JP2005103496A - Photocatalyst - Google Patents
Photocatalyst Download PDFInfo
- Publication number
- JP2005103496A JP2005103496A JP2003343465A JP2003343465A JP2005103496A JP 2005103496 A JP2005103496 A JP 2005103496A JP 2003343465 A JP2003343465 A JP 2003343465A JP 2003343465 A JP2003343465 A JP 2003343465A JP 2005103496 A JP2005103496 A JP 2005103496A
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- photocatalyst
- powder
- sample
- oxide semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 53
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 64
- 239000004065 semiconductor Substances 0.000 claims abstract description 52
- 230000001699 photocatalysis Effects 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 239000010936 titanium Substances 0.000 claims abstract description 19
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 229910052788 barium Inorganic materials 0.000 claims abstract description 5
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 5
- 229910052738 indium Inorganic materials 0.000 claims abstract description 5
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 5
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 33
- 239000002131 composite material Substances 0.000 claims description 18
- 150000002500 ions Chemical class 0.000 claims description 14
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 230000000844 anti-bacterial effect Effects 0.000 abstract description 4
- 229910052791 calcium Inorganic materials 0.000 abstract description 3
- 238000000354 decomposition reaction Methods 0.000 abstract description 3
- 238000004332 deodorization Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 239000004408 titanium dioxide Substances 0.000 abstract description 3
- 239000003344 environmental pollutant Substances 0.000 abstract description 2
- 239000000843 powder Substances 0.000 description 44
- 239000000523 sample Substances 0.000 description 43
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 33
- 238000000034 method Methods 0.000 description 28
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 25
- 229910010413 TiO 2 Inorganic materials 0.000 description 19
- 239000004570 mortar (masonry) Substances 0.000 description 19
- 229910002367 SrTiO Inorganic materials 0.000 description 16
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 16
- 229960000907 methylthioninium chloride Drugs 0.000 description 16
- 238000002441 X-ray diffraction Methods 0.000 description 15
- 238000002156 mixing Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 12
- 229910052697 platinum Inorganic materials 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 229910052703 rhodium Inorganic materials 0.000 description 12
- 239000010948 rhodium Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical group [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 11
- 238000001354 calcination Methods 0.000 description 9
- 238000001035 drying Methods 0.000 description 9
- 238000000227 grinding Methods 0.000 description 9
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 229910001928 zirconium oxide Inorganic materials 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 238000012790 confirmation Methods 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 6
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 6
- 229910001887 tin oxide Inorganic materials 0.000 description 6
- 239000011787 zinc oxide Substances 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 5
- 238000000862 absorption spectrum Methods 0.000 description 5
- 238000004061 bleaching Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000009994 optical bleaching Methods 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 230000003373 anti-fouling effect Effects 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000013032 photocatalytic reaction Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 238000010532 solid phase synthesis reaction Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical group [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- 238000000411 transmission spectrum Methods 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- 229910017771 LaFeO Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical group [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical group [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- -1 oxygen ions Chemical class 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- SBYHFKPVCBCYGV-UHFFFAOYSA-N quinuclidine Chemical compound C1CC2CCN1CC2 SBYHFKPVCBCYGV-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- GROMGGTZECPEKN-UHFFFAOYSA-N sodium metatitanate Chemical compound [Na+].[Na+].[O-][Ti](=O)O[Ti](=O)O[Ti]([O-])=O GROMGGTZECPEKN-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Abstract
Description
本発明は、互いに光触媒特性を持ちかつ真空準位を基準としたエネルギーバンド構造における伝導帯底部の電子のエネルギーレベルと価電子帯頂上の電子のエネルギーレベルがそれぞれ異なる酸化物半導体(I)と(II)による接合部を有する酸化物複合体により構成される光触媒に係り、特に、上記酸化物半導体(I)がペロブスカイト型酸化物で構成される光触媒に関するものである。 The present invention relates to oxide semiconductors (I) having photocatalytic properties and different energy levels of electrons at the bottom of the conduction band and electrons at the top of the valence band in the energy band structure based on the vacuum level. The present invention relates to a photocatalyst composed of an oxide composite having a joint part according to II), and particularly to a photocatalyst composed of the perovskite oxide in the oxide semiconductor (I).
近年、光触媒が発揮する高い酸化力と還元力を積極的に利用して、汚染大気・汚染水の清浄化等グローバルな環境浄化から、消臭・防汚・抗菌等の生活環境浄化に至るまで、さまざまな分野で光触媒の実用化に向けた研究開発が進められている。そして、多くの場合は光触媒作用を有する化合物の研究であり、反応を促進する助触媒あるいは担体を併せて用いる場合には、従来の触媒の研究を基にPt、Rh等の貴金属、NiO等の遷移金属酸化物が使用されてきた。 In recent years, from the global environmental purification such as purification of polluted air and contaminated water to the purification of living environment such as deodorization, antifouling and antibacterial, by actively utilizing the high oxidizing power and reducing power exhibited by the photocatalyst Research and development for the practical application of photocatalysts is underway in various fields. And in many cases, it is a research of a compound having a photocatalytic action. When a co-catalyst or a carrier for promoting the reaction is used together, noble metals such as Pt and Rh, NiO, etc. Transition metal oxides have been used.
以下、具体的に述べると、光触媒作用を有する最も代表的な酸化物として、例えば、アナターゼ型酸化チタンが知られており、脱臭・抗菌・防汚材として既に実用化されている。但し、酸化チタンが光触媒としての性能を発揮するのは、太陽光線のうち4%程度にすぎない紫外線に対してのみである。このため、屋外における酸化チタンの高機能化・可視光域での応答性を目指してさまざまな改良が試みられている。例えば、酸化チタン上に色素を吸着させ可視光を吸収して生じた吸着色素の励起状態から酸化チタンへ電子を注入する方法、Cr、V、Mn、Fe、Ni等の金属イオンを化学的に注入する方法、プラズマ照射によって酸素欠陥を導入する方法、異種イオンを導入する方法等さまざまな試みが国内外で行われてきている。しかしながら、いずれの方法も均一分散が難しく、電子と正孔の再結合によって光触媒活性が低下する、調整コストが高い等の問題があるため、未だ工業化には至っていない。 Specifically, for example, anatase-type titanium oxide is known as the most typical oxide having a photocatalytic action, and has already been put into practical use as a deodorizing / antibacterial / antifouling material. However, the titanium oxide exhibits the performance as a photocatalyst only with respect to ultraviolet rays which are only about 4% of the sunlight. For this reason, various improvements have been attempted with the aim of increasing the functionality of titanium oxide outdoors and responsiveness in the visible light range. For example, a method of injecting electrons into titanium oxide from an excited state of an adsorbed dye produced by adsorbing a dye on titanium oxide and absorbing visible light, and chemically ionizing metal ions such as Cr, V, Mn, Fe, and Ni Various attempts have been made at home and abroad, such as an implantation method, a method of introducing oxygen defects by plasma irradiation, and a method of introducing foreign ions. However, any of these methods is difficult to uniformly disperse and has problems such as a decrease in photocatalytic activity due to recombination of electrons and holes, and a high adjustment cost.
他方、半導体光触媒として、二酸化チタンを始め、チタン酸ストロンチウム、チタン酸バリウム、チタン酸ナトリウム、硫化カドミウム、二酸化ジルコニウム等を選択し、これ等の半導体に、白金、パラジウム、ロジウム、ルテニウム等の白金族金属を助触媒として坦持することが有効であることも知られている。特に、酸化ニッケル、酸化ルテニウム等を担持した酸化ジルコニウムや酸化タンタル半導体からなる光触媒の存在下においては、光を照射した場合の触媒活性が向上することが報告されている(非特許文献1参照)。しかしながら、光触媒が光照射により光溶解したり、この溶解を防ぐため触媒表面を被覆処理すると触媒性能が発現しない等、未だ課題を残している。また、これ等助触媒は光触媒活性を持つわけではなく、光触媒作用を有する化合物自体が応答する光の波長領域に影響は与えない。また、上述したNiOの場合には、還元、その後酸化して用いる等使用条件が複雑である問題を有している。 On the other hand, as a semiconductor photocatalyst, titanium dioxide, strontium titanate, barium titanate, sodium titanate, cadmium sulfide, zirconium dioxide, etc. are selected, and these semiconductors include platinum groups such as platinum, palladium, rhodium, ruthenium, etc. It is also known that it is effective to carry a metal as a promoter. In particular, in the presence of a photocatalyst composed of a zirconium oxide or tantalum oxide semiconductor carrying nickel oxide, ruthenium oxide or the like, it has been reported that the catalytic activity when irradiated with light is improved (see Non-Patent Document 1). . However, the photocatalyst is still photodissolved by light irradiation, and if the catalyst surface is coated to prevent this dissolution, the catalyst performance does not appear, and other problems still remain. Further, these cocatalysts do not have photocatalytic activity, and do not affect the wavelength region of light to which the compound having photocatalytic action itself responds. In addition, in the case of NiO described above, there is a problem that usage conditions are complicated, such as reduction and subsequent oxidation.
