JP2003171604A - Antibacterial photocatalytic coating material and antibacterial photocatalytic member - Google Patents

Antibacterial photocatalytic coating material and antibacterial photocatalytic member

Info

Publication number
JP2003171604A
JP2003171604A JP2001369131A JP2001369131A JP2003171604A JP 2003171604 A JP2003171604 A JP 2003171604A JP 2001369131 A JP2001369131 A JP 2001369131A JP 2001369131 A JP2001369131 A JP 2001369131A JP 2003171604 A JP2003171604 A JP 2003171604A
Authority
JP
Japan
Prior art keywords
oxide
antibacterial
photocatalyst
photocatalytic
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001369131A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shimatani
博之 島谷
Joji Nishimoto
丈治 西本
Shinya Matsuo
伸也 松尾
Takahisa Komata
孝久 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001369131A priority Critical patent/JP2003171604A/en
Publication of JP2003171604A publication Critical patent/JP2003171604A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antibacterial photocatalytic coating material which is made by using a photocatalyst comprising a low-cost oxide capable of exhibiting a photocatalytic activity in a visible light region based on a simple new mechanism, and using an aqueous solvent, and which has antibacterial, mildewproofing and alga-preventive effects as well as hot-water resistance and alkali resistance, and to provide an antibacterial photocatalytic member. <P>SOLUTION: The antibacterial photocatalytic coating material contains a silicone acrylic emulsion coating, an aqueous solvent and a photocatalyst, wherein the photocatalyst comprises an oxide composite having a joint by oxide semiconductors (I) and (II) having characteristics photocatalytic for each other, and different in both the energy level of electrons on the bottom of the conduction band and the energy level of electrons at the top of the valence band in an energy band structure on the basis of a vacuum level, and at least the oxide semiconductor (I) has photocatalytic characteristics even in a visible light region. The antibacterial photocatalytic member is obtained by using the coating material. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は抗菌、防かび、防藻
作用を有する抗菌性光触媒塗料および抗菌性光触媒性部
材に関する。
TECHNICAL FIELD The present invention relates to an antibacterial photocatalyst paint and an antibacterial photocatalytic member having antibacterial, antifungal, and antialgal action.

【0002】[0002]

【従来の技術】抗菌性光触媒塗料には有機塗料と無機塗
料がある。有機樹脂に抗菌剤を含有した抗菌性有機塗料
では、長時間使用すると樹脂が劣化し、特に、屋外で使
用した場合には、表面に汚れが付着したり、紫外線によ
る劣化から、塗膜の抗菌性能が低下しやすい欠点があ
る。一方、ケイ酸塩系、リン酸塩系、ジルコニウム系の
無機組成物に抗菌剤を含有した無機塗料では、上記有機
塗料より耐久性は良好となるが、いずれも200℃以上
の高温で焼き付ける必要があるため建材やプラスチック
に直接塗膜することは難しく使用できる範囲が限られて
いた。特許第2776259号には、ケイ素化合物、お
よび/またはコロイド状シリカの組成からなる無機塗
料、並びに抗菌剤を含有する抗菌性光触媒無機塗料で、
200℃以下で焼き付けができ、柔軟性を有する、長期
間抗菌性能を持続できる無機塗料が開示されている。し
かし、ケイ素化合物をバインダーとして用いるため耐温
水性、耐アルカリ性に劣る欠点があり、また、この無機
塗料では、アルコール等の非水系の有機溶媒に分散して
いるが、最近は環境問題から溶剤を使わない抗菌性光触
媒塗料が求められるようになっていきている。
2. Description of the Related Art Antibacterial photocatalytic paints include organic paints and inorganic paints. Antibacterial organic coatings containing an antibacterial agent in an organic resin deteriorate the resin when used for a long time, and especially when used outdoors, stains adhere to the surface and deterioration due to ultraviolet rays causes There is a drawback that performance tends to decrease. On the other hand, inorganic coatings containing an antibacterial agent in a silicate-based, phosphate-based, or zirconium-based inorganic composition have better durability than the above-mentioned organic coatings, but all require baking at a high temperature of 200 ° C or higher. Therefore, it is difficult to apply a coating directly to building materials and plastics, and the usable range is limited. Japanese Patent No. 2776259 discloses an inorganic coating composed of a silicon compound and / or colloidal silica, and an antibacterial photocatalytic inorganic coating containing an antibacterial agent.
There is disclosed an inorganic coating which can be baked at 200 ° C. or lower, has flexibility, and can maintain antibacterial performance for a long period of time. However, since a silicon compound is used as a binder, it has a drawback of being inferior in hot water resistance and alkali resistance.Also, in this inorganic paint, it is dispersed in a non-aqueous organic solvent such as alcohol, but recently, due to environmental problems, a solvent is used. There is an increasing demand for antibacterial photocatalyst paints that are not used.

【0003】抗菌性を示す材料として、最近、塗膜中に
酸化チタンを含有する、セルフクリーニング機能を有す
る塗料が注目されている。この塗料を使用して塗膜を形
成すると、塗膜中のアナターゼ型酸化チタンが太陽光線
に含まれる紫外線を吸収し、電子と正孔とが生成する。
生成した正孔は、強い酸化力を有するため、塗膜表面に
付着した有機物等を分解し、これにより塗膜表面の有機
物による汚染を防止することができる。
As a material exhibiting antibacterial properties, a coating material containing titanium oxide in the coating film and having a self-cleaning function has recently been attracting attention. When a coating film is formed using this paint, the anatase-type titanium oxide in the coating film absorbs the ultraviolet rays contained in the sun rays to generate electrons and holes.
Since the generated holes have strong oxidizing power, they decompose organic substances and the like adhering to the surface of the coating film, thereby preventing contamination of the coating film surface with organic substances.

【0004】しかしながら、酸化チタンが光触媒として
の性能を発揮するのは紫外線に対してのみである。屋外
では、紫外線は太陽光線のうち4%程度に過ぎないた
め、酸化チタンの高機能化・可視光領域での応答性を目
指して、酸化チタン上に色素を吸着させ可視光を吸収し
て生じた吸着色素の励起状態から酸化チタンへ電子を注
入する方法、Cr,V,Mn,Fe,Niなどの金属イ
オンを化学的に注入する方法、プラズマ照射によって酸
素欠陥を導入する方法、異種イオンを導入する方法など
さまざまな試みが国内外で行われてきている。しかしな
がら、いずれの方法も均一分散が難しい、電子と正孔の
再結合により光触媒活性が低下する、調整コストが高い
などの問題があるため工業化には至っていない。
However, titanium oxide exhibits its performance as a photocatalyst only for ultraviolet rays. Since ultraviolet rays make up only about 4% of the sun's rays outdoors, it is generated by absorbing a visible light by adsorbing a pigment on titanium oxide with the aim of making titanium oxide highly functional and responsive in the visible light range. The method of injecting electrons into the titanium oxide from the excited state of the adsorbed dye, the method of chemically injecting metal ions such as Cr, V, Mn, Fe, and Ni, the method of introducing oxygen defects by plasma irradiation, and the different ions Various attempts have been made domestically and internationally, such as the method of introduction. However, none of these methods has been industrialized because of problems such as difficulty in uniform dispersion, reduction of photocatalytic activity due to recombination of electrons and holes, and high adjustment cost.

【0005】その他、最近、ペロブスカイトタイプ酸化
物が触媒活性を有するとして注目されている。例えば、
特開平7−24329号公報においては、一般式A3+
3+3であるLaFeO3および一般式A2+3+Oxであ
るSrMnOxなどが提案されているが、高い触媒活性
は得られていない。また、層状ペロブスカイトタイプの
酸化物の研究も盛んに行われている。例えば、特開平1
0−244164号公報には層状ペロブスカイト型のA
BCO4が記載されており、特開平8ー196912号
公報には、KLaCa2Nb310系複合酸化物が記載さ
れており、特開平11−139826号公報には、KC
2Nb310が提案されている。これらの原理および製
法は複雑であり、また得られた酸化物の化学的安定性に
も問題があるため工業化には至っていない。
In addition, perovskite type oxides have recently attracted attention as having catalytic activity. For example,
In Japanese Patent Application Laid-Open No. 7-24329, the general formula A 3+ B
3+ etc. O 3 at a LaFeO 3 and in formula A 2+ B 3+ Ox SrMnOx have been proposed, but not the high catalytic activity is obtained. Further, researches on layered perovskite type oxides have been actively conducted. For example, JP-A-1
0-244164 discloses a layered perovskite type A
BCO 4 is described, Japanese Patent Application Laid-Open No. 8-196912 describes KLaCa 2 Nb 3 O 10 type composite oxide, and Japanese Patent Application Laid-Open No. 11-139826 describes KC.
a 2 Nb 3 O 10 has been proposed. These principles and manufacturing methods are complicated, and the chemical stability of the obtained oxide is also problematic, so that they have not been industrialized.

【0006】[0006]

【発明の解決しようとする課題】本発明は、可視光領域
で、シンプルな新しい機構に基づいて光触媒活性を発揮
する安価な複合酸化物光触媒を用い、水性溶剤を用いた
耐温水性、耐アルカリ性も有する抗菌、防かび、防藻作
用を有する抗菌性光触媒塗料および抗菌性光触媒性部材
を提供することにある。
SUMMARY OF THE INVENTION The present invention uses an inexpensive composite oxide photocatalyst that exhibits photocatalytic activity based on a simple new mechanism in the visible light region, and uses a water-based solvent to provide warm water resistance and alkali resistance. Another object of the present invention is to provide an antibacterial photocatalytic coating and an antibacterial photocatalytic member having antibacterial, antifungal and algae-proofing properties.

