JP2005104354A - Temperature controller disposition structure of fuel cell vehicle - Google Patents

Temperature controller disposition structure of fuel cell vehicle Download PDF

Info

Publication number
JP2005104354A
JP2005104354A JP2003341711A JP2003341711A JP2005104354A JP 2005104354 A JP2005104354 A JP 2005104354A JP 2003341711 A JP2003341711 A JP 2003341711A JP 2003341711 A JP2003341711 A JP 2003341711A JP 2005104354 A JP2005104354 A JP 2005104354A
Authority
JP
Japan
Prior art keywords
fuel cell
temperature control
vehicle
temperature
arrangement structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003341711A
Other languages
Japanese (ja)
Inventor
Takahiko Masuda
隆彦 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003341711A priority Critical patent/JP2005104354A/en
Publication of JP2005104354A publication Critical patent/JP2005104354A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To heat the water circulation system of a fuel cell without a dedicated heater. <P>SOLUTION: A radiator 19 installed in a motor room 5 in the front of the vehicle and a fuel cell system 9 disposed under the floor in the vehicle are connected to each other by a cooling water pipe 21. A heat generator 35 is installed in a motor room 5 in the rear of the radiator 19, and the heat generator 35 and a heater core 37 for blowing out the hot air to a cabin 6 are connected to each other by a temperature controlling fluid pipe 39. A cooling water pipe 21 and the temperature controlling pipe 39 are disposed close to each other, the cooling water pipe 21 is positioned on the side of the vehicle, and the temperature controlling pipe 39 is positioned rather closer to the inside of the vehicle than the cooling water pipe 21. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、燃料電池を冷却する燃料電池冷却系および、車室内を暖房する室内暖房系を備えた燃料電池車の温調機器配置構造に関する。   The present invention relates to a fuel cell cooling system for cooling a fuel cell and a temperature control device arrangement structure for a fuel cell vehicle provided with an indoor heating system for heating a vehicle interior.

従来の燃料電池車においては、例えば下記特許文献1に記載されているように、燃料電池の水循環系における水タンクおよび水供給管路にヒータを設置し、寒冷地において水循環系内の水が凍結するような低温下の状況においても、ヒータによって水循環系内の氷を解凍することで、燃料電池を起動させている。
特開2003−86214号公報(第3−5頁、1図)
In a conventional fuel cell vehicle, for example, as described in Patent Document 1 below, heaters are installed in a water tank and a water supply line in a water circulation system of a fuel cell, and water in the water circulation system is frozen in a cold region. Even in such a low temperature situation, the fuel cell is started by thawing the ice in the water circulation system with the heater.
Japanese Unexamined Patent Publication No. 2003-86214 (page 3-5, Fig. 1)

しかしながら、上記した従来の燃料電池車では、燃料電池の水循環系を加熱するために、専用のヒータを別途設置する必要があり、その分設置スペースの増大や、重量およびコストが増大するという問題がある。   However, in the conventional fuel cell vehicle described above, in order to heat the water circulation system of the fuel cell, it is necessary to separately install a dedicated heater, which increases the installation space and the weight and cost. is there.

そこで、この発明は、専用のヒータを設置することなく、燃料電池の水循環系を加熱できるようにすることを目的としている。   Accordingly, an object of the present invention is to enable heating of the water circulation system of the fuel cell without installing a dedicated heater.

前記目的を達成するために、この発明は、車両前部に配置した放熱器と、燃料電池を冷却した冷却流体を前記放熱器に排出する冷却流体排出流路と、前記放熱器にて放熱後の冷却流体を前記燃料電池に供給する冷却流体供給流路とをそれぞれ備えた燃料電池冷却系を設け、車両前部に配置した発熱器と、この発熱器から、発熱器の車両後方に配置した熱消費部に温調流体を供給する温調流体供給流路と、前記熱消費部で放熱した温調流体を前記発熱器に排出する温調流体排出流路とをそれぞれ備えた室内暖房系を設け、前記燃料電池冷却系と前記室内暖房系とを、互いに近接して配置した構成としてある。   In order to achieve the above object, the present invention provides a radiator disposed at a front portion of a vehicle, a cooling fluid discharge passage for discharging a cooling fluid that has cooled a fuel cell to the radiator, and a heat radiator that dissipates heat. The fuel cell cooling system provided with the cooling fluid supply flow path for supplying the cooling fluid to the fuel cell is provided, the heater disposed at the front of the vehicle, and from the heater to the vehicle rear of the heater An indoor heating system provided with a temperature control fluid supply channel for supplying a temperature control fluid to the heat consumption unit, and a temperature control fluid discharge channel for discharging the temperature control fluid radiated by the heat consumption unit to the heater. The fuel cell cooling system and the indoor heating system are arranged close to each other.

この発明によれば、燃料電池冷却系と室内暖房系とを、互いに近接して配置したので、室内暖房系の流路を流れる温調流体と、燃料電池冷却系の流路を流れる冷却流体とが、互いに熱交換し、これにより燃料電池冷却系の冷却流体を室内暖房系の温調流体によって加熱することができる。この際、専用のヒータを設置する必要がないので、その分車両における設置スペースの増大や、重量およびコストの増大を防止することができる。   According to this invention, since the fuel cell cooling system and the indoor heating system are arranged close to each other, the temperature control fluid that flows through the flow path of the indoor heating system, and the cooling fluid that flows through the flow path of the fuel cell cooling system, However, heat exchange with each other is performed, whereby the cooling fluid in the fuel cell cooling system can be heated by the temperature control fluid in the indoor heating system. At this time, since it is not necessary to install a dedicated heater, it is possible to prevent an increase in installation space, weight and cost in the vehicle.