また、高い触媒活性を有するとして、最近ペロブスカイト型酸化物が注目されている。例えば特許文献1においては、一般式A3+B3+O3で表されるLaFeO3および一般式A2+B3+Oxで表されるSrMnOx等が提案されているが、現実には高い触媒活性は得られていない。 In addition, perovskite oxides have recently attracted attention as having high catalytic activity. For example, Patent Document 1 proposes LaFeO 3 represented by the general formula A 3+ B 3+ O 3 , SrMnOx represented by the general formula A 2+ B 3+ Ox, and the like, which are actually high. No catalytic activity has been obtained.
更に、層状ペロブスカイト型酸化物の研究も盛んに行われている。例えば特許文献2には層状ペロブスカイト型のABCO4が提案され、特許文献3にはKLaCa2Nb3O10系複合酸化物が提案され、また、特許文献4にはKCa2Nb3O10が提案されている。但し、これ等の原理および製法は複雑であり、また、得られた酸化物の化学的安定性にも問題があるため未だ工業化には至っていない。 In addition, research on layered perovskite oxides has been actively conducted. For example, Patent Document 2 proposes a layered perovskite type ABCO 4 , Patent Document 3 proposes a KLaCa 2 Nb 3 O 10 -based composite oxide, and Patent Document 4 proposes KCa 2 Nb 3 O 10. Has been. However, these principles and production methods are complicated, and the chemical stability of the obtained oxides is also problematic, so that they have not yet been industrialized.
そこで、上記問題を解決するため、光触媒の性能について本発明者等が鋭意研究を重ねたところ、組成式(III)A2-XB2+XO8-2δで表され、複数の価数を取り得るAイオンとBイオンがそれぞれ規則配列をした組成式(IV)A2-XB2+XO7+(X/2)+Y(但し、−0.4<X<+0.6、かつ、−0.2<Y<+0.2)のパイロクロア型酸化物の蛍石型構造から見た酸素欠損位置または侵入型位置の少なくとも一方に酸素イオンが挿入されたパイロクロア関連構造酸化物に、従来から報告されている近紫外線で作用する酸化チタン、酸化亜鉛、酸化錫、酸化ジルコニウムあるいはチタン酸ストロンチウム等の粒子を付着、接合させると、真空準位を基準としたエネルギーバンド構造における伝導帯底部と価電子帯頂上の電子のエネルギーレベルがそれぞれの半導体(すなわち、パイロクロア関連構造酸化物と酸化チタン、酸化亜鉛、酸化錫、酸化ジルコニウムあるいはチタン酸ストロンチウム等)で異なることに起因して、上記接合部を介し電子と正孔がそれぞれ一方向へ流れるため、電子と正孔が空間的に分離されて電子と正孔の再結合を抑制できること、更には光触媒反応に関わる分子およびイオンが上記パイロクロア関連構造酸化物により吸着され易いことを利用し、かつ、それら電子と正孔の関与する光触媒反応の反応位置を空間的に分離できるため、これ等相乗作用により高い触媒活性をもつ光触媒になることを見出すに至った。 Accordingly, in order to solve the above problems, the present inventors conducted extensive research on the performance of the photocatalyst, and as a result, the composition formula (III) A 2-X B 2 + X O 8-2 δ is represented by a plurality of values. A composition formula (IV) A 2-X B 2 + X O 7+ (X / 2) + Y in which A ions and B ions, each of which can take a number, are regularly arranged (however, −0.4 <X <+0. 6 and a pyrochlore-related structural oxide in which oxygen ions are inserted into at least one of an oxygen deficient position or an interstitial position as seen from a fluorite structure of a pyrochlore oxide of −0.2 <Y <+0.2) When particles such as titanium oxide, zinc oxide, tin oxide, zirconium oxide or strontium titanate, which have been reported in the past, have been reported to adhere to and bonded to each other, conduction in the energy band structure based on the vacuum level is reported. The energy levels of the electrons at the bottom and the top of the valence band are Due to the difference between each semiconductor (ie, pyrochlore-related structural oxide and titanium oxide, zinc oxide, tin oxide, zirconium oxide, strontium titanate, etc.), electrons and holes are unidirectional through the junction. The electrons and holes are spatially separated and recombination of electrons and holes can be suppressed, and the molecules and ions involved in the photocatalytic reaction are easily adsorbed by the pyrochlore-related structural oxide. In addition, since the reaction positions of the photocatalytic reaction involving these electrons and holes can be spatially separated, it has been found that the photocatalyst having high catalytic activity is obtained by these synergistic actions.
また、光触媒作用と上記接合部における電子と正孔の流れについて更なる検討をした結果、可視光域の光エネルギーが有効に利用されていること、更には反応に寄与する電子と正孔のエネルギーが高められて光触媒特性として理想的な状態が上記半導体酸化物(すなわち、パイロクロア関連構造酸化物と酸化チタン、酸化亜鉛、酸化錫、酸化ジルコニウム、あるいはチタン酸ストロンチウム等から成る酸化物複合体)の接合部において生じていることを見出すに至った。 In addition, as a result of further studies on the photocatalytic action and the flow of electrons and holes in the junction, it is confirmed that the light energy in the visible light range is effectively used, and further the energy of electrons and holes contributing to the reaction. Is an ideal state for photocatalytic properties of the above-mentioned semiconductor oxide (that is, an oxide complex comprising a pyrochlore-related structure oxide and titanium oxide, zinc oxide, tin oxide, zirconium oxide, strontium titanate, etc.) I came to find out what happened at the joint.
更に、これ等光触媒特性は、組成式(III)A2-XB2+XO8-2δで表される上記パイロクロア関連構造酸化物と酸化チタン、酸化亜鉛、酸化錫、酸化ジルコニウムあるいはチタン酸ストロンチウム等から成る酸化物複合体に限らず、真空準位を基準としたエネルギーバンド構造における伝導帯底部の電子のエネルギーレベルと価電子帯頂上の電子のエネルギーレベルがそれぞれ異なる酸化物半導体(I)と(II)による接合部を有する酸化物複合体においても同様に機能することも見出された。 Furthermore, these photocatalytic properties are characterized by the above-described pyrochlore-related structural oxide represented by the composition formula (III) A 2-X B 2 + X O 8-2 δ and titanium oxide, zinc oxide, tin oxide, zirconium oxide or titanium. Not only oxide composites such as strontium oxide, but also oxide semiconductors with different energy levels of electrons at the bottom of the conduction band and electrons at the top of the valence band in the energy band structure based on the vacuum level (I ) And (II) have also been found to function similarly in oxide composites having joints.
尚、真空準位を基準としたエネルギーバンド構造における伝導帯底部の電子のエネルギーレベルと価電子帯頂上の電子のエネルギーレベルがそれぞれ異なる2種類の化合物半導体であって、一方が光触媒作用が比較的弱く、他方がより低波長で良好な光触媒作用を有する化合物半導体を複合化させて相乗作用的に光触媒性能を向上させるといった研究は今まで全くなされておらず、ましてやその接合部の電子と正孔の流れを活用して高性能の光触媒を調製する等の研究は全く行われていない。 In addition, in the energy band structure based on the vacuum level, there are two kinds of compound semiconductors in which the energy level of the electrons at the bottom of the conduction band and the energy level of the electrons at the top of the valence band are different, one of which has a relatively high photocatalytic action. There has been no research on synergistically improving photocatalytic performance by compounding a compound semiconductor that is weak and has a good photocatalytic activity at a lower wavelength. No research has been conducted on the preparation of high-performance photocatalysts by utilizing the flow of water.
このような技術的発見に基づき、本発明者等は、互いに光触媒特性を持ちかつ真空準位を基準としたエネルギーバンド構造における伝導帯底部の電子のエネルギーレベルと価電子帯頂上の電子のエネルギーレベルがそれぞれ異なる酸化物半導体(I)と(II)による接合部を有する酸化物複合体により構成される光触媒を既に提案すると共に、上記酸化物半導体(I)がパイロクロア関連構造酸化物で構成され、酸化物半導体(II)がルチル型若しくはアナターゼ型またはこれ等2つの型が混ざった酸化チタン、酸化亜鉛、酸化錫、酸化ジルコニウム、チタン酸ストロンチウムのいずれかで構成される光触媒、並びに、上記酸化物半導体(I)がペロブスカイト型酸化物で構成され、酸化物半導体(II)がルチル型若しくはアナターゼ型またはこれ等2つの型が混ざった酸化チタン、酸化亜鉛、酸化錫、酸化ジルコニウム、チタン酸ストロンチウムのいずれかで構成される光触媒などを既に提案している(特許文献5参照)。
本発明は、上記特許文献5に記載された発明を更に発展させ、上記酸化物半導体(I)がペロブスカイト型酸化物で構成される光触媒の構成元素の種類を拡大させると共に特許文献5に記載された発明と同様の光触媒特性を具備する光触媒を提供することにある。 The present invention further develops the invention described in Patent Document 5 described above, expands the types of constituent elements of the photocatalyst in which the oxide semiconductor (I) is composed of a perovskite oxide, and is described in Patent Document 5. An object of the present invention is to provide a photocatalyst having the same photocatalytic properties as those of the present invention.