【0007】[0007]

【課題を解決するための手段】本発明の第1の発明は、
シリコンアクリルエマルジョン塗料と水性溶媒と光触媒
を含有する抗菌性光触媒塗料であり、光触媒が、互いに
光触媒特性を持ち、かつ、真空準位を基準としたエネル
ギーバンド構造における伝導帯底部の電子のエネルギー
レベルと価電子帯頂上の電子のエネルギーレベルがそれ
ぞれ異なる酸化物半導体(I)と(II)による接合部を
有する酸化物複合体により構成されると共に、少なくと
も酸化物半導体(I)が可視光域でも光触媒特性を持つ
ことを特徴とする抗菌性光触媒塗料を提供する。
The first invention of the present invention is as follows:
An antibacterial photocatalyst paint containing a silicone acrylic emulsion paint, an aqueous solvent and a photocatalyst, wherein the photocatalysts have photocatalytic properties with each other, and the energy level of electrons at the bottom of the conduction band in the energy band structure based on the vacuum level The photocatalyst is composed of an oxide composite having a junction of oxide semiconductors (I) and (II) in which the energy levels of electrons at the top of the valence band are different, and at least the oxide semiconductor (I) is in the visible light range. Provided is an antibacterial photocatalyst coating having characteristics.

【0008】第2の発明は、前記光触媒を含有するシリ
コンアクリルエマルジョン塗料がポリオルガノシロキサ
ンとアクリルポリマーの複合化されたものであることを
特徴とする第1の発明に記載の抗菌性光触媒塗料を提供
する。
A second invention is the antibacterial photocatalyst paint according to the first invention, wherein the silicone acrylic emulsion paint containing the photocatalyst is a composite of polyorganosiloxane and acrylic polymer. provide.

【0009】第3の発明は、前記光触媒を含有する塗料
が常温架橋型であることを特徴とする第1の発明又は第
2の発明に記載の抗菌性光触媒塗料を提供する。
A third invention provides the antibacterial photocatalyst paint according to the first or second invention, wherein the paint containing the photocatalyst is a room temperature crosslinking type.

【0010】第4の発明は、前記光触媒が、酸化物半導
体(I)が、組成式(III)A2-X2 +X8-2δ(但し、
−0.4<X<+0.6、かつ、−0.5<2δ<+
0.5)で表され、かつ複数の価数を取り得るAイオン
とBイオンがそれぞれ規則配列をした組成式(IV)A
2-X 3+2+X 4+7+(X/2)+Y(但し、−0.4<X<+
0.6、かつ、−0.2<Y<+0.2)のパイロクロ
ア型酸化物の蛍石型構造から見た酸素欠損位置または侵
入型位置の少なくとも一方に酸素イオンが挿入されたパ
イロクロア関連構造酸化物で構成され、上記酸化物半導
体(II)が、ルチル型若しくはアナターゼ型またはこれ
等2つの型が混ざった酸化チタン、酸化亜鉛、酸化錫、
酸化ジルコニウム、チタン酸ストロンチウムのいずれか
であることを特徴とする第1の発明に記載の抗菌性光触
媒塗料を提供する。
A fourth invention is that the photocatalyst is an oxide semiconductor.
The body (I) has the composition formula (III) A2-XB2 + XO8-2δ (however,
-0.4 <X <+0.6 and -0.5 <2δ <+
A) ion represented by 0.5) and having multiple valences
And composition formula (IV) A in which B ions are regularly arranged
2-X 3+B2 + X 4+O7+ (X / 2) + Y(However, -0.4 <X <+
Pyrochrome with 0.6 and -0.2 <Y <+0.2)
Oxygen deficiency position or penetration from the fluorite structure of a-type oxide
At least one of the mold insertion positions has oxygen ions inserted.
It is composed of oxide related structure
Body (II) is rutile type or anatase type or this
Titanium oxide, zinc oxide, tin oxide, which is a mixture of two types such as
Either zirconium oxide or strontium titanate
The antibacterial optical touch according to the first invention, characterized in that
Providing medium paint.

【0011】第5の発明は、前記光触媒に抗菌金属が担
持されていることを特徴とする第1〜4の発明記載の抗
菌性光触媒塗料を提供する。
A fifth aspect of the present invention provides the antibacterial photocatalyst coating material according to any one of the first to fourth aspects, wherein the photocatalyst carries an antibacterial metal.

【0012】第6の発明は、第1〜5の発明に記載の抗
菌性光触媒塗料を基材に塗布し、硬化させ抗菌性光触媒
皮膜を形成したことを特徴とする抗菌性光触媒性部材で
ある。
A sixth invention is an antibacterial photocatalytic member characterized in that the antibacterial photocatalyst coating composition according to the first to fifth inventions is applied to a substrate and cured to form an antibacterial photocatalytic film. .

【0013】[0013]

【発明の実施の形態】以下に本発明を詳述する。まず、
本発明に係る光触媒は、互いに光触媒特性を持ち、か
つ、真空準位を基準としたエネルギーバンド構造におけ
る伝導帯底部の電子のエネルギーレベルと価電子帯頂上
の電子のエネルギーレベルがそれぞれ異なる酸化物半導
体(I)と(II)による接合部を有する酸化物複合体に
より構成されると共に、少なくとも酸化物半導体(I)
が可視光域でも光触媒特性を持つことを特徴としてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below. First,
The photocatalyst according to the present invention is an oxide semiconductor having photocatalytic properties and having different energy levels of electrons at the bottom of the conduction band and electrons at the top of the valence band in the energy band structure based on the vacuum level. At least an oxide semiconductor (I), which is composed of an oxide composite having a junction formed by (I) and (II)
Is characterized by having photocatalytic properties even in the visible light range.

【0014】そして、酸化物複合体の一方を構成する可
視光域でも光触媒特性を持つ上記酸化物半導体(I)と
しては、例えば、組成式(III)A2-X2+X8-2δ(但
し、−0.4<X<+0.6、かつ、−0.5<2δ<
+0.5)で表され、かつ、複数の価数を取り得る上記
AイオンとBイオンがそれぞれ規則配列をした組成式
(IV)A2-X 3+2+X 4+7+(X/2)+Y(但し、−0.4<
X<+0.6、かつ、−0.2<Y<+0.2)のパイ
ロクロア型酸化物の蛍石型構造から見た酸素欠損位置ま
たは侵入型位置の少なくとも一方に酸素イオンが挿入さ
れたパイロクロア関連構造酸化物や、組成式(VI)A2+
4+3-δ(−0.1<δ<0.1)で表されると共
に、Aイオンはアルカリ土類金属元素から選択された1
種以上の元素、Bイオンはランタノイド、IVa族元素、
IVb族元素から選択された1種以上の元素であるペロブ
スカイト型酸化物等が挙げられる。尚、このペロブスカ
イト型酸化物において上記δ値が−0.1<δ<0.1
である理由は、製造上の条件から上記数値範囲外のもの
が得られないからである。
As the above oxide semiconductor (I) having photocatalytic properties even in the visible light region, which constitutes one of the oxide composites, for example, the composition formula (III) A 2-X B 2 + X O 8- 2 δ (However, -0.4 <X <+0.6, and -0.5 <2δ <
+0.5), and the composition formula (IV) A 2-X 3+ B 2 + X 4+ O 7+ X / 2) + Y (However, -0.4 <
X <+0.6 and -0.2 <Y <+0.2) Pyrochlore in which oxygen ions are inserted at at least one of the oxygen deficiency position and the interstitial position as seen from the fluorite structure of the pyrochlore type oxide. Related structure oxides and composition formula (VI) A 2+
It is represented by B 4+ O 3 − δ (−0.1 <δ <0.1) and the A ion is 1 selected from alkaline earth metal elements.
More than one element, B ion is lanthanoid, IVa group element,
Examples thereof include perovskite-type oxides, which are one or more elements selected from Group IVb elements. In this perovskite type oxide, the δ value was −0.1 <δ <0.1.
The reason for this is that it is not possible to obtain one outside the above numerical range due to manufacturing conditions.

【0015】上記パイロクロア関連構造酸化物において
は、挿入された酸素イオンは動きやすく活性であり、蛍
石型構造から見た酸素欠損位置または侵入型位置にも酸
素を挿入できるため、酸素イオンの溶解サイトが無数に
あり、その触媒活性が非常に高いという特徴を有してお
り、かつ、可視光に対しても有効に光触媒作用を持つ材
料であることを本発明者らは既に見出している。更に、
Aイオンをより低価数あるいは高価数の陽イオンで置換
したり、上記Bイオンを低価数あるいは高価数の陽イオ
ンで置換して挿入酸素イオン量を変化させることによ
り、エネルギーバンドギャップと欠陥準位を変化させて
光吸収特性を制御することも可能である。
In the above-mentioned pyrochlore-related structure oxide, the inserted oxygen ion is easy to move and is active, and oxygen can be inserted also in the oxygen deficient position or intrusive position as seen from the fluorite structure, so that the oxygen ion is dissolved. The present inventors have already found that it is a material that has a large number of sites and has a very high catalytic activity, and that it also has a photocatalytic effect effectively against visible light. Furthermore,
By substituting the A ion with a cation having a lower valence or an expensive number, or by substituting the B ion with a cation having a lower valence or an expensive number to change the amount of inserted oxygen ions, the energy band gap and defects can be improved. It is also possible to control the light absorption characteristics by changing the level.

【0016】また、酸化物複合体のもう一方を構成する
上記酸化物半導体(II)としては、例えば、ルチル型若
しくはアナターゼ型またはこれ等2つの型が混ざった酸
化チタン、酸化亜鉛、酸化錫、酸化ジルコニウム、ある
いはチタン酸ストロンチウム等が挙げられる。
Examples of the oxide semiconductor (II) constituting the other of the oxide composites include rutile type or anatase type or titanium oxide, zinc oxide, tin oxide in which these two types are mixed, Examples thereof include zirconium oxide and strontium titanate.

【0017】そして、上記酸化物半導体(I)として組
成式(III)A2-X2+X8-2δ(但し、−0.4<X<
+0.6、かつ、−0.5<2δ<+0.5)で表され
るパイロクロア関連構造酸化物(Ce2Zr28)粉末
を用い、かつ、上記酸化物半導体(II)としてアナター
ゼ型酸化チタン粉末を用いた以下に述べる実施例1等か
ら次のことが確認されている。
As the oxide semiconductor (I), the composition formula (III) A 2-X B 2 + X O 8-2 δ (where -0.4 <X <
+0.6 and -0.5 <2δ <+0.5) using a pyrochlore related structure oxide (Ce 2 Zr 2 O 8 ) powder, and anatase type as the oxide semiconductor (II) The following has been confirmed from Example 1 and the like described below using titanium oxide powder.

