JP2005102453A - Device for controlling charging of storage battery - Google Patents

Device for controlling charging of storage battery Download PDF

Info

Publication number
JP2005102453A
JP2005102453A JP2003335730A JP2003335730A JP2005102453A JP 2005102453 A JP2005102453 A JP 2005102453A JP 2003335730 A JP2003335730 A JP 2003335730A JP 2003335730 A JP2003335730 A JP 2003335730A JP 2005102453 A JP2005102453 A JP 2005102453A
Authority
JP
Japan
Prior art keywords
temperature
charging
current value
storage battery
charger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003335730A
Other languages
Japanese (ja)
Inventor
Katsuhiko Kamiya
克彦 神谷
Kunito Togashi
邦人 富樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Araco Co Ltd
Original Assignee
Araco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Araco Co Ltd filed Critical Araco Co Ltd
Priority to JP2003335730A priority Critical patent/JP2005102453A/en
Publication of JP2005102453A publication Critical patent/JP2005102453A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make a charging time shorter than a prior art by reducing a current value to continue charging when the temperature of a storage battery reaches an upper limit temperature. <P>SOLUTION: This device is provided with a first temperature detecting means (a thermometer 40) that detects the temperature of a charger (a constant current source 20); and a charge controlling means (a controlling device 10) that controls the continuation of the charging of the storage battery (a sealed battery 60) with a second current value that is lower than a first current value, and that does not raise the temperature of the charger when the temperature detected by the first temperature detecting means reaches the upper limit temperature after starting the charge of the storage battery with the first current value. This control makes the temperature of the charger drop after reaching the upper limit temperature or remain at the upper limit temperature in a worst case. Since no charging current is cut unlike conventional technology, the charging time can be made shorter than by the conventional technology. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、蓄電池を充電する制御を行う充電制御装置に関する。   The present invention relates to a charge control device that performs control for charging a storage battery.

従来では、バッテリの周囲温度を検出し、当該周囲温度が使用上限温度に達すると充電電流をカットして充電を止める技術が開示されている(例えば特許文献1を参照)。この技術では目標の充電電圧に達しないため、使用上限温度よりは低い所定温度まで周囲温度が下がると、再び充電電流を流して充電を行う。この場合、周囲温度が再び使用上限温度に達したときは、充電電流をカットして充電を止めることになる。
実開平2−68639号公報(第6−7頁,第1図)
Conventionally, a technique has been disclosed in which the ambient temperature of a battery is detected, and when the ambient temperature reaches a use upper limit temperature, the charging current is cut to stop charging (see, for example, Patent Document 1). In this technique, since the target charging voltage is not reached, when the ambient temperature falls to a predetermined temperature lower than the upper limit temperature of use, charging is performed by supplying a charging current again. In this case, when the ambient temperature reaches the use upper limit temperature again, the charging current is cut and the charging is stopped.
Japanese Utility Model Publication No. 2-68639 (page 6-7, Fig. 1)

従来の技術では、一定の充電電流を流したりカットする制御を繰り返すことになるので、充電電流をカットして充電を止めるとバッテリ電圧が低下し、目標の充電電圧に達するまでに要する時間(すなわち充電時間)が長くなってしまう。
本発明はこのような点に鑑みてなしたものであり、蓄電池の温度が上限温度に達したときには電流値を下げて充電を継続することにより、従来よりも充電時間を短縮可能な蓄電池の充電制御装置を提供することを目的とする。
In the conventional technique, since the control for flowing or cutting a constant charging current is repeated, the battery voltage decreases when the charging current is cut and the charging is stopped, and the time required to reach the target charging voltage (that is, (Charging time) becomes longer.
The present invention has been made in view of such points, and when the temperature of the storage battery reaches the upper limit temperature, the charging of the storage battery can be shortened more than before by reducing the current value and continuing the charging. An object is to provide a control device.