すなわち、請求項1記載の発明は、
互いに光触媒特性を持ち、かつ、真空準位を基準としたエネルギーバンド構造における伝導帯底部の電子のエネルギーレベルと価電子帯頂上の電子のエネルギーレベルがそれぞれ異なる酸化物半導体(I)と(II)による接合部を有する酸化物複合体により構成される光触媒を前提とし、
上記酸化物半導体(I)が、組成式(VI)A2+B4+ 1-XC3+ XO3-δ(但し、0≦X≦0.5、−0.1<δ<0.1、AイオンはSr、Ba,Caから選択された1種以上の元素、BイオンはTi,Zrから選択された1種以上の元素、CはY、Ga、Inから選択された1種以上の元素)で表されるペロブスカイト型酸化物で構成され、かつ、上記酸化物半導体(II)が、ルチル型若しくはアナターゼ型またはこれ等2つの型が混在した酸化チタンで構成されていることを特徴とするものである。
That is, the invention according to claim 1
Oxide semiconductors (I) and (II) that have photocatalytic properties and have different energy levels at the bottom of the conduction band and at the top of the valence band in the energy band structure based on the vacuum level. Assuming a photocatalyst composed of an oxide composite having a joint by
The oxide semiconductor (I) has the composition formula (VI) A 2+ B 4 + 1 -X C 3+ X O 3 -δ (where 0 ≦ X ≦ 0.5, −0.1 <δ <0 .1, A ion is one or more elements selected from Sr, Ba, and Ca, B ion is one or more elements selected from Ti and Zr, and C is one selected from Y, Ga, and In And the oxide semiconductor (II) is composed of a rutile type, an anatase type, or a titanium oxide in which these two types are mixed. It is a feature.
また、請求項2記載の発明は、
請求項1記載の発明に係る光触媒を前提とし、
上記酸化物半導体(I)のペロブスカイト型酸化物が5〜50重量%含有されているこ
とを特徴とするものである。
The invention according to claim 2
Based on the photocatalyst according to the invention of claim 1,
5 to 50% by weight of the perovskite oxide of the oxide semiconductor (I) is contained.
請求項1〜2記載の発明に係る光触媒によれば、
特許文献5記載の発明と同様、互いに光触媒特性を持ち、かつ、真空準位を基準としたエネルギーバンド構造における伝導帯底部の電子のエネルギーレベルと価電子帯頂上の電子のエネルギーレベルがそれぞれ異なる酸化物半導体(I)と(II)による接合部を有する酸化物複合体により構成されているため、環境汚染物質の分解・処理や脱臭、防汚、抗菌、防曇等への用途に提供できる効果を有する。
According to the photocatalyst according to the inventions of claims 1 and 2,
Similar to the invention described in Patent Document 5, the oxidation levels of the electrons at the bottom of the conduction band and the energy levels of the electrons at the top of the valence band in the energy band structure based on the vacuum level are different from each other. Because it is composed of oxide composites with joints made of physical semiconductors (I) and (II), it can be used for applications such as decomposition and treatment of environmental pollutants, deodorization, antifouling, antibacterial and antifogging Have
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
まず、本発明に係る光触媒は、特許文献5記載の発明と同様、互いに光触媒特性を持ち、真空準位を基準としたエネルギーバンド構造における伝導帯底部の電子のエネルギーレベルと価電子帯頂上の電子のエネルギーレベルがそれぞれ異なる酸化物半導体(I)と(II)による接合部を有する酸化物複合体により構成されることを前提とし、酸化物半導体(I)が、組成式(VI)A2+B4+ 1-XC3+ XO3-δ(但し、0≦X≦0.5、−0.1<δ<0.1、AイオンはSr、Ba,Caから選択された1種以上の元素、BイオンはTi,Zrから選択された1種以上の元素、CはY、Ga、Inから選択された1種以上の元素)で表されるペロブスカイト型酸化物で構成され、上記酸化物半導体(II)が、ルチル型若しくはアナターゼ型またはこれ等2つの型が混在した酸化チタンで構成されていることを特徴としている。 First, the photocatalyst according to the present invention has photocatalytic properties as in the invention described in Patent Document 5, and the energy level of the electrons at the bottom of the conduction band and the electrons at the top of the valence band in the energy band structure based on the vacuum level. Assuming that the oxide semiconductors (I) and (II) are composed of oxide composites having junctions with different energy levels, the oxide semiconductor (I) has the composition formula (VI) A 2+ B 4+ 1-X C 3+ X O 3- δ (where 0 ≦ X ≦ 0.5, −0.1 <δ <0.1, A ion is one selected from Sr, Ba, Ca) The above elements and B ions are composed of perovskite oxides represented by one or more elements selected from Ti and Zr, and C is one or more elements selected from Y, Ga and In), The oxide semiconductor (II) is a rutile type, anatase type or Is characterized in that equal two types is composed of titanium oxide mixed.
尚、酸化物半導体(I)を構成するペロブスカイト型酸化物において、組成式(VI)の上記δ値が−0.1<δ<0.1に設定されている理由は、ペロブスカイト型酸化物の製造上の条件から上記数値範囲外のものが得られないからである。 In the perovskite type oxide constituting the oxide semiconductor (I), the reason why the δ value in the composition formula (VI) is set to −0.1 <δ <0.1 is that of the perovskite type oxide. This is because a product outside the above numerical range cannot be obtained due to manufacturing conditions.
そして、組成式(VI)A2+B4+ 1-XC3+ XO3-δで表される酸化物半導体(I)のペロブスカイト型酸化物としてSrTiO3粉末が適用され、かつ、酸化物半導体(II)としてアナターゼ型酸化チタン粉末が適用された以下に述べる実施例1等の試験結果から次のことが確認されている。 Then, SrTiO 3 powder is applied as the perovskite oxide of the oxide semiconductor (I) represented by the composition formula (VI) A 2+ B 4 + 1 -X C 3+ X O 3 -δ, and oxidation The following has been confirmed from the test results of Example 1 and the like described below in which anatase-type titanium oxide powder was applied as the physical semiconductor (II).
以下、実施例1に係る光触媒の合成法の概略と、得られた実施例1に係る光触媒の試験方法等について簡単に説明する。 Hereinafter, the outline of the synthesis method of the photocatalyst according to Example 1, the test method of the obtained photocatalyst according to Example 1, and the like will be briefly described.
まず、酸化物半導体(I)としてのSrTiO3粉末と酸化物半導体(II)としてのアナターゼ型酸化チタン粉末を、重量比でZ:(1−Z)[但し、0<Z<1]となるように混合し、かつ、700℃で1時間焼成処理した後、乳鉢で粉砕して実施例1に係る粉末(光触媒)を調製した。 First, SrTiO 3 powder as the oxide semiconductor (I) and anatase-type titanium oxide powder as the oxide semiconductor (II) are Z: (1-Z) [where 0 <Z <1] in weight ratio. The mixture was baked at 700 ° C. for 1 hour and pulverized in a mortar to prepare a powder (photocatalyst) according to Example 1.
得られた実施例1に係る粉末(光触媒)をメチレンブルー溶液に分散させると共に、光照射によるメチレンブルーの脱色(ブリーチング)試験を行った。 The obtained powder (photocatalyst) according to Example 1 was dispersed in a methylene blue solution, and a decolorization (bleaching) test of methylene blue by light irradiation was performed.
そして、実施例1に係る粉末(光触媒)の光触媒特性は、焼成処理による異種半導体(SrTiO3とアナターゼ型酸化チタン)の接合部出現のため大幅に向上していることが以下の試験結果から確認されている。 And it confirmed from the following test results that the photocatalytic properties of the powder (photocatalyst) according to Example 1 were greatly improved due to the appearance of the junction of different types of semiconductors (SrTiO 3 and anatase-type titanium oxide) by the firing treatment. Has been.
すなわち、ブリーチング途中における粉末試料(実施例1に係る粉末)の色は、SrTiO3とアナターゼ型酸化チタンとの酸化物複合体にしたことにより青みが深くなり、ブリーチング完了時には試料の青みは消えた。 That is, the color of the powder sample in the middle of bleaching (powder according to Example 1) becomes deep blue due to the oxide complex of SrTiO 3 and anatase-type titanium oxide. Had disappeared.
他方、Z=0であるアナターゼ型酸化チタン粉末のみ(比較例)の場合には、ブリーチングの途中および完了時とも常に試料の色は白かった。 On the other hand, in the case of only anatase-type titanium oxide powder with Z = 0 (comparative example), the color of the sample was always white during and during bleaching.
また、Z=1のペロブスカイト型構造酸化物(SrTiO3)粉末のみの場合には、ブリーチングの途中では試料の色は少し青みを帯び、完了時には青みは消えた。 Further, in the case of only Z = 1 perovskite structure oxide (SrTiO 3 ) powder, the color of the sample was slightly bluish during bleaching, and the bluish disappeared upon completion.