また、室内暖房系の発熱器を車両前部に配置しているので、発熱器の組付作業性や、発熱器の各種部品の交換作業などの整備性が向上するとともに、発熱器による他の部品への熱的影響を減少させることができ、発熱器自身の冷却性も確保できる。   In addition, because the heater for the indoor heating system is arranged in the front part of the vehicle, the assembly workability of the heater and the maintenance work such as replacement of various parts of the heater are improved. The thermal influence on the parts can be reduced, and the cooling performance of the heat generator itself can be secured.

さらに、車両前部においては、発熱器を地面から高い位置に設置できることから、冠水対策が小規模で済む上、発熱器を車両衝突時に後退する位置に搭載できるので、衝撃吸収が期待できる。   Furthermore, since the heat generator can be installed at a high position from the ground at the front of the vehicle, it is possible to reduce the flooding, and the heat generator can be mounted at a position where the vehicle retreats in the event of a vehicle collision, so that shock absorption can be expected.

以下、この発明の実施の形態を図面に基づき説明する。
図1は、この発明の一実施形態に係わる燃料電池車の温調機器配置構造を示す簡略化した側面断面図、図2は同平面断面図である。なお、図1中で符号1は前車輪、符号3は後車輪である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a simplified side sectional view showing a temperature regulating device arrangement structure of a fuel cell vehicle according to one embodiment of the present invention, and FIG. 2 is a plan sectional view of the same. In FIG. 1, reference numeral 1 denotes a front wheel and reference numeral 3 denotes a rear wheel.

車両前部のモータルーム5内には、図示していないが、車両駆動用のモータを搭載している。このモータを駆動する電力源として、車室6内に設置してある前席シート7にほぼ対応する位置の車両床下に、燃料電池システム9を搭載している。燃料電池システム9は、燃料電池11と、燃料電池11の前方に隣接して配置した補器類13とを備えている。補記類13としては、例えば燃料電池11に加湿水を供給するための加湿器などである。   Although not shown, a motor for driving the vehicle is mounted in the motor room 5 at the front of the vehicle. As a power source for driving the motor, a fuel cell system 9 is mounted under the vehicle floor at a position substantially corresponding to the front seat 7 installed in the passenger compartment 6. The fuel cell system 9 includes a fuel cell 11 and auxiliary devices 13 disposed adjacent to the front of the fuel cell 11. Examples of the supplementary notes 13 include a humidifier for supplying humidified water to the fuel cell 11.

また、後席シート15の後方には、燃料電池11に供給する水素を収容する水素タンク17を搭載している。さらにこの車両には、燃料電池11の発電によって充電可能な補助電源となる図示しないバッテリを搭載している。   A hydrogen tank 17 for storing hydrogen to be supplied to the fuel cell 11 is mounted behind the rear seat 15. Further, this vehicle is equipped with a battery (not shown) serving as an auxiliary power source that can be charged by the power generation of the fuel cell 11.

モータルーム5内の前部には放熱器としてのラジエータ19を設置し、ラジエータ19と上記した燃料電池システム9とは、燃料電池11を冷却するための冷却流体としての冷却水が流れる冷却水配管21によって接続している。   A radiator 19 as a radiator is installed in the front part of the motor room 5, and the radiator 19 and the fuel cell system 9 described above are cooling water pipes through which cooling water as cooling fluid for cooling the fuel cell 11 flows. 21 is connected.

この冷却水配管21は、燃料電池11を冷却した冷却水をラジエータ19に排出する冷却流体排出流路としての冷却水排出流路23と、ラジエータ19にて放熱後の冷却水を燃料電池11に供給する冷却流体供給流路としての冷却水供給流路25とをそれぞれ備えている。また、図示していないが、冷却水をラジエータ19から燃料電池システム9に向けて循環させる冷却水ポンプを備えている。   The cooling water pipe 21 has a cooling water discharge passage 23 as a cooling fluid discharge passage for discharging the cooling water that has cooled the fuel cell 11 to the radiator 19, and the cooling water that has radiated heat from the radiator 19 to the fuel cell 11. A cooling water supply channel 25 as a cooling fluid supply channel to be supplied is provided. Although not shown, a cooling water pump that circulates cooling water from the radiator 19 toward the fuel cell system 9 is provided.

上記したラジエータ19と冷却水配管21とで燃料電池冷却系27を構成している。
冷却水排出流路23,冷却水供給流路25は、ラジエータ19から車両後方へそれぞれ延びる前部流路23a,25aと、前部流路23a,25aの各後端から車幅方向左側(図2中で下側)へ延びる中部流路23b,25bと、中部流路23b,25bの車幅方向左側の端部から、車両後方へ延びて燃料電池システム9に接続される後部流路23c,25cとを、それぞれ備えている。
The above-described radiator 19 and the cooling water pipe 21 constitute a fuel cell cooling system 27.
The cooling water discharge channel 23 and the cooling water supply channel 25 are front channel 23a, 25a extending from the radiator 19 to the rear of the vehicle, respectively, and the left side in the vehicle width direction from the rear ends of the front channels 23a, 25a (see FIG. Middle flow passages 23b, 25b extending to the lower side in FIG. 2 and rear flow passages 23c extending from the left end in the vehicle width direction of the middle flow passages 23b, 25b to the rear of the vehicle and connected to the fuel cell system 9. 25c, respectively.

