fuel consumption is not lost unnecessarily. In addition, the rich operation when the NOx occlusion amount is increased can be simply controlled because the rich operation with a lower degree of richness than usual is repeated a plurality of times.

[第2の実施形態]
図5および図6は、本発明の第2の実施形態を示す。
[Second Embodiment]
5 and 6 show a second embodiment of the present invention.

第2の実施形態は、第1の実施形態の変形例で、図5の線図および図6のフローチャートに示されるように、NOx吸蔵量増大時、分割しながらリッチ運転を実行しているとき、推定されるNOx吸蔵量が、NOxスリップ発生閾値(Th1)を下回ると推定したとき、それ以降は、通常リッチ運転の範囲なので、1回のリッチ運転で、残りのNOx吸蔵量を一気に減少させるようにしたものである。   The second embodiment is a modification of the first embodiment. As shown in the diagram of FIG. 5 and the flowchart of FIG. 6, when the NOx occlusion amount is increased, the rich operation is executed while being divided. When the estimated NOx occlusion amount is estimated to be lower than the NOx slip occurrence threshold (Th1), the remaining NOx occlusion amount is reduced at a stretch in one rich operation since it is the normal rich operation range thereafter. It is what I did.

このようにすると、NOx吸蔵量増大時のリッチ運転を迅速に進めることができる。   If it does in this way, the rich operation at the time of NOx occlusion amount increase can be advanced rapidly.

なお、図5および図6において、第1の実施形態と同じ部分は同一符号を附してその説明を省略した。   5 and 6, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

[第3の実施形態]
図7は、本発明の第3の実施形態の要部となるフローチャートを示す。
[Third Embodiment]
FIG. 7 shows a flowchart as the main part of the third embodiment of the present invention.

第3の実施形態は、第1の実施形態のようなNOx吸蔵触媒をモデル化して、NOx吸蔵量を推定するのではなく、エンジンのリーン運転時間の積算にもとづいてNOx吸蔵触媒のリッチ移行時期を検知する場合、その積算したリーン運転時間を用いて、リーン運転時間増大時、吸蔵したNOxが徐々に放出(減少)されるようにしたものである。   In the third embodiment, the NOx storage catalyst is modeled as in the first embodiment, and the NOx storage amount is not estimated, but the rich transition timing of the NOx storage catalyst is based on the integration of the lean operation time of the engine. When the lean operation time is increased, the stored NOx is gradually released (decreased) when the lean operation time is increased.

詳しくは、モデル式の代わりにエンジンのリーン運転時間の積算にもとづいてNOx吸蔵触媒のリッチ移行時期を検知する機能を用いる。具体的には、図7のフローチャートに示されるように、まず、前回のリッチ運転が終了した時点から(ステップS21)、リーン時間タイマーにてリーン運転時間の積算を始める(ステップS22)。そして、リーン運転時間の積算時間が、通常リッチ移行閾値に達し、NOx吸蔵触媒33が十分にその機能を発揮できる状態(触媒温度が極端に低い状態、極端に高い状態を除く触媒状態)であると、リーン運転から再生のためのリッチ運転への移行を求める信号が出力される(ステップS23)。   Specifically, a function of detecting the rich transition timing of the NOx storage catalyst based on the accumulation of the lean operation time of the engine is used instead of the model formula. Specifically, as shown in the flowchart of FIG. 7, first, from the time when the previous rich operation is completed (step S21), the lean operation time is started to be accumulated by the lean time timer (step S22). Then, the accumulated time of the lean operation time normally reaches the rich transition threshold value, and the NOx storage catalyst 33 can sufficiently perform its function (catalyst state excluding a state where the catalyst temperature is extremely low and a state where it is extremely high). Then, a signal for requesting a shift from lean operation to rich operation for regeneration is output (step S23).

ここで、積算されるリーン運転時間は、NOxスリップをもたらすリーン運転時間には達していないから(ステップS24)、第1、第2の実施形態と同じく、通常リッチ運転が実行され(ステップS3)、同様にNOx吸蔵触媒33に吸蔵されたNOx吸蔵量が一気に減少する。   Here, since the accumulated lean operation time does not reach the lean operation time that causes the NOx slip (step S24), the normal rich operation is executed (step S3) as in the first and second embodiments. Similarly, the NOx occlusion amount occluded in the NOx occlusion catalyst 33 decreases at a stretch.

一方、通常リッチ運転の実行ができない状態(例えば渋滞の市街地の走行などで、触媒温度が極端に低いあるいは高いとき)が長引き、リーン時間タイマーで積算したリーン運転時間が、NOxスリップ発生閾値に相当する時間(t1)以上にまで増加したとする(ステップS24)。その後、リッチ可能となったときに、積算されたリーン運転時間にもとづき、リッチ度を弱めにしたリッチ運転の必要分割回数が設定される(ステップS25)。続いて、弱めのリッチ運転が、設定された分割回数にしたがい複数回実行される(ステップS26)。実行後、NOx吸蔵触媒の再生が終了したことを示すフラグが付され、リーン運転に戻る。   On the other hand, a state in which normal rich operation cannot be executed (for example, when the catalyst temperature is extremely low or high due to running in a congested urban area) is prolonged, and the lean operation time accumulated by the lean time timer corresponds to the NOx slip occurrence threshold. It is assumed that the time has increased to the time (t1) or longer (step S24). Thereafter, when the rich operation becomes possible, the required number of divisions of the rich operation with a reduced rich degree is set based on the accumulated lean operation time (step S25). Subsequently, the weak rich operation is executed a plurality of times according to the set number of divisions (step S26). After the execution, a flag indicating that the regeneration of the NOx storage catalyst is completed is attached, and the operation returns to the lean operation.

こうしたリーン運転時間の積算からNOx吸蔵量を推定する手法を用いても、分割したリッチ運転により、モデル式を用いたときと同様、最適なリッチ運転を実施できる。特にリーン運転時間の積算から、必要分割回数を求め、同回数でNOx吸蔵量増大時のリッチ運転を実行するので、NOx吸蔵状況に合わせた、無駄のない最適なリッチ運転が実施できる。   Even when a method for estimating the NOx occlusion amount from the accumulation of the lean operation time is used, the optimal rich operation can be performed by the divided rich operation as in the case of using the model formula. In particular, the required number of divisions is obtained from the integration of the lean operation time, and the rich operation at the time when the NOx storage amount increases is executed by the same number of times, so that an optimal rich operation without waste according to the NOx storage state can be performed.

なお、上述した第1〜第3の実施形態において、いずれもNOx吸蔵量増大時のリッチ運転は、リッチ度を弱めた運転を繰り返し実行することによって実施したが、通常リッチ運転を繰り返し実行することで実施してもよい。このような通常リッチ運転の繰り返しでも、NOx吸蔵触媒から徐々にNOxが放出されるようになるから、上述した第1〜第3の実施形態と同様、簡単な制御で、NOxスリップの発生を抑えつつ、NOx吸蔵量を減少させることができるという効果を奏する。   In the first to third embodiments described above, the rich operation when the NOx occlusion amount is increased is performed by repeatedly executing the operation with reduced richness, but the normal rich operation is repeatedly performed. May be implemented. Even when such normal rich operation is repeated, NOx is gradually released from the NOx occlusion catalyst. Therefore, as in the first to third embodiments described above, the generation of NOx slip can be suppressed with simple control. However, the NOx occlusion amount can be reduced.

[第4の実施形態]
図8〜図10は、本発明の第4の実施形態を示す。
[Fourth Embodiment]
8 to 10 show a fourth embodiment of the present invention.

本実施形態は、第1〜第3の実施形態のような細切れのリッチ運転を行うのではなく、NOx吸蔵触媒に流入する排ガスの還元濃度を徐々に目標還元濃度に高めるリッチ運転を行って、NOx吸蔵触媒に吸蔵されたNOxを徐々に放出させるようにしたものである。なお、本実施形態のエンジン回り、並びに排気ガス浄化装置は、第1の実施形態と同じなので、新たな構成を示す図面は省略し、ここでは図1や図2や図4を流用して説明する。   In the present embodiment, instead of performing the chopped rich operation as in the first to third embodiments, performing the rich operation of gradually increasing the reduction concentration of the exhaust gas flowing into the NOx storage catalyst to the target reduction concentration, The NOx occluded in the NOx occlusion catalyst is gradually released. In addition, since the engine periphery and the exhaust gas purifying apparatus of the present embodiment are the same as those of the first embodiment, the drawings showing the new configuration are omitted, and here, description will be given by using FIG. 1, FIG. 2, and FIG. To do.

この制御を実施するため、再生制御系のECU21には、主要部となる、a.第1〜第3の実施形態で述べたようなNOx吸蔵触媒のNOx吸蔵量を推定する手法を用いて、通常リッチ運転への移行が不可能と判定され、NOx吸蔵量が通常時より増加し、その後リッチ運転への移行が可能となったとき、第1の実施形態のEGR装置、還元用インジェクタの作動により空気過剰率λを徐々に低下させる手法で、徐々に還元濃度を目標還元濃度まで高める機能と、b.徐々に還元濃度を高めるリッチの度合いをNOx吸蔵量に応じて設定する機能、c.途中から一気に還元濃度を高める機能などが設定してある。   In order to perform this control, the ECU 21 of the regeneration control system becomes a main part, a. Using the method for estimating the NOx occlusion amount of the NOx occlusion catalyst as described in the first to third embodiments, it is determined that the shift to the normal rich operation is impossible, and the NOx occlusion amount increases from the normal time. Thereafter, when the shift to the rich operation becomes possible, the reduction concentration is gradually reduced to the target reduction concentration by the method of gradually reducing the excess air ratio λ by the operation of the EGR device of the first embodiment and the reduction injector. A function of increasing, and b. A function of setting the degree of richness that gradually increases the reduction concentration according to the NOx occlusion amount, c. A function to increase the reduction concentration at a stretch from the middle is set.

この制御の内容が図8のフローチャートに示され、この制御による排ガスおよびNOx吸蔵触媒の挙動が図9および図10に示されている。   The contents of this control are shown in the flowchart of FIG. 8, and the behavior of the exhaust gas and the NOx storage catalyst by this control is shown in FIGS.

図8のフローチャートを参照して、排気ガス浄化装置の作用を説明すると、今、ディーゼルエンジンが通常運転されるとする(リーン運転)。このときは、NOx吸蔵触媒33に流入される排ガスの空燃比はリーンであるから、図2(a)のように排ガスに含まれるNOxが白金(Pt)上で酸素と反応して、硝酸イオンの形でバリウム(Ba)に吸蔵される。   The operation of the exhaust gas purification device will be described with reference to the flowchart of FIG. 8. Now, it is assumed that the diesel engine is normally operated (lean operation). At this time, since the air-fuel ratio of the exhaust gas flowing into the NOx storage catalyst 33 is lean, NOx contained in the exhaust gas reacts with oxygen on platinum (Pt) as shown in FIG. Is stored in barium (Ba).

このリーン運転中、ECU21は、第1の実施形態で示したNOx吸蔵触媒33のモデル式(与式(1))を用いた演算により、ディーゼルエンジンの運転状態を考慮して、逐次、NOx吸蔵触媒33に吸蔵されるNOx吸蔵量を推定している。   During this lean operation, the ECU 21 sequentially stores NOx in consideration of the operating state of the diesel engine by calculation using the model equation (given equation (1)) of the NOx storage catalyst 33 shown in the first embodiment. The amount of NOx stored in the catalyst 33 is estimated.

推定されるNOx吸蔵量が通常リッチ移行閾値(Th0)に達し、NOx吸蔵触媒33が十分にその機能を発揮できる状態(触媒温度が極端に低い状態、極端に高い状態を除く触媒状態)であると、ECU21は、NOx吸蔵触媒33を再生する時期になったと判定する。すると、リーン運転から再生のためのリッチ運転への移行を求める信号が出力される(ステップS1)。   The estimated NOx occlusion amount normally reaches the rich transition threshold value (Th0), and the NOx occlusion catalyst 33 can sufficiently perform its function (catalyst state excluding a state where the catalyst temperature is extremely low and an extremely high state). Then, the ECU 21 determines that it is time to regenerate the NOx storage catalyst 33. Then, a signal for requesting a shift from lean operation to rich operation for regeneration is output (step S1).

ここで、推定されるNOx吸蔵量は、NOxスリップをもたらす吸蔵量には達していないから(ステップS2)、ECU21は、通常リッチ運転を行うためのリッチ信号を1回、出力する。すると、リッチ信号を受けて、NOx吸蔵触媒33に流入する排ガスの還元濃度を目標還元濃度にまで一気に高める。具体的には、EGR弁25、新気制御弁26および還元用インジェクタ36の制御により、図9のH部分に示されるようにリッチ目標λ(空気過剰率)まで一気に排ガスの空気過剰率λを低下させる。これにより、NOx吸蔵触媒33へは、未燃HC,CO(いずれも還元剤)などを含む還元雰囲気の排ガス、すなわち還元に最適な還元濃度の排ガスが流入され、通常リッチ運転が1回実行される(ステップS3)。   Here, since the estimated NOx occlusion amount does not reach the occlusion amount that causes the NOx slip (step S2), the ECU 21 outputs a rich signal for performing the normal rich operation once. Then, in response to the rich signal, the reduction concentration of the exhaust gas flowing into the NOx storage catalyst 33 is rapidly increased to the target reduction concentration. Specifically, by controlling the EGR valve 25, the fresh air control valve 26, and the reduction injector 36, the excess air ratio λ of the exhaust gas is increased to the rich target λ (excess air ratio) at a stroke as shown in H part of FIG. Reduce. As a result, exhaust gas in a reducing atmosphere containing unburned HC, CO (both of which is a reducing agent), that is, exhaust gas having a reduction concentration optimum for reduction, flows into the NOx storage catalyst 33, and the normal rich operation is executed once. (Step S3).

すると、NOx吸蔵触媒33では、先のNOx吸蔵とは反対の反応が行われる。すなわち、図2(b)のように排ガスがリッチのときは、バリウム(Ba)内の硝酸イオンがNOxの形で放出し、放出したNOxを白金(Pt)上で排ガス中の未燃HC、COなどの還元剤と反応して、窒素に還元させる。このような放出および還元により、NOx吸蔵触媒33のNOx吸蔵量は一気に減少する。   Then, in the NOx storage catalyst 33, a reaction opposite to the previous NOx storage is performed. That is, when exhaust gas is rich as shown in FIG. 2B, nitrate ions in barium (Ba) are released in the form of NOx, and the released NOx is unburned HC in the exhaust gas on platinum (Pt), React with a reducing agent such as CO to reduce to nitrogen. By such release and reduction, the NOx occlusion amount of the NOx occlusion catalyst 33 decreases at a stretch.

NOx吸蔵触媒33のモデル式(与式(1))では、このようなNOxの放出と還元がもたらすNOx吸蔵量の減少も考慮している。   In the model equation (the equation (1)) of the NOx occlusion catalyst 33, a decrease in the NOx occlusion amount caused by such NOx release and reduction is also considered.

リーン運転中は、NOx吸蔵触媒33の機能が十分に発揮できる状態が継続する限り、こうした通常リッチが間欠的に行われる。   During the lean operation, such normal rich operation is intermittently performed as long as the state in which the function of the NOx storage catalyst 33 can be sufficiently exerted continues.

一方、触媒温度に極端に低い状態、あるいは極端に高い状態が見られ、通常リッチ運転の実行ができない状態(例えば渋滞の市街地を走行するときなど)が長引いて、推定されるNOx吸蔵触媒33のNOx吸蔵量が、図4(c)のようにNOxスリップ発生閾値(Th1)以上にまで増加したとする。   On the other hand, a state in which the catalyst temperature is extremely low or extremely high is observed, and a state in which the normal rich operation cannot be performed (for example, when traveling in a congested urban area) is prolonged, and the estimated NOx storage catalyst 33 It is assumed that the NOx occlusion amount has increased to the NOx slip occurrence threshold (Th1) or more as shown in FIG.

その後、リッチ運転可能となったときに、ECU21は、増大したNOx吸蔵量を減少させるリッチ運転を行う。このときには、空気過剰率λを徐々に低下させて、徐々に目標還元濃度にするリッチ運転を行う。   Thereafter, when the rich operation becomes possible, the ECU 21 performs the rich operation for reducing the increased NOx storage amount. At this time, rich operation is performed in which the excess air ratio λ is gradually decreased to gradually reach the target reduction concentration.

このNOx増大時のリッチ運転は、まず、リッチ運転のリッチ度合いを定める。この度合いは、予めECU21で設定されているマップから設定する。詳しくは、ステップS30の線図のような推定NOx吸蔵量と空気過剰率λとがなす空気過剰率λの傾斜割合を示すマップから、推定したNOx吸蔵量に応じた空気過剰率λの減少具合、すなわち空気過剰率λが減少する方向の傾きを定める(ステップS30)。ついで、図10(b)に示されるように定めたλの傾きで、リッチ目標λに到達するまで、排ガスの空気過剰率λを低下させる(ステップS32、33)。この空気過剰率λの低下がリッチ目標λに到達したら、λの傾斜低下を終了する(ステップS34)。これにより、図10中のI部分に示されるようにNOx増大時のリッチ運転は、徐々にNOx放出に適した目標還元濃度に高まるという、リッチシフトをしながら開始(突入)される。   In the rich operation when NOx increases, the rich degree of the rich operation is first determined. This degree is set from a map set in advance by the ECU 21. Specifically, from the map showing the inclination ratio of the excess air ratio λ formed by the estimated NOx occlusion amount and the excess air ratio λ as shown in the diagram of step S30, the degree of decrease of the excess air ratio λ according to the estimated NOx occlusion amount. That is, the inclination in the direction in which the excess air ratio λ decreases is determined (step S30). Next, the excess air ratio λ of the exhaust gas is decreased with the slope of λ determined as shown in FIG. 10B until the rich target λ is reached (steps S32 and S33). When the decrease in the excess air ratio λ reaches the rich target λ, the decrease in the inclination of λ is terminated (step S34). As a result, as shown in the portion I in FIG. 10, the rich operation at the time of NOx increase is started (rushing) while performing a rich shift that gradually increases to the target reduction concentration suitable for NOx release.

このときのバリウム(Ba)内からのNOxの放出量は、還元剤の濃度が徐々に高まる還元濃度にしたがい、緩やかに増加しながら放出されるから、放出したほとんどのNOxは還元、すなわち図2(b)のように白金(Pt)上で排ガス中の還元成分たるHC、COなどと反応して還元される(窒素)。   At this time, the amount of NOx released from the barium (Ba) is released while gradually increasing according to the reducing concentration in which the concentration of the reducing agent gradually increases. Therefore, most of the released NOx is reduced, that is, FIG. As shown in (b), it is reduced on nitrogen (Pt) by reacting with HC, CO, etc., which are reducing components in the exhaust gas.

一方、NOx吸蔵量増大時のNOx放出中、触媒温度が、図10(a)のように還元の反応熱により上昇し、所定の温度値、例えばNOxスリップが発生しない触媒温度の下限の温度値(T1)を超えるまで上昇して(ステップS31)、十分な還元反応が期待できるようになるとする。このときには、図10(b)中のJ部分に示されるように次第に空気過剰率λが低くなる途中で、排ガスの空気過剰率λが、一気に目標リッチλまで低下するように制御される(ステップS35)。すると、NOx吸蔵触媒33の還元能力に合わせて、一気にNOxの放出量が増加して、NOxの還元反応が進む。   On the other hand, during NOx release when the NOx occlusion amount increases, the catalyst temperature rises due to the reaction heat of reduction as shown in FIG. 10A, and a predetermined temperature value, for example, the lower limit temperature value of the catalyst temperature at which NOx slip does not occur. It rises until it exceeds (T1) (step S31), and it is assumed that a sufficient reduction reaction can be expected. At this time, the excess air ratio λ of the exhaust gas is controlled so that the excess air ratio λ of the exhaust gas is reduced to the target rich λ at a time while the excess air ratio λ gradually decreases as shown by a portion J in FIG. S35). Then, in accordance with the reducing ability of the NOx storage catalyst 33, the amount of NOx released increases at once, and the NOx reduction reaction proceeds.

そして、推定されるNOx吸蔵量が、リッチ運転の終了を規定するリッチ終了閾値(Th2)以下となるまでは(ステップS5)、還元剤の濃度の割合いを変化させたリッチ運転(ステップS31,S32,S33,S34,S5)、および途中から一気に目標リッチλまで還元剤の濃度を変化させたリッチ運転(ステップS31,S35,S5)のいずれ共、目標λのままリッチ運転を継続させて(ステップS37)、リッチ運転を終える(ステップS38)。   Then, until the estimated NOx occlusion amount becomes equal to or less than the rich end threshold (Th2) that defines the end of the rich operation (Step S5), the rich operation in which the ratio of the reducing agent concentration is changed (Step S31, S2). (S32, S33, S34, S5) and the rich operation (steps S31, S35, S5) in which the concentration of the reducing agent is changed from the middle to the target rich λ all at once, the rich operation is continued with the target λ ( Step S37), the rich operation is finished (Step S38).

こうしたリッチ運転突入時(NOx増大時)の排ガスの還元濃度を徐々に目標還元濃度にする制御でも、第1の実施形態と同様、NOxスリップの発生を抑制しつつ、NOx吸蔵触媒33のNOx吸蔵量を減少させることができ、同様にNOxが一時的に多量に排出されるのを防ぐことができる。むろん、第1の実施形態と同様、NOx吸蔵量増大時のリッチ運転は、NOx吸蔵触媒33のNOx吸蔵およびNOx還元をモデル化してNOx吸蔵触媒33に吸蔵するNOx吸蔵量を推定する手法を用いて、推定NOx吸蔵量が緩やかに放出(減少)されるようにしてあるので、最適なリッチ運転が実施できる。特にNOx吸蔵量増大時のリッチ運転の還元濃度を高める度合いを、推定されるNOx吸蔵量に応じた傾きにしたがい設定したことで、より最適にリッチ運転を実施できる。しかも、NOx吸蔵量増大時のリッチ運転中、反応熱によって触媒温度が所定の温度値以上に上昇したときは、排ガスの還元濃度を目標還元濃度まで一気に高めるようにしてあるので、触媒温度の上昇がもたらす触媒性能の増加を活用して、迅速にリッチ運転を進めることができる。そのうえ、還元濃度を変えるのには、排ガスの空気過剰率λを制御が用いてあるので、簡単ですむといった利点がある。   Even in such control that gradually reduces the exhaust gas reduction concentration to the target reduction concentration at the time of the rich operation rush (when NOx increases), NOx occlusion of the NOx occlusion catalyst 33 is suppressed while suppressing the occurrence of NOx slip as in the first embodiment. The amount can be reduced, and similarly, a large amount of NOx can be prevented from being temporarily discharged. Of course, as in the first embodiment, the rich operation when the NOx occlusion amount increases uses a method of estimating the NOx occlusion amount occluded in the NOx occlusion catalyst 33 by modeling the NOx occlusion and NOx reduction of the NOx occlusion catalyst 33. Thus, the estimated NOx occlusion amount is gradually released (decreased), so that an optimal rich operation can be performed. In particular, the rich operation can be performed more optimally by setting the degree of increasing the reduction concentration of the rich operation when the NOx storage amount is increased according to the inclination according to the estimated NOx storage amount. Moreover, during the rich operation when the NOx occlusion amount increases, when the catalyst temperature rises above a predetermined temperature value due to reaction heat, the exhaust gas reduction concentration is increased to the target reduction concentration all at once. The rich operation can be rapidly advanced by utilizing the increase in the catalyst performance caused by. In addition, there is an advantage that changing the reduction concentration is simple because the excess air ratio λ of the exhaust gas is controlled.

[第5の実施形態]
図11は、本発明の第5の実施形態の要部となるフローチャートを示す。
[Fifth Embodiment]
FIG. 11 is a flowchart showing the main part of the fifth embodiment of the present invention.

第5の実施形態は、第4の実施形態のようなNOx吸蔵触媒をモデル化して、NOx吸蔵量を推定するのではなく、エンジンのリーン運転時間の積算にもとづいてNOx吸蔵触媒のリッチ移行時期を検知する場合、その積算したリーン運転時間を用いて、リーン運転時間増大時、NOx吸蔵触媒33に流入される排ガスを徐々に還元濃度を高めながら目標還元濃度にするようにしたものである。   In the fifth embodiment, the NOx occlusion catalyst as in the fourth embodiment is modeled and the NOx occlusion amount is not estimated, but the rich transition timing of the NOx occlusion catalyst is based on the integration of the lean operation time of the engine. When the lean operation time is increased, the exhaust gas flowing into the NOx storage catalyst 33 is set to the target reduction concentration while gradually increasing the reduction concentration.

詳しくは、図11のフローチャートには、図7中(第3の実施形態)のフローチャートで示されるエンジンのリーン運転時間の積算にもとづいてNOx吸蔵触媒のリッチ移行時期を検知する内容と、図8中(第4の実施形態)のフローチャートで示されるNOx吸蔵量増大時(=リーン運転時間増大時)における排ガスの還元濃度を空気過剰率λでリッチ側に傾けて徐々に還元剤濃度を高める内容とを組み合わせ、これに新たにリーン運転時間を積算した運転時間から、NOx吸蔵量増大時(=リーン運転時間増大時)のリッチ運転継続時間を設定するルーチン(ステップS40,S41)を追加した内容が採用されている。   Specifically, the flowchart of FIG. 11 includes the content of detecting the rich transition timing of the NOx storage catalyst based on the accumulation of the lean operation time of the engine shown in the flowchart of FIG. 7 (third embodiment), and FIG. Content of gradually increasing the reducing agent concentration by inclining the reduction concentration of the exhaust gas to the rich side at the excess air ratio λ when the NOx occlusion amount is increased (= when the lean operation time is increased) shown in the flowchart of the middle (fourth embodiment) And a routine (steps S40 and S41) for setting a rich operation continuation time when the NOx occlusion amount is increased (= when the lean operation time is increased) from the operation time obtained by newly integrating the lean operation time. Is adopted.

このようなリーン運転時間を積算する手法を用いて、第4の実施形態と同様に、NOx吸蔵量増大時(=リーン運転時間増大時)におけるリッチ運転の還元濃度を徐々に変えるようにしても、第4の実施形態のモデル式を用いたときと同様、最適なリッチ運転を実施できる。   By using such a method of integrating the lean operation time, similarly to the fourth embodiment, the reduction concentration of the rich operation when the NOx occlusion amount increases (= when the lean operation time increases) may be gradually changed. As in the case of using the model formula of the fourth embodiment, the optimum rich operation can be performed.

但し、図11のフローチャートは、リッチ運転継続時間を設定するルーチンが加わるだけで、残りは第3の実施形態のフローチャートと第4の実施形態のフローチャートと同じなので、フローチャートの説明は、第3の実施形態のフローチャート(図7)と第4の実施形態のフローチャート(図8)と同じ部分に同一符号を附して省略した。   However, in the flowchart of FIG. 11, only a routine for setting the rich operation continuation time is added, and the rest is the same as the flowchart of the third embodiment and the flowchart of the fourth embodiment. The same parts as those in the flowchart of the embodiment (FIG. 7) and the flowchart of the fourth embodiment (FIG. 8) are denoted by the same reference numerals and omitted.

なお、本発明は上述した各実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施しても構わない。例えば上述した実施形態は、本発明をディーゼルエンジンに適用したが、これに限らず、ガソリンエンジンといった他のエンジンに本発明を適用してもよい。また、リッチ運転の手段として、排気管に還元剤投入用のインジェクタを配置したが、筒内でのポスト噴射等を利用する方法で実施してもよい。   In addition, this invention is not limited to each embodiment mentioned above, You may implement in various changes within the range which does not deviate from the main point of this invention. For example, in the above-described embodiment, the present invention is applied to a diesel engine. However, the present invention is not limited to this, and the present invention may be applied to other engines such as a gasoline engine. Further, as a means for rich operation, the injector for introducing the reducing agent is arranged in the exhaust pipe, but it may be implemented by a method using post injection in a cylinder or the like.

本発明の第1の実施形態に係る排気浄化装置の概略的な構成を共に示す図。The figure which shows together schematic structure of the exhaust gas purification apparatus which concerns on the 1st Embodiment of this invention. NOx吸蔵触媒の吸放作用を説明するための図。The figure for demonstrating the absorption-and-release function of a NOx storage catalyst. 細切れのリッチ運転によりNOx吸蔵触媒の吸蔵NOxを放出させる制御を示すフローチャート。The flowchart which shows the control which discharge | releases occluded NOx of a NOx occlusion catalyst by a rich operation of chopping. 同放出時における吸蔵触媒の状況を説明するための図。The figure for demonstrating the condition of the storage catalyst at the time of the discharge | release. 本発明の第2の実施形態の要部となる、NOx吸蔵量増大時のリッチ運転の途中で一気にNOxの放出が進む状況を説明するための図。The figure for demonstrating the condition where discharge | release of NOx advances at a stretch in the middle of the rich operation at the time of NOx occlusion amount increase used as the principal part of the 2nd Embodiment of this invention. 同一気にNOx放出を進める制御を示すフローチャート。The flowchart which shows the control which advances NOx discharge | release in the same air. 本発明の第3の実施形態の要部となる、リーン運転時間を積算する手法で吸蔵NOxを放出させる制御を示すフローチャート。The flowchart which shows the control which makes the principal part of the 3rd Embodiment of this invention discharge | release occluded NOx by the method of integrating | accumulating lean operation time. 本発明の第4の実施形態の要部となる、排ガスの還元濃度を徐々に変える制御によりNOx吸蔵触媒の吸蔵NOxを放出させる制御を示すフローチャート。The flowchart which shows the control which discharge | releases occluded NOx of a NOx occlusion catalyst by the control which changes the reduction | restoration density | concentration of waste gas gradually used as the principal part of the 4th Embodiment of this invention. 通常リッチ運転時の排ガス還元濃度の推移を示す線図。The diagram which shows transition of the exhaust gas reduction concentration at the time of normal rich operation. NOx吸蔵量増大リッチ運転時の排ガス還元濃度の推移を示す線図。The diagram which shows transition of the exhaust gas reduction concentration at the time of NOx occlusion amount increase rich operation. 本発明の第5の実施形態の要部となる、リーン運転時間を積算する手法で吸蔵NOxを放出させる制御を示すフローチャート。The flowchart which shows the control which discharge | releases occluded NOx by the method of integrating | accumulating the lean operation time which becomes the principal part of the 5th Embodiment of this invention. 再生の機会が得られずにNOx吸蔵触媒にNOxが吸蔵される状況を説明するための線図。The diagram for demonstrating the condition where NOx is occluded by the NOx occlusion catalyst without the opportunity of regeneration being obtained. 同吸蔵されたNOxの放出の際に発生するNOxスリップを説明するための線図。The diagram for demonstrating the NOx slip which generate | occur | produces in the case of discharge | release of the occluded NOx.

符号の説明Explanation of symbols

1…エンジン本体、20…第2排気通路(排気通路)、21…ECU(リッチ移行判定手段、第2リッチ運転手段、NOx吸蔵量推定手段)。   DESCRIPTION OF SYMBOLS 1 ... Engine main body, 20 ... 2nd exhaust passage (exhaust passage), 21 ... ECU (rich transition determination means, 2nd rich operation means, NOx occlusion amount estimation means).

Claims (12)

内燃機関の排出通路に設けられ、前記内燃機関がリーン運転状態のとき排気中のNOxを吸蔵し、前記内燃機関がリッチ運転状態のとき当該吸蔵されたNOxを放出して還元させるNOx吸蔵触媒と、
前記内燃機関をリーン運転から間欠的な通常の第1リッチ運転に移行可能かを判定するリッチ移行判定手段と、
前記リッチ移行判定手段により移行不可能と判定され、NOx吸蔵量が通常時より増加し、その後リッチ移行可能となったとき、NOxスリップを抑えるべく、複数に運転期間を分割させて第2リッチ運転を実行する第2リッチ運転手段と
を具備したことを特徴とする内燃機関の排気浄化装置。
An NOx storage catalyst that is provided in an exhaust passage of the internal combustion engine and that stores NOx in the exhaust when the internal combustion engine is in a lean operation state and releases and reduces the stored NOx when the internal combustion engine is in a rich operation state; ,
Rich transition determination means for determining whether the internal combustion engine can be shifted from lean operation to intermittent normal first rich operation;
When it is determined by the rich transition determination means that the transition is impossible and the NOx occlusion amount increases from the normal time and then the rich transition becomes possible, the second rich operation is performed by dividing the operation period into a plurality of times in order to suppress NOx slip. An exhaust purification device for an internal combustion engine, comprising: a second rich operation means for executing
さらに前記NOx吸蔵触媒におけるNOx吸蔵およびNOx還元をモデル化して前記NOx触媒に吸蔵するNOx吸蔵量を推定するNOx吸蔵量推定手段を有し、
前記第2リッチ運転手段は、前記移行不可能と判定され、前記NOx吸蔵量推定手段で推定されたNOx吸蔵量が、前記NOxスリップの発生を規定するNOxスリップ発生閾値以上まで増加し、その後リッチ移行可能となったとき、推定したNOx吸蔵量が徐々に放出されるよう、前記第2リッチ運転が実行されるようにしてある
ことを特徴とする請求項1に記載の内燃機関の排気浄化装置。
And NOx occlusion amount estimating means for modeling NOx occlusion and NOx reduction in the NOx occlusion catalyst and estimating the NOx occlusion amount occluded in the NOx catalyst.
The second rich operation means determines that the transition is impossible, and the NOx occlusion amount estimated by the NOx occlusion amount estimation means increases to a NOx slip occurrence threshold value that defines the occurrence of the NOx slip, and then rich. 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the second rich operation is performed so that the estimated NOx occlusion amount is gradually released when the shift becomes possible. .
前記第2リッチ運転手段は、前記第2リッチ運転を分割させながら実行しているとき、前記NOx吸蔵推定手段が前記NOxスリップ発生閾値を下回るまでNOx吸蔵量が減少したと推定したときは、それ以降は、残りのNOx吸蔵量を一気に減少すべく1回のリッチ運転が実行されるようにしてある
ことを特徴とする請求項2に記載の内燃機関の排気浄化装置。
When the second rich operation means is executing the second rich operation while dividing it, when the NOx occlusion estimation means estimates that the NOx occlusion amount has decreased until it falls below the NOx slip occurrence threshold, Thereafter, one rich operation is performed so as to reduce the remaining NOx occlusion amount all at once. The exhaust gas purification apparatus for an internal combustion engine according to claim 2, wherein
さらに前記内燃機関のリーン運転時間の積算にもとづいて前記NOx吸蔵触媒のリッチ移行時期を判定する手段を有し、
前記第2リッチ運転手段は、前記移行不可能と判定され、前記リーン運転時間の積算時間が、前記NOxスリップの発生を規定するNOxスリップ発生閾値に相当する時間以上まで増加し、その後リッチ移行可能となったとき、吸蔵したNOxが徐々に放出されるよう、前記第2リッチ運転が実行されるようにしてある
ことを特徴とする請求項1に記載の内燃機関の排気浄化装置。
And means for determining the rich transition timing of the NOx storage catalyst based on the accumulation of the lean operation time of the internal combustion engine,
The second rich operation means is determined to be unable to shift, and the accumulated operation time of the lean operation time increases to a time corresponding to a NOx slip occurrence threshold that defines the occurrence of the NOx slip, and then rich transition is possible. 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the second rich operation is performed so that the stored NOx is gradually released.
前記第2リッチ運転手段は、前記積算されたリーン運転時間にもとづき前記第2リッチ運転の必要分割回数が設定され、当該設定された分割回数にしたがって第2リッチ運転が実行されるようにしてある
ことを特徴とする請求項4に記載の内燃機関の排気浄化装置。
The second rich operation means sets the required number of divisions of the second rich operation based on the accumulated lean operation time, and executes the second rich operation according to the set number of divisions. The exhaust emission control device for an internal combustion engine according to claim 4, wherein
前記第2リッチ運転手段で実行される第2リッチ運転は、前記間欠的に行う第1リッチ運転を複数回繰り返す、あるいは第1リッチ運転よりリッチ度を弱めた運転を複数回繰り返す運転で実行される
ことを特徴とする請求項1〜請求項5のいずれか一つに記載の内燃機関の排気浄化装置。
The second rich operation performed by the second rich operation means is performed by repeating the intermittently performed first rich operation a plurality of times, or by repeating the operation having a lower richness than the first rich operation a plurality of times. The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 5, wherein:
内燃機関の排出通路に設けられ、前記内燃機関がリーン運転状態のとき排気中のNOxを吸蔵し、前記内燃機関がリッチ運転状態のとき当該吸蔵されたNOxを放出して還元させるNOx吸蔵触媒と、
前記内燃機関がリーン運転から間欠的な通常の第1リッチ運転に移行可能かを判定するリッチ移行判定手段と、
前記リッチ移行判定手段により移行不可能と判定され、NOx吸蔵量が通常時より増加し、その後リッチ移行可能となったとき、NOxスリップを抑えるべく、前記内燃機関で前記NOx吸蔵触媒に流入する排ガスを徐々に還元濃度を高めながら目標還元濃度にする第2リッチ運転を実行する第2リッチ運転手段と
を具備したことを特徴とする内燃機関の排気浄化装置。
An NOx storage catalyst that is provided in an exhaust passage of the internal combustion engine and that stores NOx in the exhaust when the internal combustion engine is in a lean operation state and releases and reduces the stored NOx when the internal combustion engine is in a rich operation state; ,
Rich transition determination means for determining whether the internal combustion engine can transition from lean operation to intermittent normal first rich operation;
Exhaust gas flowing into the NOx storage catalyst in the internal combustion engine to suppress NOx slip when the rich transition determination means determines that the transition is impossible and the NOx occlusion amount increases from the normal time and then the rich transition is possible. An exhaust purification device for an internal combustion engine, comprising: a second rich operation means for executing a second rich operation to achieve a target reduction concentration while gradually increasing the reduction concentration.
さらに前記NOx吸蔵触媒におけるNOx吸蔵およびNOx還元をモデル化して前記NOx触媒に吸蔵するNOx吸蔵量を推定するNOx吸蔵量推定手段を有し、
前記第2リッチ運転手段は、前記移行不可能と判定され、前記NOx吸蔵量推定手段で推定されたNOx吸蔵量が、前記NOxスリップの発生を規定するNOxスリップ発生閾値以上まで増加し、その後リッチ移行可能となったとき、推定したNOx吸蔵量が徐々に放出されるよう、前記第2リッチ運転が実行されるようにしてある
ことを特徴とする請求項7に記載の内燃機関の排気浄化装置。
And NOx occlusion amount estimating means for modeling NOx occlusion and NOx reduction in the NOx occlusion catalyst and estimating the NOx occlusion amount occluded in the NOx catalyst.
The second rich operation means determines that the transition is impossible, and the NOx occlusion amount estimated by the NOx occlusion amount estimation means increases to a NOx slip occurrence threshold value that defines the occurrence of the NOx slip, and then rich. The exhaust purification device for an internal combustion engine according to claim 7, wherein the second rich operation is executed so that the estimated NOx occlusion amount is gradually released when the shift becomes possible. .
さらに前記内燃機関のリーン運転時間の積算にもとづいて前記NOx吸蔵触媒のリッチ移行時期を判定する手段を有し、
前記第2リッチ運転手段は、前記移行不可能と判定され、前記リーン運転時間の積算時間が、前記NOxスリップの発生を規定するNOxスリップ発生閾値に相当する時間以上まで増加し、その後リッチ移行可能となったとき、吸蔵したNOxが徐々に放出されるよう、前記第2リッチ運転を実行するようにしてある
ことを特徴とする請求項7に記載の内燃機関の排気浄化装置。
And means for determining the rich transition timing of the NOx storage catalyst based on the accumulation of the lean operation time of the internal combustion engine,
The second rich operation means is determined to be unable to shift, and the accumulated operation time of the lean operation time increases to a time corresponding to a NOx slip occurrence threshold that defines the occurrence of the NOx slip, and then rich transition is possible. The exhaust purification device for an internal combustion engine according to claim 7, wherein the second rich operation is performed so that the stored NOx is gradually released when the exhaust gas becomes.
前記第2リッチ運転手段は、徐々に還元濃度を高める第2リッチ運転のリッチ度合いが、前記NOx吸蔵推定手段で推定されるNOx吸蔵量に応じた傾き、あるいは前記リーン運転時間の積算時間に応じた傾きで設定され、当該傾きにならって第2リッチ運転が実行されるようにしてある
ことを特徴とする請求項8又は請求項9に記載の内燃機関の排気浄化装置。
In the second rich operation means, the rich degree of the second rich operation for gradually increasing the reduction concentration depends on the inclination according to the NOx occlusion amount estimated by the NOx occlusion estimation means or the accumulated time of the lean operation time. The exhaust gas purification apparatus for an internal combustion engine according to claim 8 or 9, wherein the second rich operation is executed in accordance with the inclination.
前記第2リッチ運転手段は、推定したNOx吸蔵量で設定される傾きにしたがって徐々に還元濃度を高める第2リッチ運転を実行しているとき、NOx吸蔵触媒の温度が所定の温度値まで上昇したときは、それ以降は、目標還元濃度まで一気に還元濃度を高める運転が実行されるようにしてある
ことを特徴とする請求項10に記載の内燃機関の排気浄化装置。
When the second rich operation means is performing a second rich operation in which the reduction concentration is gradually increased according to the inclination set by the estimated NOx storage amount, the temperature of the NOx storage catalyst has increased to a predetermined temperature value. When this is the case, after that, an operation for increasing the reduction concentration at a stretch to the target reduction concentration is executed. The exhaust emission control device for an internal combustion engine according to claim 10, wherein:
前記第2リッチ運転手段で実行される第2リッチ運転手段は、前記NOx吸蔵触媒に流入する排ガスの空気過剰率を変えることによって、排ガスを徐々に還元濃度を高めながら目標還元濃度にするようにしてある
ことを特徴とする請求項7〜請求項11のいずれか一つに記載の内燃機関の排気浄化装置。
The second rich operation means executed by the second rich operation means changes the excess air ratio of the exhaust gas flowing into the NOx storage catalyst so as to gradually increase the reduction concentration of the exhaust gas to a target reduction concentration. The exhaust emission control device for an internal combustion engine according to any one of claims 7 to 11, wherein the exhaust gas purification device is an internal combustion engine.
JP2003343318A 2003-10-01 2003-10-01 Exhaust emission control device of internal combustion engine Pending JP2005106005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003343318A JP2005106005A (en) 2003-10-01 2003-10-01 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003343318A JP2005106005A (en) 2003-10-01 2003-10-01 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005106005A true JP2005106005A (en) 2005-04-21

Family

ID=34537331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343318A Pending JP2005106005A (en) 2003-10-01 2003-10-01 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005106005A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187096A (en) * 2006-01-13 2007-07-26 Honda Motor Co Ltd Air-fuel ratio control device for internal combustion engine
US8033103B2 (en) 2006-09-29 2011-10-11 Denso Corporation Exhaust purification device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187096A (en) * 2006-01-13 2007-07-26 Honda Motor Co Ltd Air-fuel ratio control device for internal combustion engine
JP4585971B2 (en) * 2006-01-13 2010-11-24 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
US8033103B2 (en) 2006-09-29 2011-10-11 Denso Corporation Exhaust purification device

Similar Documents

Publication Publication Date Title
US6502391B1 (en) Exhaust emission control device of internal combustion engine
JP3277881B2 (en) Exhaust gas purification device for internal combustion engine
US7730719B2 (en) Exhaust purification apparatus of compression ignition type internal combustion engine
US8978367B2 (en) Exhaust gas purifying system of internal combustion engine
US8156731B2 (en) Exhaust purification device of internal combustion engine
JP4305445B2 (en) Internal combustion engine
US20090107121A1 (en) Exhaust gas control apparatus for internal combustion engine
US10443525B2 (en) Exhaust emission control system of engine
JP4572709B2 (en) Exhaust gas purification system for internal combustion engine
JP6665523B2 (en) Exhaust gas purification device
JP2007231918A (en) Exhaust emission control device for compression ignition type internal combustion engine
JPH11294149A (en) Lean combustion internal combustion engine
JP4291650B2 (en) Exhaust purification equipment
JP6270247B1 (en) Engine exhaust purification system
JP2005106005A (en) Exhaust emission control device of internal combustion engine
JP6569873B2 (en) Engine exhaust purification system
JP4292948B2 (en) Exhaust gas purification device for internal combustion engine
JP6270246B1 (en) Engine exhaust purification system
JP2019167918A (en) Exhaust gas state estimation method for engine, catalyst abnormality determination method for engine, and catalyst abnormality determination device for engine
JP7147214B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
US10746072B2 (en) Engine with exhaust emission control device
JP7106923B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
JP6573130B2 (en) Engine exhaust purification system
JP4292947B2 (en) Exhaust gas purification device for internal combustion engine
JP2005127286A (en) Exhaust emission cleaning device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818