これ等の結果から、光照射によって試料である酸化物複合体(実施例1に係る粉末)へのメチレンブルーの吸着が促進されること、メチレンブルーは上記酸化物複合体の一方を構成するペロブスカイト型構造酸化物の方に吸着され易いこと、酸化チタンとの接合はペロブスカイト型構造酸化物へのメチレンブルーの吸着を促進すること、および、酸化物の複合化による光触媒特性の向上とメチレンブルーの上記吸着現象は深く関係していること等が確認された。 From these results, the adsorption of methylene blue to the oxide complex (powder according to Example 1) as a sample is promoted by light irradiation, and the methylene blue is a perovskite structure that constitutes one of the oxide complexes. The oxides are more easily adsorbed, the junction with titanium oxide promotes the adsorption of methylene blue to the perovskite structure oxide, and the improvement of the photocatalytic properties by the oxide complexation and the above-mentioned adsorption phenomenon of methylene blue It was confirmed that they were deeply related.
ここで、真空準位を基準としたエネルギーバンド構造における伝導帯底部の電子のエネルギーレベルと価電子帯頂上の電子のエネルギーレベルがそれぞれ異なる酸化物半導体(I)と(II)を接合させると、一般に、接合部付近では電子と正孔がそれぞれ一方向に流れることが知られている。 Here, when oxide semiconductors (I) and (II) with different energy levels of electrons at the bottom of the conduction band and electrons at the top of the valence band in the energy band structure based on the vacuum level are joined, In general, it is known that electrons and holes flow in one direction near the junction.
このとき、光照射により促進された上記吸着現象のために接合部を流れる電子と正孔は分離される傾向を強める。この現象は吸着するイオンが正か負によって左右されるが、吸着するイオンが負の場合で、かつ、組成式(VI)A2+B4+ 1-XC3+ XO3-δ(但し、0≦X≦0.5、−0.1<δ<0.1、AイオンはSr、Ba,Caから選択された1種以上の元素、BイオンはTi,Zrから選択された1種以上の元素、CはY、Ga、Inから選択された1種以上の元素)で表されるペロブスカイト型酸化物と、アナターゼ型酸化チタンとで構成される上記酸化物複合体の場合には、図10(A)の概念説明図に示すように正孔は接合部の表面(外界と接する側)を、また、電子は接合部の中心を流れることになり、接合部における電子と正孔の流れを分離することは酸化物複合体全体での電子と正孔の空間的な分離につながり、光により励起された電子と正孔の再結合は抑制される。この結果、電子と正孔の関与する光触媒反応の反応位置が空間的に分離されることから、上記接合により触媒活性が大幅に高められた光触媒になるものと推定される。 At this time, due to the above-described adsorption phenomenon promoted by light irradiation, the tendency of the electrons and holes flowing through the junction to be separated increases. This phenomenon depends on whether the adsorbing ion is positive or negative, and is the case where the adsorbing ion is negative, and the composition formula (VI) A 2+ B 4 + 1 -X C 3+ X O 3 -δ ( However, 0 ≦ X ≦ 0.5, −0.1 <δ <0.1, A ion is one or more elements selected from Sr, Ba, and Ca, and B ion is selected from Ti and Zr. In the case of the above oxide complex composed of a perovskite oxide represented by an element of at least one species, and C is one or more elements selected from Y, Ga, and In) and anatase titanium oxide As shown in the conceptual diagram of FIG. 10A, holes flow on the surface of the junction (the side in contact with the outside world), and electrons flow through the center of the junction, and electrons and holes in the junction. Separating the flow of electrons leads to the spatial separation of electrons and holes in the whole oxide complex, and electrons excited by light And hole recombination are suppressed. As a result, since the reaction positions of the photocatalytic reaction involving electrons and holes are spatially separated, it is presumed that the photocatalyst having a significantly enhanced catalytic activity is obtained by the bonding.
尚、図10(B)は、組成式(VI)A2+B4+ 1-XC3+ XO3-δで表されるペロブスカイト型酸化物とアナターゼ酸化チタンとで構成される酸化物複合体の接合部におけるエネルギーバンド構造図を示している。 Note that FIG. 10B shows an oxide composed of a perovskite oxide represented by a composition formula (VI) A 2+ B 4 + 1 -X C 3+ X O 3 -δ and anatase titanium oxide. The energy band structure figure in the junction part of a composite_body | complex is shown.
ここで、組成式(VI)A2+B4+ 1-XC3+ XO3-δで表される上記ペロブスカイト型酸化物は、通常の固相法、すなわち、原料となる各金属成分の酸化物または炭酸塩や硝酸塩等の塩類を目的組成比の割合で混合し、焼成することで合成されるが、固相法以外の湿式法あるいは気相法で合成してもよい。 Here, the perovskite oxide represented by the composition formula (VI) A 2+ B 4 + 1 -X C 3+ X O 3 -δ is an ordinary solid phase method, that is, each metal component as a raw material. These oxides or salts such as carbonates and nitrates are mixed at a target composition ratio and baked, but may be synthesized by a wet method other than the solid phase method or a gas phase method.
以下、固相法を例に挙げて説明すると、原料となる酸化物または炭酸塩や硝酸塩等の塩類を遊星ボールミル等を用い目的組成比となるように混合し、かつ、800〜900℃で仮焼する。仮焼後、再度粉砕し適度な大きさに成形した後、Pt坩堝に入れ1400〜1500℃で10〜100時間程度焼成する。そして、得られたペロブスカイト型酸化物の焼成物を粉砕して粉状にする。 Hereinafter, the solid phase method will be described as an example. Oxides or carbonates such as carbonates and nitrates as raw materials are mixed so as to have a target composition ratio using a planetary ball mill or the like, and temporarily prepared at 800 to 900 ° C. Bake. After calcination, it is pulverized again and formed into an appropriate size, and then placed in a Pt crucible and fired at 1400-1500 ° C. for about 10 to 100 hours. Then, the obtained perovskite oxide fired product is pulverized into powder.
この後、以下の比較例で示すように通常の方法で得られたアナターゼ型酸化チタン粉末と、重量比でZ:(1−Z)[但し、0<Z<1]の割合となるように計り取り、乳鉢あるいはボールミル等を用いて混合する。 Thereafter, as shown in the following comparative examples, the anatase-type titanium oxide powder obtained by a usual method and the weight ratio of Z: (1-Z) [where 0 <Z <1] are satisfied. Weigh and mix using a mortar or ball mill.
混合した試料を300〜1200℃で5分から1時間程度焼成し、異種酸化物半導体の接合を有する酸化物複合体(すなわち、本発明の光触媒)を調製する。尚、焼成温度が300℃より低くなると良好な接合が得られない場合があり、1200℃より高くなると異種の反応相が生成し酸化物複合体の光触媒特性が低下してしまう場合があるため、上記300〜1200℃の条件が好ましい。 The mixed sample is baked at 300 to 1200 ° C. for about 5 minutes to 1 hour to prepare an oxide composite having a heterogeneous oxide semiconductor junction (that is, the photocatalyst of the present invention). In addition, when the firing temperature is lower than 300 ° C., good bonding may not be obtained, and when it is higher than 1200 ° C., a different reaction phase may be generated and the photocatalytic characteristics of the oxide composite may be deteriorated. The above 300-1200 degreeC conditions are preferable.
この様にして調製された本発明に係る光触媒の形状は、光を有効に利用できるように比表面積の大きい粒子から成ることが望ましく、一般には各粒子の大きさは0.1〜10μm、より好ましくは0.1〜1μmが適当である。特に、酸化物半導体(I)のペロブスカイト型酸化物は100nm以下であることが一層好ましい。 The shape of the photocatalyst according to the present invention thus prepared is preferably composed of particles having a large specific surface area so that light can be used effectively. In general, the size of each particle is 0.1 to 10 μm, 0.1 to 1 μm is preferable. In particular, the perovskite oxide of the oxide semiconductor (I) is more preferably 100 nm or less.
また、上記粒径の酸化物複合体粉末を得る慣用的な手段としては、例えば、乳鉢を用いた手粉砕、あるいはボールミル、遊星回転ボールミルを用いてそれぞれの酸化物半導体の粉砕を先ず行い、得られた2種類の粉末を秤量、混合、焼成して上記接合を有する酸化物複合体を得た後、再度粉砕を行って最終的な試料粉末を得る方法が挙げられる。 Further, as a conventional means for obtaining an oxide composite powder having the above particle size, for example, by hand pulverization using a mortar, or pulverization of each oxide semiconductor using a ball mill or a planetary rotating ball mill, The obtained two kinds of powders are weighed, mixed, and fired to obtain an oxide composite having the above-mentioned bonding, and then pulverized again to obtain a final sample powder.
次に、本発明の実施例について具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。 Next, specific examples of the present invention will be described. However, the present invention is not limited to the following examples.