課題を解決するための手段は、充電器により蓄電池を充電する制御を行う蓄電池の充電制御装置であって、
前記充電器の温度を検出する第1温度検出手段と、
第1電流値で前記蓄電池の充電を始めた後に、前記第1温度検出手段によって検出した温度が上限温度に達すると、前記第1電流値よりも低くかつ前記充電器の温度を上昇させない第2電流値で前記蓄電池の充電を継続する制御を行う充電制御手段とを有することを要旨とする。
なお「充電器の温度」は直接的または間接的に検出可能な温度であればよく、例えば充電器内部の温度、充電器の表面温度、充電器の周辺温度などが該当する。
Means for solving the problem is a storage battery charging control device that performs control to charge the storage battery by a charger,
First temperature detecting means for detecting the temperature of the charger;
When the temperature detected by the first temperature detecting means reaches the upper limit temperature after starting the charging of the storage battery at the first current value, the second temperature is lower than the first current value and does not increase the temperature of the charger. The gist of the invention is to have charging control means for performing control for continuing charging of the storage battery with a current value.
The “charger temperature” may be a temperature that can be detected directly or indirectly, and includes, for example, the temperature inside the charger, the surface temperature of the charger, the ambient temperature of the charger, and the like.

上述した構成によれば、蓄電池の充電を始めた後に、第1温度検出手段によって検出した温度(以下では単に「充電器温度」と呼ぶ。)が上限温度に達すると、充電制御手段は第1電流値よりも低い第2電流値で充電を継続する。しかも、当該第2電流値は充電を継続しても、充電器温度を上昇させない程度の電流である。例えば一定の充電効率の下で第2電流値を第1電流値の70%にすれば、充電器の発熱量はほぼ半分になる。放熱量が発熱量よりも大きくなれば、充電器温度は低下する。よって、第2電流値は放熱量とほぼ等しい発熱量をもたらす電流値とするのが望ましい。この制御によれば、充電器温度が上限温度に達した後は低下するか、最悪の場合でも上限温度を維持するにとどまる。従来技術のように充電電流をカットしないので、充電時間を従来よりも短縮できる。   According to the above-described configuration, when the temperature detected by the first temperature detecting means (hereinafter simply referred to as “charger temperature”) reaches the upper limit temperature after starting the charging of the storage battery, the charging control means first Charging is continued at a second current value lower than the current value. Moreover, the second current value is a current that does not increase the charger temperature even if the charging is continued. For example, if the second current value is set to 70% of the first current value under a constant charging efficiency, the calorific value of the charger is almost halved. If the heat dissipation amount becomes larger than the heat generation amount, the charger temperature decreases. Therefore, it is desirable that the second current value is a current value that provides a heat generation amount substantially equal to the heat dissipation amount. According to this control, the charger temperature decreases after reaching the upper limit temperature, or the upper limit temperature is maintained even in the worst case. Since the charging current is not cut as in the prior art, the charging time can be shortened compared to the conventional technique.

本発明によれば、充電器温度が上限温度に達したときには電流値を下げて充電を継続するので、従来よりも充電時間を短縮することができる。   According to the present invention, when the charger temperature reaches the upper limit temperature, the current value is decreased and the charging is continued, so that the charging time can be shortened compared to the conventional case.

次に、本発明を実施するための最良の形態について、実施例に従って説明する。   Next, the best mode for carrying out the present invention will be described with reference to examples.

本実施例は、電動車等に用いられる完全密閉型のシールバッテリを充電する充電制御装置に本発明を適用した例であって、図1〜図3を参照しながら説明する。なお、温度にかかる数値は摂氏である。   The present embodiment is an example in which the present invention is applied to a charge control device for charging a completely sealed battery used in an electric vehicle or the like, and will be described with reference to FIGS. The numerical value related to the temperature is Celsius.

まず図1には、本発明を実現する構成例を模式的に示す。本発明の充電制御装置は、制御装置10、定電流源20、温度計30,40などからなる。蓄電池には、シールバッテリ50を用いる。充電制御手段に相当する制御装置10は、CPU(プロセッサ)12、ROM14、RAM16、入出力回路などを備える。これらの要素や作動については後述する。充電器に相当する定電流源20は、制御装置10から出力された電流値を受けて、当該電流値に対応する充電電流Iを安定的に流してシールバッテリ50の充電を行う。第1温度検出手段に相当する温度計30は定電流源20の温度を検出し、検出した温度値(充電器温度に相当する)を出力する。第2温度検出手段に相当する温度計40はシールバッテリ50の温度を検出し、検出した温度値(蓄電池温度に相当する)を出力する。   First, FIG. 1 schematically shows a configuration example for realizing the present invention. The charging control device of the present invention includes a control device 10, a constant current source 20, thermometers 30 and 40, and the like. A seal battery 50 is used as the storage battery. The control device 10 corresponding to the charging control means includes a CPU (processor) 12, a ROM 14, a RAM 16, an input / output circuit, and the like. These elements and operations will be described later. The constant current source 20 corresponding to the charger receives the current value output from the control device 10 and charges the seal battery 50 by stably flowing the charging current I corresponding to the current value. The thermometer 30 corresponding to the first temperature detecting means detects the temperature of the constant current source 20 and outputs the detected temperature value (corresponding to the charger temperature). The thermometer 40 corresponding to the second temperature detecting means detects the temperature of the seal battery 50 and outputs the detected temperature value (corresponding to the storage battery temperature).

制御装置10の構成要素について説明する。ROM14には、充電制御プログラムや一定のデータ等を格納する。RAM16には、充電制御を行う際に必要なデータ(例えば温度値等)を一時的に記憶する。制御装置10はROM14に記憶された充電制御プログラムをCPU12が実行することにより、温度計30,40からそれぞれ出力された温度値を受けて、定電流源20が流すべき充電電流Iの電流値を制御する。この制御例について、図2を参照しながら説明する。   The components of the control device 10 will be described. The ROM 14 stores a charge control program and certain data. The RAM 16 temporarily stores data (for example, a temperature value) necessary for charge control. When the CPU 12 executes the charge control program stored in the ROM 14, the control device 10 receives the temperature values output from the thermometers 30 and 40, and determines the current value of the charge current I that the constant current source 20 should flow. Control. An example of this control will be described with reference to FIG.

図2には、充電器温度θbや充電電圧V等に基づいて充電電流Iを制御し、シールバッテリ50の充電を行う過程をタイムチャートで表す。
制御装置10は、時刻t10から電流値Isでシールバッテリ50の充電を始めている。当該時刻t10の時点における充電電圧Vは電圧Vsであり、充電器温度θbは温度θs(通常は室温)である。充電によって定電流源20は発熱量が増えるために充電器温度θbが上昇し、充電開始からしばらく経った時刻t12には充電器温度θbが上限温度θmに達している。このとき制御装置10は、充電電流Iを電流値Isよりも低く、かつ充電器温度θbを上昇させない程度の電流値I1でシールバッテリ50への充電を継続する。例えば電流値Isを8.4アンペアとしたときは、電流値I1を6アンペア(すなわち電流値Isの約70%)とすれば、定電流源20の発熱量はほぼ半分になる。こうして充電電流Iを低くすれば定電流源20の発熱量も減るので、時刻t12からは充電器温度θbが次第に低くなってゆく。
FIG. 2 is a time chart showing a process of charging the seal battery 50 by controlling the charging current I based on the charger temperature θb, the charging voltage V, and the like.
The control device 10 starts charging the seal battery 50 at the current value Is from time t10. The charging voltage V at time t10 is the voltage Vs, and the charger temperature θb is the temperature θs (usually room temperature). Due to the charging, the constant current source 20 increases the amount of heat generated, so that the charger temperature θb rises, and the charger temperature θb reaches the upper limit temperature θm at time t12 after a while from the start of charging. At this time, the control device 10 continues to charge the seal battery 50 with the current value I1 that is lower than the current value Is and does not increase the charger temperature θb. For example, when the current value Is is 8.4 amperes, if the current value I1 is 6 amperes (that is, about 70% of the current value Is), the amount of heat generated by the constant current source 20 is almost halved. If the charging current I is lowered in this way, the amount of heat generated by the constant current source 20 is also reduced. Therefore, the charger temperature θb gradually decreases from time t12.