そして、上記した冷却水配管21の後部流路23c,25cは、互いに一体化構造とした状態で、図2に示すように車両側部の下部にて車両前後方向へ延びる一対のサイドメンバ29,31のうち一方のサイドメンバ29に沿って配置し、かつ図1に示すように排出側の後部流路23cを下側、供給側の後部流路25cを上側として配置する。   The rear passages 23c and 25c of the cooling water pipe 21 described above are in a state of being integrated with each other, as shown in FIG. 2, a pair of side members 29 extending in the vehicle front-rear direction at the lower part of the vehicle side. 31 is disposed along one side member 29, and as shown in FIG. 1, the discharge-side rear flow channel 23c is disposed on the lower side, and the supply-side rear flow channel 25c is disposed on the upper side.

一方、室内暖房系33として、モータルーム5における上記した中部流路23b,25bと後部流路23c,25cとの接続部上には、電気ヒータで構成される発熱器35を設置してある。この発熱器35と、熱消費部であるヒータコア37とは、温調流体が流れる温調流体配管39によって接続している。ヒータコア37は、車室6内に向けて温風を吹き出すもので、図示しないインストルメントパネル近傍に設置してある。   On the other hand, as the indoor heating system 33, a heater 35 composed of an electric heater is installed on the connection portion between the above-described middle passages 23b and 25b and the rear passages 23c and 25c in the motor room 5. The heat generator 35 and the heater core 37 that is a heat consuming part are connected by a temperature control fluid pipe 39 through which the temperature control fluid flows. The heater core 37 blows warm air into the passenger compartment 6 and is installed in the vicinity of an instrument panel (not shown).

上記した温調流体配管39は、発熱器35からヒータコア37に温調流体を供給する温調流体供給流路41と、ヒータコア37で放熱した温調流体を発熱器35に排出する温調流体排出流路43とをそれぞれ備えている。また、図示していないが、温調流体を発熱器35からヒータコア37に向けて循環させる温調流体ポンプを備えている。   The temperature control fluid pipe 39 described above includes a temperature control fluid supply channel 41 that supplies the temperature control fluid from the heater 35 to the heater core 37, and a temperature control fluid discharge that discharges the temperature control fluid radiated by the heater core 37 to the heater 35. Each channel 43 is provided. Moreover, although not shown in figure, the temperature control fluid pump which circulates the temperature control fluid toward the heater core 37 from the heater 35 is provided.

上記した発熱器35と温調流体配管39とで、前記した室内暖房系33を構成している。
温調流体供給流路41は、発熱器35から車両後方へ延びる前部流路41aと、前部流路41aの後端から車幅方向右側(図2中で上側)へ延びる第1中部流路41bと、第1中部流路41bの車幅方向右側の端部から車両後方へ延びる第2中部流路41cと、第2中部流路41cから車両上方へ延びてヒータコア37に接続される後部流路41dをそれぞれ備えている。一方、温調流体排出流路43は、発熱器35から車両後方へ延びる前部流路43aと、前部流路43aの後端から車幅方向右側へ延びる中部流路43bと、中部流路43bの車幅方向右側の端部から車両上方へ延びてヒータコア37に接続される後部流路43cとを、それぞれ備えている。
The above-described indoor heating system 33 is configured by the above-described heater 35 and the temperature control fluid piping 39.
The temperature control fluid supply channel 41 includes a front channel 41a extending from the heat generator 35 toward the rear of the vehicle, and a first middle flow extending from the rear end of the front channel 41a to the vehicle width direction right side (upper side in FIG. 2). A road 41b, a second middle channel 41c extending rearward from the vehicle width direction right end of the first middle channel 41b, and a rear part extending from the second middle channel 41c upward to the vehicle and connected to the heater core 37 Each channel 41d is provided. On the other hand, the temperature control fluid discharge channel 43 includes a front channel 43a extending from the heater 35 to the rear of the vehicle, a middle channel 43b extending from the rear end of the front channel 43a to the right in the vehicle width direction, and a middle channel. 43b, a rear passage 43c extending from the right end of the vehicle width direction to the upper side of the vehicle and connected to the heater core 37.

そして、上記した温調流体配管39の前部流路41a,43aは、互いに一体化構造とした状態で、前記した冷却水配管21の後部流路23c,25cより車幅方向内側にて、左側のサイドメンバ29に沿って配置し、かつ供給側の前部流路41aを下側、排出側の前部流路43aを上側とした状態で配置する。   The front flow paths 41a and 43a of the temperature control fluid pipe 39 described above are in an integrated structure with each other on the left side on the inner side in the vehicle width direction from the rear flow paths 23c and 25c of the cooling water pipe 21 described above. And the supply-side front channel 41a on the lower side and the discharge-side front channel 43a on the upper side.

図3は、冷却水配管21の後部流路23c,25cと、温調流体配管39の前部流路41a,43aとの位置関係を示す模式図であり、図1のA−A断面図に相当する。すなわち、冷却水配管21の後部流路23c,25cを車幅方向外側に配置し、温調流体配管39の前部流路41a,43aを冷却水配管21より車幅方向内側に配置している。   FIG. 3 is a schematic diagram showing the positional relationship between the rear flow paths 23c and 25c of the cooling water pipe 21 and the front flow paths 41a and 43a of the temperature control fluid pipe 39, and is a cross-sectional view taken along the line AA in FIG. Equivalent to. That is, the rear flow paths 23 c and 25 c of the cooling water pipe 21 are arranged on the outer side in the vehicle width direction, and the front flow paths 41 a and 43 a of the temperature control fluid pipe 39 are arranged on the inner side in the vehicle width direction from the cooling water pipe 21. .