試料調製
[SrTiO3の調製]
(原料) SrCO3粉末(高純度化学研究所株式会社製、純度99.9%、ig.-loss0.08%):5.8284g、
TiO2粉末(レアメタリック社製アナターゼ型、純度99.99%、ig.-loss0.84%):3.1774g
尚、上記「ig.-loss」は、水分、吸収物等によるロスを示している。
(混合処理)1:秤量後の各粉末試料をジルコニア製乳鉢を用い、エタノールを加え1.5時間混合した。
Sample Preparation [Preparation of SrTiO 3 ]
(Raw material) SrCO 3 powder (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%, ig.-loss 0.08%): 5.8284 g,
TiO 2 powder (Rare Metallic Anatase type, purity 99.99%, ig.-loss 0.84%): 3.1774 g
Note that “ig.-loss” indicates a loss due to moisture, absorbents, and the like.
(Mixing process) 1: Each powder sample after weighing was added with ethanol using a zirconia mortar and mixed for 1.5 hours.
2:混合後の試料を乾燥後、ジルコニア製ポットに入れ、遊星回転ボールミルを用いて40分間粉砕した。
(乾燥処理) 粉砕後の試料を恒温槽で120℃、30分以上乾燥させた。
(仮焼処理) 乾燥後の試料を、ロジウム/白金製るつぼに入れ、大気中、1350℃で10時間仮焼した。
(再粉砕・混合・乾燥処理) 仮焼後、乳鉢で再粉砕し、遊星回転ミルで混合した。その後、先の乾燥と同条件で乾燥した。
(成形処理) 265MPaの圧力で17mmφの円盤状に成形した。
(焼成処理) 成形後の試料をロジウム/白金製るつぼに入れ、大気中、1650℃で50時間焼成した。
(粉砕処理) 焼成後、ジルコニア乳鉢で1時間粉砕して試料粉末を得た。
2: The sample after mixing was dried, placed in a zirconia pot, and ground for 40 minutes using a planetary rotating ball mill.
(Drying process) The sample after grinding | pulverization was dried at 120 degreeC for 30 minutes or more with the thermostat.
(Preliminary calcination treatment) The dried sample was put in a rhodium / platinum crucible and calcined at 1350 ° C for 10 hours in the air.
(Re-grinding / mixing / drying treatment) After calcination, the powder was re-ground in a mortar and mixed in a planetary rotating mill. Then, it dried on the same conditions as previous drying.
(Molding process) It shape | molded in the disk shape of 17 mmphi with the pressure of 265 MPa.
(Baking process) The sample after shaping | molding was put into the rhodium / platinum crucible, and it baked at 1650 degreeC in air | atmosphere for 50 hours.
(Crushing treatment) After firing, the sample powder was obtained by grinding in a zirconia mortar for 1 hour.
『結晶構造の確認』
得られたこのSrTiO3の結晶構造の確認は、MACサイエンス社のX線回折装置(グラファイトKβ線フィルターカバーを用いたCuKα線を使用)を用いて行った。
"Confirmation of crystal structure"
Confirmation of the crystal structure of the obtained SrTiO 3 was carried out using an X-ray diffractometer (using CuKα ray using a graphite Kβ ray filter cover) manufactured by MAC Science.
すなわち、SrTiO3のX線回折測定結果に係るグラフ図を図2(A)に示す。 That is, FIG. 2A shows a graph relating to the X-ray diffraction measurement result of SrTiO 3 .
[アナターゼ型酸化チタン]
アナターゼ型酸化チタンは市販されているTiO2(石原産業社製、ST−01、純度99.99%、ig.-loss15.1%)を使用した。
[Anatase type titanium oxide]
Commercially available TiO 2 (manufactured by Ishihara Sangyo Co., Ltd., ST-01, purity 99.99%, ig.-loss 15.1%) was used as the anatase type titanium oxide.
尚、このTiO2の結晶構造の確認も、MACサイエンス社のX線回折装置(グラファイトKβ線フィルターカバーを用いたCuKα線を使用)を用いて行った。 The crystal structure of TiO 2 was also confirmed using an X-ray diffractometer (using a CuKα ray using a graphite Kβ ray filter cover) manufactured by MAC Science.
すなわち、TiO2のX線回折測定結果に係るグラフ図を図4(A)に示す。 That is, FIG. 4A shows a graph relating to the X-ray diffraction measurement result of TiO 2 .
[酸化物複合体の製造]
(混合処理) 上記アナターゼ型酸化チタン(酸化物半導体II)とSrTiO3(酸化物半導体I)を以下の重量比で採取し、ジルコニア乳鉢を用いて乾式で30分間混合した後、試料粉末を得た。
[Production of oxide composite]
(Mixing treatment) The anatase-type titanium oxide (oxide semiconductor II) and SrTiO 3 (oxide semiconductor I) were collected at the following weight ratios, mixed in a dry manner using a zirconia mortar for 30 minutes, and then a sample powder was obtained. It was.
酸化チタン:0.4743g、SrTiO3:0.0527g (重量比90:10)
(焼成処理) 混合後の試料をそれぞれロジウム/白金製のるつぼに入れ、大気中、600℃の条件で1時間焼成した。
(粉砕処理) 得られた焼成物をジルコニア乳鉢を用いて乾式で30分間粉砕して試料粉末を得た。
Titanium oxide: 0.4743 g, SrTiO 3 : 0.0527 g (weight ratio 90:10)
(Baking process) Each sample after mixing was put into a crucible made of rhodium / platinum and baked in the atmosphere at 600 ° C. for 1 hour.
(Crushing treatment) The obtained fired product was pulverized in a dry manner for 30 minutes using a zirconia mortar to obtain a sample powder.
得られたTiO2−SrTiO3のX線回折測定結果に係るグラフ図を図4(B)に示す。 FIG. 4B shows a graph relating to the X-ray diffraction measurement result of the obtained TiO 2 —SrTiO 3 .
試料調製
[BaTiO3の調製]
(原料) BaCO3粉末(高純度化学研究所株式会社製、純度99.99%、ig.−loss0.04%):7.1011g、
TiO2粉末(レアメタリック社製アナターゼ型 純度:99.9% ig‐loss:0.84%):2.8989g
(混合処理)1:秤量後の各粉末試料をジルコニア製乳鉢を用い、エタノールを加え1.5時間混合した。
Sample preparation [Preparation of BaTiO 3 ]
(Raw material) BaCO 3 powder (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%, ig.-loss 0.04%): 7.1101 g,
TiO 2 powder (rare metallic company anatase type purity: 99.9% ig-loss: 0.84%): 2.889 g
(Mixing process) 1: Each powder sample after weighing was added with ethanol using a zirconia mortar and mixed for 1.5 hours.
2:混合後の試料を乾燥後、ジルコニア製ポットに入れ、遊星回転ボールミルを用いて40分間粉砕した。
(乾燥処理) 粉砕後の試料を恒温槽で120℃、30分以上乾燥させた。
(仮焼処理) 乾燥後の試料を、ロジウム/白金製るつぼに入れ、大気中、1350℃で10時間仮焼した。
(再粉砕・混合・乾燥処理) 仮焼後、乳鉢で再粉砕し、遊星回転ミルで混合した。その後、先の乾燥と同条件で乾燥した。
(成形処理) 265MPaの圧力で17mmφの円盤状に成形した。
(焼成処理) 成形後の試料をロジウム/白金製るつぼに入れ、大気中、1650℃で50時間焼成した。
(粉砕処理) 焼成後、ジルコニア乳鉢で1時間粉砕して試料粉末を得た。焼成物の組成は、BaTiO3であった。
2: The sample after mixing was dried, placed in a zirconia pot, and ground for 40 minutes using a planetary rotating ball mill.
(Drying process) The sample after grinding | pulverization was dried at 120 degreeC for 30 minutes or more with the thermostat.
(Calcination process) The dried sample was put in a rhodium / platinum crucible and calcined at 1350 ° C for 10 hours in the air.
(Re-grinding / mixing / drying treatment) After calcination, the powder was re-ground in a mortar and mixed in a planetary rotating mill. Then, it dried on the same conditions as previous drying.
(Molding process) It shape | molded in the disk shape of 17 mmphi with the pressure of 265 MPa.
(Baking process) The sample after shaping | molding was put into the rhodium / platinum crucible, and it baked at 1650 degreeC in air | atmosphere for 50 hours.
(Crushing treatment) After firing, the sample powder was obtained by grinding in a zirconia mortar for 1 hour. The composition of the fired product was BaTiO 3 .
尚、このBaTiO3の結晶構造の確認も、MACサイエンス社のX線回折装置(グラファイトKβ線フィルターカバーを用いたCuKα線を使用)を用いて行った。 The crystal structure of BaTiO 3 was also confirmed using an X-ray diffractometer (using CuKα ray using a graphite Kβ ray filter cover) manufactured by MAC Science.
すなわち、BaTiO3のX線回折測定結果に係るグラフ図を図2(B)に示す。 That is, a graph relating to the X-ray diffraction measurement result of BaTiO 3 is shown in FIG.