【0018】すなわち、上記Ce2Zr28粉末とアナ
ターゼ型酸化チタン粉末を重量比でZ:(1−Z)[但
し、0<Z<1]となるように混合し、かつ、700℃
で1時間焼成処理した後、乳鉢で粉砕して実施例1に係
る粉末(光触媒)を先ず調製した。
That is, the Ce 2 Zr 2 O 8 powder and the anatase-type titanium oxide powder were mixed in a weight ratio of Z: (1-Z) [where 0 <Z <1] and 700 ° C.
After baking for 1 hour, the powder (photocatalyst) according to Example 1 was prepared by crushing in a mortar.

【0019】ここで、真空準位を基準としたエネルギー
バンド構造における伝導帯底部の電子のエネルギーレベ
ルと価電子帯頂上の電子のエネルギーレベルがそれぞれ
異なる酸化物半導体(I)と(II)を接合させると、一
般に、接合部付近では電子と正孔がそれぞれ一方向に流
れることが知られている。このとき、光照射により促進
された上記吸着現象のために接合部を流れる電子と正孔
は分離される傾向を強める。パイロクロア関連構造酸化
物と酸化チタンとで構成される上記酸化物複合体の場合
には、正孔は接合部の表面(外界と接する側)を、ま
た、電子は接合部の中心を流れることになり、接合部に
おける電子と正孔の流れを分離することは酸化物複合体
全体での電子と正孔の空間的な分離につながり、光によ
り励起された電子と正孔の再結合は抑制される。この結
果、電子と正孔の関与する光触媒反応の反応位置が空間
的に分離されることから、上記接合により触媒活性が大
幅に高められた光触媒になるものと推定される。
Here, the oxide semiconductors (I) and (II) having different energy levels at the bottom of the conduction band and at the top of the valence band in the energy band structure based on the vacuum level are bonded to each other. Then, it is generally known that electrons and holes respectively flow in one direction near the junction. At this time, due to the adsorption phenomenon promoted by the light irradiation, electrons and holes flowing in the junction portion tend to be separated from each other. In the case of the above oxide composite composed of a pyrochlore-related structure oxide and titanium oxide, holes flow on the surface of the junction (on the side in contact with the outside), and electrons flow on the center of the junction. Separating the flow of electrons and holes at the junction leads to spatial separation of electrons and holes in the entire oxide complex, and recombination of electrons and holes excited by light is suppressed. It As a result, the reaction positions of the photocatalytic reaction involving the electrons and holes are spatially separated, so that it is presumed that the photocatalyst will have a significantly increased catalytic activity due to the above-mentioned joining.

【0020】更に、上記酸化物半導体(I)と(II)の
組み合わせを種々に変えることで、ヘテロ接合若しくは
ホモ接合部付近で起きる光触媒反応に関与する電子のエ
ネルギーおよび正孔のエネルギーを制御できることな
ど、異種若しくは同種酸化物半導体による接合を有する
酸化物複合体とすることで種々の利点が生じる。
Furthermore, by varying the combination of the above oxide semiconductors (I) and (II), it is possible to control the electron energy and hole energy involved in the photocatalytic reaction occurring near the heterojunction or homojunction. As described above, various advantages can be obtained by using an oxide composite having a junction of different or the same kind of oxide semiconductor.

【0021】尚、上記パイロクロア関連構造酸化物と酸
化チタンとで構成される酸化物複合体の接合は異種酸化
物半導体間の接合であるためヘテロ接合となる。また、
ヘテロ接合を持つ他の酸化物複合体の例としては、Bイ
オンよりも低価数の陽イオンCが最大50モル%の範囲
でドープされた組成式A2+4+ 1-x3+ x3-δ(但し、
0<X≦0.5、かつ、0<δ<0.5)で表されると
共に、Aイオンはアルカリ土類金属元素から選択された
1種以上の元素、Bイオンはランタノイド、IVa族元
素、IVb族元素から選択された1種以上の元素、Cイオ
ンはランタノイド、IIIa族元素、IIIb族元素から選択
された1種以上の元素で構成された可視光域でも光触媒
特性を持つアクセプターがドープされたp型酸化物半導
体のペロブスカイト型酸化物と、窒素がドープされたp
型酸化物半導体の酸化チタンとで構成される酸化物複合
体、あるいは、上述した組成式(VI)A2+4+3-δ
(−0.1<δ<0.1)で表されると共に、Aイオン
はアルカリ土類金属元素から選択された1種以上の元
素、Bイオンはランタノイド、IVa族元素、IVb族元素
から選択された1種以上の元素で構成された可視光域で
も光触媒特性を持つアクセプターがドープされないペロ
ブスカイト型酸化物と酸化チタン若しくは窒素がドープ
された酸化チタンとで構成される酸化物複合体等が挙げ
られる。
The junction of the oxide complex composed of the pyrochlore-related structure oxide and titanium oxide is a heterojunction because it is a junction between different oxide semiconductors. Also,
Another example of the oxide complex having a heterojunction is a composition formula A 2+ B 4 + 1-x C 3 in which a cation C having a lower valence than B ions is doped in a range of up to 50 mol%. + x O 3- δ (however,
0 <X ≦ 0.5 and 0 <δ <0.5), A ions are one or more elements selected from alkaline earth metal elements, B ions are lanthanoids, and IVa group elements , One or more elements selected from IVb group elements, C ions are doped with an acceptor having a photocatalytic property in the visible light region, which is composed of one or more elements selected from lanthanoids, IIIa group elements, and IIIb group elements P-type oxide semiconductor perovskite-type oxide and nitrogen-doped p-type oxide semiconductor
Type oxide semiconductor composed of titanium oxide and an oxide composite, or the above composition formula (VI) A 2+ B 4+ O 3 − δ
It is represented by (-0.1 <δ <0.1), the A ion is one or more elements selected from alkaline earth metal elements, and the B ion is selected from lanthanoids, IVa group elements, and IVb group elements. And an oxide complex composed of a perovskite type oxide which is not doped with an acceptor and which has photocatalytic properties even in the visible light range and which is composed of one or more of the above-mentioned elements, and titanium oxide or titanium oxide doped with nitrogen. To be

【0022】また、同種酸化物半導体間の接合であるホ
モ接合としては、例えば、窒化チタン(TiN)と酸化
チタン(TiO2)を混合粉砕し、焼成処理後、再度粉
砕して得られる酸化物複合体が挙げられる。調製時の反
応により窒化チタンが酸化して酸化チタンに窒素がドー
プした形になっていると推察されることから、この酸化
物複合体は窒素がドープされた酸化チタンと窒素がドー
プされていない酸化チタン(すなわち同種半導体)とで
構成されている。
Further, as a homojunction which is a junction between similar oxide semiconductors, for example, an oxide obtained by mixing and pulverizing titanium nitride (TiN) and titanium oxide (TiO 2 ), firing treatment, and then pulverizing again. A complex is mentioned. It is presumed that titanium nitride was oxidized by the reaction during the preparation to form titanium oxide doped with nitrogen, so this oxide composite is not doped with nitrogen and titanium oxide doped with nitrogen. It is composed of titanium oxide (that is, the same kind of semiconductor).

【0023】ここで、可視光域でも光触媒特性を持つ上
記酸化物半導体(I)として例示された組成式(III)A
2-X2+X8-2δで表されるパイロクロア関連構造酸化
物の前駆体となる組成式(IV)A2-X 3+2+X 4+
7+(X/2)+Yのパイロクロア型酸化物や、上記組成式A2+
4+ 1-x3+ x3-δ(但し、0<X≦0.5、かつ、0
<δ<0.5)で表されるアクセプターがドープされた
ペロブスカイト型酸化物あるいは組成式(VI)A2+4+
3-δ(−0.1<δ<0.1)で表されるアクセプタ
ーがドープされないペロブスカイト型酸化物等は、通常
の固相法、すなわち原料となる各金属成分の酸化物また
は炭酸塩や硝酸塩等の塩類を目的組成比で混合し焼成す
ることで合成されるが、これ以外の湿式法あるいは気相
法で合成してもよい。
Here, the composition formula (III) A exemplified as the oxide semiconductor (I) having photocatalytic properties even in the visible light region
Composition formula (IV) A 2-X 3+ B 2 + X 4+ O, which is a precursor of a pyrochlore-related structural oxide represented by 2-X B 2 + X O 8-2 δ
Pyrochlore type oxide of 7+ (X / 2) + Y and the above composition formula A 2+
B 4 + 1-x C 3+ x O 3 − δ (where 0 <X ≦ 0.5 and 0
<Δ <0.5) acceptor-doped perovskite-type oxide or composition formula (VI) A 2+ B 4+
The perovskite type oxide represented by O 3 − δ (−0.1 <δ <0.1) in which the acceptor is not doped is a conventional solid phase method, that is, an oxide or carbonate of each metal component as a raw material. Although it is synthesized by mixing a salt such as or a nitrate at a target composition ratio and firing, it may be synthesized by a wet method or a vapor phase method other than this.

【0024】なお、現状、入手可能な例えばZrO2
は不可避的に0.9〜2.0モル%程度のHfO2が含
まれておりHfO2を含んだ状態でZrO2の秤量が行わ
れているが、最終的に調製された光触媒においても特性
を悪化させてはいない。
At present, for example, available ZrO 2 unavoidably contains about 0.9 to 2.0 mol% of HfO 2 , and ZrO 2 is weighed in the state of containing HfO 2. However, the properties of the finally prepared photocatalyst are not deteriorated.