図4は、上記した燃料電池車の温調機器配置構造における制御ブロック図である。車両コントロールユニット45は、車両の適宜位置に設置してある車外温度センサ47の検出外気温度および、室内暖房系33の適宜位置に設置してある温調流体温度センサ49の検出流体温度をそれぞれ取り込む。また、車両コントロールユニット45は、燃料電池冷却系27の冷却水ポンプを含む燃料電池システム9を制御する燃料電池コントロールユニット51および、車室6内のエアコン(室内暖房系33の発熱器35および温調流体ポンプを含む)を制御する車室エアコンコントロールユニット53をそれぞれ制御する。   FIG. 4 is a control block diagram in the temperature control device arrangement structure of the fuel cell vehicle described above. The vehicle control unit 45 takes in the detected outside air temperature of the outside temperature sensor 47 installed at an appropriate position of the vehicle and the detected fluid temperature of the temperature adjusting fluid temperature sensor 49 installed at an appropriate position of the indoor heating system 33. . The vehicle control unit 45 also includes a fuel cell control unit 51 that controls the fuel cell system 9 including the coolant pump of the fuel cell cooling system 27, and an air conditioner in the passenger compartment 6 (the heater 35 and the temperature of the indoor heating system 33). The vehicle interior air conditioner control unit 53 that controls the fluid conditioning pump is controlled.

図5は、車両コントロールユニット45の制御動作を示すフローチャートである。ここでの制御動作は、車両のイグニッションキーがOFFかどうか、すなわち車両停止時(燃料電池システム9の停止時)かどうかを判断し(ステップ101)、OFFの状態で、設定時間毎(例えば、10msec毎)に繰り返し実行される。   FIG. 5 is a flowchart showing the control operation of the vehicle control unit 45. The control operation here determines whether the ignition key of the vehicle is OFF, that is, whether the vehicle is stopped (when the fuel cell system 9 is stopped) (step 101). It is repeatedly executed every 10 msec).

まず、タイマを作動して(ステップ102)、設定時間が経過したら(ステップ103)、タイマをリセットした後(ステップ104)、車外温度センサ47によって測定した外気温度を取り込む(ステップ105)。   First, the timer is operated (step 102), and when the set time has elapsed (step 103), the timer is reset (step 104), and the outside temperature measured by the outside temperature sensor 47 is taken in (step 105).

ここで、測定した外気温度が設定温度以下かどうかを判断し(ステップ106)、設定温度以下の場合には、車両に搭載した図示しないバッテリの残量が、あらかじめ設定したバッテリ残量以上かどうかを判断する(ステップ107)。   Here, it is determined whether or not the measured outside air temperature is equal to or lower than the set temperature (step 106). If the measured temperature is equal to or lower than the set temperature, whether or not the remaining amount of a battery (not shown) mounted on the vehicle is equal to or higher than a preset remaining battery level. Is determined (step 107).

バッテリ残量が設定バッテリ残量以上の場合、つまり外気温度が設定温度以下でかつ、バッテリ残量が設定バッテリ残量以上の場合には、バッテリを電源として発熱器35および温調流体ポンプを作動させる(ステップ108)。   When the remaining battery level is equal to or higher than the set battery level, that is, when the outside air temperature is lower than the set temperature and the remaining battery level is equal to or higher than the set battery level, the heater 35 and the temperature control fluid pump are operated using the battery as a power source. (Step 108).

これにより、発熱器35で加熱した温調流体が、発熱器35とヒータコア37との間を温調流体配管39を通して循環し、この加熱した温調流体によって冷却水配管21内の冷却水を加熱する。   Thereby, the temperature control fluid heated by the heat generator 35 circulates between the heat generator 35 and the heater core 37 through the temperature control fluid piping 39, and the cooling water in the cooling water piping 21 is heated by the heated temperature control fluid. To do.

このように、例えば寒冷地での車両保管中の車両周辺温度(外気温度)が設定温度以下(少なくとも0℃以下)において、発熱器35を作動させ、発熱器35〜ヒータコア37間の温調流体配管39の流体を暖めることにより、冷却水配管21と温調流体配管39との間で、熱交換が直接あるいは間接的に行われ、冷却水の凍結を防止する。   Thus, for example, when the vehicle ambient temperature (outside air temperature) during vehicle storage in a cold region is lower than the set temperature (at least 0 ° C. or lower), the heat generator 35 is operated, and the temperature control fluid between the heat generator 35 and the heater core 37 is operated. By warming the fluid in the pipe 39, heat exchange is performed directly or indirectly between the cooling water pipe 21 and the temperature control fluid pipe 39 to prevent the cooling water from freezing.

また、前記ステップ107で、バッテリ残量が設定残量未満では、燃料電池システム9を起動し(ステップ109)、発電により、バッテリの電源残量を確保しつつ、前記と同様にして発熱器35および温調流体ポンプを作動させて(ステップ108)、温調流体によって冷却水を加熱する。このとき、燃料電池システム9の起動による発熱によっても冷却水を加熱することができる。   If the remaining battery level is less than the set remaining level in step 107, the fuel cell system 9 is activated (step 109), and the power generator 35 is secured in the same manner as described above while securing the remaining power level of the battery by power generation. Then, the temperature control fluid pump is operated (step 108), and the cooling water is heated by the temperature control fluid. At this time, the cooling water can also be heated by heat generated by the activation of the fuel cell system 9.

次に、バッテリの残量が設定残量以上となったかどうかを判断し(ステップ110)、設定残量以上となっていない場合には、前記と同様にして燃料電池システム9を起動し(ステップ114)、設定残量以上となったら、温調流体温度センサ49が測定した温調流体の温度を取り込む(ステップ111)。   Next, it is determined whether or not the remaining amount of the battery is equal to or greater than the set remaining amount (step 110). If not, the fuel cell system 9 is activated in the same manner as described above (step 110). 114) When the amount exceeds the set remaining amount, the temperature of the temperature adjustment fluid measured by the temperature adjustment fluid temperature sensor 49 is taken in (step 111).

ここで、温調流体温度が設定温度以上に達したかどうかを判断し(ステップ112)、設定温度以上に達していない場合には、発熱器35および温調流体ポンプを継続して作動させる。逆に、温調流体温度が設定温度以上に達した場合には、冷却水の加熱が充分なされたとして、発熱器35および温調流体ポンプ、(起動している場合は)燃料電池システム9をそれぞれ停止させる(ステップ113)。   Here, it is determined whether or not the temperature control fluid temperature has reached the set temperature or more (step 112). If the temperature control fluid temperature has not reached the set temperature or more, the heater 35 and the temperature control fluid pump are continuously operated. On the other hand, when the temperature control fluid temperature reaches the set temperature or higher, it is determined that the cooling water is sufficiently heated, and the heater 35 and the temperature control fluid pump (if activated) and the fuel cell system 9 are Each is stopped (step 113).

上記した燃料電池車の温調機器配置構造によれば、冷却水配管21の一部である後部流路23c,25cと、温調流体配管39の一部である前部流路41a,43aとを、互いに近接して配置したので、室内暖房系33の流路を流れる温調流体と、燃料電池冷却系27の流路を流れる冷却水とが、互いに熱交換し、これにより燃料電池冷却系27の冷却水を室内暖房系33の温調流体によって加熱し凍結を防止することができる。この際、冷却水を加熱するための専用のヒータを設置する必要がないので、その分車両における設置スペースの増大や、重量およびコストの増大を防止することができる。また、発熱器35を燃料電池冷却系27に近接して配置しても、同様の効果を得ることができる。   According to the temperature control device arrangement structure of the fuel cell vehicle described above, the rear flow paths 23c and 25c that are part of the cooling water pipe 21, and the front flow paths 41a and 43a that are part of the temperature control fluid pipe 39, Are arranged close to each other, so that the temperature control fluid flowing through the flow path of the indoor heating system 33 and the cooling water flowing through the flow path of the fuel cell cooling system 27 exchange heat with each other, thereby the fuel cell cooling system. 27 cooling water can be heated by the temperature control fluid of the indoor heating system 33 to prevent freezing. At this time, since it is not necessary to install a dedicated heater for heating the cooling water, it is possible to prevent an increase in installation space, weight and cost in the vehicle. Further, the same effect can be obtained even if the heat generator 35 is arranged close to the fuel cell cooling system 27.

また、室内暖房系33の発熱器35を車両前部のモータルーム5に設置しているので、発熱器35の組付作業性や、発熱器35の各種部品の交換作業などの整備性が向上するとともに、発熱器35による他の部品への熱的影響を減少させることができ、発熱器35自身の冷却性も確保できる。   Further, since the heater 35 of the indoor heating system 33 is installed in the motor room 5 in the front part of the vehicle, the workability of the assembly of the heater 35 and the maintenance work such as replacement of various parts of the heater 35 are improved. In addition, it is possible to reduce the thermal influence of the heat generator 35 on other components, and to ensure the cooling performance of the heat generator 35 itself.

さらに、車両前部においては、発熱器35を地面から高い位置に設置できることから、冠水対策が小規模で済む上、発熱器35を車両衝突時に後退する位置に搭載できるので、取付用のブラケットが破壊することにより衝撃吸収が期待できる。   Furthermore, since the heat generator 35 can be installed at a high position from the ground at the front part of the vehicle, measures against flooding can be reduced, and the heat generator 35 can be mounted at a position where the vehicle retreats in the event of a vehicle collision. Shock absorption can be expected by destruction.

また、 冷却水配管21の一部である後部流路23c,25cを車両の側部に配置するとともに、温調流体配管39の一部である前部流路41a,43aを後部流路23c,25cより車幅方向内側に配置しているので、車両走行中は外気や走行風により冷却水の冷却を促進させ、モータルーム5内は発熱機器が多く配置されているため温調流体の温度降下を防止し、車両停止時での冷却水配管21と温調流体配管39との間の熱交換率を高めることができる。   In addition, the rear passages 23c and 25c that are part of the cooling water pipe 21 are arranged on the side of the vehicle, and the front passages 41a and 43a that are part of the temperature control fluid pipe 39 are connected to the rear passage 23c, Since it is arranged on the inner side in the vehicle width direction than 25c, cooling of the cooling water is promoted by outside air or running wind while the vehicle is running, and since many heat generating devices are arranged in the motor room 5, the temperature drop of the temperature adjusting fluid And the heat exchange rate between the cooling water pipe 21 and the temperature control fluid pipe 39 when the vehicle is stopped can be increased.

また、一般に冷却水配管21の径が温調流体配管39の径より大きいので、この径の大きい冷却水配管21の後部流路23c,25cを車両の側部に配置することで、その内側に配置した温調流体配管39が走行風の影響を受けにくくなり、前部流路41a,43aを流れる温調流体の温度低下を最小限にすることができる。   Moreover, since the diameter of the cooling water pipe 21 is generally larger than the diameter of the temperature control fluid pipe 39, the rear flow paths 23c and 25c of the cooling water pipe 21 having a large diameter are arranged on the side of the vehicle, so that The disposed temperature control fluid pipe 39 is less affected by the traveling wind, and the temperature drop of the temperature control fluid flowing through the front passages 41a and 43a can be minimized.

さらに、燃料電池11の前方に補機類13(温調系、燃料系、加湿系)を集約的に配置することで、燃料電池車の温調機器配置構造としてより効率的なものとなる。
また、比較的配管径が大きくなる冷却水配管21を、床下位置に沿って配置して燃料電池システム9の前端部に接続し、燃料電池11の側部に配置していないので、乗員の足元スペースや車両の最低地上高を確保しつつ、燃料電池11側部のスペースを有効使用して燃料電池11を大型化することができる。
Furthermore, by arranging the auxiliary machines 13 (temperature control system, fuel system, humidification system) in front of the fuel cell 11 intensively, the temperature control device arrangement structure of the fuel cell vehicle becomes more efficient.
In addition, the cooling water pipe 21 having a relatively large pipe diameter is disposed along the underfloor position and is connected to the front end of the fuel cell system 9 and is not disposed on the side of the fuel cell 11. The fuel cell 11 can be enlarged by effectively using the space on the side of the fuel cell 11 while securing the space and the minimum ground clearance of the vehicle.

このように、燃料電池冷却系における冷却流体供給流路と冷却流体排出流路との少なくとも一方と、室内暖房系における温調流体供給流路と温調流体排出流路との少なくとも一方とを、互いに近接して配置したので、室内暖房系の流路を流れる温調流体と、燃料電池冷却系の流路を流れる冷却流体との熱交換効率をより向上させることができる。   Thus, at least one of the cooling fluid supply channel and the cooling fluid discharge channel in the fuel cell cooling system, and at least one of the temperature control fluid supply channel and the temperature control fluid discharge channel in the indoor heating system, Since they are arranged close to each other, it is possible to further improve the heat exchange efficiency between the temperature control fluid flowing through the flow path of the indoor heating system and the cooling fluid flowing through the flow path of the fuel cell cooling system.

また、冷却流体供給流路と温調流体排出流路を、冷却流体排出流路と温調流体供給流路を互いに隣接して配置したので、車両走行時には流路を流れる流体の温度変化(ラジエータ19から燃料電池11までの温度上昇、発熱器35からヒータコア37までの温度低下)を最小限に抑えることができ、ラジエータ19および発熱器35の消費電力を抑え、且つ燃料電池の停止時には熱交換効率を保持することができる。   Further, since the cooling fluid supply channel and the temperature control fluid discharge channel are disposed adjacent to each other, the temperature change of the fluid flowing through the channel (radiator) when the vehicle is running Temperature rise from 19 to the fuel cell 11 and temperature drop from the heater 35 to the heater core 37) can be minimized, power consumption of the radiator 19 and the heater 35 is suppressed, and heat exchange is performed when the fuel cell is stopped. Efficiency can be maintained.

また、冷却流体供給流路と冷却流体排出流路と温調流体供給流路と温調流体排出流路を、一体化したことで、流路を流れる流体の温度を保持することができる。
さらに、燃料電池の停止時に、外気温度が設定温度以下のときに発熱器を作動させることで、温調流体によって冷却流体を加熱し、これにより冷却水の凍結を防止できる。一方、バッテリの残量が設定残量未満のときに燃料電池を起動することで、その発電により、バッテリ残量を確保しつつ、発電時の発熱によって冷却水を加熱することができる。
Further, the temperature of the fluid flowing through the flow path can be maintained by integrating the cooling fluid supply flow path, the cooling fluid discharge flow path, the temperature adjustment fluid supply flow path, and the temperature adjustment fluid discharge flow path.
Furthermore, when the fuel cell is stopped, the heating fluid is operated when the outside air temperature is equal to or lower than the set temperature, whereby the cooling fluid is heated by the temperature control fluid, thereby preventing the cooling water from freezing. On the other hand, by starting the fuel cell when the remaining amount of the battery is less than the set remaining amount, it is possible to heat the cooling water by generating heat during power generation while securing the remaining amount of battery by the power generation.

外気温度が設定温度以下でかつバッテリの残量が設定残量以上のときに発熱器を作動させる一方、外気温度が設定温度以下でかつバッテリの残量が設定残量未満のときに、燃料電池を起動することで、必要最小限に燃料電池を起動することで効率的に暖気ができ、バッテリ残量を確保しつつ冷却流体の加熱を行うことができる。   When the outside air temperature is below the set temperature and the remaining battery level is above the set remaining level, the heater is activated, while when the outside temperature is below the set temperature and the remaining battery level is below the set level, the fuel cell By activating the fuel cell, it is possible to efficiently warm up by activating the fuel cell to the minimum necessary, and it is possible to heat the cooling fluid while ensuring the remaining battery level.

この発明の一実施形態に係わる燃料電池車の温調機器配置構造を示す簡略化した側面断面図である。It is the simplified side sectional view showing the temperature control equipment arrangement structure of the fuel cell vehicle concerning one embodiment of this invention. 図1の燃料電池車の温調機器配置構造を示す簡略化した平面断面図である。It is the simplified plane sectional view which shows the temperature control apparatus arrangement structure of the fuel cell vehicle of FIG. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図1の燃料電池車の温調機器配置構造における制御ブロック図である。It is a control block diagram in the temperature control apparatus arrangement structure of the fuel cell vehicle of FIG. 図1の燃料電池車における車両コントロールユニットの制御動作を示すフローチャートである。2 is a flowchart showing a control operation of a vehicle control unit in the fuel cell vehicle of FIG.

符号の説明Explanation of symbols

11 燃料電池
19 ラジエータ(放熱器)
23 冷却水排出流路(冷却流体排出流路)
25 冷却水供給流路(冷却流体供給流路)
27 燃料電池冷却系
33 室内暖房系
35 発熱器
37 ヒータコア(熱消費部)
41 温調流体供給流路
43 温調流体排出流路
11 Fuel cell 19 Radiator (radiator)
23 Cooling water discharge channel (cooling fluid discharge channel)
25 Cooling water supply channel (cooling fluid supply channel)
27 Fuel cell cooling system 33 Indoor heating system 35 Heat generator 37 Heater core (heat consumption part)
41 Temperature control fluid supply channel 43 Temperature control fluid discharge channel

Claims (7)

車両前部に配置した放熱器と、燃料電池を冷却した冷却流体を前記放熱器に排出する冷却流体排出流路と、前記放熱器にて放熱後の冷却流体を前記燃料電池に供給する冷却流体供給流路とをそれぞれ備えた燃料電池冷却系を設け、車両前部に配置した発熱器と、この発熱器から、発熱器の車両後方に配置した熱消費部に温調流体を供給する温調流体供給流路と、前記熱消費部で放熱した温調流体を前記発熱器に排出する温調流体排出流路とをそれぞれ備えた室内暖房系を設け、前記燃料電池冷却系と前記室内暖房系とを、互いに近接して配置したことを特徴とする燃料電池車の温調機器配置構造。   A radiator disposed at the front of the vehicle, a cooling fluid discharge channel for discharging a cooling fluid that has cooled the fuel cell to the radiator, and a cooling fluid that supplies the cooling fluid after heat dissipation to the fuel cell A fuel cell cooling system provided with a supply flow path is provided, and a temperature control fluid is supplied from the heat generator disposed in the front part of the vehicle to the heat consuming part disposed behind the heat generator in the vehicle. An indoor heating system provided with a fluid supply channel and a temperature-controlled fluid discharge channel for discharging the temperature-controlled fluid radiated by the heat consuming unit to the heat generator is provided, and the fuel cell cooling system and the room heating system Are arranged close to each other, and a temperature control device arrangement structure for a fuel cell vehicle. 請求項1記載の燃料電池車の温調機器配置構造において、前記燃料電池冷却系の冷却流体供給流路と冷却流体排出流路との少なくとも一方と、前記室内暖房系の温調流体供給流路と温調流体排出流路との少なくとも一方とを、互いに近接して配置したことを特徴とする燃料電池車の温調機器配置構造。   The temperature control device arrangement structure for a fuel cell vehicle according to claim 1, wherein at least one of a cooling fluid supply channel and a cooling fluid discharge channel of the fuel cell cooling system, and a temperature control fluid supply channel of the indoor heating system. And at least one of the temperature control fluid discharge channel and the temperature control fluid discharge channel are arranged close to each other. 請求項2記載の燃料電池車の温調機器配置構造において、前記冷却流体供給流路と前記冷却流体排出流路とを車両の側部付近に配置する一方、前記温調流体供給流路と前記温調流体排出流路とを前記冷却流体供給流路および冷却流体排出流路より車両の内側に配置することを特徴とする燃料電池車の温調機器配置構造。   3. The temperature control device arrangement structure for a fuel cell vehicle according to claim 2, wherein the cooling fluid supply channel and the cooling fluid discharge channel are arranged near a side of the vehicle, while the temperature control fluid supply channel and the A temperature control device arrangement structure for a fuel cell vehicle, wherein a temperature control fluid discharge channel is arranged inside the vehicle from the cooling fluid supply channel and the cooling fluid discharge channel. 請求項3記載の燃料電池車の温調機器配置構造において、前記冷却流体供給流路と前記温調流体排出流路を、前記冷却流体排出流路と前記温調流体供給流路を互いに隣接して配置することを特徴とする燃料電池車の温調機器配置構造。   4. The temperature control device arrangement structure for a fuel cell vehicle according to claim 3, wherein the cooling fluid supply channel and the temperature control fluid discharge channel are adjacent to each other, and the cooling fluid discharge channel and the temperature control fluid supply channel are adjacent to each other. A temperature control device arrangement structure for a fuel cell vehicle, characterized in that 請求項4記載の燃料電池車の温調機器配置構造において、前記冷却流体供給流路と前記冷却流体排出流路と前記温調流体供給流路と前記温調流体排出流路とを一体構造化することを特徴とする燃料電池車の温調機器配置構造。   5. The temperature control device arrangement structure for a fuel cell vehicle according to claim 4, wherein the cooling fluid supply channel, the cooling fluid discharge channel, the temperature control fluid supply channel, and the temperature control fluid discharge channel are integrated. A temperature control device arrangement structure for a fuel cell vehicle. 請求項1ないし5のいずれかに記載の燃料電池車の温調機器配置構造において、前記車両に、前記燃料電池の発電によって充電可能なバッテリを搭載し、前記燃料電池の停止時に、外気温度が設定温度以下のときに前記発熱器を作動させる一方、前記バッテリの残量が設定残量未満のときに、前記燃料電池を起動することを特徴とする燃料電池車の温調機器配置構造。   6. The temperature regulating device arrangement structure for a fuel cell vehicle according to claim 1, wherein a battery that can be charged by power generation of the fuel cell is mounted on the vehicle, and the outside air temperature is reduced when the fuel cell is stopped. A temperature control device arrangement structure for a fuel cell vehicle, wherein the fuel cell is started when the heater is activated when the temperature is lower than a set temperature, and the remaining amount of the battery is less than the set remaining amount. 請求項6記載の燃料電池車の温調機器配置構造において、外気温度が設定温度以下でかつ前記バッテリの残量が設定残量以上のときに前記発熱器を作動させる一方、外気温度が設定温度以下でかつ前記バッテリの残量が設定残量未満のときに前記燃料電池を起動することを特徴とする燃料電池車の温調機器配置構造。   7. The temperature control device arrangement structure for a fuel cell vehicle according to claim 6, wherein the heater is operated when the outside air temperature is equal to or lower than a preset temperature and the remaining amount of the battery is equal to or greater than the preset remaining amount, while the outside air temperature is equal to the preset temperature. A fuel cell vehicle temperature control device arrangement structure characterized in that the fuel cell is activated when the remaining amount of the battery is less than a set remaining amount.
JP2003341711A 2003-09-30 2003-09-30 Temperature controller disposition structure of fuel cell vehicle Pending JP2005104354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003341711A JP2005104354A (en) 2003-09-30 2003-09-30 Temperature controller disposition structure of fuel cell vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003341711A JP2005104354A (en) 2003-09-30 2003-09-30 Temperature controller disposition structure of fuel cell vehicle

Publications (1)

Publication Number Publication Date
JP2005104354A true JP2005104354A (en) 2005-04-21

Family

ID=34536230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003341711A Pending JP2005104354A (en) 2003-09-30 2003-09-30 Temperature controller disposition structure of fuel cell vehicle

Country Status (1)

Country Link
JP (1) JP2005104354A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220552A (en) * 2006-02-17 2007-08-30 Toyota Motor Corp Fuel cell system
WO2007105056A2 (en) * 2006-03-10 2007-09-20 Toyota Jidosha Kabushiki Kaisha Fuel cell electric vehicle and method of changing position of fuel cell stack
JP2009234510A (en) * 2008-03-28 2009-10-15 Honda Motor Co Ltd Vehicle body front part structure of motor-driven vehicle
JP2009289563A (en) * 2008-05-29 2009-12-10 Honda Motor Co Ltd Piping connection structure of fuel cell system
JP2010235015A (en) * 2009-03-31 2010-10-21 Nissan Motor Co Ltd Vehicular ptc heater mounting structure
WO2011144976A1 (en) 2010-05-17 2011-11-24 Nissan Motor Co., Ltd. Vehicle collision protection apparatus
CN104228517A (en) * 2013-06-10 2014-12-24 通用汽车环球科技运作有限责任公司 System and methods for controlling cabin heating in fuel cell vehicles

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220552A (en) * 2006-02-17 2007-08-30 Toyota Motor Corp Fuel cell system
WO2007105056A2 (en) * 2006-03-10 2007-09-20 Toyota Jidosha Kabushiki Kaisha Fuel cell electric vehicle and method of changing position of fuel cell stack
WO2007105056A3 (en) * 2006-03-10 2008-01-17 Toyota Motor Co Ltd Fuel cell electric vehicle and method of changing position of fuel cell stack
JP2009234510A (en) * 2008-03-28 2009-10-15 Honda Motor Co Ltd Vehicle body front part structure of motor-driven vehicle
JP2009289563A (en) * 2008-05-29 2009-12-10 Honda Motor Co Ltd Piping connection structure of fuel cell system
JP2010235015A (en) * 2009-03-31 2010-10-21 Nissan Motor Co Ltd Vehicular ptc heater mounting structure
WO2011144976A1 (en) 2010-05-17 2011-11-24 Nissan Motor Co., Ltd. Vehicle collision protection apparatus
US8720976B2 (en) 2010-05-17 2014-05-13 Nissan Motor Co., Ltd. Vehicle collision protection apparatus
CN104228517A (en) * 2013-06-10 2014-12-24 通用汽车环球科技运作有限责任公司 System and methods for controlling cabin heating in fuel cell vehicles

Similar Documents

Publication Publication Date Title
KR101855759B1 (en) Betterly cooling system for vehicle
US10106012B2 (en) Air-conditioner for vehicle
US8859938B2 (en) Vehicle cabin heating system
KR101225660B1 (en) An auxiliary cooling and heating device for automobile using thermo element module and its controlling method thereof
KR20090062143A (en) Air-conditioning apparatus using thermoelectric devices
US8424776B2 (en) Integrated vehicle HVAC system
KR101956362B1 (en) Efficient transfer of heat to passenger cabin
KR20120035014A (en) Sub air conditioner for vehicles
JP2010284045A (en) Heat supply device
JP2019093801A (en) Vehicular temperature conditioning system
JP2011131871A (en) Air conditioner for vehicle
JP2009291008A (en) Heat management system of electric drive vehicle
JP2008006894A (en) Vehicular air conditioner
WO2011129266A1 (en) Vehicle air conditioning electric heating type heater core, and vehicle air conditioning device provided therewith
JP2006321269A (en) Heat source distribution system for vehicle
JP2011143911A (en) Vehicular air-conditioning unit and vehicular air-conditioning system
JP2005104354A (en) Temperature controller disposition structure of fuel cell vehicle
JP6225238B2 (en) Air conditioner for vehicles
JP2012101688A (en) Cooling system of dashboard
JP2010023547A (en) Ventilation load reducing device, and air-conditioner for automobile using the same
KR20120062378A (en) Heating system for fuel cell vehicle and orerating method thereof
KR20100046730A (en) Thermal management system for fuel cell vehicle
KR20140091187A (en) Heating system for vehicle
JP2005280639A (en) Floor heating device for fuel cell car
KR20070059407A (en) The air conditioning system for hybrid engine vehicle and the heating control method by it