[酸化物複合体の製造]
実施例1と同様にアナターゼ型のTiO2(石原産業社製、ST−01、純度99.99%、ig.-loss15.1%)(酸化物半導体 II)と、BaTiO3(酸化物半導体 I )を以下の重量比で採取し、ジルコニア乳鉢を用いて乾式で30分間混合した後、以下、実施例1と同様にして試料粉末を得た。
[Production of oxide composite]
Similar to Example 1, anatase-type TiO 2 (manufactured by Ishihara Sangyo Co., Ltd., ST-01, purity 99.99%, ig.-loss 15.1%) (oxide semiconductor II) and BaTiO 3 (oxide semiconductor I ) Was collected at the following weight ratio and mixed in a dry manner using a zirconia mortar for 30 minutes, and then a sample powder was obtained in the same manner as in Example 1.
酸化チタン:0.7103g、BaTiO3:0.3825g (重量比65:35)
酸化チタン:0.6888g、BaTiO3:0.1722g (重量比80:20)
酸化チタン:0.6300g、BaTiO3:0.0701g (重量比90:10)
Titanium oxide: 0.7103 g, BaTiO 3 : 0.3825 g (weight ratio 65:35)
Titanium oxide: 0.6888 g, BaTiO 3 : 0.1722 g (weight ratio 80:20)
Titanium oxide: 0.6300 g, BaTiO 3 : 0.0701 g (weight ratio 90:10)
試料調製
[CaTiO3の調製]
(原料) CaCO3粉末(高純度化学研究所株式会社製、純度99.99%、ig.-loss0.04%):5.5409g、
TiO2粉末(レアメタリック社製アナターゼ型 純度:99.9% ig‐loss:0.84%):4.4591g
とした以外は実施例2と同様にしてCaTiO3を調製した。
Sample Preparation [Preparation of CaTiO 3 ]
(Raw material) CaCO 3 powder (manufactured by High Purity Chemical Laboratory Co., Ltd., purity 99.99%, ig.-loss 0.04%): 5.5409 g,
TiO 2 powder (Rare Metallic Anatase type purity: 99.9% ig-loss: 0.84%): 4.4591 g
CaTiO 3 was prepared in the same manner as in Example 2 except that.
得られたCaTiO3の結晶構造の確認も、MACサイエンス社のX線回折装置(グラファイトKβ線フィルターカバーを用いたCuKα線を使用)を用いて行った。 Confirmation of the crystal structure of the obtained CaTiO 3 was also performed using an X-ray diffraction apparatus (using CuKα rays using a graphite Kβ ray filter cover) manufactured by MAC Science.
すなわち、CaTiO3のX線回折測定結果に係るグラフ図を図2(C)に示す。 That is, a graph relating to the X-ray diffraction measurement result of CaTiO 3 is shown in FIG.
[酸化物複合体の製造]
実施例1と同様にアナターゼ型のTiO2(石原産業社製、ST−01、純度99.99%、ig.-loss15.1%)(酸化物半導体 II)と、CaTiO3(酸化物半導体 I )を以下の重量比で採取し、ジルコニア乳鉢を用いて乾式で30分間混合した後、以下、実施例1と同様にして試料粉末を得た。
[Production of oxide composite]
Similar to Example 1, anatase-type TiO 2 (manufactured by Ishihara Sangyo Co., Ltd., ST-01, purity 99.99%, ig.-loss 15.1%) (oxide semiconductor II) and CaTiO 3 (oxide semiconductor I ) Was collected at the following weight ratio and mixed in a dry manner using a zirconia mortar for 30 minutes, and then a sample powder was obtained in the same manner as in Example 1.
酸化チタン:0.4743g、CaTiO3:0.0527g (重量比90:10) Titanium oxide: 0.4743 g, CaTiO 3 : 0.0527 g (weight ratio 90:10)
試料調製
[Sr(Ti0.9Ga0.1)O3の調製]
(原料) SrCO3粉末(高純度化学研究所株式会社製、純度99.99%、ig.-loss0.04%):6.4020g、
TiO2粉末(レアメタリック社製アナターゼ型 純度:99.9% ig‐loss:0.84%):3.1432g
GaO2粉末(高純度化学研究所株式会社製 ig-loss:0.2%):0.4546g
とし、かつ、仮焼処理と焼成処理を以下の条件にした以外は実施例2と同様にしてSr(Ti0.9Ga0.1)O3を調製した。
(仮焼処理) 乾燥後の試料を、ロジウム/白金製るつぼに入れ、大気中、1400℃で10時間仮焼した。
(焼成処理) 成形後の試料をロジウム/白金製るつぼに入れ、大気中、1500℃で50時間焼成した。
Sample Preparation [Preparation of Sr (Ti 0.9 Ga 0.1 ) O 3 ]
(Raw material) SrCO 3 powder (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%, ig.-loss 0.04%): 6.4020 g,
TiO 2 powder (Rare Metallic Anatase type Purity: 99.9% ig-loss: 0.84%): 3.1432 g
GaO 2 powder (ig-loss: 0.2%, manufactured by High Purity Chemical Laboratory Co., Ltd.): 0.4546g
In addition, Sr (Ti 0.9 Ga 0.1 ) O 3 was prepared in the same manner as in Example 2 except that the calcination treatment and the firing treatment were performed under the following conditions.
(Calcination treatment) The dried sample was put in a rhodium / platinum crucible and calcined at 1400 ° C. for 10 hours in the air.
(Baking process) The sample after shaping | molding was put into the rhodium / platinum crucible and baked at 1500 degreeC in air | atmosphere for 50 hours.
得られたSr(Ti0.9Ga0.1)O3の結晶構造の確認も、MACサイエンス社のX線回折装置(グラファイトKβ線フィルターカバーを用いたCuKα線を使用)を用いて行った。すなわち、Sr(Ti0.9Ga0.1)O3のX線回折測定結果に係るグラフ図を図3(A)に示す。 Confirmation of the crystal structure of the obtained Sr (Ti 0.9 Ga 0.1 ) O 3 was also performed using an X-ray diffractometer (using a CuKα ray using a graphite Kβ ray filter cover) manufactured by MAC Science. That is, FIG. 3A shows a graph relating to the X-ray diffraction measurement result of Sr (Ti 0.9 Ga 0.1 ) O 3 .
[酸化物複合体の製造]
実施例1と同様にアナターゼ型のTiO2(石原産業社製、ST−01、純度99.99%、ig.-loss15.1%)(酸化物半導体 II)とSr(Ti0.9Ga0.1)O3(酸化物半導体 I )を以下の重量比で採取し、ジルコニア乳鉢を用いて乾式で30分間混合した後、以下、実施例1と同様にして試料粉末を得た。
[Production of oxide composite]
Similar to Example 1, anatase-type TiO 2 (manufactured by Ishihara Sangyo Co., Ltd., ST-01, purity 99.99%, ig.-loss 15.1%) (oxide semiconductor II) and Sr (Ti 0.9 Ga 0.1 ) O 3 (Oxide semiconductor I) was collected at the following weight ratio, mixed in a dry manner using a zirconia mortar for 30 minutes, and then sample powder was obtained in the same manner as in Example 1.
酸化チタン:0.6634g、Sr(Ti0.9Ga0.1)O3:0.0737g
(重量比90:10)
Titanium oxide: 0.6634 g, Sr (Ti 0.9 Ga 0.1 ) O 3 : 0.0737 g
(Weight ratio 90:10)
試料調製
[Sr(Ti0.9Y0.1)O3の調製]
(原料) SrCO3粉末(高純度化学研究所株式会社製、純度99.9%、ig.-loss0.08%):6.3705g、
TiO2粉末(レアメタリック社製アナターゼ型、純度99.99%、ig.-loss0.84%):3.1279g
Y2O3粉末(高純度化学研究所株式会社製、ig-loss:2.9%):0.5016g
(混合処理)1:秤量後の各粉末試料をジルコニア製乳鉢を用い、エタノールを加え1.5時間混合した。
Sample Preparation [Preparation of Sr (Ti 0.9 Y 0.1 ) O 3 ]
(Raw material) SrCO 3 powder (manufactured by High Purity Chemical Laboratory, purity 99.9%, ig.-loss 0.08%): 6.3705 g,
TiO 2 powder (Rare Metallic Anatase type, purity 99.99%, ig.-loss 0.84%): 3.1279 g
Y 2 O 3 powder (manufactured by High Purity Chemical Laboratory, ig-loss: 2.9%): 0.5016 g
(Mixing process) 1: Each powder sample after weighing was added with ethanol using a zirconia mortar and mixed for 1.5 hours.