電流値I1で充電を継続してゆくと充電電圧Vが上昇してゆき、時刻t14には基準電圧Vc(所定電圧に相当する)に達する。基準電圧Vcは、温度計40で計測した蓄電池温度θaに基づいて、次の数式1により求める。式中に示す係数Ka,Kbは、蓄電池の特性に応じて定められる。例えばシールバッテリ50の場合では、係数Ka=14.4を設定し、係数Kb=0.03を設定する。   When charging is continued at the current value I1, the charging voltage V increases and reaches the reference voltage Vc (corresponding to a predetermined voltage) at time t14. The reference voltage Vc is obtained by the following formula 1 based on the storage battery temperature θa measured by the thermometer 40. The coefficients Ka and Kb shown in the formula are determined according to the characteristics of the storage battery. For example, in the case of the sealed battery 50, the coefficient Ka = 14.4 is set and the coefficient Kb = 0.03 is set.

〔数式1〕
Vc=Ka+Kb(θa−25)
[Formula 1]
Vc = Ka + Kb (θa−25)

充電開始の時刻t12から時刻t14までの時間T1は、初段充電時間に相当する。こうして充電電圧Vが基準電圧Vcに達した以降は段階的に電流値を下げ、シールバッテリ50への充電を継続する。電流値を下げて充電を継続する段数や電流の低減量は、蓄電池の種類によって適切に定める。本例のシールバッテリ50では、4段階に分けて行い、電流値を半分に低減する。   A time T1 from the charging start time t12 to time t14 corresponds to the first stage charging time. In this way, after the charging voltage V reaches the reference voltage Vc, the current value is lowered step by step and the charging of the seal battery 50 is continued. The number of stages to continue charging by lowering the current value and the amount of current reduction are appropriately determined according to the type of storage battery. In the sealed battery 50 of this example, the process is divided into four stages, and the current value is reduced to half.

すなわち制御装置10は定電流源20への指令により、時刻t14に電流値I1の半分の電流値I2にして充電を継続する。当該電流値I2で充電を継続してゆき、充電電圧Vが再び基準電圧Vcに達した時刻t16には、電流値I2の半分の電流値I3で充電を継続する。当該電流値I3で充電を継続してゆき、さらに充電電圧Vが再び基準電圧Vcに達した時刻t18には、電流値I3の半分の電流値I4で充電を継続する。2段目の時刻t14から時刻t16までの時間T2や、3段目の時刻t16から時刻t18までの時間T3、4段目の時刻t18から時刻t20までの時間T4は、同一の時間とは限らず、充電環境(電流値や周囲温度等)によって変化し得る。   That is, in response to a command to the constant current source 20, the control device 10 sets the current value I2 to half the current value I1 at time t14 and continues charging. Charging is continued at the current value I2, and at time t16 when the charging voltage V reaches the reference voltage Vc again, charging is continued at a current value I3 that is half of the current value I2. Charging is continued at the current value I3, and at time t18 when the charging voltage V reaches the reference voltage Vc again, charging is continued at a current value I4 that is half of the current value I3. Time T2 from time t14 in the second stage to time t16, time T3 from time t16 to time t18 in the third stage, and time T4 from time t18 to time t20 in the fourth stage are not necessarily the same time. However, it may vary depending on the charging environment (current value, ambient temperature, etc.).

そして、充電電圧Vが再び基準電圧Vcに達した時刻t20には、制御装置10は電流値I4の半分の電流値I5にし、時間T5(いわゆる押込み時間)だけシールバッテリ50への充電を継続して過充電を行う。当該時間T5は適宜に設定できるが、例えば次に示す設定表のように蓄電池温度θaと時間T1との関係に基づいて設定する。   Then, at time t20 when the charging voltage V reaches the reference voltage Vc again, the control device 10 sets the current value I5 to half the current value I4 and continues charging the seal battery 50 for a time T5 (so-called pushing time). Overcharge. Although the said time T5 can be set suitably, it sets based on the relationship between storage battery temperature (theta) a and time T1 like the setting table shown next, for example.

〔設定表〕
┏━━━━━━━┯━━━━┳━━━━━┓
┃蓄電池温度θa│時間T1┃時間T5 ┃
┣━━━━━━━┿━━━━╋━━━━━┫
┃ │30分≧┃1.0時間┃
┃ 5℃< ├────╂─────┨
┃ │30分<┃2.5時間┃
┠───────┼────╂─────┨
┃ │30分≧┃1.0時間┃
┃ 5℃≧ ├────╂─────┨
┃ │30分<┃4.0時間┃
┗━━━━━━━┷━━━━┻━━━━━┛
[Setting table]
┏━━━━━━━┯━━━━┳━━━━━┓
┃Storage battery temperature θa│Time T1┃Time T5 ┃
┣━━━━━━━┿━━━━╋━━━━━┫
│ 30 minutes ≧ ┃ 1.0 hour ┃
℃ 5 ℃ <├────╂─────┨
│ │30 minutes <┃2.5 hours┃
┠───────┼────╂─────┨
│ 30 minutes ≧ ┃ 1.0 hour ┃
℃ 5 ℃ ≧ ├────╂─────┨
│ 30 minutes <┃ 4.0 hours ┃
┗━━━━━━━┷━━━━┻━━━━━┛

ここで、定電流源20の設置例について図3を参照しながら説明する。図3に示す例では、定電流源20を車両下部のフレーム60にネジ等で固定する。固定された定電流源20は外観上隠蔽するためにボディやカバー等で覆われるため、当該定電流源20の内部で発生した熱を逃がしにくい環境となる場合が多い。このような場合でも、上述したように定電流源20の充電器温度θbが上限温度θmに達した後は、これ以上は充電器温度θbが上昇しないような電流値に低くして充電を継続するので、充電器温度θbを低下させて安定した充電を行うことが可能になる。   Here, an installation example of the constant current source 20 will be described with reference to FIG. In the example shown in FIG. 3, the constant current source 20 is fixed to the frame 60 under the vehicle with screws or the like. Since the fixed constant current source 20 is covered with a body, a cover or the like so as to be concealed in appearance, it often becomes an environment where it is difficult to release heat generated inside the constant current source 20. Even in such a case, after the charger temperature θb of the constant current source 20 reaches the upper limit temperature θm as described above, the charging is continued by lowering the current value so that the charger temperature θb does not increase any more. Therefore, it is possible to perform stable charging by reducing the charger temperature θb.

上述した実施例によれば、制御装置10はシールバッテリ50の充電を始めた後に温度計30によって検出した充電器温度θbが上限温度θmに達すると、電流値I1(第1電流値に相当する)よりも低い電流値I2(第2電流値に相当する)で充電を継続する制御を行なった{図2を参照}。この制御によれば、充電器温度θbが上限温度θmに達した後は低下するか、最悪の場合でも上限温度θmを維持するにとどまる。従来技術のように充電電流Iをカットしないので、充電時間を従来よりも短縮できる。また、充電電流Iのオン/オフを繰り返すことがないので、急激な電流値の変化に伴うノイズ等の発生を防止することができる。   According to the above-described embodiment, when the controller 10 starts charging the seal battery 50 and the charger temperature θb detected by the thermometer 30 reaches the upper limit temperature θm, the current value I1 (corresponding to the first current value). ) To continue charging at a current value I2 (corresponding to the second current value) lower than {) (see FIG. 2). According to this control, after the charger temperature θb reaches the upper limit temperature θm, the battery temperature decreases, or the upper limit temperature θm is maintained even in the worst case. Since the charging current I is not cut as in the prior art, the charging time can be shortened compared to the prior art. Further, since the charging current I is not repeatedly turned on / off, it is possible to prevent the occurrence of noise or the like accompanying a sudden change in the current value.

以上、本発明を実施するための最良の形態について実施例に従って説明したが、本発明は当該実施例に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することが可能である。例えば、次に示す各形態を実現してもよい。   As mentioned above, although the best form for implementing this invention was demonstrated according to the Example, this invention is not limited to the said Example at all. In other words, the present invention can be implemented in various forms without departing from the gist of the present invention. For example, the following forms may be realized.

(1)上述した実施例では、電動車等に用いられる完全密閉型のシールバッテリ50を適用した{図1等を参照}。この形態に代えて、シールバッテリ50以外の蓄電池(例えば鉛蓄電池,アルカリ蓄電池,ニッケル・カドミウム蓄電池等)にも適用することが可能である。こうした蓄電池であっても、従来技術のように充電電流Iをカットしないので、充電時間を従来よりも短縮できる。 (1) In the above-described embodiment, a completely sealed type seal battery 50 used for an electric vehicle or the like is applied {see FIG. 1 and the like}. It can replace with this form and can also apply to storage batteries (for example, lead storage battery, alkaline storage battery, nickel cadmium storage battery, etc.) other than seal battery 50. Even in such a storage battery, the charging current I is not cut as in the prior art, so that the charging time can be shortened compared to the conventional case.

(2)上述した実施例では、CPU12等を有する制御装置10によって定電流源20を制御する構成とした{図1等を参照}。この形態に代えて、抵抗,コンデンサ,オペアンプ等の素子を用いた電子回路によって定電流源20を制御する構成としてもよい。例えば温度や電圧等を基準値と比較するべく差分回路を用い、当該差分回路から出力される差分値を入力したオペアンプが定電流源20に電流値に相当する信号を出力すればよい。さらには、制御装置10に相当する電子回路と、定電流源20とを一体化した装置を構成してもよい。これらの装置ではプログラムが不要となるので、製造コストを低減できる。 (2) In the above-described embodiment, the constant current source 20 is controlled by the control device 10 having the CPU 12 or the like {see FIG. 1 and the like}. Instead of this form, the constant current source 20 may be controlled by an electronic circuit using elements such as a resistor, a capacitor, and an operational amplifier. For example, a difference circuit may be used to compare temperature, voltage, and the like with a reference value, and an operational amplifier that receives the difference value output from the difference circuit may output a signal corresponding to the current value to the constant current source 20. Furthermore, an apparatus in which an electronic circuit corresponding to the control device 10 and the constant current source 20 are integrated may be configured. Since these apparatuses do not require a program, manufacturing costs can be reduced.

本発明を実現する構成例を模式的に示す図である。It is a figure which shows typically the structural example which implement | achieves this invention. 充電器温度や充電電圧等に基づいて充電電流を制御する過程を説明するためのタイムチャートである。It is a time chart for demonstrating the process which controls charging current based on charger temperature, charging voltage, etc. FIG. 定電流源の設置例を示す図である。It is a figure which shows the example of installation of a constant current source.

符号の説明Explanation of symbols

10 制御装置(充電制御手段)
12 CPU
14 ROM(記憶部)
16 RAM(記憶部)
20 定電流源(充電器)
30 温度計(第1温度検出手段)
40 温度計(第2温度検出手段)
50 シールバッテリ(蓄電池)
60 フレーム
I 充電電流
V 充電電圧
Vc 基準電圧
θb 充電器温度
θm 上限温度
10 Control device (charging control means)
12 CPU
14 ROM (storage unit)
16 RAM (storage unit)
20 Constant current source (charger)
30 thermometer (first temperature detection means)
40 Thermometer (second temperature detection means)
50 Seal battery
60 frame I charging current V charging voltage Vc reference voltage θb charger temperature θm upper limit temperature

Claims (1)

充電器により蓄電池を充電する制御を行う蓄電池の充電制御装置であって、
前記充電器の温度を検出する第1温度検出手段と、
第1電流値で前記蓄電池の充電を始めた後に、前記第1温度検出手段によって検出した温度が上限温度に達すると、前記第1電流値よりも低くかつ前記充電器の温度を上昇させない第2電流値で前記蓄電池の充電を継続する制御を行う充電制御手段とを有する蓄電池の充電制御装置。
A storage battery charge control device that performs control of charging a storage battery with a charger,
First temperature detecting means for detecting the temperature of the charger;
When the temperature detected by the first temperature detecting means reaches the upper limit temperature after starting the charging of the storage battery at the first current value, the second temperature is lower than the first current value and does not increase the temperature of the charger. A storage battery charge control device comprising charge control means for performing control to continue charging of the storage battery with a current value.
JP2003335730A 2003-09-26 2003-09-26 Device for controlling charging of storage battery Pending JP2005102453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003335730A JP2005102453A (en) 2003-09-26 2003-09-26 Device for controlling charging of storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003335730A JP2005102453A (en) 2003-09-26 2003-09-26 Device for controlling charging of storage battery

Publications (1)

Publication Number Publication Date
JP2005102453A true JP2005102453A (en) 2005-04-14

Family

ID=34463037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003335730A Pending JP2005102453A (en) 2003-09-26 2003-09-26 Device for controlling charging of storage battery

Country Status (1)

Country Link
JP (1) JP2005102453A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141907A (en) * 2006-12-05 2008-06-19 Matsushita Electric Ind Co Ltd Charging device with temperature protection feature
CN100438264C (en) * 2005-07-05 2008-11-26 株式会社理光 A charging circuit and a semiconductor device including the same
JP2009165329A (en) * 2008-01-10 2009-07-23 Yamaha Motor Electronics Co Ltd Rapid charging method and charger used therein
JP2010130756A (en) * 2008-11-26 2010-06-10 Toyota Motor Corp Vehicle charging system
JP2010172158A (en) * 2009-01-26 2010-08-05 Ricoh Co Ltd Charging device for secondary battery
JP2012227983A (en) * 2011-04-15 2012-11-15 Konica Minolta Medical & Graphic Inc Charging system, electronic device and charging device
JP2013198372A (en) * 2012-03-22 2013-09-30 Mitsubishi Motors Corp Charging control device for electric automobile

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100438264C (en) * 2005-07-05 2008-11-26 株式会社理光 A charging circuit and a semiconductor device including the same
JP2008141907A (en) * 2006-12-05 2008-06-19 Matsushita Electric Ind Co Ltd Charging device with temperature protection feature
JP2009165329A (en) * 2008-01-10 2009-07-23 Yamaha Motor Electronics Co Ltd Rapid charging method and charger used therein
JP2010130756A (en) * 2008-11-26 2010-06-10 Toyota Motor Corp Vehicle charging system
US8058848B2 (en) 2008-11-26 2011-11-15 Toyota Jidosha Kabushiki Kaisha Vehicle charging system
JP2010172158A (en) * 2009-01-26 2010-08-05 Ricoh Co Ltd Charging device for secondary battery
JP2012227983A (en) * 2011-04-15 2012-11-15 Konica Minolta Medical & Graphic Inc Charging system, electronic device and charging device
JP2013198372A (en) * 2012-03-22 2013-09-30 Mitsubishi Motors Corp Charging control device for electric automobile

Similar Documents

Publication Publication Date Title
JP3656881B2 (en) Secondary battery charging circuit
EP2911232B1 (en) Charging method and charger
TWI515525B (en) Circuit and method for temperature control and charging system
TWI424656B (en) Method for controlling charging current
JP2009148046A (en) Charging method
JP6719332B2 (en) Charger
TWI566499B (en) Charging method and charging device using the same
CN110994734B (en) Battery charging method and device and electronic auxiliary equipment
KR100782425B1 (en) A charging circuit and a semiconductor device including the same
JP2005102453A (en) Device for controlling charging of storage battery
CN115642660A (en) Charging control method and device, electronic equipment and computer readable storage medium
TWI443930B (en) Charging current control method and charging system
JP4179204B2 (en) Charging apparatus and charging method
CN111082487B (en) Charging control method and device and electronic equipment
JP5310026B2 (en) Secondary battery charger
US7891820B2 (en) Projector and method for igniting lamp
CN115242227B (en) Frequency control circuit suitable for PFM control chip and related device
JP2007097269A (en) Charging method of secondary battery
TWI695564B (en) Temperature dependent current and pulse controlled charging method for a battery charger
TW201004093A (en) Battery charging method and device thereof
CN112065703A (en) Segmented control method and device for operating frequency of compressor
JPH10341540A (en) Battery charging controller
JP6631443B2 (en) vehicle
US20230121953A1 (en) Current spike reduction in battery charging devices
JP2015154680A (en) Control device, power conversion device, power supply system and program

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050311

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030