【0025】ところで、上記組成式(III)A2-X2+X
8-2δで表されるパイロクロア関連構造酸化物を得る
場合、実際には、中間酸化物として歪んだ蛍石型構造酸
化物である組成式(V)t’−A0.5-(X/4)0.5+(X/4)
2相を一旦製造し、この組成式(V)t’−A
0.5-(X/4)0.5+(X/4)2相を還元して組成式(IV)A
2-X 3+2+X 4+7+(X/2)+Yのパイロクロア型酸化物を製
造し、次いで、パイロクロア型酸化物を酸化して酸素を
挿入することにより、組成式(III)A2-X2+X8-2δ
(但し、−0.4<X<+0.6、かつ、−0.5<2
δ<+0.5)で表されるパイロクロア関連構造酸化物
が得られる。尚、中間酸化物である上記組成式(V)で
示されるt’相に異相が混じっていても、その後の還元
で得られるパイロクロア型酸化物A2-X 3+2+X 4+
7+(X/2)+Y中の異相が少なければ問題はない。また、組
成式(V)t’−A0.5-(X/4)0.5+(X/4)2の中間酸化
物を作る過程を省略し、出発原料粉末を混合して、還元
雰囲気で反応させることにより、直接、組成式(IV)A
2-X 3+2+X 4+7+(X/2)+Yのパイロクロア型酸化物を製
造し、その後の酸化処理により、同様の組成式(III)
2-X2+X8-2δ(但し、−0.4<X<+0.6、
かつ、−0.5<2δ<+0.5)で表されるパイロク
ロア関連構造酸化物を得ることができる。
By the way, the above composition formula (III) A2-XB2 + X
O8-2Obtain pyrochlore related structure oxide represented by δ
If, in fact, distorted fluorite structure acid as an intermediate oxide
Composition formula (V) t'-A0.5- (X / 4)B0.5+ (X / 4)
O2Once the phase is produced, the composition formula (V) t'-A
0.5- (X / 4)B0.5+ (X / 4)O2Composition formula (IV) A by reducing the phase
2-X 3+B2 + X 4+O7+ (X / 2) + YMade of Pyrochlore type oxide
And then oxidize the pyrochlore oxide to produce oxygen.
By inserting, composition formula (III) A2-XB2 + XO8-2δ
(However, -0.4 <X <+0.6 and -0.5 <2
Pyrochlore related structure oxide represented by δ <+0.5)
Is obtained. In the above composition formula (V), which is an intermediate oxide,
Even if a heterogeneous phase is mixed in the indicated t'phase, subsequent reduction
Pyrochlore type oxide A obtained in2-X 3+B2 + X 4+O
7+ (X / 2) + YThere is no problem if there are few out-of-orders. Also, the group
Formula (V) t'-A0.5- (X / 4)B0.5+ (X / 4)O2Intermediate oxidation of
Omit the process of making things, mix the starting raw material powder, and reduce
By reacting in an atmosphere, composition formula (IV) A
2-X 3+B2 + X 4+O7+ (X / 2) + YMade of Pyrochlore type oxide
The same composition formula (III)
A2-XB2 + XO8-2δ (however, -0.4 <X <+0.6,
And -0.5 <2δ <+0.5)
A lower related structure oxide can be obtained.

【0026】まず、中間酸化物としての上記組成式
(V)t’−A0.5-(X/4)0.5+(X/4)2で表される酸化
物を得るには、出発原料を秤量し、上記ボールミル等で
混合し、15〜20mmφ程度の円盤状に圧粉成形し、
空気などの酸素含有ガス中、1500〜1750℃で3
0〜70時間焼成することにより得る。次に、製造され
た組成式(V)t’−A0.5-(X/4)0.5+(X/4)2で表さ
れる酸化物を平均粒径1〜2mmに粉砕する。これをロ
ジウム/白金箔上に乗せ酸素気流中500〜700℃で
5時間程度熱処理し酸素量を調整する。
Firstly, in order to obtain the above composition formula as intermediate oxide (V) t'-A 0.5- ( X / 4) B 0.5+ (X / 4) oxide represented by O 2, the starting material Are weighed, mixed by the ball mill or the like, and pressed into a disk shape of about 15 to 20 mmφ,
3 at 1500-1750 ° C in oxygen-containing gas such as air
Obtained by firing for 0 to 70 hours. Then, grinding the oxide represented by manufactured formula (V) t'-A 0.5- ( X / 4) B 0.5+ (X / 4) O 2 to an average particle size 1 to 2 mm. This is placed on a rhodium / platinum foil and heat-treated in an oxygen stream at 500 to 700 ° C. for about 5 hours to adjust the amount of oxygen.

【0027】次に、このt’相を、1%H2/Arまた
は5%H2/Ar気流中で700〜1350℃で10〜
20時間還元する。還元処理後取り出した試料の質量を
精秤し、還元処理前の組成式(V)t’−A0.5-(X/4)
0.5+(X/4)2相からの質量変化から、得られた組成式
(IV)A2-X 3+2+X 4+7+(X/2)+Yのパイロクロア型酸
化物の酸素量を決定する。尚、組成式(IV)A2-X 3+
2+X 4+7+(X/2)+Yの中のYは、パイロクロア型酸化物に
おけるAイオン、Bイオンの価数とそのイオンの量によ
って変化する部分を示す量である。Aイオンが3価より
も小さく、Bイオンが4価よりも小さい価数をとれば、
Yは負数となる。また、製造条件によっては、Aイオン
の一部がBイオン位置に回り込んだり、Bイオンの一部
がAイオンの位置に回り込むことが起こるが、これによ
ってもYの値は変化する。このとき、Yの値が−0.2
より小さい場合、+0.2より大きい場合には、パイロ
クロア型構造を保てなくなってしまう。従って、上記組
成式(IV)中、−0.2<Y<+0.2であることを要
する。
Next, this t'phase is mixed with a 10% H 2 / Ar or 5% H 2 / Ar gas stream at 700 to 1350 ° C. for 10 to 10 hours.
Reduce for 20 hours. The mass of the sample taken out after the reduction treatment was precisely weighed, and the composition formula (V) t'-A 0.5- (X / 4) B before the reduction treatment was measured.
0.5+ (X / 4) from the mass change from O 2 phase, resulting formula (IV) A 2-X 3+ B 2 + X 4+ O 7+ (X / 2) + Y pyrochlore type oxide Determine the oxygen content of a product. The composition formula (IV) A 2-X 3+ B
Y in 2 + X 4+ O 7+ (X / 2) + Y is an amount showing a portion that changes depending on the valences of A ions and B ions and the amount of the ions in the pyrochlore type oxide. If the A ion is smaller than trivalent and the B ion is smaller than tetravalent,
Y is a negative number. Also, depending on the manufacturing conditions, some of the A ions may wrap around to the B ion position, and some of the B ions wrap around to the A ion position, but this also changes the value of Y. At this time, the value of Y is -0.2
If it is smaller than +0.2, the pyrochlore structure cannot be maintained. Therefore, it is necessary that -0.2 <Y <+0.2 in the composition formula (IV).

【0028】この後、上記パイロクロア型酸化物をロジ
ウム/白金箔上に乗せ酸素気流中300〜900℃で5
時間程度熱処理すれば、陽イオンの規則配置を保ったま
ま酸素イオンを挿入することができ、組成式(III)A
2-X2+X8-2δ(但し、−0.4<X<+0.6、か
つ、−0.5<2δ<+0.5)で表されるパイロクロ
ア関連構造酸化物が得られる。尚、上記熱処理が300
℃より低いと酸素が十分に結晶中に挿入されない。ま
た、900℃を越えると陽イオンの規則配置が崩れてラ
ンダム配置となり、−0.4>Xか、+0.6<Xであ
ると異相の析出量が増えるため触媒性能が低下してしま
う。
After that, the above-mentioned pyrochlore type oxide is placed on a rhodium / platinum foil, and it is heated at 300 to 900 ° C. in an oxygen stream for 5 hours.
If heat-treated for about an hour, oxygen ions can be inserted while maintaining the regular arrangement of cations, and the composition formula (III) A
A pyrochlore-related structural oxide represented by 2-X B 2 + X O 8-2 δ (where -0.4 <X <+0.6 and -0.5 <2δ <+0.5) is obtained. To be The heat treatment is 300
If the temperature is lower than ℃, oxygen is not sufficiently inserted into the crystal. Further, when the temperature exceeds 900 ° C., the regular arrangement of the cations collapses to become a random arrangement, and when −0.4> X or +0.6 <X, the amount of precipitation of the different phase increases and the catalytic performance deteriorates.

【0029】得られたパイロクロア関連構造酸化物を乳
鉢などで粉砕して粉状にし、以下の比較例で示す通常の
方法で得られたアナターゼ型酸化チタン粉末と重量比で
Z:(1−Z)[但し、0<Z<1]の割合となるよう
に計り取り、乳鉢あるいはボールミル等を用いて混合す
る。
The obtained pyrochlore-related structural oxide was pulverized in a mortar or the like to form a powder, and the weight ratio to the anatase-type titanium oxide powder obtained by the usual method shown in the following comparative example was Z: (1-Z ) [However, it is measured so that the ratio becomes 0 <Z <1], and mixed using a mortar or a ball mill.

【0030】混合した試料を300〜1200℃で5分
から1時間程度焼成して、異種酸化物半導体の接合を有
する酸化物複合体を調製する。焼成温度が300℃より
低くなると良好な接合が得られない場合があり、また、
1200℃より高くなると異種の反応相が生成すること
から酸化物複合体の光触媒特性が低下してしまう場合が
ある。
The mixed sample is fired at 300 to 1200 ° C. for about 5 minutes to 1 hour to prepare an oxide composite having a junction of different oxide semiconductors. If the firing temperature is lower than 300 ° C, good bonding may not be obtained, and
If the temperature is higher than 1200 ° C., different reaction phases are generated, and the photocatalytic properties of the oxide composite may deteriorate.

【0031】次に、本発明に係る光触媒の形状は、光を
有効に利用するために比表面積の大きい粒子からなるこ
とが望ましく、一般には各粒子の大きさは0.1〜10
μm、より好ましくは0.1〜1μmが適当である。こ
のような粒径からなる酸化物複合体粉末を得る慣用的な
手段としては、乳鉢を用いた手粉砕、あるいはボールミ
ル、遊星回転ボールミルを用いてそれぞれの酸化物半導
体の粉砕を先ず行い、得られた2種類の粉末を秤量、混
合、焼成して上記接合を有する酸化物複合体を得た後、
再度粉砕を行って最終的な試料粉末を得る。
Next, the shape of the photocatalyst according to the present invention is preferably composed of particles having a large specific surface area in order to effectively utilize light, and in general, the size of each particle is 0.1 to 10.
μm, more preferably 0.1 to 1 μm is suitable. As a conventional means for obtaining an oxide composite powder having such a particle size, the pulverization is performed by hand pulverization using a mortar, or by pulverizing each oxide semiconductor using a ball mill or a planetary rotary ball mill. After weighing, mixing and firing the two kinds of powders to obtain an oxide composite having the above-mentioned bonding,
It is pulverized again to obtain a final sample powder.

【0032】得られた可視光領域で触媒活性を有する光
触媒と、ポリオルガノシロキサンとアクリルポリマーと
の複合化により皮膜強度(造膜性)と耐候性、撥水性と
いう両ポリマーの機能を兼ね備えているシリコーンアク
リルエマルジョン塗料を、水性溶媒(好ましくは水を主
成分とする)に分散させて塗料とし、これを塗布して常
温で硬化させれば、密着性が良く、防染、抗菌等に優れ
る抗菌性光触媒塗料及び抗菌性光触媒部材を得ることが
できる。
The obtained photocatalyst having a catalytic activity in the visible light region and the combination of polyorganosiloxane and an acrylic polymer combine the functions of both polymers of film strength (film forming property), weather resistance and water repellency. A silicone acrylic emulsion paint is dispersed in an aqueous solvent (preferably containing water as the main component) to form a paint, and if this is applied and cured at room temperature, the adhesiveness is good and the antibacterial properties are excellent in stain prevention and antibacterial properties. A photocatalytic coating composition and an antibacterial photocatalytic member can be obtained.

【0033】シリコーンアクリルエマルジョン塗料には
粒子径が80〜500nmの乳白色の外観を有する一般
の乳化重合エマルジョンと、粒子径が8〜80nmで外
観が半透明・青白色のコロイダルディスパージョンがあ
る。
Silicone acrylic emulsion paints include general emulsion-polymerized emulsions having a milky white appearance with a particle size of 80 to 500 nm, and colloidal dispersions having a semitransparent blue-white appearance with a particle size of 8 to 80 nm.

【0034】硬化剤を添加する2液型の水系塗料の場合
は硬化剤の添加を使用直前に行うのが好ましい。また該
組成物の硬化温度は0°C〜150°C、好ましくは1
0°C〜80°Cが好ましい。
In the case of a two-component water-based coating composition to which a curing agent is added, it is preferable to add the curing agent immediately before use. The curing temperature of the composition is 0 ° C to 150 ° C, preferably 1 ° C.
0 ° C to 80 ° C is preferable.

【0035】前記光触媒物質に抗菌性金属を添加するこ
とも可能である。ここで、抗菌性金属としては、銅、
銀、鉄、に蹴る、亜鉛、白金、金、パラジウム、カドミ
ウム、コバルト、ロジウム、ルテニウムから選択された
少なくとも1種以上である。光触媒物質に抗菌性金属を
担持することで電荷分離が促進され、光触媒の活性が向
上し抗菌性、抗かび性が向上すると考えられる。
It is also possible to add an antibacterial metal to the photocatalytic substance. Here, as the antibacterial metal, copper,
It is at least one selected from silver, iron, zinc, platinum, gold, palladium, cadmium, cobalt, rhodium, and ruthenium. It is considered that by supporting an antibacterial metal on the photocatalytic substance, charge separation is promoted, the activity of the photocatalyst is improved, and the antibacterial property and antifungal property are improved.

【0036】また、銅担持光触媒ゾルに酢酸銅などを添
加し、必要に応じて紫外線照射を行って光還元メッキを
してもよい。この時、光触媒固形分に対する金属の担持
量が5wt%以上であると光触媒粒子表面が金属で覆わ
れてしまい酸化点が無くなってしまうため光触媒の酸化
還元性能が低下してしまう。よって、光還元メッキによ
り銅を担持させる場合は、金属担持量を光触媒に対して
1wt%から5wt%の範囲とすることが抗菌性、抗か
び性向上に最適である。しかし、銅または酸化銅を混合
して添加する場合は特に制限はない。
Further, copper acetate or the like may be added to the copper-supported photocatalyst sol, and if necessary, ultraviolet irradiation may be performed to perform photoreduction plating. At this time, if the amount of the metal supported on the photocatalyst solid content is 5 wt% or more, the surface of the photocatalyst particles is covered with the metal and the oxidation points are lost, so that the redox performance of the photocatalyst is deteriorated. Therefore, when copper is carried by photoreduction plating, it is optimal to improve the antibacterial property and the antifungal property by setting the amount of the metal carried in the range of 1 wt% to 5 wt% with respect to the photocatalyst. However, there is no particular limitation when copper or copper oxide is mixed and added.

【0037】上記光触媒と前記シリコーンアクリルエマ
ルジョン塗料を、水性溶媒(好ましくは水を主成分とす
る)に分散させて塗料とし、ガラスなどの無機物表面、
ステンレスなどの金属表面、PET、ABS、FRP
(ガラス繊維強化プラスチック)製成形体などの基材表
面に0.1〜200μmの厚さになるように塗布または
噴霧した後、10℃〜80℃で常温硬化させることによ
り耐温水性、耐アルカリ性、密着性、耐候性の良好な抗
菌性、抗かび性を有する光触媒皮膜を形成する。
The photocatalyst and the silicone acrylic emulsion paint are dispersed in an aqueous solvent (preferably containing water as a main component) to prepare a paint, and the surface of an inorganic material such as glass,
Metal surface such as stainless steel, PET, ABS, FRP
(Glass fiber reinforced plastic) Hot water resistance and alkali resistance by applying or spraying to the surface of a base material such as a molded article so as to have a thickness of 0.1 to 200 μm and then curing at room temperature at 10 ° C. to 80 ° C. , A photocatalytic film having good antibacterial and antifungal properties with good adhesion and weather resistance is formed.

【0038】光触媒による十分な抗菌性、抗かび性を発
揮するためには固形分に対して5wt%以上の光触媒添
加量が必要である。光触媒の含有量を固形分に対して8
0wt%以上添加すると、前記水系塗料の割合が少ない
ためコーティングの密着性、耐温水性、耐アルカリ性お
よび耐候性が低下する。よって光触媒のシリコーンアク
リルエマルジョン塗料への添加量は5wt%から80w
t%が望ましい。
In order to exert sufficient antibacterial and antifungal properties by the photocatalyst, it is necessary to add the photocatalyst in an amount of 5 wt% or more based on the solid content. The content of photocatalyst is 8 with respect to the solid content.
When it is added in an amount of 0 wt% or more, the adhesion of the coating, the hot water resistance, the alkali resistance and the weather resistance are lowered because the proportion of the water-based paint is small. Therefore, the amount of photocatalyst added to the silicone acrylic emulsion paint is from 5 wt% to 80 w
t% is desirable.

【0039】抗菌性光触媒塗料の塗装方法は、刷毛塗
り、スプレー、浸漬、フローコート、バーコートなど各
種塗布方法が採用できる。
The antibacterial photocatalyst paint may be applied by various coating methods such as brush coating, spraying, dipping, flow coating and bar coating.

【0040】本発明が適用可能な基材としては、浴槽、
浴室用壁材、浴室用床材、浴室用グレーチング、浴室用
天井、シャワーフック、浴槽ハンドグリップ、浴槽エプ
ロン部、浴槽排水栓、浴室用窓、浴室用窓枠、浴室窓の
床板、浴室照明器具、排水目皿、排水ピット、浴室扉、
浴室扉枠、浴室窓の桟、浴室扉の桟、すのこ、マット、
石鹸置き、手桶、浴室用鏡、風呂椅子、トランスファー
ボード、給湯機、浴室用収納棚、浴室用手すり、風呂
蓋、浴室用タオル掛け、シャワーチェア、洗面器置き台
等の浴室用部材、ごとく、台所用キッチンバック、台所
用床材、シンク、キッチンカウンタ、排水篭、食器乾燥
機、食器洗浄器、コンロ、レンジフード、換気扇、コン
ロ着火部、コンロのつまみ等の台所用部材、小便器、大
便器、便器用トラップ、便器用配管、トイレ用床材、ト
イレ用壁材、トイレ用天井、ボールタップ、止水栓、紙
巻き器、便座、昇降便座、トイレ用扉、トイレブース用
鍵、トイレ用タオル掛け、便蓋、トイレ用手すり、トイ
レ用カウンタ、フラッシュバルブ、タンク、洗浄機能付
き便座の吐水ノズル等のトイレ用部材、洗面ボウル、洗
面トラップ、洗面所用鏡、洗面用収納棚、排水栓、歯ブ
ラシ立て、洗面鏡用照明器具、洗面カウンタ、水石鹸供
給器、洗面器、口腔洗浄器、手指乾燥機、回転タオル等
の洗面用部材、洗濯槽、洗濯機蓋、洗濯機パン、脱水
槽、空調機フィルタ、タッチパネル、水栓金具、人体検
知センサーのカバー、シャワーホース、シャワー吐水
部、シーラント、目地などがある。
The base material to which the present invention is applicable is a bath,
Bathroom wall material, bathroom floor material, bathroom grating, bathroom ceiling, shower hook, bathtub handgrip, bathtub apron, bathtub drain plug, bathroom window, bathroom window frame, bathroom window floorboard, bathroom lighting fixture. , Drain pan, drain pit, bathroom door,
Bathroom door frame, bathroom window bar, bathroom door bar, slats, mats,
Soap holders, tubs, bathroom mirrors, bath chairs, transfer boards, water heaters, bathroom storage shelves, bathroom handrails, bath lids, bathroom towel racks, shower chairs, bathroom parts such as washbasin holders, etc., Kitchen back for kitchen, kitchen flooring, sink, kitchen counter, drain basket, dish dryer, dish washer, stove, range hood, ventilation fan, stove ignition part, kitchen parts such as knob of stove, urinal, large Toilet bowl, toilet trap, toilet pipe, toilet flooring, toilet wall, toilet ceiling, ball tap, water stopcock, paper wrapper, toilet seat, lifting toilet seat, toilet door, toilet booth key, toilet towel Rests, toilet lids, handrails for toilets, counters for toilets, flush valves, tanks, toilet parts such as spouting nozzles for toilet seats with a cleaning function, wash bowls, wash traps, washrooms Mirrors, wash shelves, drain plugs, toothbrush stands, light fixtures for wash mirrors, wash basins, water soap dispensers, wash basins, mouth washer, hand dryers, wash basins such as rotating towels, washing tubs, washing Machine lids, washing machine pans, dehydration tanks, air conditioner filters, touch panels, faucet fittings, human body detection sensor covers, shower hoses, shower spouts, sealants, joints, etc.

【0041】[0041]

【実施例】[実施例1] 試料調製 (t’−A0.5-(X/4)0.5+(X/4)2相の製造) 原料 CeO2粉末(三徳金属工業株式会社製、純度
99.99%、ig.-loss3.75%):1.2353
g、 ZrO2粉末(三徳金属工業株式会社製、ZrO2+Hf
2の純度度99.60%、ig.-loss0.45%):
0.8551g 尚、上記「ig.-loss」は、水分、吸収物等によるロスを
示している。
EXAMPLES Example 1 Sample Preparation (t'-A 0.5- (X / 4) B 0.5+ (X / 4) production of O 2 phase) material CeO 2 powder (Santoku Metal Industry Co., Ltd., purity 99.99%, ig.-loss 3.75%): 1.2353
g, ZrO 2 powder (manufactured by Santoku Metal Industry Co., Ltd., ZrO 2 + Hf
Purity of O 2 99.60%, ig.-loss 0.45%):
0.8551 g Incidentally, the above "ig.-loss" indicates a loss due to water, an absorbent, or the like.

【0042】(混合処理) 1:秤量後の各試料をめの
う製乳鉢を用い、乾式で15分間混合した。
(Mixing treatment) 1: Each sample after weighing was mixed in a dry manner for 15 minutes using an agate mortar.

【0043】2:ジルコニア製ボールと混合後の試料を
ガラス瓶に入れ、ボールミルを用いて20時間粉砕混合
した。
2: The sample mixed with the zirconia balls was placed in a glass bottle and ground and mixed for 20 hours using a ball mill.

【0044】(成形処理) 100MPaの圧力で17
mmφの円盤状に成形した。
(Molding treatment) 17 at a pressure of 100 MPa
It was formed into a disk shape of mmφ.

【0045】(焼結処理) 試料を、ロジウム/白金製
るつぼに入れ、空気中、1650℃で50時間焼成して
t’−Ce0.5Zr0.52相を製造した。
(Sintering Treatment) A sample was placed in a rhodium / platinum crucible and fired in air at 1650 ° C. for 50 hours to produce a t′-Ce 0.5 Zr 0.5 O 2 phase.

【0046】(パイロクロア型A2-X 3+2+X 4+
7+(X/2)+Yの製造) (粉砕処理) 上記t’−Ce0.5Zr0.52相の焼結
体をめのう乳鉢を用いて平均粒径1〜2mmに粉砕し
た。
(Pyrochlore type A 2-X 3+ B 2 + X 4+ O
7+ (X / 2) + production of Y) (pulverized) and the sintered body of the t'-Ce 0.5 Zr 0.5 O 2 phases with an agate mortar and ground to an average particle size of 1 to 2 mm.

【0047】(酸素量調整) これをロジウム/白金箔
上に乗せ、酸素気流中で600℃で5時間熱処理し酸素
量を調整した。尚、t’−Ce0.5Zr0.52相の酸素
量調整処理により、t’−Ce0.5Zr0.52相におい
て一部含まれていた3価のCeのほとんどが4価に調整
される。
(Oxygen content adjustment) This was placed on a rhodium / platinum foil and heat-treated at 600 ° C. for 5 hours in an oxygen stream to adjust the oxygen content. Incidentally, the oxygen-amount adjustment process of t'-Ce 0.5 Zr 0.5 O 2 phases, most of the trivalent Ce which was included in part in the t'-Ce 0.5 Zr 0.5 O 2 phase is adjusted to tetravalent.

【0048】(還元処理) 次に、このt’−Ce0.5
Zr0.52相を、5%H2/Ar気流中で1300℃で
10時間還元処理した。尚、この還元処理により、4価
に調整された上記t’−Ce0.5Zr0.52相における
Ceのほとんどが3価に調整されてパイロクロア相とな
る。
(Reduction treatment) Next, this t'-Ce 0.5
The Zr 0.5 O 2 phase was subjected to reduction treatment in a 5% H 2 / Ar stream at 1300 ° C. for 10 hours. By this reduction treatment, most of Ce in the above t′-Ce 0.5 Zr 0.5 O 2 phase adjusted to be tetravalent is adjusted to be trivalent and becomes a pyrochlore phase.

【0049】(パイロクロア相の酸素量決定) 還元処
理後取り出した試料の質量を精秤し、還元処理前のt’
−Ce0.5Zr0.52からの質量変化からパイロクロア
型酸化物の酸素量を決定したところ、Ce2Zr27.02
となった。
(Determination of Oxygen Content of Pyrochlore Phase) The mass of the sample taken out after the reduction treatment was precisely weighed to obtain t ′ before the reduction treatment.
The amount of oxygen in the pyrochlore type oxide was determined from the mass change from -Ce 0.5 Zr 0.5 O 2 to give Ce 2 Zr 2 O 7.02.
Became.

【0050】(A2-X2+X8-2δ相の製造)(酸化処
理) 還元処理後の上記パイロクロア型相(パイロクロ
ア型酸化物)を、ロジウム/白金箔上に乗せ酸素気流中
で600℃で5時間熱処理して酸素量を調整しCe2
28.0のパイロクロア関連構造酸化物(酸化物半導体
I )が得られた。
(Production of A 2-X B 2 + X O 8-2 δ Phase) (Oxidation Treatment) The above-described pyrochlore type phase (pyrochlore type oxide) after reduction treatment is placed on a rhodium / platinum foil and an oxygen stream is applied. Heat treatment at 600 ℃ for 5 hours to adjust the amount of oxygen to Ce 2 Z
Pyrochlore related oxide of r 2 O 8.0 (oxide semiconductor
I) was obtained.

【0051】(アナターゼ型酸化チタンの製造)硫酸チ
タン溶液を用い、アンモニアをアルカリ処理溶液として
水酸化物の沈殿を生成させ、かつ、この沈殿物を、大気
中、650℃で1時間の条件で焼成処理してアナターゼ
型の酸化チタン(酸化物半導体II )を得た。
(Production of Anatase Titanium Oxide) Using a titanium sulfate solution, ammonia was used as an alkaline treatment solution to form a hydroxide precipitate, and the precipitate was formed in the atmosphere at 650 ° C. for 1 hour. By baking treatment, anatase type titanium oxide (oxide semiconductor II) was obtained.

【0052】(酸化物複合体の製造) (混合処理) 上記方法で調製されたアナターゼ型の酸
化チタン(酸化物半導体 II )とCe2Zr28.0のパ
イロクロア関連構造酸化物(酸化物半導体 I )を次の
重量比で採取し、ジルコニア乳鉢を用いて乾式で30分
間混合した。 酸化チタン:0.4000g、Ce2Zr28.0:0.
1000g(重量比80:20) (焼成処理) 混合後の試料をそれぞれロジウム/白金
製のるつぼに入れ、大気中、700℃の条件で1時間焼
成した。
(Production of Oxide Complex) (Mixing Treatment) Anatase-type titanium oxide (oxide semiconductor II) and a pyrochlore-related structure oxide of Ce 2 Zr 2 O 8.0 (oxide semiconductor I) prepared by the above method. ) Was sampled at the following weight ratio, and was mixed for 30 minutes by a dry method using a zirconia mortar. Titanium oxide: 0.4000g, Ce 2 Zr 2 O 8.0: 0.
1000 g (weight ratio 80:20) (Baking treatment) Each of the mixed samples was placed in a rhodium / platinum crucible and baked in the atmosphere at 700 ° C for 1 hour.

【0053】(粉砕処理) 得られた焼成物をジルコニ
ア乳鉢を用いて乾式で30分間粉砕して試料粉末を得
た。
(Pulverization Treatment) The obtained fired product was pulverized for 30 minutes by a dry method using a zirconia mortar to obtain a sample powder.

【0054】[実施例2] 試料調製 [CaZrO3-δの調製] (原料) CaCO3粉末(高純度科学研究所株式会社
製、純度99.99%、ig.-loss0.04%):4.3
115g、 ZrO2粉末(三徳金属工業株式会社製、ZrO2+Hf
2の純度度99.60%、ig.-loss0.51%):
5.3714g (混合処理)1:秤量後の各粉末試料をジルコニア製乳
鉢を用い、エタノールを加え1.5時間混合した。
[Example 2] Sample preparation [Preparation of CaZrO 3 -δ] (Raw material) CaCO 3 powder (manufactured by Kojundo Scientific Laboratory Co., Ltd., purity 99.99%, ig.-loss 0.04%): 4 .3
115 g, ZrO 2 powder (manufactured by Santoku Metal Industry Co., Ltd., ZrO 2 + Hf
Purity of O 2 99.60%, ig.-loss 0.51%):
5.3714 g (Mixing treatment) 1: Using a zirconia mortar, each powder sample after weighing was added with ethanol and mixed for 1.5 hours.

【0055】2:混合後の試料を乾燥後、ジルコニア製
ポットに入れ、遊星回転ボールミルを用いて40分間粉
砕した。
2: The mixed sample was dried, put in a zirconia pot, and ground for 40 minutes using a planetary rotary ball mill.

【0056】(乾燥処理) 粉砕後の試料を恒温槽で1
20℃で30分以上乾燥させた。
(Drying treatment) The sample after crushing was placed in a constant temperature bath for 1 hour.
It was dried at 20 ° C. for 30 minutes or more.

【0057】(仮焼処理) 乾燥後の試料を、ロジウム
/白金製るつぼに入れ、大気中、1350℃で10時間
仮焼した。
(Calcination Treatment) The dried sample was placed in a rhodium / platinum crucible and calcined at 1350 ° C. for 10 hours in the atmosphere.

【0058】(再粉砕・混合・乾燥処理) 仮焼後、乳
鉢で再粉砕し、遊星回転ミルで混合した。その後、先の
乾燥と同条件で乾燥した。
(Re-grinding / mixing / drying treatment) After calcination, the powder was re-ground in a mortar and mixed in a planetary rotary mill. Then, it dried on the same conditions as the previous drying.

【0059】(成形処理) 265MPaの圧力で17
mmφの円盤状に成形した。
(Molding treatment) 17 at a pressure of 265 MPa
It was formed into a disk shape of mmφ.

【0060】(焼成処理) 成形後の試料をロジウム/
白金製るつぼに入れ、大気中、1650℃で50時間焼
成した。
(Baking treatment) The sample after molding was treated with rhodium /
It was placed in a platinum crucible and baked in the air at 1650 ° C. for 50 hours.

【0061】(粉砕処理) 焼成後、ジルコニア乳鉢で
1時間粉砕して試料粉末を得た。焼成物の組成は、Ca
ZrO3-δ(δの値は、−0.1<δ<0.1内の数値
である。以下、同様)であった。
(Pulverization Treatment) After firing, the powder was pulverized in a zirconia mortar for 1 hour to obtain a sample powder. The composition of the fired product is Ca
It was ZrO 3 − δ (the value of δ is a numerical value within −0.1 <δ <0.1. The same applies hereinafter).

【0062】(酸化物複合体の製造)実施例1と同一の
方法で調製されたアナターゼ型のTiO2(酸化物半導
体 II)とCaZrO3-δ(酸化物半導体 I )を次の重
量比で採取し、ジルコニア乳鉢を用いて乾式で30分間
混合した後、以下、実施例1と同様にして試料粉末を得
た。 酸化チタン:0.6300g、CaZrO3-δ:0.0
701g(重量比90:10) (第二工程)光触媒塗料、光触媒含有塗膜の作製法 常温硬化型の水系シリコーンアクリルエマルジョン塗料
(カネカ製、W#0141、2液型アクリルシリコンエ
マルジョン主剤、固形分濃度50wt%、pH7〜8、
平均粒子径215nm)12gと上記光触媒スラリー
(前記方法にて調製された光触媒([実施例1]TiO
2:Ca(Zr0.950.05)O3-δ(重量比80:2
0)、[実施例2]TiO2:CaZrO3-δ(重量比
90:10)の濃度10wt%)50gを1分間撹拌し
塗料とした。
(Production of Oxide Complex) Anatase-type TiO 2 (oxide semiconductor II) and CaZrO 3- δ (oxide semiconductor I) prepared by the same method as in Example 1 were used in the following weight ratios. After collecting and mixing for 30 minutes by a dry method using a zirconia mortar, a sample powder was obtained in the same manner as in Example 1 below. Titanium oxide: 0.6300 g, CaZrO 3- δ: 0.0
701 g (weight ratio 90:10) (Second step) Method for producing photocatalyst paint and photocatalyst-containing coating film Room temperature curing type water-based silicone acrylic emulsion paint (Kaneka, W # 0141, two-component acrylic silicone emulsion main agent, solid content) 50 wt% concentration, pH 7-8,
12 g of average particle diameter 215 nm and the above photocatalyst slurry (photocatalyst prepared by the above method ([Example 1] TiO 2
2 : Ca (Zr 0.95 Y 0.05 ) O 3- δ (weight ratio 80: 2
0), [Example 2] 50 g of TiO 2 : CaZrO 3 δ (concentration 10 wt% of 90:10 by weight) was stirred for 1 minute to prepare a coating material.

【0063】FRP成形材料であるSMC(Sheet mold
ing compound、不飽和ポリエステル樹脂、充填材、ガラ
ス繊維からなるシート状の成形材料)の床パンサンプル
(20cm角)を水洗、イソプロパノール脱脂後、上記
光触媒塗料を塗布した。塗布後1時間室温乾燥(室温2
8℃)すると常温硬化し、光触媒濃度が固形分に対して
50wt%の抗菌性光触媒塗膜が得られた。
SMC (Sheet mold) which is a FRP molding material
A floor pan sample (20 cm square) made of a ing compound, an unsaturated polyester resin, a filler, and a glass fiber) was washed with water, degreased with isopropanol, and then the photocatalyst paint was applied. 1 hour at room temperature after application (room temperature 2
When cured at 8 ° C., it was cured at room temperature to obtain an antibacterial photocatalytic coating film having a photocatalyst concentration of 50 wt% with respect to the solid content.

【0064】各塗膜に対し碁盤目剥離試験を行ったが1
00/100で全く剥離はなかった。乾燥したキムワイ
プで擦ってもコーティングの剥離は認められなかった。
1%NaOHを滴下24時間放置後も外観変化は認めら
れなかった。60℃温水に24時間浸漬後も外観変化は
認められなかった。
A cross-cut peeling test was conducted on each coating film.
There was no peeling at 00/100. No peeling of the coating was observed when rubbed with a dry Kimwipe.
No change in appearance was observed even after leaving 1% NaOH dropwise for 24 hours. No change in appearance was observed even after immersion in 60 ° C. hot water for 24 hours.

【0065】[0065]

【比較例】酸化チタン光触媒2次加工品(石原産業製光
触媒、ST−K03、無機コーティング剤、固形分濃度
10%(常乾型)、チタニア/シリケート比50/5
0、主用途:抗菌、防汚)をFRP成形材料SMC(Sh
eet molding compound、不飽和ポリエステル樹脂、充填
材、ガラス繊維からなるシート状の成形材料)の床パン
サンプル(20cm角)を水洗、イソプロパノール脱脂
後、上記銅担持光触媒塗料を塗布した。150℃30分
間加熱乾燥後に碁盤目剥離試験を実施すると0/100
で完全に剥離した。また、1%NaOHを滴下1時間放
置後で膜は溶解した。また、60℃温水に24時間浸漬
後に喫水線下の膜は完全に剥離した。
Comparative Example Titanium oxide photocatalyst secondary processed product (photocatalyst manufactured by Ishihara Sangyo, ST-K03, inorganic coating agent, solid content concentration 10% (normal dry type), titania / silicate ratio 50/5
0, main application: antibacterial, antifouling FRP molding material SMC (Sh
A floor pan sample (20 cm square) of an eet molding compound, a sheet-shaped molding material composed of an unsaturated polyester resin, a filler, and a glass fiber was washed with water and degreased with isopropanol, and then the above copper-supported photocatalytic paint was applied. It is 0/100 when cross-cut peeling test is performed after heating and drying at 150 ° C for 30 minutes.
Completely peeled off. Also, the film was dissolved after 1% NaOH was dropped and left for 1 hour. Also, after being immersed in warm water at 60 ° C. for 24 hours, the film below the water line was completely peeled off.

【0066】他に、上記分光光度計(日立製作所製、U
4000分光光度計)を用いて、拡散反射法により各塗
膜の光吸収スペクトルを測定し、試料の可視光領域での
光吸収の状態を調べた。波長λ>420nmの可視光に
対する実施例1、2に係る光触媒の拡散反射率が比較例
に係る光触媒の拡散反射率より低い値を示していること
から、実施例に係る光触媒の可視光域での光吸収は比較
例に係る光触媒より優れていることが確認された。
In addition, the above spectrophotometer (U, manufactured by Hitachi Ltd.)
(4000 spectrophotometer), the light absorption spectrum of each coating film was measured by the diffuse reflection method, and the state of light absorption in the visible light region of the sample was examined. Since the diffuse reflectance of the photocatalysts according to Examples 1 and 2 with respect to the visible light having the wavelength λ> 420 nm is lower than the diffuse reflectance of the photocatalyst according to the comparative example, in the visible light range of the photocatalyst according to the example. It has been confirmed that the light absorption of is superior to that of the photocatalyst according to the comparative example.

【0067】[0067]

【発明の効果】本発明の抗菌性光触媒塗料および塗膜
は、可視光領域で、シンプルな新しい機構に基づいて光
触媒活性を発揮する、安価な複合酸化物の光触媒を用
い、優れた光触媒性能を有し、溶剤を含まないため環境
に優しく、施工の場合にも作業しやすく、ポリオルガノ
シロキサンとアクリルポリマーとが複合化したシリコー
ンアクリルエマルジョン塗料を用いていることで、皮膜
強度(造膜性)と耐候性、撥水性という両ポリマーの機
能を兼ね備えている。したがって、前記抗菌性光触媒塗
料を塗布して形成された塗膜は、耐温水性、耐アルカリ
性に優れている。。
INDUSTRIAL APPLICABILITY The antibacterial photocatalyst paint and coating film of the present invention have excellent photocatalytic performance by using an inexpensive composite oxide photocatalyst that exhibits photocatalytic activity based on a simple new mechanism in the visible light region. Since it has no solvent and is environmentally friendly, it is easy to work even in the case of construction. By using a silicone acrylic emulsion paint that is a composite of polyorganosiloxane and acrylic polymer, film strength (film forming property) It also has the functions of both polymers: weather resistance and water repellency. Therefore, the coating film formed by applying the antibacterial photocatalyst coating is excellent in hot water resistance and alkali resistance. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小俣 孝久 大阪府吹田市山田丘2−1 大阪大学大学 院工学研究科内 Fターム(参考) 4G069 AA03 AA08 BA04B BA22B BA48A BB06A BB06B BC09B BC40B BC51B CA11 EA08 FB23 4J038 CG001 DL031 HA216 KA04 MA08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takahisa Omata             2-1 Yamadaoka, Suita City, Osaka Prefecture Osaka University             Graduate School of Engineering F-term (reference) 4G069 AA03 AA08 BA04B BA22B                       BA48A BB06A BB06B BC09B                       BC40B BC51B CA11 EA08                       FB23                 4J038 CG001 DL031 HA216 KA04                       MA08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 シリコンアクリルエマルジョン塗料と水
性溶媒と光触媒を含有する抗菌性光触媒塗料であり、光
触媒が、互いに光触媒特性を持ち、かつ、真空準位を基
準としたエネルギーバンド構造における伝導帯底部の電
子のエネルギーレベルと価電子帯頂上の電子のエネルギ
ーレベルがそれぞれ異なる酸化物半導体(I)と(II)
による接合部を有する酸化物複合体により構成されると
共に、少なくとも酸化物半導体(I)が可視光域でも光
触媒特性を持つことを特徴とする抗菌性光触媒塗料。
1. An antibacterial photocatalyst paint containing a silicone acrylic emulsion paint, an aqueous solvent and a photocatalyst, wherein the photocatalysts have photocatalytic properties with each other, and the bottom of the conduction band in the energy band structure based on the vacuum level is formed. Oxide semiconductors (I) and (II) having different electron energy levels and electron energy levels at the top of the valence band
An antibacterial photocatalyst paint characterized by being composed of an oxide composite having a joint part according to, and at least the oxide semiconductor (I) having photocatalytic properties even in the visible light range.
【請求項2】 前記光触媒を含有するシリコンアクリル
エマルジョン塗料がポリオルガノシロキサンとアクリル
ポリマーの複合化されたものであることを特徴とする請
求項1に記載の抗菌性光触媒塗料。
2. The antibacterial photocatalyst paint according to claim 1, wherein the silicone-acrylic emulsion paint containing the photocatalyst is a composite of polyorganosiloxane and acrylic polymer.
【請求項3】 前記光触媒を含有する塗料が常温架橋型
であることを特徴とする請求項1又は2に記載の抗菌性
光触媒塗料。
3. The antibacterial photocatalyst paint according to claim 1, wherein the paint containing the photocatalyst is a room temperature cross-linking type paint.
【請求項4】 前記光触媒が、酸化物半導体(I)が、
組成式(III)A2 -X2+X8-2δ(但し、−0.4<X
<+0.6、かつ、−0.5<2δ<+0.5)で表さ
れ、かつ複数の価数を取り得るAイオンとBイオンがそ
れぞれ規則配列をした組成式(IV)A2-X 3+2+X 4+
7+(X/2)+Y(但し、−0.4<X<+0.6、かつ、−
0.2<Y<+0.2)のパイロクロア型酸化物の蛍石
型構造から見た酸素欠損位置または侵入型位置の少なく
とも一方に酸素イオンが挿入されたパイロクロア関連構
造酸化物で構成され、上記酸化物半導体(II)が、ルチ
ル型若しくはアナターゼ型またはこれ等2つの型が混ざ
った酸化チタン、酸化亜鉛、酸化錫、酸化ジルコニウ
ム、チタン酸ストロンチウムのいずれかであることを特
徴とする請求項1に記載の抗菌性光触媒塗料。
4. The photocatalyst comprises an oxide semiconductor (I),
Composition formula (III) A2 -XB2 + XO8-2δ (however, -0.4 <X
<+0.6 and -0.5 <2δ <+0.5)
A and B ions that can have multiple valences
Composition formula (IV) A with regular arrangement2-X 3+B2 + X 4+O
7+ (X / 2) + Y(However, -0.4 <X <+0.6, and-
0.2 <Y <+0.2) pyrochlore type oxide fluorite
Oxygen deficiency position or interstitial position is less seen from the mold structure
Pyrochlore related structure with oxygen ion inserted in one side
The oxide semiconductor (II) is composed of an oxide
Type or anatase type or a mixture of these two types
Titanium oxide, zinc oxide, tin oxide, zirconium oxide
System or strontium titanate
The antibacterial photocatalyst paint according to claim 1, which is a characteristic.
【請求項5】 前記光触媒に抗菌金属が担持されてい
ることを特徴とする請求項1〜4に記載の抗菌性光触媒
塗料。
5. The antibacterial photocatalyst coating composition according to claim 1, wherein the photocatalyst carries an antibacterial metal.
【請求項6】請求項1〜5に記載の抗菌性光触媒塗料を
基材に塗布し、硬化させ抗菌性光触媒皮膜を形成したこ
とを特徴とする抗菌性光触媒性部材。
6. An antibacterial photocatalytic member, characterized in that the antibacterial photocatalytic coating composition according to any one of claims 1 to 5 is applied to a substrate and cured to form an antibacterial photocatalytic film.
JP2001369131A 2001-12-03 2001-12-03 Antibacterial photocatalytic coating material and antibacterial photocatalytic member Pending JP2003171604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001369131A JP2003171604A (en) 2001-12-03 2001-12-03 Antibacterial photocatalytic coating material and antibacterial photocatalytic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001369131A JP2003171604A (en) 2001-12-03 2001-12-03 Antibacterial photocatalytic coating material and antibacterial photocatalytic member

Publications (1)

Publication Number Publication Date
JP2003171604A true JP2003171604A (en) 2003-06-20

Family

ID=19178589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001369131A Pending JP2003171604A (en) 2001-12-03 2001-12-03 Antibacterial photocatalytic coating material and antibacterial photocatalytic member

Country Status (1)

Country Link
JP (1) JP2003171604A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104342A1 (en) * 2002-06-11 2003-12-18 有限会社セラミック・クラフト Coating composition
JP2005103496A (en) * 2003-10-01 2005-04-21 Sumitomo Metal Mining Co Ltd Photocatalyst
JP2005199261A (en) * 2003-12-17 2005-07-28 Fujikura Kasei Co Ltd Photocatalyst composite material, coating composition comprising photocatalyst and self-cleaning type coating film
WO2006126823A1 (en) 2005-05-25 2006-11-30 Posco Ag-containing solution, antibacterial resin composition comprising the solution and antibacterial resin coated steel plate
JP2008279407A (en) * 2007-05-14 2008-11-20 Kanac Corp Visible light response type titanium dioxide photocatalyst powder and its manufacturing method and device
US7534826B2 (en) 2003-12-30 2009-05-19 Posco Paint composition having improved far-infrared emissivity, antibiosis and solvent resistance, and precoated metal sheet coated the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104342A1 (en) * 2002-06-11 2003-12-18 有限会社セラミック・クラフト Coating composition
JP2005103496A (en) * 2003-10-01 2005-04-21 Sumitomo Metal Mining Co Ltd Photocatalyst
JP2005199261A (en) * 2003-12-17 2005-07-28 Fujikura Kasei Co Ltd Photocatalyst composite material, coating composition comprising photocatalyst and self-cleaning type coating film
US7534826B2 (en) 2003-12-30 2009-05-19 Posco Paint composition having improved far-infrared emissivity, antibiosis and solvent resistance, and precoated metal sheet coated the same
WO2006126823A1 (en) 2005-05-25 2006-11-30 Posco Ag-containing solution, antibacterial resin composition comprising the solution and antibacterial resin coated steel plate
JP2008279407A (en) * 2007-05-14 2008-11-20 Kanac Corp Visible light response type titanium dioxide photocatalyst powder and its manufacturing method and device

Similar Documents

Publication Publication Date Title
US6107241A (en) Photocatalytic body and method for making same
EP2343125B1 (en) Hydrophilic films and components and structures using same
JP5981483B2 (en) Method for producing hydrophilic member
TW200422260A (en) Titania-metal complex and method for preparation thereof, and film forming method using dispersion comprising the complex
JP2003171601A (en) Antibacterial photocatalytic coating material and antibacterial photocatalytic member
TW200950885A (en) Antibacterial material and antibacterial film and antibacterial member using the same
TW201238655A (en) Photocatalyst coated body and photocatalyst coating liquid
JP2003171604A (en) Antibacterial photocatalytic coating material and antibacterial photocatalytic member
WO2015025715A1 (en) Photocatalyst material
US10898890B2 (en) Photocatalytic coating and method of making same
JP2003171603A (en) Antibacterial photocatalytic coating material and antibacterial photocatalytic member
JP2003155443A (en) Antibacterial photocatalytic coating material and antibacterial photocatalytic member
JP2003155440A (en) Antibacterial photocatalytic coating material and antibacterial photocatalytic member
JP2003171602A (en) Antibacterial photocatalytic coating material and antibacterial photocatalytic member
JP2000095976A (en) Antibacterial photocatalytic aqueous coating material and antibacterial photocatalytic member
JP2003155441A (en) Antibacterial photocatalytic coating material and antibacterial photocatalytic member
US11819824B2 (en) Surface coatings for self-decontamination
US11906157B2 (en) Photocatalyst formulations and coatings
JP2003155442A (en) Antibacterial photocatalytic coating material and antibacterial photocatalytic member
JP2001253007A (en) Method for manufacturing product coated with functional membrane and product coated with functional membrane
JPWO2018012240A1 (en) Interior material having surface layer having visible light responsive photocatalytic activity and method for producing the same
JP2001246265A (en) Substrate having photocatalyst-containing layer formed on surface, and method for forming the photocatalyst- containing layer on surface of substrate
JP2005021825A (en) Photocatalyst composition containing inorganic antibacterial agent
JP2004091263A (en) Anatase-type titania film, method for producing anatase-type titania sol and method for producing anatase-type titania film
JPH11300303A (en) Cleaning method of composite material and self-cleaning composite material mechanism