2:混合後の試料を乾燥後、ジルコニア製ポットに入れ、遊星回転ボールミルを用いて40分間粉砕した。
(乾燥処理) 粉砕後の試料を恒温槽で120℃、30分以上乾燥させた。
(仮焼処理) 乾燥後の試料を、ロジウム/白金製るつぼに入れ、大気中、1350℃で10時間仮焼した。
(再粉砕・混合・乾燥処理) 仮焼後、乳鉢で再粉砕し、遊星回転ミルで混合した。その後、先の乾燥と同条件で乾燥した。
(成形処理) 265MPaの圧力で17mmφの円盤状に成形した。
(焼成処理) 成形後の試料をロジウム/白金製るつぼに入れ、大気中、1650℃で50時間焼成した。
(粉砕処理) 焼成後、ジルコニア乳鉢で1時間粉砕して試料粉末を得た。
2: The sample after mixing was dried, placed in a zirconia pot, and ground for 40 minutes using a planetary rotating ball mill.
(Drying process) The sample after grinding | pulverization was dried at 120 degreeC for 30 minutes or more with the thermostat.
(Preliminary calcination treatment) The dried sample was put in a rhodium / platinum crucible and calcined at 1350 ° C for 10 hours in the air.
(Re-grinding / mixing / drying treatment) After calcination, the powder was re-ground in a mortar and mixed in a planetary rotating mill. Then, it dried on the same conditions as previous drying.
(Molding process) It shape | molded in the disk shape of 17 mmphi with the pressure of 265 MPa.
(Baking process) The sample after shaping | molding was put into the rhodium / platinum crucible, and it baked at 1650 degreeC in air | atmosphere for 50 hours.
(Crushing treatment) After firing, the sample powder was obtained by grinding in a zirconia mortar for 1 hour.
得られたSr(Ti0.9Y0.1)O3の結晶構造の確認も、MACサイエンス社のX線回折装置(グラファイトKβ線フィルターカバーを用いたCuKα線を使用)を用いて行った。 Confirmation of the crystal structure of the obtained Sr (Ti 0.9 Y 0.1 ) O 3 was also performed using an X-ray diffractometer (using a CuKα ray using a graphite Kβ ray filter cover) manufactured by MAC Science.
すなわち、Sr(Ti0.9Y0.1)O3のX線回折測定結果に係るグラフ図を図3(B)に示す。 That is, FIG. 3B shows a graph relating to the X-ray diffraction measurement result of Sr (Ti 0.9 Y 0.1 ) O 3 .
[酸化物複合体の製造]
(混合処理) アナターゼ型のTiO2(酸化物半導体 II )と、Sr(Ti0.9Y0.1)O3(酸化物半導体 I )を以下の重量比で採取し、ジルコニア乳鉢を用いて乾式で30分間混合した。
[Production of oxide composite]
(Mixing treatment) Anatase-type TiO 2 (oxide semiconductor II) and Sr (Ti 0.9 Y 0.1 ) O 3 (oxide semiconductor I) were collected at the following weight ratios, and dried for 30 minutes using a zirconia mortar. Mixed.
酸化チタン:1.1380g、Sr(Ti0.9Y0.1)O3:0.1074g
(重量比90:10)
(焼成処理) 混合後の試料をそれぞれロジウム/白金製のるつぼに入れ、大気中、700℃の条件で1時間焼成した。
(粉砕処理) 得られた焼成物をジルコニア乳鉢を用いて乾式で5分間粉砕して試料粉末を得た。
[比較例]
アナターゼ型のTiO2(石原産業社製ST−01、純度99.99%、ig.-loss15.1%)(酸化物半導体 II )を用いた。
Titanium oxide: 1.1380 g, Sr (Ti 0.9 Y 0.1 ) O 3 : 0.1074 g
(Weight ratio 90:10)
(Baking process) Each sample after mixing was put into a crucible made of rhodium / platinum, and was fired in the atmosphere at 700 ° C for 1 hour.
(Crushing treatment) The obtained fired product was pulverized in a dry manner for 5 minutes using a zirconia mortar to obtain a sample powder.
[Comparative example]
Anatase type TiO 2 (ST-01 manufactured by Ishihara Sangyo Co., Ltd., purity 99.99%, ig.-loss 15.1%) (oxide semiconductor II) was used.
[光触媒作用の評価]
実施例1〜5と比較例に係る光触媒の触媒活性評価は、メチレンブルー(MB)水溶液の光ブリーチング法を用いて行った。
[Evaluation of photocatalysis]
The catalytic activity evaluation of the photocatalysts according to Examples 1 to 5 and the comparative example was performed using a photobleaching method of a methylene blue (MB) aqueous solution.
これは、メチレンブルー水溶液と測定試料(実施例1〜5と比較例に係る光触媒)を同一容器に入れ、光を照射し、光触媒効果によるメチレンブルーの分解の程度を分光光度計で調べる方法である。 This is a method in which a methylene blue aqueous solution and a measurement sample (photocatalysts according to Examples 1 to 5 and Comparative Examples) are placed in the same container, irradiated with light, and the degree of decomposition of methylene blue due to the photocatalytic effect is examined with a spectrophotometer.
(メチレンブルー水溶液の調製)
メチレンブルー(関東化学株式会社製、試薬特級)
超純水(比抵抗18.2MΩcm以上)
上記メチレンブルー7.48mgを精秤し、全量をメスフラスコを用いて1リットルの超純水に溶解し、2.0×10-5mol/リットル(mol・dm-3)の水溶液を調製した。
(Preparation of methylene blue aqueous solution)
Methylene blue (Kanto Chemical Co., Ltd., reagent grade)
Ultra pure water (specific resistance 18.2 MΩcm or more)
7.48 mg of the above methylene blue was precisely weighed and the entire amount was dissolved in 1 liter of ultrapure water using a measuring flask to prepare a 2.0 × 10 −5 mol / liter (mol · dm −3 ) aqueous solution.
(光照射)
A 実験装置 装置概略は図1に示す。
(Light irradiation)
A Experimental apparatus The outline of the apparatus is shown in FIG.
光源:下方照射型500WのXeランプ
分光光度計:日立製作所製、U4000分光光度計
B 試料溶液
実施例1〜5と比較例に係る光触媒(試料)0.20gを、メチレンブルー水溶液100cm3中にマグネチックスターラーを用いてそれぞれ分散させた。
Light source: Bottom irradiation type 500 W Xe lamp Spectrophotometer: U4000, U4000 spectrophotometer B Sample solution 0.20 g of photocatalyst (sample) according to Examples 1 to 5 and Comparative Example was added to 100 cm 3 of methylene blue aqueous solution. Each was dispersed using a tic stirrer.
各試料をそれぞれ分散させたメチレンブルー水溶液を石英セルに各々採取し、透過スペクトルを分光光度計を用いそれぞれ測定した。 A methylene blue aqueous solution in which each sample was dispersed was collected in a quartz cell, and a transmission spectrum was measured using a spectrophotometer.
測定した試料を元に戻し、撹拌と光照射を繰り返し、時間経過毎に、透過スペクトルを測定し、吸光度を求めた。 The measured sample was returned to its original position, stirring and light irradiation were repeated, and the transmission spectrum was measured and the absorbance was determined every time.
そして、実施例1〜3に係る光触媒ついて、その吸光度スペクトルの経時変化を図5〜図7にそれぞれ示す。 And the time-dependent change of the absorbance spectrum about the photocatalyst which concerns on Examples 1-3 is shown in FIGS. 5-7, respectively.
また、実施例1〜5に係る光触媒と比較例に係る光触媒(アナターゼ型のTiO2)について、経過時間(照射時間)に対する波長600nm〜664nm間の吸光度における最大値の吸光度変化をそれぞれ図8と図9に示す。 Further, the photocatalyst of Comparative Example a photocatalyst according to Example 1 to 5 (TiO 2 anatase), respectively Figure 8 the change of absorbance maximum in the absorbance between the wavelengths 600nm~664nm respect to the elapsed time (irradiation time) As shown in FIG.
尚、図8と図9において、比較として、光触媒を添加しないものを「◇印」、SrTiO3の吸光度変化を「○印」で示している。 In FIG. 8 and FIG. 9, for comparison, the case where no photocatalyst is added is indicated by “◇”, and the change in absorbance of SrTiO 3 is indicated by “◯”.
また、図8と図9において、実線で示された箇所はフィルターを使用せず可視光と紫外光が含まれている光照射の時間帯、一点鎖線で示した箇所はUVカットフィルター(λ>420nm透過)を使用し可視光を照射した時間帯、破線で示した箇所は光照射を行っていない時間帯をそれぞれ示している。 8 and 9, the portion indicated by a solid line does not use a filter, and the light irradiation time zone in which visible light and ultraviolet light are included, and the portion indicated by an alternate long and short dash line is a UV cut filter (λ>). 420 nm transmission) is used for the time zone in which the visible light is irradiated, and the portion indicated by the broken line indicates the time zone in which the light irradiation is not performed.
