JP2005105394A - Method for forming ferroelectric thin film - Google Patents

Method for forming ferroelectric thin film Download PDF

Info

Publication number
JP2005105394A
JP2005105394A JP2003343936A JP2003343936A JP2005105394A JP 2005105394 A JP2005105394 A JP 2005105394A JP 2003343936 A JP2003343936 A JP 2003343936A JP 2003343936 A JP2003343936 A JP 2003343936A JP 2005105394 A JP2005105394 A JP 2005105394A
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric thin
growth
film
growth rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003343936A
Other languages
Japanese (ja)
Inventor
Kenji Shibata
憲治 柴田
Tsunehiro Unno
恒弘 海野
Kazutoshi Watanabe
和俊 渡辺
Ayano Yamada
綾乃 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003343936A priority Critical patent/JP2005105394A/en
Publication of JP2005105394A publication Critical patent/JP2005105394A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for growing a ferroelectric thin film of high quality consisting of crystal grains with small and uniform sizes, with a MOCVD technique in a short period of time (with a high growth rate). <P>SOLUTION: This film-forming method includes a step of growing the ferroelectric thin film with the MOCVD technique at a growing rate of 0.05 nm/sec or less during an early growing stage between the time of starting the growth and a time when the film thickness reaches 10 nm; or includes a step of slowly increasing the growing rate from the time of starting the growth in a growing process between the time of starting the growth and a time when the film thickness reaches 10 nm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、強誘電体薄膜の形成方法、詳しくは強誘電体薄膜の圧電特性を利用した圧電マイクロアクチュエータや圧電センサ、更に、焦電性を利用した焦電センサ、分極特性を利用した不揮発性メモリの作製に有用な強誘電体薄膜の形成方法に関わるものである。   The present invention relates to a method for forming a ferroelectric thin film, more specifically, a piezoelectric microactuator or a piezoelectric sensor using the piezoelectric characteristics of the ferroelectric thin film, a pyroelectric sensor using pyroelectricity, and a non-volatile using polarization characteristics. The present invention relates to a method of forming a ferroelectric thin film useful for manufacturing a memory.

現在、圧電特性に優れるPb(Zr、Ti)O3(通常、PZTと言われている。)等の強誘電体が、バルクセラミックスの形状で圧電アクチュエータとして広く応用されているが、最近、圧電マイクロアクチュエータへの応用展開を目指して、強誘電体の薄膜化が強く求められている。強誘電体を薄膜化すると、印加する電圧値に対する変位量が大きくなるため、低電圧で駆動する変位量の大きいアクチュエータができるようになるからである。 At present, ferroelectrics such as Pb (Zr, Ti) O 3 (usually referred to as PZT) having excellent piezoelectric characteristics are widely applied as piezoelectric actuators in the form of bulk ceramics. Aiming to develop applications for microactuators, there is a strong demand for thinner ferroelectrics. This is because if the ferroelectric material is thinned, the amount of displacement with respect to the voltage value to be applied increases, so that an actuator with a large amount of displacement driven at a low voltage can be obtained.

しかしながら、強誘電体を薄くしすぎるとアクチュエータの動作に必要な力が得られなくなる。基材の種類や厚さにも依存するが、一般的に、圧電マイクロアクチュエータには、2〜10μmの厚さの薄膜が実用的に有利であると言われている。   However, if the ferroelectric is made too thin, the force necessary for the operation of the actuator cannot be obtained. Although it depends on the type and thickness of the substrate, it is generally said that a thin film having a thickness of 2 to 10 μm is practically advantageous for the piezoelectric microactuator.

これまでは、焼結されたバルク材を機械加工する方法や、スクリーン印刷法で薄膜を形成する方法が主に検討されてきた。しかしながら、バルク材の機械加工の場合、加工中やハンドリング中の破損の問題や基材への接着時のバラツキの問題があり、100μm以下の微細加工は実用的には困難であった。また、スクリーン印刷法は、十分な膜密度を有する膜が得られないため、膜厚を薄くすると絶縁破壊を起こしやすくなる等の問題があり、実用化できていない。   Until now, methods of machining a sintered bulk material and methods of forming a thin film by screen printing have been mainly studied. However, in the case of machining a bulk material, there is a problem of breakage during processing or handling and a problem of variation at the time of adhesion to a base material, and microfabrication of 100 μm or less is practically difficult. In addition, since the screen printing method cannot obtain a film having a sufficient film density, there is a problem that a dielectric breakdown tends to occur when the film thickness is reduced, and it has not been put into practical use.

そこで最近は、薄膜成長技術として実績があるスパッタリング法、ゾルゲル法、MOCVD法(化学気相堆積法)、PLD法(パルスレーザ堆積法)等の方法での強誘電体薄膜の形成が盛んに研究されるようになってきた。   Therefore, recently, active research has been conducted on the formation of ferroelectric thin films by methods such as sputtering, sol-gel, MOCVD (chemical vapor deposition), and PLD (pulsed laser deposition), which have proven results as thin film growth technologies. It has come to be.

例えば、調整したゾルを塗布し、乾燥、脱脂、焼成(焼成温度550℃〜750℃)の工程を行い初期層を形成した後、この初期層の上に、同様に調整したゾルを塗布し、乾燥、脱脂、焼成(焼成温度550℃〜750℃)の工程を行い後期層を形成する強誘電体薄膜の形成方法が知られている(例えば、特許文献1参照)。   For example, after applying an adjusted sol, drying, degreasing, and firing (calcination temperature: 550 ° C. to 750 ° C.) to form an initial layer, an initial adjustment layer is applied on the initial layer, A method for forming a ferroelectric thin film is known in which drying, degreasing, and firing (firing temperature: 550 ° C. to 750 ° C.) are performed to form a late layer (see, for example, Patent Document 1).

近い将来は、まず、ゾルゲル法やスパッタリング法で実用化が進むと思われるが、将来的には、膜質の良さ、成膜の高速性、複雑な形状への対応性の面から考えると、MOCVD法が圧電マイクロアクチュエータの応用に広く用いられるようになると予想されている。   In the near future, sol-gel method and sputtering method will be put to practical use first, but in the future, considering the good film quality, high speed of film formation, and compatibility with complex shapes, MOCVD The method is expected to be widely used in piezoelectric microactuator applications.

現在、強誘電体薄膜のMOCVD法による成長は、有機金属原料の蒸気圧を使って原料を供給するバブリング法か、溶媒に溶かした有機金属原料を液体供給装置で供給するLDS(Liquid Delivery System)法のどちらかを使って原料を供給し、リアクタで600℃程度に加熱することで原料を分解し、基材上に薄膜を成長させている。現状、他の薄膜形成方法よりも結晶粒サイズが小さくて均一であり、優れた絶縁破壊特性を有する良質な薄膜が形成できている。
特開2002−043642号公報(段落番号0056〜0064、図4)
At present, the growth of ferroelectric thin films by MOCVD method is the bubbling method in which the raw material is supplied using the vapor pressure of the organic metal raw material, or the LDS (Liquid Delivery System) in which the organic metal raw material dissolved in the solvent is supplied by the liquid supply device. The raw material is supplied using one of the methods, and the raw material is decomposed by heating to about 600 ° C. in a reactor, and a thin film is grown on the substrate. At present, a high-quality thin film having a smaller and more uniform grain size than other thin film forming methods and having excellent dielectric breakdown characteristics can be formed.
JP 2002-036442 A (paragraph numbers 0056 to 0064, FIG. 4)

前記の通り、圧電アクチュエータに用いるためには強誘電体薄膜の膜厚は2μm以上であることが望まれる。それゆえ、薄膜の成長は成長速度が高いことが望まれる。LDS法で原料供給を行うMOCVD法では、有機金属原料の蒸気圧に依らず原料を供給できるので、高いレートでの安定した原料供給が可能であり、成長速度を著しく大きくできる。   As described above, the thickness of the ferroelectric thin film is desirably 2 μm or more in order to be used for a piezoelectric actuator. Therefore, the growth rate of the thin film is desired to be high. In the MOCVD method in which the raw material is supplied by the LDS method, the raw material can be supplied regardless of the vapor pressure of the organic metal raw material, so that the raw material can be stably supplied at a high rate and the growth rate can be remarkably increased.

しかしながら、成長速度を高くすると、強誘電体薄膜の結晶粒のサイズが不均一でしかも大きくなってしまうという問題がある。このような薄膜では、絶縁破壊が起こりやすくなり、良好な圧電特性が得られなくなる。成長速度を低くすると、強誘電体薄膜の結晶粒のサイズは均一で小さくできるが、成長に長い時間がかかるため実用的ではない。   However, when the growth rate is increased, there is a problem that the size of the crystal grains of the ferroelectric thin film is nonuniform and large. In such a thin film, dielectric breakdown tends to occur, and good piezoelectric characteristics cannot be obtained. If the growth rate is lowered, the crystal grain size of the ferroelectric thin film can be made uniform and small, but it is not practical because it takes a long time to grow.

そこで、本発明の目的は、上記課題を解決し、結晶粒のサイズが小さくて均一な良質の強誘電体薄膜を、MOCVD法を用いて短時間(高い成長速度)で成長する方法を提供することにある。   Accordingly, an object of the present invention is to solve the above problems and provide a method for growing a high-quality ferroelectric thin film having a small crystal grain size and a uniform quality in a short time (high growth rate) using the MOCVD method. There is.

請求項1の発明に係る強誘電体薄膜の形成方法は、主として、不揮発性メモリ、圧電素子、焦電素子用として用いられる強誘電体薄膜をMOCVD法で成長する際に、成長開始から膜厚10nmまでの成長速度を0.05nm/sec以下とすることを特徴とする。   The method for forming a ferroelectric thin film according to the first aspect of the present invention is such that when a ferroelectric thin film used for a nonvolatile memory, a piezoelectric element, or a pyroelectric element is grown by the MOCVD method, the film thickness starts from the growth start. The growth rate up to 10 nm is 0.05 nm / sec or less.

請求項2の発明に係る強誘電体薄膜の形成方法は、主として、不揮発性メモリ、圧電素子、焦電素子用として用いられる強誘電体薄膜をMOCVD法で成長する際に、少なくとも成長開始から膜厚10nmまでの成長過程において、成長開始から成長速度を徐々に高くする工程を含ませることを特徴とする。   According to a second aspect of the present invention, there is provided a method for forming a ferroelectric thin film, which is a film formed at least from the start of growth when a ferroelectric thin film used for a nonvolatile memory, a piezoelectric element, or a pyroelectric element is grown by MOCVD. The growth process up to a thickness of 10 nm includes a step of gradually increasing the growth rate from the start of growth.

請求項3の発明は、請求項1記載の強誘電体薄膜の形成方法において、上記膜厚10nmまでの成長を行った後、成長速度を高め、最終的な所定膜厚(例えば2μm程度)まで高速成長することを特徴とする。   According to a third aspect of the present invention, in the method for forming a ferroelectric thin film according to the first aspect, after the growth up to the film thickness of 10 nm, the growth rate is increased to a final predetermined film thickness (for example, about 2 μm). It is characterized by high-speed growth.

請求項4の発明は、請求項3記載の強誘電体薄膜の形成方法において、上記高速成長の過程中に、徐々に成長速度を高くする過程を含ませることを特徴とする。   According to a fourth aspect of the present invention, in the method for forming a ferroelectric thin film according to the third aspect, the process of gradually increasing the growth rate is included in the high-speed growth process.

請求項5の発明は、請求項1〜4のいずれかに記載の強誘電体薄膜の形成方法において、上記強誘電体薄膜が、PZT、PLZT、SBT、BIT、BST、LiNbO3、SrBi2Nb29のいずれかであることを特徴とする。 A fifth aspect of the present invention is the method for forming a ferroelectric thin film according to any one of the first to fourth aspects, wherein the ferroelectric thin film is PZT, PLZT, SBT, BIT, BST, LiNbO 3 , SrBi 2 Nb. It is any one of 2 O 9 .

本発明によれば、MOCVD法で強誘電体薄膜を成長する際、成長開始から膜厚10nmまでの成長初期の成長を0.05nm/sec以下の成長速度で行うか、又は、この少なくとも成長開始から膜厚10nmまでの成長過程において、成長開始から成長速度を徐々に高くする工程を含ませる。この低い成長速度での成長によって、成長初期に成長された強誘電体薄膜は結晶粒が均一で小さい良質な薄膜になる。その良質になった薄膜上に成長速度を高くして強誘電体薄膜をMOCVD成長すると、下地の良質な結晶性を引き継ぎ、逐次良質な薄膜が形成できる。   According to the present invention, when a ferroelectric thin film is grown by the MOCVD method, the initial growth from the growth start to the film thickness of 10 nm is performed at a growth rate of 0.05 nm / sec or less, or at least the growth start. In the growth process from 1 to 10 nm in thickness, a step of gradually increasing the growth rate from the start of growth is included. By the growth at the low growth rate, the ferroelectric thin film grown at the initial stage of growth becomes a high-quality thin film with uniform and small crystal grains. When the ferroelectric thin film is grown by MOCVD on the high quality thin film at a high growth rate, the high quality thin film can be successively formed by taking over the high quality crystallinity of the base.

従って、本発明によれば、結晶粒のサイズが小さくて均一な良質の強誘電体薄膜を、MOCVD法を用いて短時間(高い成長速度)で成長することができる。   Therefore, according to the present invention, a high-quality ferroelectric thin film having a small crystal grain size and uniform quality can be grown in a short time (high growth rate) using the MOCVD method.

以下、本発明を図示の実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on the illustrated embodiments.

図1に、本発明の実施形態に係る強誘電体薄膜(PZT薄膜)の形成方法を示す。   FIG. 1 shows a method for forming a ferroelectric thin film (PZT thin film) according to an embodiment of the present invention.

MOCVD法を用いて、まず、成長開始から膜厚10nmまでのPZT薄膜の成長(初期成長)を、通常の成長速度1.0nm/secより小さい初期成長速度0.05nm/sec以下で行う(図1(a))。このように成長速度を低くすることで、結晶粒が均一で小さい良質な薄膜を形成することができる。   First, the growth (initial growth) of the PZT thin film from the start of the growth to the film thickness of 10 nm is performed at an initial growth rate of 0.05 nm / sec or less, which is smaller than the normal growth rate of 1.0 nm / sec. 1 (a)). By reducing the growth rate in this way, a high-quality thin film with uniform and small crystal grains can be formed.

その後、膜厚がある程度の厚さ100nmに達する前まで徐々に成長速度を高くして行く(図1(b))。下地の良質な結晶性を引き継ぎ、逐次良質な薄膜が形成される。   Thereafter, the growth rate is gradually increased until the film thickness reaches a certain thickness of 100 nm (FIG. 1B). Successive high-quality thin films are formed by taking over the high-quality crystallinity of the base.

そして、膜厚がある程度の厚さ100nmに達した時点で、成長速度を1.0nm/secと高速にする(図1(c))。このように成長速度を高めても、同様に下地の良質な結晶性を引き継いで行くため、良質な薄膜が形成される。   When the film thickness reaches a certain thickness of 100 nm, the growth rate is increased to 1.0 nm / sec (FIG. 1C). Even if the growth rate is increased in this way, the high-quality thin film is formed because the high-quality crystallinity of the base is similarly taken over.

その後は、この高速の成長速度1.0nm/secで最終の所定膜厚2μmになるまで成長し、成長を停止する(図1(d))。これにより短時間で良質な薄膜が形成できる。   Thereafter, the film is grown at the high growth rate of 1.0 nm / sec until the final predetermined film thickness reaches 2 μm, and the growth is stopped (FIG. 1D). Thereby, a good quality thin film can be formed in a short time.

<実施例1(ヒステリシス測定、絶縁破壊特性の比較)>
本発明の実施例1としての強誘電体薄膜を形成すると共に、比較例として従来技術の強誘電体薄膜を形成した。そして、本発明を用いた場合と、従来技術を用いた場合で、強誘電体薄膜のヒステリシス測定、絶縁破壊特性を比較した。
<Example 1 (hysteresis measurement, comparison of dielectric breakdown characteristics)>
A ferroelectric thin film as Example 1 of the present invention was formed, and a conventional ferroelectric thin film was formed as a comparative example. The hysteresis measurement and dielectric breakdown characteristics of the ferroelectric thin film were compared between the case of using the present invention and the case of using the prior art.

基材には表面に酸化膜(SiO2)が付いているSi(100)基板を用い、その上にEB蒸着法で密着層Ti(50nm)と下部電極Pt(100nm)を順に形成した。その上に、一方(比較例)では、従来技術の通りのMOCVD法を用いて一定の成長速度1.0nm/secで2μmのPZT薄膜を成長し、もう一方(実施例1)では、本発明を用いて、成長初期の成長速度を0.05nm/sec以下で行い、その後、徐々に成長速度を高くしていき、膜厚が100nmに達する時点で、成長速度を1.0nm/secにした。その後は成長速度1.0nm/secで膜厚が2μmになるまで成長した。 A Si (100) substrate having an oxide film (SiO 2 ) on the surface was used as a base material, and an adhesion layer Ti (50 nm) and a lower electrode Pt (100 nm) were formed in that order by EB vapor deposition. On the other hand, in one (comparative example), a 2 μm PZT thin film is grown at a constant growth rate of 1.0 nm / sec using the MOCVD method as in the prior art. The initial growth rate is 0.05 nm / sec or less, and then the growth rate is gradually increased. When the film thickness reaches 100 nm, the growth rate is set to 1.0 nm / sec. . Thereafter, the film was grown at a growth rate of 1.0 nm / sec until the film thickness reached 2 μm.

強誘電体薄膜(PZT薄膜)の成長に用いたMOCVD装置の構成を図2に示す。   The structure of the MOCVD apparatus used for the growth of the ferroelectric thin film (PZT thin film) is shown in FIG.

原料供給方法としては、高い成長速度での成長が実現できる液体原料供給システム(LDS)を用いた。有機金属原料としては、Pb(dpm)2、Zr(dpm)4、Ti(dpm)2(OiPr)を使用し、それらを溶媒であるTHF(テトラヒドロフラン)に溶かし込み、有機金属シリンダー1に入れた。 As a raw material supply method, a liquid raw material supply system (LDS) capable of realizing growth at a high growth rate was used. Pb (dpm) 2 , Zr (dpm) 4 , Ti (dpm) 2 (OiPr) were used as the organic metal raw material, and these were dissolved in THF (tetrahydrofuran) as a solvent and put in the organic metal cylinder 1. .

原料を供給する際は、液体MFC(マスフローコントローラ)2で一定量の原料を気化器3に送り込み、気化器3で300℃の温度で一気に気化し、そのままリアクタ4に供給した。また別ルートから酸素O2を供給した。リアクタ4では基材(基板)5をヒータ6で550℃に加熱し、原料を熱分解させることで、基材5上にPZT薄膜を成長させた。 When supplying the raw material, a fixed amount of the raw material was sent to the vaporizer 3 by the liquid MFC (mass flow controller) 2, vaporized at a temperature of 300 ° C. at the vaporizer 3, and supplied to the reactor 4 as it was. In addition, oxygen O 2 was supplied from another route. In the reactor 4, the base material (substrate) 5 was heated to 550 ° C. with the heater 6, and the PZT thin film was grown on the base material 5 by thermally decomposing the raw material.

成長時の排気は、ロータリーポンプ7で行い、リアクタ4内の圧力が10Torrになるように調整した。   Exhaust during growth was performed by the rotary pump 7 and the pressure in the reactor 4 was adjusted to 10 Torr.

MOCVDの成長条件は、実施例1及び比較例の両方とも全く同じであり、基板温度550℃、リアクタ圧力10Torrで行った。   The growth conditions for MOCVD were exactly the same for both Example 1 and Comparative Example, and were performed at a substrate temperature of 550 ° C. and a reactor pressure of 10 Torr.

その後、強誘電体薄膜上に上部電極Pt(100nm)をEB(電子ビーム)蒸着法で形成し、RIE(反応性イオンエッチング)で上部電極を5mm角の形状に加工した。   Thereafter, an upper electrode Pt (100 nm) was formed on the ferroelectric thin film by EB (electron beam) vapor deposition, and the upper electrode was processed into a 5 mm square shape by RIE (reactive ion etching).

ヒステリシスループを測定した結果を図3に示す。印加電界は200kV/cmで行った。従来技術で作製した物(比較例)と比べて、本発明を用いた物(実施例1)は大きな残留分極を有していることが分かる。すなわち、従来技術で作製したPZT薄膜では残留分極2Prが60μC/cm2であるのに対して、本発明を用いたPZT薄膜では2Prが75μC/cm2であり、本発明により残留分極が向上していることが分かる。 The result of measuring the hysteresis loop is shown in FIG. The applied electric field was 200 kV / cm. It can be seen that the product using the present invention (Example 1) has a large remanent polarization compared to the product produced by the prior art (Comparative Example). That is, in the PZT thin film prepared in the prior art with respect to the residual polarization 2Pr is 60 .mu.C / cm 2, 2Pr in PZT thin films using the present invention is 75μC / cm 2, the residual polarization is improved by the present invention I understand that

絶縁破壊特性を測定した結果を図4に示す。従来技術で作製したPZT薄膜と比べて、本発明を用いたPZT薄膜は大きな絶縁破壊電圧を有していることが分かる。PZTの膜厚は異なるが、参考までに、スクリーン印刷法で作製したPZT薄膜と、バルク材の機械加工で作製したPZT薄膜の一般的な絶縁破壊電圧も図4に記載した。スクリーン印刷法やバルク機械加工品と比べると、本発明を用いたPZT薄膜は、格段に大きな絶縁破壊特性を有していることが分かる。   The results of measuring the dielectric breakdown characteristics are shown in FIG. It can be seen that the PZT thin film using the present invention has a higher dielectric breakdown voltage than the PZT thin film produced by the prior art. Although the film thickness of PZT is different, for reference, general breakdown voltages of a PZT thin film produced by a screen printing method and a PZT thin film produced by machining a bulk material are also shown in FIG. It can be seen that the PZT thin film using the present invention has much larger dielectric breakdown characteristics than the screen printing method and the bulk machined product.

<実施例2>
次に、実施例2として、片持ち針構造圧電アクチュエータを作成し、その特性を比較した。
<Example 2>
Next, as Example 2, a cantilever needle-type piezoelectric actuator was prepared, and its characteristics were compared.

実施例1と同様の方法で、基材/Ti密着層/Pt下部電極/PZT薄膜/Pt上部電極を、従来技術と本発明の方法の両方で作製した。それらを、RIE(エッチングガス=SF6/Ar/O2)とウエットエッチング(水酸化テトラメチルアンモニウム)を用いて、片持ち針構造の圧電マイクロアクチュエータを作製した。 In the same manner as in Example 1, a substrate / Ti adhesion layer / Pt lower electrode / PZT thin film / Pt upper electrode were produced by both the conventional technique and the method of the present invention. Using them, RIE (etching gas = SF 6 / Ar / O 2 ) and wet etching (tetramethylammonium hydroxide) were used to fabricate a piezoelectric microactuator with a cantilever needle structure.

この圧電マイクロアクチュエータの圧電特性を、強誘電体テスターとレーザドップラー干渉計を用いて測定した。その結果から、それぞれのPZT薄膜の圧電定数(-d31)を算出した。圧電定数(-d31)は、従来技術品では100pm/Vであるのに対して、本発明品では140pm/Vであった。本発明によって、従来技術に比べて大幅に圧電特性が向上していることが確認できた。 The piezoelectric characteristics of the piezoelectric microactuator were measured using a ferroelectric tester and a laser Doppler interferometer. From the result, the piezoelectric constant (−d 31 ) of each PZT thin film was calculated. The piezoelectric constant (−d 31 ) was 100 pm / V in the prior art product, whereas it was 140 pm / V in the product of the present invention. It was confirmed that the piezoelectric characteristics were greatly improved by the present invention compared to the prior art.

本発明の強誘電体薄膜の形成方法を示す図である。It is a figure which shows the formation method of the ferroelectric thin film of this invention. 本発明の強誘電体薄膜の形成方法に用いたMOCVD装置の構成を示す図である。It is a figure which shows the structure of the MOCVD apparatus used for the formation method of the ferroelectric thin film of this invention. 本発明の強誘電体薄膜の分極P−電界E相互のヒステリシスループ測定の結果を示す図である。It is a figure which shows the result of the hysteresis loop measurement of the polarization P-electric field E of the ferroelectric thin film of this invention. 本発明の強誘電体薄膜の絶縁破壊特性を、従来技術等による場合と比較して示した図である。It is the figure which showed the dielectric breakdown characteristic of the ferroelectric thin film of this invention compared with the case by a prior art etc.

符号の説明Explanation of symbols

1 有機金属シリンダー
2 液体MFC
3 気化器
4 リアクタ
5 基材
6 ヒータ
7 ロータリーポンプ
1 Organic metal cylinder 2 Liquid MFC
3 Vaporizer 4 Reactor 5 Base Material 6 Heater 7 Rotary Pump

Claims (5)

強誘電体薄膜をMOCVD法で成長する際に、成長開始から膜厚10nmまでの成長速度を0.05nm/sec以下とすることを特徴とする強誘電体薄膜の形成方法。   A method for forming a ferroelectric thin film, characterized in that, when the ferroelectric thin film is grown by MOCVD, the growth rate from the start of growth to a film thickness of 10 nm is set to 0.05 nm / sec or less. 強誘電体薄膜をMOCVD法で成長する際に、少なくとも成長開始から膜厚10nmまでの成長過程において、成長開始から成長速度を徐々に高くする工程を含ませることを特徴とする強誘電体薄膜の形成方法。   When a ferroelectric thin film is grown by MOCVD, a process of gradually increasing the growth rate from the start of growth is included at least in the growth process from the start of growth to a film thickness of 10 nm. Forming method. 請求項1記載の強誘電体薄膜の形成方法において、
上記膜厚10nmまでの成長を行った後、成長速度を高め、最終的な所定膜厚まで高速成長することを特徴とする強誘電体薄膜の形成方法。
In the formation method of the ferroelectric thin film of Claim 1,
A method for forming a ferroelectric thin film, characterized in that after the film is grown to a thickness of 10 nm, the growth rate is increased and the film is grown at a high speed to a final predetermined film thickness.
請求項3記載の強誘電体薄膜の形成方法において、
上記高速成長の過程中に、徐々に成長速度を高くする過程を含ませることを特徴とする強誘電体薄膜の形成方法。
In the formation method of the ferroelectric thin film of Claim 3,
A method for forming a ferroelectric thin film, comprising the step of gradually increasing the growth rate in the high-speed growth process.
請求項1〜4のいずれかに記載の強誘電体薄膜の形成方法において、
上記強誘電体薄膜が、PZT、PLZT、SBT、BIT、BST、LiNbO3、SrBi2Nb29のいずれかであることを特徴とする強誘電体薄膜の形成方法。
In the formation method of the ferroelectric thin film in any one of Claims 1-4,
A method for forming a ferroelectric thin film, wherein the ferroelectric thin film is any one of PZT, PLZT, SBT, BIT, BST, LiNbO 3 and SrBi 2 Nb 2 O 9 .
JP2003343936A 2003-10-02 2003-10-02 Method for forming ferroelectric thin film Pending JP2005105394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003343936A JP2005105394A (en) 2003-10-02 2003-10-02 Method for forming ferroelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003343936A JP2005105394A (en) 2003-10-02 2003-10-02 Method for forming ferroelectric thin film

Publications (1)

Publication Number Publication Date
JP2005105394A true JP2005105394A (en) 2005-04-21

Family

ID=34537718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343936A Pending JP2005105394A (en) 2003-10-02 2003-10-02 Method for forming ferroelectric thin film

Country Status (1)

Country Link
JP (1) JP2005105394A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099729A (en) * 2007-10-16 2009-05-07 Fujitsu Ltd Semiconductor device and manufacturing method thereof
JP2009206189A (en) * 2008-02-26 2009-09-10 Fujitsu Microelectronics Ltd Semiconductor device and manufacturing method thereof
JP2020123729A (en) * 2013-02-11 2020-08-13 日本テキサス・インスツルメンツ合同会社 Multi-step deposition of ferroelectric dielectric material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099729A (en) * 2007-10-16 2009-05-07 Fujitsu Ltd Semiconductor device and manufacturing method thereof
JP2009206189A (en) * 2008-02-26 2009-09-10 Fujitsu Microelectronics Ltd Semiconductor device and manufacturing method thereof
JP2020123729A (en) * 2013-02-11 2020-08-13 日本テキサス・インスツルメンツ合同会社 Multi-step deposition of ferroelectric dielectric material
JP7015011B2 (en) 2013-02-11 2022-02-02 テキサス インスツルメンツ インコーポレイテッド Multi-step deposition of ferroelectric dielectric material

Similar Documents

Publication Publication Date Title
JP4521751B2 (en) Lead zirconate titanate-based film, dielectric element, and method for manufacturing dielectric film
JP4662112B2 (en) Ferroelectric thin film and manufacturing method thereof
JP3476932B2 (en) Ferroelectric thin film, substrate coated with ferroelectric thin film, and method of manufacturing ferroelectric thin film
JPH08340085A (en) Substrate coated with ferroelectric thin film, its manufacture, and capacitor-structure device
US8075795B2 (en) Piezoelectrics, piezoelectric element, and piezoelectric actuator
JP2006287254A (en) Method of manufacturing piezoelectric thin-film element
JP2010084180A (en) Lead-containing perovskite-type oxide film and method of producing the same, piezoelectric device using the lead-containing perovskite-type oxide film, and liquid ejecting apparatus using the piezoelectric device
JP2000169297A (en) Production of thin ferroelectric oxide film, thin ferroelectric oxide film and thin ferroelectric oxide film element
JP2004107179A (en) Precursor sol of piezoelectric material, method of manufacturing piezoelectric film, piezoelectric element, and inkjet recording head
JP2003086586A (en) Orientational ferroelectric thin film element and method for manufacturing the same
JP2005105394A (en) Method for forming ferroelectric thin film
JP2001107238A (en) Single phase perovskite ferroelectric film on platinum electrode, and method of its formation
JP4766299B2 (en) (111) Oriented PZT Dielectric Film Forming Substrate, (111) Oriented PZT Dielectric Film Formed Using This Substrate
JP2001220676A (en) Method for depositing ferroelectric substance material thin film and its use
US6863726B2 (en) Vapor phase growth method of oxide dielectric film
JP2001223403A (en) Ferroelectric substance thin film, its forming method and ferroelectric substance thin film element using the thin film
JP2005105393A (en) Method for forming ferroelectric thin film
JPH0797296A (en) Substrate for forming oriented thin film and its production
JP2006228447A (en) Manufacturing method for ferroelectric thin film
TW201808615A (en) Film structure and method for manufacturing same
CN116195383A (en) Deposition method and apparatus for piezoelectric applications
JP3633304B2 (en) Method for manufacturing ferroelectric thin film element
JP2001213624A (en) Process of preparing ferroelectric thin film and raw material solution therefor
KR100795664B1 (en) 001-orientated perovskite film formation method and device having perovskite film
KR19990072528A (en) Ferroelectric thin film device and method of producing the same