[確 認]
(1) 図5〜図7に示されたグラフ図から理解されるように、実施例1〜3に係る光触媒を添加したことによりメチレンブルーの吸光度スペクトル強度が時間と共に減少していることが確認される。すなわち、実施例1〜3に係る光触媒が良好な光触媒活性を具備していることが確認される。
(2) また、図8と図9に示されたグラフ図から確認されるように、比較例に係る光触媒(アナターゼ型TiO2)および「○印」で示したSrTiO3と比較し、実施例1〜5に係る光触媒においては吸光度が1.0付近から急激に低下し、ブリーチングするのに要した時間が極めて短いことが分かる。このことから、アナターゼ型TiO2およびSrTiO3と比較して実施例1〜5に係る光触媒の触媒活性が優れていることも確認される。
[Confirmation]
(1) As can be understood from the graphs shown in FIGS. 5 to 7, it was confirmed that the absorbance spectrum intensity of methylene blue decreased with time by adding the photocatalyst according to Examples 1 to 3. The That is, it is confirmed that the photocatalysts according to Examples 1 to 3 have good photocatalytic activity.
(2) Further, as confirmed from the graphs shown in FIG. 8 and FIG. 9, in comparison with the photocatalyst (anatase type TiO 2 ) according to the comparative example and SrTiO 3 indicated by “◯”, In the photocatalysts according to 1 to 5, the absorbance rapidly decreases from around 1.0, and it can be seen that the time required for bleaching is extremely short. From this, it is also confirmed that the catalytic activity of the photocatalyst according to Examples 1 to 5 is superior to that of anatase TiO 2 and SrTiO 3 .
Claims (2)
上記酸化物半導体(I)が、組成式(VI)A2+B4+ 1-XC3+ XO3-δ(但し、0≦X≦0.5、−0.1<δ<0.1、AイオンはSr、Ba,Caから選択された1種以上の元素、BイオンはTi,Zrから選択された1種以上の元素、CはY、Ga、Inから選択された1種以上の元素)で表されるペロブスカイト型酸化物で構成され、かつ、上記酸化物半導体(II)が、ルチル型若しくはアナターゼ型またはこれ等2つの型が混在した酸化チタンで構成されていることを特徴とする光触媒。 Oxide semiconductors (I) and (II) that have photocatalytic properties and have different energy levels at the bottom of the conduction band and at the top of the valence band in the energy band structure based on the vacuum level. In the photocatalyst constituted by the oxide composite having the joint part by
The oxide semiconductor (I) has the composition formula (VI) A 2+ B 4 + 1 -X C 3+ X O 3 -δ (where 0 ≦ X ≦ 0.5, −0.1 <δ <0 .1, A ion is one or more elements selected from Sr, Ba, and Ca, B ion is one or more elements selected from Ti and Zr, and C is one selected from Y, Ga, and In And the oxide semiconductor (II) is composed of a rutile type, an anatase type, or a titanium oxide in which these two types are mixed. Characteristic photocatalyst.
とを特徴とする請求項1記載の光触媒。 2. The photocatalyst according to claim 1, wherein the perovskite oxide of the oxide semiconductor (I) is contained in an amount of 5 to 50% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003343465A JP4311150B2 (en) | 2003-10-01 | 2003-10-01 | photocatalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003343465A JP4311150B2 (en) | 2003-10-01 | 2003-10-01 | photocatalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005103496A true JP2005103496A (en) | 2005-04-21 |
JP4311150B2 JP4311150B2 (en) | 2009-08-12 |
Family
ID=34537426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003343465A Expired - Fee Related JP4311150B2 (en) | 2003-10-01 | 2003-10-01 | photocatalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4311150B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009113963A1 (en) * | 2008-03-14 | 2009-09-17 | Nanyang Technological University | Method and use of providing photocatalytic activity |
GB2469877A (en) * | 2009-05-01 | 2010-11-03 | Nat Petrochemical Company | Method for preparing ceramic catalysts |
WO2010125787A1 (en) | 2009-04-28 | 2010-11-04 | パナソニック株式会社 | Optically pumped semiconductor and device using same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10305230A (en) * | 1997-03-07 | 1998-11-17 | Sumitomo Metal Ind Ltd | Photocatalyst, its production and decomposing and removing method of harmful substance |
JP2001000869A (en) * | 1995-09-14 | 2001-01-09 | Agency Of Ind Science & Technol | Catalyst for photoreaction |
JP2003117407A (en) * | 2001-08-08 | 2003-04-22 | Sumitomo Metal Mining Co Ltd | Photocatalyst having catalytic activity even in visible light region |
JP2003171604A (en) * | 2001-12-03 | 2003-06-20 | Sumitomo Metal Mining Co Ltd | Antibacterial photocatalytic coating material and antibacterial photocatalytic member |
-
2003
- 2003-10-01 JP JP2003343465A patent/JP4311150B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001000869A (en) * | 1995-09-14 | 2001-01-09 | Agency Of Ind Science & Technol | Catalyst for photoreaction |
JPH10305230A (en) * | 1997-03-07 | 1998-11-17 | Sumitomo Metal Ind Ltd | Photocatalyst, its production and decomposing and removing method of harmful substance |
JP2003117407A (en) * | 2001-08-08 | 2003-04-22 | Sumitomo Metal Mining Co Ltd | Photocatalyst having catalytic activity even in visible light region |
JP2003171604A (en) * | 2001-12-03 | 2003-06-20 | Sumitomo Metal Mining Co Ltd | Antibacterial photocatalytic coating material and antibacterial photocatalytic member |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009113963A1 (en) * | 2008-03-14 | 2009-09-17 | Nanyang Technological University | Method and use of providing photocatalytic activity |
US8679403B2 (en) | 2008-03-14 | 2014-03-25 | Nanyang Technological University | Method and use of providing photocatalytic activity |
WO2010125787A1 (en) | 2009-04-28 | 2010-11-04 | パナソニック株式会社 | Optically pumped semiconductor and device using same |
US8951447B2 (en) | 2009-04-28 | 2015-02-10 | Panasonic Intellectual Property Management Co., Ltd. | Optically pumped semiconductor and device using the same |
GB2469877A (en) * | 2009-05-01 | 2010-11-03 | Nat Petrochemical Company | Method for preparing ceramic catalysts |
GB2469877B (en) * | 2009-05-01 | 2013-06-19 | Nat Petrochemical Company Petrochemical Res And Technology Company | Method for preparing ceramic catalysts |
Also Published As
Publication number | Publication date |
---|---|
JP4311150B2 (en) | 2009-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4736267B2 (en) | Photocatalyst having catalytic activity even in the visible light region | |
Zaleska | Doped-TiO2: a review | |
JP4075482B2 (en) | Photocatalyst having catalytic activity even in the visible light region | |
Konta et al. | Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates | |
Clark et al. | Visible light photo-oxidation of model pollutants using CaCu3Ti4O12: an experimental and theoretical study of optical properties, electronic structure, and selectivity | |
Anandan et al. | Ce-doped ZnO (Ce x Zn 1− x O) becomes an efficient visible-light-sensitive photocatalyst by co-catalyst (Cu 2+) grafting | |
Xie et al. | Enhanced photocatalytic degradation of RhB driven by visible light-induced MMCT of Ti (IV)− O− Fe (II) formed in Fe-doped SrTiO3 | |
Hosogi et al. | Visible light response of AgLi 1/3 M 2/3 O 2 (M= Ti and Sn) synthesized from layered Li 2 MO 3 using molten AgNO 3 | |
Oropeza et al. | Electronic basis of visible region activity in high area Sn-doped rutile TiO 2 photocatalysts | |
Bloh et al. | Ruthenium-modified zinc oxide, a highly active vis-photocatalyst: the nature and reactivity of photoactive centres | |
EP1857179A1 (en) | Visible light-responsive photocatalyst composition and process for producing the same | |
JP4883912B2 (en) | Visible light responsive photocatalyst and method for producing the same | |
WO2006064799A1 (en) | Composite metal oxide photocatalyst exhibiting responsibility to visible light | |
Verduzco et al. | Enhanced photocatalytic activity of layered perovskite oxides Sr2. 7-xCaxLn0. 3Fe2O7-δ for MB degradation | |
KR101548296B1 (en) | Manufacturing method of bimetallic transition metal doped titanium dioxide | |
Ye et al. | Visible light sensitive photocatalysts In1− xMxTaO4 (M= 3d transition-metal) and their activity controlling factors | |
Yamazaki et al. | Factors affecting photocatalytic activity of TiO2 | |
Li et al. | 2-Propanol photodegradation over lead niobates under visible light irradiation | |
Zhang et al. | Electronic structure and water splitting under visible light irradiation of BiTa1− xCuxO4 (x= 0.00–0.04) photocatalysts | |
Shi et al. | High photocatalytic activity of oxychloride CaBiO 2 Cl under visible light irradiation | |
JP4311150B2 (en) | photocatalyst | |
Omata et al. | Photocatalytic behavior of titanium oxide-perovskite type Sr (Zr1− xYx) O3− δ composite particles | |
JP2003190816A (en) | Photocatalyst having catalytic activity even in visible light region | |
JP4696414B2 (en) | Photocatalyst having catalytic activity in the visible light region | |
Kako et al. | Photocatalytic decomposition of acetaldehyde over rubidium bismuth niobates under visible light irradiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080919 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080924 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090421 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090504 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120522 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130522 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |