JP2005102171A - Optical signal receiving system - Google Patents

Optical signal receiving system Download PDF

Info

Publication number
JP2005102171A
JP2005102171A JP2004235815A JP2004235815A JP2005102171A JP 2005102171 A JP2005102171 A JP 2005102171A JP 2004235815 A JP2004235815 A JP 2004235815A JP 2004235815 A JP2004235815 A JP 2004235815A JP 2005102171 A JP2005102171 A JP 2005102171A
Authority
JP
Japan
Prior art keywords
light receiving
light
optical signal
optical
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004235815A
Other languages
Japanese (ja)
Inventor
Yuichi Hasebe
裕一 長谷部
Kiichiro Shinokura
毅一郎 篠倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Pioneer Display Products Corp
Original Assignee
Pioneer Display Products Corp
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Display Products Corp, Pioneer Electronic Corp filed Critical Pioneer Display Products Corp
Priority to JP2004235815A priority Critical patent/JP2005102171A/en
Publication of JP2005102171A publication Critical patent/JP2005102171A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light receiving system capable of efficiently receiving signal light over a wider-angle range. <P>SOLUTION: In an optical signal receiving system, an optical signal transmitter such as a terminal device connected to a tuner or Internet is arranged in, for example, a room of a house. The optical signal transmitted from it is received, and the video information and voice information are supplied to video equipment such as a television set and audio equipment provided with an amplifier and speaker. The optical signal receiving system comprises an optical system that condenses the optical signal on a light receiving element using a condenser lens. The light receiving element is arranged nearer to the condenser lens side than to a condensing point of the condenser lens. The condenser lens is aspherical to strongly distribute, on the light receiving element, the intensity distribution in the arrangement plane of light receiving element of the light which is obliquely incoming within a prescribed angle range against the optical axis of the condenser lens. Thus, the optical signal incoming to the condenser lens over a wide range is received at a prescribed light receiving intensity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高周波変調光信号などの光信号を受信する光信号受信装置に関する。   The present invention relates to an optical signal receiving apparatus that receives an optical signal such as a high-frequency modulated optical signal.

LEDその他の光デバイスを用い、情報を光変調して送受信する技術が知られている。そのような光信号通信を家庭用の端末装置やAV機器などに適用することが考えられている。例えば、家庭の部屋内にチューナやインターネットに接続された端末装置などを配置し、そこからTVなどの映像機器やアンプ、スピーカなどを備えるオーディオ機器へ映像情報や音声情報を送信し、再生することが可能である。   A technique is known in which information is optically modulated and transmitted / received using an LED or other optical device. It is considered that such optical signal communication is applied to a home terminal device or AV equipment. For example, a tuner or the terminal device connected to the Internet is placed in a home room, and video and audio information is transmitted from the video device such as a TV and an audio device equipped with an amplifier, a speaker, and the like to be reproduced. Is possible.

部屋の隅や機器の近くに光送信装置及び光受信装置を配置し、映像情報や音声情報により変調した信号光を受信する場合、信号が高速になればなるほど天井や壁などによる散乱光ではなくて直接光の受信が必要になり、光送信装置の位置と受光装置の受光可能角度との相対関係が微妙になってしまう。よって、光受信装置の光学系においては、受光する信号光の入射角度に応じて受光強度が異なってしまい、入射角度によっては十分な受光強度が得られなくなるという問題がある。   When optical transmitters and receivers are placed near the corners of the room or near equipment and receive signal light modulated by video information or audio information, the higher the signal, the more scattered light from the ceiling, walls, etc. Therefore, it is necessary to directly receive light, and the relative relationship between the position of the optical transmission device and the light reception possible angle of the light receiving device becomes delicate. Therefore, in the optical system of the optical receiver, the received light intensity varies depending on the incident angle of the received signal light, and there is a problem that sufficient received light intensity cannot be obtained depending on the incident angle.

広い入射角度から来る信号光に対して受光効率の高い角度範囲を拡大する方法としては、光受信装置の光学系に複数の光センサ(受光素子)を設けることが考えられる。しかし、複数の光センサを設けると、光センサ全体の電気的容量が増大するので周波数特性が低下し高速伝送性能が落ちてしまう(伝送容量が下がってしまう)。また、複数の光センサは異なる位置に配置されるため、受光信号の位相の調整が必要となる。複数の光センサを利用する方法には、このようにいくつかの不具合がある。   As a method of expanding the angle range with high light receiving efficiency for signal light coming from a wide incident angle, it is conceivable to provide a plurality of optical sensors (light receiving elements) in the optical system of the optical receiver. However, when a plurality of optical sensors are provided, the electrical capacity of the entire optical sensor increases, so that the frequency characteristics are lowered and the high-speed transmission performance is reduced (transmission capacity is reduced). In addition, since the plurality of optical sensors are arranged at different positions, it is necessary to adjust the phase of the received light signal. As described above, the method using a plurality of optical sensors has some problems.

本発明が解決しようとする課題には、上記のようなものが例として挙げられる。本発明は、以上の点に鑑みてなされたものであり、より広い角度範囲から信号光を効率よく受光することが可能な光信号の受信装置を提供することを課題とする。   Examples of problems to be solved by the present invention include the above. The present invention has been made in view of the above points, and an object of the present invention is to provide an optical signal receiving apparatus capable of efficiently receiving signal light from a wider angle range.

請求項1に記載の発明は、光信号を集光レンズで受光素子上に集光して受信する光信号受信装置であって、前記受光素子は前記集光レンズの集光点よりも前記集光レンズ側に配置され、前記集光レンズは、前記集光レンズの光軸に対して所定角度範囲内で傾斜して入射した入射光の受光素子配置平面における強度分布を受光素子上に強く分布させる非球面形状を有することを特徴とする。   The invention according to claim 1 is an optical signal receiving device that collects and receives an optical signal on a light receiving element by a condensing lens, and the light receiving element is located at the collecting point rather than the condensing point of the condensing lens. Arranged on the light lens side, the condenser lens strongly distributes the intensity distribution on the light receiving element arrangement plane of incident light incident on the light axis of the condenser lens with an inclination within a predetermined angle range with respect to the optical axis of the condenser lens. It is characterized by having an aspheric shape.

本発明の1つの好適な実施形態では、光信号を集光レンズで受光素子上に集光して受信する光信号受信装置は、前記受光素子は前記集光レンズの集光点よりも前記集光レンズ側に配置され、前記集光レンズは、前記集光レンズの光軸に対して所定角度範囲内で傾斜して入射した入射光の受光素子配置平面における強度分布を受光素子上に強く分布させる非球面形状を有する。   In one preferred embodiment of the present invention, an optical signal receiving apparatus that collects and receives an optical signal on a light receiving element with a condenser lens, the light receiving element is more than the light collecting point of the condenser lens. Arranged on the light lens side, the condenser lens strongly distributes the intensity distribution on the light receiving element arrangement plane of incident light incident on the light axis of the condenser lens with an inclination within a predetermined angle range with respect to the optical axis of the condenser lens. It has an aspherical shape.

この光信号受信装置は、例えば家庭の部屋内にチューナやインターネットに接続された端末装置などの光信号送信装置を配置し、そこから送信される光信号を受信して、TVなどの映像機器やアンプ、スピーカなどを備えるオーディオ機器へ映像情報や音声情報を供給する。光信号受信装置は、光信号を集光レンズで受光素子上に集光する光学系を備える。ここで、受光素子は集光レンズの集光点よりも集光レンズ側に設けられ、かつ、前記集光レンズは、前記集光レンズの光軸に対して所定角度範囲内で傾斜して入射した入射光の受光素子配置平面における強度分布を受光素子上に強く分布させる非球面形状を有する。これにより、集光レンズに対して広範囲から入射する光信号を所定の受光強度で受光することが可能となる。これは、光信号受信装置を部屋の隅などに設置し、部屋の壁や天井方
向などを含む広角度範囲から入射する光信号を受光するのに適している。
This optical signal receiving device, for example, arranges an optical signal transmitting device such as a tuner or a terminal device connected to the Internet in a home room, receives an optical signal transmitted therefrom, Video information and audio information are supplied to audio equipment including an amplifier and a speaker. The optical signal receiving apparatus includes an optical system that condenses an optical signal on a light receiving element by a condensing lens. Here, the light receiving element is provided on the condensing lens side with respect to the condensing point of the condensing lens, and the condensing lens is inclined and incident within a predetermined angle range with respect to the optical axis of the condensing lens. It has an aspherical shape that strongly distributes the intensity distribution of the incident light in the light receiving element arrangement plane on the light receiving element. This makes it possible to receive an optical signal incident on the condenser lens from a wide range with a predetermined light receiving intensity. This is suitable for installing an optical signal receiving device at a corner of a room and receiving an optical signal incident from a wide angle range including the direction of the wall or ceiling of the room.

上記の集光レンズは、円弧を偶数次補正して得られる2つの曲線を各々の頂点を一致させて相互に直交させて配置し、前記2つの曲線のうち一方の曲線を他方の曲線に沿って平行移動することにより規定される非球面を有することで実現する。2つの曲線は、前記集光レンズの1つの径方向をX軸方向、前記1つの径方向に垂直な他の径方向をY軸方向、前記集光レンズの光軸方向をZ軸方向としたとき、それぞれX方向及びY方向に延びる曲線として規定される。   The above condensing lens arranges two curves obtained by correcting even-order arcs so that their vertices coincide with each other and are orthogonal to each other, and one of the two curves follows the other curve. This is realized by having an aspheric surface defined by parallel movement. In the two curves, one radial direction of the condenser lens is an X-axis direction, another radial direction perpendicular to the one radial direction is a Y-axis direction, and an optical axis direction of the condenser lens is a Z-axis direction. Are defined as curves extending in the X and Y directions, respectively.

また、上記の光信号受信装置は、前記集光レンズと前記受光素子の間に配置された、前記集光素子による前記光信号の受光角度範囲を拡大する別の集光レンズをさらに備えることができる。この別の集光レンズを設けることにより、光信号の受光角度範囲をさらに拡大することが可能となる。   The optical signal receiving device may further include another condensing lens that is disposed between the condensing lens and the light receiving element and expands a light receiving angle range of the optical signal by the condensing element. it can. By providing this other condensing lens, the light receiving angle range of the optical signal can be further expanded.

以下、図面を参照して本発明の好適な実施例について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

まず、受信装置の光学系に球面レンズを使用した場合の受光強度分布について説明する。図1(a)に、球面レンズを使用した光学系の一例を示す。図1(a)において、球面レンズ50の焦点距離はfであり、球面レンズ50の光軸52上で焦点位置から所定距離dだけ前方又は後方へシフトした位置に光センサなどの受光素子51が配置される。なお、この光学系においては、図1(a)及び(b)に示すように、紙面に垂直な方向にX軸をとり、図中の縦方向にY軸をとり、球面レンズ50の光軸52の方向にZ軸をとることとする。   First, the received light intensity distribution when a spherical lens is used in the optical system of the receiving apparatus will be described. FIG. 1A shows an example of an optical system using a spherical lens. In FIG. 1A, the focal length of the spherical lens 50 is f, and a light receiving element 51 such as an optical sensor is positioned forward or backward on the optical axis 52 of the spherical lens 50 by a predetermined distance d from the focal position. Be placed. In this optical system, as shown in FIGS. 1A and 1B, the X axis is taken in the direction perpendicular to the paper surface, the Y axis is taken in the vertical direction in the figure, and the optical axis of the spherical lens 50 is taken. The Z axis is taken in the direction of 52.

図1(a)に示す位置に配置された受光素子51に入射する入射光の受光強度特性(3次元特性)55の概略を等高線図により図2(a)及び(b)に示す。受光強度特性55は各々が所定の受光強度に対応する複数の等高線56により示されている。また、図2(a)及び(b)において、X軸及びY軸上の数値は、それぞれ図1に示したX軸及びY軸方向における入射光の光軸52に対する角度を示す。即ち、水平方向角度及び垂直方向角度がともに0に対応する点の受光強度が、図1に示す球面レンズ50の光軸52に平行に入射する光の受光強度を示す。   FIGS. 2A and 2B are schematic contour diagrams showing the received light intensity characteristic (three-dimensional characteristic) 55 of incident light incident on the light receiving element 51 arranged at the position shown in FIG. The received light intensity characteristic 55 is indicated by a plurality of contour lines 56 each corresponding to a predetermined received light intensity. 2A and 2B, the numerical values on the X axis and the Y axis indicate the angles of the incident light with respect to the optical axis 52 in the X axis and Y axis directions shown in FIG. 1, respectively. That is, the received light intensity at a point where both the horizontal direction angle and the vertical direction angle correspond to 0 indicates the received light intensity of light incident parallel to the optical axis 52 of the spherical lens 50 shown in FIG.

図2(a)の例では、光軸52上に平行な入射光が最も受光強度が高く、光軸52に対する入射角がX軸方向及びY軸方向に大きくなるにつれて、受光強度は急激に低下する。つまり、光軸52に対する入射角が小さい入射光(例えば図1(a)における入射光54)ほど受光素子51による受光強度が高く、光軸に対する入射角が大きい入射光(例えば図1(a)における入射光53)は受光素子51による受光強度が小さくなる。   In the example of FIG. 2A, incident light parallel to the optical axis 52 has the highest received light intensity, and the received light intensity rapidly decreases as the incident angle with respect to the optical axis 52 increases in the X-axis direction and the Y-axis direction. To do. That is, incident light having a smaller incident angle with respect to the optical axis 52 (for example, incident light 54 in FIG. 1A) has a higher light receiving intensity by the light receiving element 51 and has a larger incident angle with respect to the optical axis (for example, FIG. 1A). The incident light 53) in FIG.

また、図2(b)の例では、受光強度のピークが所定の入射角にある。つまり、X軸方向、Y軸方向とも、光軸に対して平行な入射光からその入射角の入射光までは受光強度が増加するが、その入射角を超えると図1(a)の例と同様に受光強度は低下していく。   In the example of FIG. 2B, the peak of the received light intensity is at a predetermined incident angle. That is, in both the X-axis direction and the Y-axis direction, the received light intensity increases from incident light parallel to the optical axis to incident light at the incident angle, but when the incident angle is exceeded, the example of FIG. Similarly, the received light intensity decreases.

図2(a)の例では、光軸52に対する入射光の入射角が大きいほど受光強度が低下してしまう。また、図2(b)の例では受光強度のピーク点に対応する所定の入射角までは受光強度は比較的フラットな特性を維持するが、その入射角を超えると受光強度が低下してしまう。つまり、光軸52に対する入射角が一定以上になると、受光強度は急激に低下してしまう。   In the example of FIG. 2A, the received light intensity decreases as the incident angle of incident light with respect to the optical axis 52 increases. In the example of FIG. 2B, the received light intensity remains relatively flat until a predetermined incident angle corresponding to the peak point of the received light intensity. However, when the incident angle is exceeded, the received light intensity decreases. . That is, when the incident angle with respect to the optical axis 52 becomes a certain value or more, the received light intensity decreases rapidly.

また、図2(a)及び(b)の例では、受光強度分布特性の等高線がほぼ円形となっている。前述のように受光装置を部屋の隅などに配置する場合、受光装置の光学系に入射する信号光の入射角の分布、すなわち、送信側光源の方向は、円形というよりはむしろ矩形にちかい分布を有する。従って、入射角依存特性が円形である光学系では、信号光を十分に受光することが難しい。   In the examples of FIGS. 2A and 2B, the contour lines of the received light intensity distribution characteristics are almost circular. When the light receiving device is arranged at the corner of the room as described above, the distribution of the incident angle of the signal light incident on the optical system of the light receiving device, that is, the direction of the light source on the transmission side is a distribution that is a rectangle rather than a circle. Have Therefore, it is difficult to sufficiently receive signal light in an optical system having a circular incident angle dependency characteristic.

図3に、上記の点を改良した、本発明の実施例にかかる光学系の構成を示す。図3に示す光学系は、前述の受信装置などに適用されるものであり、本発明を適用した集光レンズ10を備える。なお、図3におけるX軸、Y軸及びZ軸は図1(a)及び(b)において規定したものと同様である。   FIG. 3 shows a configuration of an optical system according to an embodiment of the present invention, which is improved from the above point. The optical system shown in FIG. 3 is applied to the above-described receiving apparatus and the like, and includes a condenser lens 10 to which the present invention is applied. Note that the X-axis, Y-axis, and Z-axis in FIG. 3 are the same as those defined in FIGS.

受光素子11は、光軸52上で、集光レンズ10の集光位置、即ち焦点位置12よりも集光レンズ10側に距離Dだけシフトして配置される。これにより、受光素子11により受光可能な入射光の角度範囲が増大する。   The light receiving element 11 is arranged on the optical axis 52 so as to be shifted by a distance D from the condensing position of the condensing lens 10, that is, from the focal position 12 toward the condensing lens 10. As a result, the angle range of incident light that can be received by the light receiving element 11 is increased.

集光レンズ10は、出射側(図中右側)の面10a及び入射側の面10bがともに非球面形状であり、集光レンズ10の光軸52に対して所定角度範囲内で傾いて入射した入射光の受光素子配置平面における強度分布を受光素子11上に強く分布させるように形成される。図3において、集光レンズ10の光軸52と平行に入射する光が入射光15であり、光軸52に対して所定角度αだけ傾斜して入射した光が入射光16で示されている。このように、光軸52に対して傾斜して入射された入射光の受光素子配置平面における強度分布を受光素子11上に強く分布させるように、集光レンズ10の形状、即ち集光レンズ10の両方の非球面10a及び10bの形状が決定される。なお、集光レンズ10の形状の具体例については後述する。   The condensing lens 10 has an aspherical surface 10a on the exit side (right side in the figure) and an incident surface 10b, and is incident on the optical axis 52 of the condensing lens 10 with an inclination within a predetermined angle range. It is formed so that the intensity distribution of the incident light in the light receiving element arrangement plane is strongly distributed on the light receiving element 11. In FIG. 3, light incident parallel to the optical axis 52 of the condenser lens 10 is incident light 15, and light incident at an angle α with respect to the optical axis 52 is indicated by incident light 16. . As described above, the shape of the condensing lens 10, that is, the condensing lens 10 so that the intensity distribution in the light receiving element arrangement plane of the incident light that is inclined with respect to the optical axis 52 is strongly distributed on the light receiving element 11. The shapes of both aspheric surfaces 10a and 10b are determined. A specific example of the shape of the condenser lens 10 will be described later.

図4(a)〜(c)は、一般的な球面レンズに対して、図3(a)に示す入射光16の光軸52に対する傾斜角αを0°、10°、20°とした場合の、受光素子11における受光強度を示す。即ち、図3(a)において集光レンズ10の代わりに通常の球面レンズを配置した場合の受光素子11上における入射光の受光強度を示す。図4(a)〜(c)において、横軸は受光素子配置平面における受光素子11の中心位置の、光軸52からのずれの距離(図3(b)における距離SF、以下、これを「ズレ量」とも呼ぶ。)を示している。すなわち、本来光軸52上にあるべき受光素子11の中心を光軸に直交するX−Y平面内で光軸52からXまたはY方向にズレ量SFだけずらした場合の受光強度をこのグラフは示している。   4A to 4C show the case where the inclination angle α with respect to the optical axis 52 of the incident light 16 shown in FIG. 3A is 0 °, 10 °, and 20 ° with respect to a general spherical lens. The received light intensity in the light receiving element 11 is shown. That is, FIG. 3A shows the received light intensity of incident light on the light receiving element 11 when a normal spherical lens is arranged instead of the condenser lens 10. 4 (a) to 4 (c), the horizontal axis represents the distance of deviation from the optical axis 52 of the center position of the light receiving element 11 in the light receiving element arrangement plane (distance SF in FIG. Also referred to as “amount of deviation”). That is, this graph shows the received light intensity when the center of the light receiving element 11 that should originally be on the optical axis 52 is shifted from the optical axis 52 in the X or Y direction by the deviation SF in the XY plane orthogonal to the optical axis. Show.

図4(a)では、入射光の傾斜角α=0°であり、受光素子11の中心をX又はY方向に約−18〜18mmの範囲でずらした場合でも必要な受光強度で入射光を受光できることを示している。受光素子11のズレ量SF=約−18mm及び18mmの位置にに受光強度のピークがある。   In FIG. 4A, the incident light has an inclination angle α = 0 °, and the incident light is transmitted with the required light receiving intensity even when the center of the light receiving element 11 is shifted in the range of about −18 to 18 mm in the X or Y direction. It shows that light can be received. There is a peak of received light intensity at positions where the deviation amount SF of the light receiving element 11 is approximately −18 mm and 18 mm.

図4(b)では、入射光の傾斜角α=10°であり、受光素子11の中心をX又はY方向に約−20〜10mmの範囲でずらした場合でも必要な受光強度で入射光を受光できることを示している。受光素子11のズレ量SF=約−20mm及び10mmの位置に受光強度のピークがある。   In FIG. 4B, the incident light has an inclination angle α = 10 °, and the incident light is incident with the required light receiving intensity even when the center of the light receiving element 11 is shifted in the range of about −20 to 10 mm in the X or Y direction. It shows that light can be received. There is a peak of received light intensity at the positions of the deviation amount SF of the light receiving element 11 of approximately −20 mm and 10 mm.

図4(c)では、入射光の傾斜角α=20°であり、受光素子11の中心をX又はY方向に約−17〜8mmの範囲でずらした場合でも必要な受光強度で入射光を受光できることを示している。受光素子11のズレ量SF=約−17mm及び8mmの位置に受光強度のピークがあるが、ズレ量SF=8mm付近のピークにおける受光強度は、ズレ量SF=−17mm付近のピークにおける受光強度よりかなり小さい。   In FIG. 4C, the incident light has an inclination angle α = 20 °, and the incident light is received with the required light receiving intensity even when the center of the light receiving element 11 is shifted in the range of about −17 to 8 mm in the X or Y direction. It shows that light can be received. There is a peak of received light intensity at positions of the deviation amount SF = about −17 mm and 8 mm of the light receiving element 11, but the received light intensity at the peak near the deviation amount SF = 8 mm is more than the received light intensity at the peak near the deviation amount SF = −17 mm. Pretty small.

図4(a)〜(c)において、受光素子11が良好に入射光を受光することができる位置(以下、「最適受光位置」と呼び、図4中符号「CE」で示す)はほぼ各特性の面積を2分する位置により示される。図4(a)においては、ズレ量SF=0mmの位置を中心としてほぼ左右対称の特性であるので、最適受光位置CEはズレ量SF=0mmの位置、即ち光軸52上にある。一方、図4(b)においては最適受光位置CEはズレ量SF=約−5mmの位置付近になり、図4(c)においてはズレ量SF=約−8mmの位置付近になる。このように、球面レンズを使用した場合、球面レンズに対する入射光の傾斜角αを0°〜20°へと変化させると、受光素子11が配置されたX−Y平面上における最適受光位置CEはズレ量SF=−5mm、−8mmというように、光軸上から負の方向、即ち傾斜角αと逆の方向へ変化していく。しかしながら、実際の受信装置においては、受光素子11は光軸52上、即ち、ズレ量SF=0の位置に配置される。よって、球面レンズに対する入射光の傾斜角αが大きくなるほど受光素子11による受光強度が低くなる。つまり、球面レンズに対して外側から大きな傾斜角で入射する光ほど受光素子11で受光しにくくなる。   4A to 4C, the positions at which the light receiving element 11 can receive incident light satisfactorily (hereinafter referred to as “optimum light receiving position” and indicated by the symbol “CE” in FIG. 4) are almost the same. It is indicated by the position that divides the area of the characteristic into two. In FIG. 4A, since the characteristic is almost symmetrical about the position of the deviation amount SF = 0 mm, the optimum light receiving position CE is at the position of the deviation amount SF = 0 mm, that is, on the optical axis 52. On the other hand, in FIG. 4B, the optimum light receiving position CE is in the vicinity of the position of the deviation amount SF = about −5 mm, and in FIG. 4C, it is in the vicinity of the position of the deviation amount SF = about −8 mm. As described above, when the spherical lens is used, when the inclination angle α of the incident light with respect to the spherical lens is changed from 0 ° to 20 °, the optimum light receiving position CE on the XY plane on which the light receiving element 11 is arranged is obtained. The shift amount SF changes from −5 mm to −8 mm in the negative direction from the optical axis, that is, the direction opposite to the tilt angle α. However, in the actual receiving apparatus, the light receiving element 11 is arranged on the optical axis 52, that is, at a position where the deviation amount SF = 0. Accordingly, the intensity of light received by the light receiving element 11 decreases as the inclination angle α of the incident light with respect to the spherical lens increases. That is, the light that enters the spherical lens from the outside with a large inclination angle is less likely to be received by the light receiving element 11.

次に、本発明による集光レンズ10を用いた場合の同様の特性を図5(a)〜(c)に示す。図5(a)〜(c)は、集光レンズ10に対して、図3に示す入射光16の光軸52に対する傾斜角αを0°、10°、20°とした場合の、受光素子11における受光強度を示す。図4(a)〜(c)と同様に、図5(a)〜(c)において横軸は受光素子11の配置平面における光軸52からのズレ量SFを示している。   Next, similar characteristics when the condenser lens 10 according to the present invention is used are shown in FIGS. 5A to 5C show light receiving elements when the inclination angle α of the incident light 16 shown in FIG. 3 with respect to the optical axis 52 of the condenser lens 10 is 0 °, 10 °, and 20 °. 11 shows the received light intensity. Similarly to FIGS. 4A to 4C, in FIGS. 5A to 5C, the horizontal axis indicates the deviation SF from the optical axis 52 in the arrangement plane of the light receiving element 11.

図5(a)では、入射光の傾斜角α=0°であり、受光素子11の中心をX又はY方向に約−20〜20mmの範囲でずらした場合でも必要な受光強度で入射光を受光できることを示している。また、受光素子11のズレ量SF=約−20〜20mmの範囲内では受光強度はほぼ一定である。よって、最適受光位置CEはほぼズレ量SF=0、即ち光軸上にある。   In FIG. 5A, the incident light has an inclination angle α = 0 °, and the incident light is incident with the required light receiving intensity even when the center of the light receiving element 11 is shifted in the range of about −20 to 20 mm in the X or Y direction. It shows that light can be received. Further, the received light intensity is substantially constant within the range of the deviation amount SF of the light receiving element 11 from about -20 to 20 mm. Therefore, the optimum light receiving position CE is approximately on the optical axis, ie, the shift amount SF = 0.

図5(b)では、入射光の傾斜角α=10°であり、受光素子11の中心をX又はY方向に約−25〜15mmの範囲でずらした場合でも必要な受光強度で入射光を受光できることを示している。また、受光素子11のズレ量SF=−25mm側には受光強度の大きなピークは存在せず、ズレ量SF=15mmの付近に受光強度の大きなピークがあるため、最適受光位置CEはほぼズレ量SF=0、即ち光軸上に維持される。   In FIG. 5B, the incident light has an inclination angle α = 10 °, and the incident light is transmitted with the required light receiving intensity even when the center of the light receiving element 11 is shifted in the range of about −25 to 15 mm in the X or Y direction. It shows that light can be received. Further, since there is no peak with a large light reception intensity on the side of the deviation amount SF = −25 mm of the light receiving element 11 and there is a peak with a large light reception intensity in the vicinity of the deviation amount SF = 15 mm, the optimum light receiving position CE is almost the amount of deviation. SF = 0, that is, maintained on the optical axis.

図5(c)では、入射光の傾斜角α=20°であり、受光素子11の中心をX又はY方向に約−25〜8mmの範囲でずらした場合でも必要な受光強度で入射光を受光できることを示している。また、受光素子11のズレ量SF=−25mm側には受光強度の大きなピークは存在せず、ズレ量=8mmの付近に受光強度の大きなピークがあるため、最適受光位置CEはほぼズレ量=0、即ち光軸52上に維持される。   In FIG. 5 (c), the incident light has an inclination angle α = 20 °, and even when the center of the light receiving element 11 is shifted in the range of about −25 to 8 mm in the X or Y direction, It shows that light can be received. Further, since there is no peak with a large received light intensity on the side of the shift amount SF = −25 mm of the light receiving element 11 and there is a peak with a large received light intensity near the shift amount = 8 mm, the optimum light receiving position CE is almost equal to the shift amount = 0, that is, maintained on the optical axis 52.

このように、本発明の非球面型集光レンズ10を用い、受光素子11を集光レンズ10よりに配置することにより、入射光の傾斜角αが変化しても、入射光の最適受光位置CE、即ち入射光を必要な受光強度で受光することができる位置をズレ量SF=0付近、即ちほぼ光軸52上に維持することができるので、集光レンズ10に対して広い角度で入射する入射光を十分な強度で受光することが可能となる。   Thus, by using the aspherical condensing lens 10 of the present invention and disposing the light receiving element 11 closer to the condensing lens 10, even if the inclination angle α of the incident light changes, the optimum light receiving position of the incident light CE, that is, the position where incident light can be received with the required light receiving intensity can be maintained near the deviation SF = 0, that is, substantially on the optical axis 52, so that it is incident on the condenser lens 10 at a wide angle. It is possible to receive incident light with sufficient intensity.

図6(a)に集光レンズ10に対する入射光の受光素子11上における受光強度分布を3次元の等高線図で示す。なお、X軸及びY軸の定義は図1と同様である。また、図6(b)は図6(a)に示す等高線図を上方から見た図を示す。図示のように、受光強度はX軸方向及びY軸方向の傾斜角=0の位置を中心として受光強度が比較的フラットな領域70を有する。図2と比較すると理解されるように、集光レンズ10によれば光軸に対して垂直及び水平方向に入射角が多少ずれた場合でも、受光強度が大きく低下しないことを示している。   FIG. 6A shows the received light intensity distribution on the light receiving element 11 of the incident light with respect to the condenser lens 10 in a three-dimensional contour map. The definitions of the X axis and the Y axis are the same as those in FIG. FIG. 6B is a view of the contour map shown in FIG. 6A as viewed from above. As shown in the figure, the received light intensity has a region 70 in which the received light intensity is relatively flat with the inclination angle = 0 in the X-axis direction and the Y-axis direction as the center. As understood from comparison with FIG. 2, it is shown that the collective lens 10 does not significantly reduce the received light intensity even when the incident angle is slightly shifted in the vertical and horizontal directions with respect to the optical axis.

次に、集光レンズ10の作製方法について説明する。集光レンズ10は、円弧から偶数次補正した曲線に基づいて作製することができる。集光レンズ10の作製方法を図7に模式的に示す。なお、図7においてX軸、Y軸及びZ軸は図3に示すのと同方向に規定される。   Next, the manufacturing method of the condensing lens 10 is demonstrated. The condensing lens 10 can be produced based on a curve that is even-order corrected from an arc. A method for producing the condenser lens 10 is schematically shown in FIG. In FIG. 7, the X axis, the Y axis, and the Z axis are defined in the same direction as shown in FIG.

まず、図7(a)に示すように、Y軸方向に延びる所定長さの曲線30を規定する。この曲線は、円弧を偶数次補正(2次、4次、6次、...)することにより規定される。曲線30は、頂点30aを有する。次に、図7(b)に示すように、この曲線30と同一形状の曲線であってX軸方向に延びる曲線35を規定する。曲線35は、曲線30の頂点30aに対応する頂点35aを有する。   First, as shown in FIG. 7A, a curve 30 having a predetermined length extending in the Y-axis direction is defined. This curve is defined by even-order correction (second order, fourth order, sixth order,...) Of the arc. The curve 30 has a vertex 30a. Next, as shown in FIG. 7B, a curve 35 having the same shape as the curve 30 and extending in the X-axis direction is defined. The curve 35 has a vertex 35 a corresponding to the vertex 30 a of the curve 30.

次に、図7(c)に示すように、頂点30aと頂点35aとが一致するように曲線30及び35を直交させ、図7(d)に示すように曲線35をY軸の正負の方向(図の上下方向)に曲線30に沿って平行移動する。これにより、図7(e)に示すように非球面37が規定される。集光レンズ10は、こうして作製された非球面を入射側面10b及び出射側面10aに有する。なお、入射側面10bと出射側面10bの非球面は、曲線30及び35の形状を異ならせることにより、異なる形状の非球面として形成される。   Next, as shown in FIG. 7C, the curves 30 and 35 are orthogonally crossed so that the vertex 30a and the vertex 35a coincide with each other, and as shown in FIG. Translate along the curve 30 (vertical direction in the figure). Thereby, the aspherical surface 37 is defined as shown in FIG. The condensing lens 10 has the aspheric surfaces thus produced on the incident side surface 10b and the emission side surface 10a. The aspheric surfaces of the incident side surface 10b and the emission side surface 10b are formed as aspheric surfaces having different shapes by making the shapes of the curves 30 and 35 different.

なお、上記方法は、Y軸方向に延びる曲線30と同一形状の曲線35をY軸方向に沿って平行移動することにより非球面を形成しているが、その逆に、X軸方向に延びる曲線と同一形状の曲線をX軸方向に沿って平行移動することにより非球面を形成することもできる。   In the above method, an aspherical surface is formed by translating a curve 35 having the same shape as the curve 30 extending in the Y-axis direction along the Y-axis direction, but conversely, a curve extending in the X-axis direction. It is also possible to form an aspherical surface by translating the same shape of the curve along the X-axis direction.

図8に、上記の方法に従って作製された集光レンズの例を示す。この例では、Y方向に延びる曲線30の形状は式1により規定される。   FIG. 8 shows an example of a condensing lens manufactured according to the above method. In this example, the shape of the curve 30 extending in the Y direction is defined by Equation 1.

Figure 2005102171
Figure 2005102171

ここで、Cは非球面の曲率を示し、kは非球面の形状を規定する係数である。 Here, C indicates the curvature of the aspheric surface, and k is a coefficient that defines the shape of the aspheric surface.

なお、式1においてZの値はY2の関数であり、式1は円弧を2次で補正した曲線30を示している。円弧を4次、6次などで補正した曲線の式は、式1にY2、Y4などの項を有し、それら各項に係数k(k1、k2、...)が乗算されることになる。また、X軸方向の曲線35もXに関する同様の式2により規定される。 In Equation 1, the value of Z is a function of Y 2 , and Equation 1 shows a curve 30 obtained by correcting the circular arc in quadratic order. The equation of the curve obtained by correcting the circular arc in the fourth, sixth, etc. has terms such as Y 2 and Y 4 in Equation 1, and each term is multiplied by a coefficient k (k1, k2,...). It will be. Further, the curve 35 in the X-axis direction is also defined by the same expression 2 relating to X.

Figure 2005102171
Figure 2005102171

図8に示す集光レンズ10の例における各値は以下の通りであり、Y軸方向もX軸方向も同一である。   Each value in the example of the condenser lens 10 shown in FIG. 8 is as follows, and the Y-axis direction and the X-axis direction are the same.

・レンズ幅:70mm
・屈折率:1.41
・入射側非球面の曲率Cin:40mm-1
・入射側非球面の形状係数:−1
・出射側非球面の曲率Cout:50mm-1
・出射側非球面の形状係数:−5
・レンズ厚さ:15mm
・受光位置:レンズの入射側面から50mm(図8の受光素子11の位置)
この集光レンズ例について、図8に示す位置に受光素子11を配置し、集光レンズ10に対して入射角α=20°(図3参照)で入射させた光の受光強度を図9に示す。図5(c)に示す例と同様に、受光強度分布の中央、即ち、最適受光位置CEはズレ量SF=0付近にあることがわかる。
・ Lens width: 70mm
-Refractive index: 1.41
-Curvature Cin of incident side aspheric surface: 40 mm -1
-Shape factor of incident aspheric surface: -1
-Output side aspheric curvature Cout: 50 mm -1
-Shape factor of exit aspheric surface: -5
・ Lens thickness: 15mm
Light receiving position: 50 mm from the incident side of the lens (position of the light receiving element 11 in FIG. 8)
In this example of the condensing lens, the light receiving element 11 is arranged at the position shown in FIG. 8, and the light receiving intensity of light incident on the condensing lens 10 at an incident angle α = 20 ° (see FIG. 3) is shown in FIG. Show. As in the example shown in FIG. 5C, it can be seen that the center of the received light intensity distribution, that is, the optimum light receiving position CE is in the vicinity of the shift amount SF = 0.

図10に本発明による受信装置の光学系の応用例を示す。図10に示すように、本発明の集光レンズ10と受光素子11との間に第2の集光レンズ14を配置することができる。この第2の集光レンズ14は球面レンズとすることができる。第2の集光レンズ14により、集光レンズ10により受光した入射光の受光量を改善し、受光角度範囲を拡大することができる。   FIG. 10 shows an application example of the optical system of the receiving apparatus according to the present invention. As shown in FIG. 10, the 2nd condensing lens 14 can be arrange | positioned between the condensing lens 10 and the light receiving element 11 of this invention. The second condenser lens 14 can be a spherical lens. With the second condenser lens 14, the amount of incident light received by the condenser lens 10 can be improved, and the light receiving angle range can be expanded.

[受信装置の例]
次に、上記の受信装置の適用例を説明する。図11(a)に本発明の受信装置を適用した光通信システムの基本構成を示す。送信装置100から光変調波101を送信し、これを受信装置200により受信する。
[Example of receiver]
Next, an application example of the above receiving apparatus will be described. FIG. 11A shows a basic configuration of an optical communication system to which the receiving apparatus of the present invention is applied. The optical modulation wave 101 is transmitted from the transmission device 100 and is received by the reception device 200.

図11(b)に、送信装置100及び受信装置200の構成を示す。図示のように、送信装置100は、変調部110と光送信部120とを備える。変調部110には、送信すべきデータが入力され、これを変調して変調波M1Txを生成し、光送信部120へ供給する。光送信部120は、変調波M1Txを光信号に変換し、光変調波101として送信する。   FIG. 11B shows configurations of the transmission device 100 and the reception device 200. As illustrated, the transmission device 100 includes a modulation unit 110 and an optical transmission unit 120. The modulation unit 110 receives data to be transmitted, modulates the data to generate a modulated wave M1Tx, and supplies the modulated wave M1Tx to the optical transmission unit 120. The optical transmission unit 120 converts the modulated wave M1Tx into an optical signal and transmits it as the optical modulated wave 101.

受信装置200は、光受信部220と復調部210とを備える。光受信部220は、光変調波101を受信し、電気信号に変換して変調波M1Rxを生成し、復調部210へ供給する。復調部210は、送信装置100の変調部110の変調方式に応じた復調処理を行い、データを復元する。   The receiving device 200 includes an optical receiving unit 220 and a demodulating unit 210. The optical receiving unit 220 receives the modulated optical wave 101, converts it into an electrical signal, generates a modulated wave M1Rx, and supplies the modulated wave M1Rx to the demodulating unit 210. The demodulation unit 210 performs demodulation processing according to the modulation scheme of the modulation unit 110 of the transmission device 100 and restores data.

図12(a)に、変調部110の構成を示す。変調部110は、変調処理部111と、ルートナイキストフィルタ112と、アップコンバータ113と、D/A変換器114と、スムージングフィルタ115とを含む。データは、変調処理部111により所定の変調がなされ、ルートナイキストフィルタ112により帯域制限がなされた後、アップコンバータ113によりキャリア周波数にアップコンバートされる。キャリア周波数へ変換後の信号はD/A変換器114によりアナログ信号に変換され、ローパスフィルタであるスムージングフィルタにより、D/A変換による折り返し成分などが除去される。こうして、変調波M1Txが生成される。   FIG. 12A shows the configuration of the modulation unit 110. Modulation section 110 includes a modulation processing section 111, a root Nyquist filter 112, an up converter 113, a D / A converter 114, and a smoothing filter 115. The data is subjected to predetermined modulation by the modulation processing unit 111, band-limited by the root Nyquist filter 112, and then up-converted to a carrier frequency by the up-converter 113. The signal converted to the carrier frequency is converted into an analog signal by the D / A converter 114, and the aliasing component due to the D / A conversion is removed by the smoothing filter which is a low-pass filter. In this way, the modulated wave M1Tx is generated.

図13(a)に光送信部120の構成を示す。光送信部120は、電圧電流変換部121と、光デバイス122と、レンズ123を有する。なお、光デバイス122としては、レーザダイオード、LEDとレーザの中間のデバイスであるSLD(スーパールミネッセントダイオード)、LEDなどを使用することができる。電圧電流変換部121は変調波M1Txの電圧を電流に変換し、光デバイス122に通電する電流を生成する。光デバイス122は、生成された電流により駆動されて発光し、光変調波L1を出力する。その光変調波L1はレンズ123により集められて送信される。   FIG. 13A shows the configuration of the optical transmitter 120. The optical transmission unit 120 includes a voltage / current conversion unit 121, an optical device 122, and a lens 123. As the optical device 122, a laser diode, an SLD (super luminescent diode) that is an intermediate device between an LED and a laser, an LED, or the like can be used. The voltage-current converter 121 converts the voltage of the modulated wave M1Tx into a current, and generates a current that is passed through the optical device 122. The optical device 122 is driven by the generated current to emit light, and outputs a light modulation wave L1. The modulated light wave L1 is collected by the lens 123 and transmitted.

図13(b)に光受信部220の構成を示す。光受信部220は、レンズ221と、光デバイス222と、電流電圧変換部223と、アンプ224とを有する。レンズ221は光変調波L1を集光して光デバイス222へ送る。光デバイス222は、受光した光量に応じた電流を出力し、これを電流電圧変換器223が電圧に変換してアンプ224へ供給する。アンプ224は入力された信号を所定の割合で増幅して変調波M1Rxを出力する。本発明の集光レンズ10はこのレンズ221として使用することができる。また、光デバイス222は前述の受光素子11に対応する。受光素子としてはPINフォトダイオード、アバランシェフォトダイオード等を使用することが出来る。   FIG. 13B shows the configuration of the optical receiver 220. The optical receiver 220 includes a lens 221, an optical device 222, a current-voltage converter 223, and an amplifier 224. The lens 221 collects the modulated light wave L1 and sends it to the optical device 222. The optical device 222 outputs a current corresponding to the received light amount, and the current / voltage converter 223 converts the current into a voltage and supplies the voltage to the amplifier 224. The amplifier 224 amplifies the input signal at a predetermined ratio and outputs a modulated wave M1Rx. The condensing lens 10 of the present invention can be used as this lens 221. The optical device 222 corresponds to the light receiving element 11 described above. As the light receiving element, a PIN photodiode, an avalanche photodiode, or the like can be used.

図3(b)に、復調部210の構成を示す。復調部210は、アンチエイリアスフィルタ211と、A/D変換器212と、ダウンコンバータ213と、ルートナイキストフィルタ214と、復調処理部215とを有する。変調波M1Rxはアンチエイリアスフィルタ211に入力され、帯域制限された後、A/D変換器212によりデジタル信号に変換される。そのデジタル信号はキャリア周波数であるので、ダウンコンバータ213によりベースバンドに周波数変換される。そして、ルートナイキストフィルタ214により使用帯域に帯域制限され、復調処理部215により元データが復元される。   FIG. 3B shows the configuration of the demodulator 210. The demodulator 210 includes an anti-aliasing filter 211, an A / D converter 212, a down converter 213, a root Nyquist filter 214, and a demodulation processor 215. The modulated wave M1Rx is input to the anti-aliasing filter 211, band-limited, and then converted into a digital signal by the A / D converter 212. Since the digital signal has a carrier frequency, the down-converter 213 converts the frequency to baseband. Then, the bandwidth is limited to the use band by the route Nyquist filter 214, and the original data is restored by the demodulation processing unit 215.

以上のようにして、光デバイスを使用して送信装置100から受信装置200へのデータ通信が行われる。   As described above, data communication from the transmission apparatus 100 to the reception apparatus 200 is performed using the optical device.

球面レンズを用いた光信号受信装置の光学系の構成例を示す。An example of a configuration of an optical system of an optical signal receiving apparatus using a spherical lens will be described. 球面レンズを用いた光信号受信装置の光学系による受光角度に対する強度分布例(入射角度 vs 受光強度)を示す。An intensity distribution example (incident angle vs. received light intensity) with respect to a received light angle by an optical system of an optical signal receiving device using a spherical lens is shown. 本発明による集光レンズを用いた光信号受信装置の光学系の構成を示す。1 shows a configuration of an optical system of an optical signal receiving apparatus using a condenser lens according to the present invention. 球面レンズを用いた光信号受信装置の光学系による受光強度分布の入射角依存性例(光軸からのズレ量 vs 受光強度、パラメターは入射角度)を示す。An example of the incident angle dependence of the received light intensity distribution by the optical system of the optical signal receiving device using a spherical lens (the amount of deviation from the optical axis vs the received light intensity, the parameter being the incident angle) is shown. 本発明の集光レンズを用いた光信号受信装置の光学系による受光強度分布の入射角依存性例(光軸からのズレ量 vs 受光強度、パラメターは入射角度)を示す。An example of the incident angle dependence of the received light intensity distribution by the optical system of the optical signal receiving apparatus using the condensing lens of the present invention (amount of deviation from the optical axis vs received light intensity, the parameter being the incident angle) is shown. 本発明の集光レンズを用いた光信号受信装置の光学系による受光角度に対する強度分布例(入射角度 vs 受光強度)を示す。The example of intensity distribution (incident angle vs. received light intensity) with respect to the received light angle by the optical system of the optical signal receiving apparatus using the condensing lens of the present invention is shown. 本発明の集光レンズの作製方法の説明図である。It is explanatory drawing of the manufacturing method of the condensing lens of this invention. 本発明の集光レンズの一例を示す。An example of the condensing lens of this invention is shown. 図8に示す集光レンズの受光強度分布の入射角依存性例(光軸からのズレ量 vs 受光強度、パラメターは入射角度)を示す。FIG. 8 shows an incident angle dependency example of the received light intensity distribution of the condenser lens shown in FIG. 8 (deviation amount from the optical axis vs received light intensity, parameters are incident angles). 本発明の集光レンズを用いた光信号受信装置の光学系の他の例を示す。The other example of the optical system of the optical signal receiver using the condensing lens of this invention is shown. 本発明の光信号受信装置を用いる光通信システムの基本構成、並びにその送信装置及び受信装置の構成を示す。1 shows a basic configuration of an optical communication system using an optical signal receiving device of the present invention, and a configuration of a transmitting device and a receiving device thereof. 図11に示す変調部及び復調部の構成を示す。The structure of the modulation part shown in FIG. 11 and a demodulation part is shown. 図11に示す光送信部及び光受信部の構成を示す。The structure of the optical transmission part shown in FIG. 11 and an optical reception part is shown.

符号の説明Explanation of symbols

10 集光レンズ
11 受光素子
14 第2の集光レンズ
15、16 入射光
100 送信装置
200 受信装置
DESCRIPTION OF SYMBOLS 10 Condensing lens 11 Light receiving element 14 2nd condensing lens 15, 16 Incident light 100 Transmission apparatus 200 Reception apparatus

Claims (4)

光信号を集光レンズで受光素子上に集光して受信する光信号受信装置であって、
前記受光素子は前記集光レンズの集光点よりも前記集光レンズ側に配置され、
前記集光レンズは、前記集光レンズの光軸に対して所定角度範囲内で傾斜して入射した入射光の受光素子配置平面における強度分布を受光素子上に強く分布させる非球面形状を有することを特徴とする光信号受信装置。
An optical signal receiving device that collects and receives an optical signal on a light receiving element with a condenser lens,
The light receiving element is disposed closer to the condenser lens than the condensing point of the condenser lens,
The condensing lens has an aspherical shape that strongly distributes the intensity distribution in the light receiving element arrangement plane of incident light incident with an inclination within a predetermined angle range with respect to the optical axis of the condensing lens on the light receiving element. An optical signal receiving device.
前記集光レンズは、円弧を偶数次補正して得られる2つの曲線を各々の頂点を一致させて相互に直交させて配置し、前記2つの曲線のうち一方の曲線を他方の曲線に沿って平行移動することにより規定される非球面を有することを特徴とする請求項1に記載の光信号受信装置。 The condensing lens arranges two curves obtained by even-order correction of an arc so that the vertices coincide with each other and are orthogonal to each other, and one of the two curves extends along the other curve. The optical signal receiving apparatus according to claim 1, wherein the optical signal receiving apparatus has an aspherical surface defined by translation. 前記集光レンズの1つの径方向をX軸方向、前記1つの径方向に垂直な他の径方向をY軸方向、前記集光レンズの光軸方向をZ軸方向としたとき、前記2つの曲線はそれぞれ、
Figure 2005102171
及び
Figure 2005102171
により規定されることを特徴とする請求項2に記載の光信号受信装置。
When one radial direction of the condenser lens is an X-axis direction, another radial direction perpendicular to the one radial direction is a Y-axis direction, and an optical axis direction of the condenser lens is a Z-axis direction, the two Each curve is
Figure 2005102171
as well as
Figure 2005102171
The optical signal receiving apparatus according to claim 2, wherein the optical signal receiving apparatus is defined by:
前記集光レンズと前記受光素子の間に配置され、前記集光素子による前記光信号の受光角度範囲を拡大する別の集光レンズを備えることを特徴とする請求項1に記載の光信号受信装置。
The optical signal reception according to claim 1, further comprising another condensing lens that is disposed between the condensing lens and the light receiving element and expands a light receiving angle range of the optical signal by the condensing element. apparatus.
JP2004235815A 2003-08-21 2004-08-13 Optical signal receiving system Pending JP2005102171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004235815A JP2005102171A (en) 2003-08-21 2004-08-13 Optical signal receiving system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003208205 2003-08-21
JP2004235815A JP2005102171A (en) 2003-08-21 2004-08-13 Optical signal receiving system

Publications (1)

Publication Number Publication Date
JP2005102171A true JP2005102171A (en) 2005-04-14

Family

ID=34466680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004235815A Pending JP2005102171A (en) 2003-08-21 2004-08-13 Optical signal receiving system

Country Status (1)

Country Link
JP (1) JP2005102171A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014525717A (en) * 2011-08-26 2014-09-29 ジョセフ,ジョン,アール. High-speed free space optical communication
US10038304B2 (en) 2009-02-17 2018-07-31 Trilumina Corp. Laser arrays for variable optical properties
US10244181B2 (en) 2009-02-17 2019-03-26 Trilumina Corp. Compact multi-zone infrared laser illuminator
US10615871B2 (en) 2009-02-17 2020-04-07 Trilumina Corp. High speed free-space optical communications
US11095365B2 (en) 2011-08-26 2021-08-17 Lumentum Operations Llc Wide-angle illuminator module
WO2022201940A1 (en) * 2021-03-22 2022-09-29 日本電気株式会社 Light-receiving device, reception device, and communication device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10038304B2 (en) 2009-02-17 2018-07-31 Trilumina Corp. Laser arrays for variable optical properties
US10244181B2 (en) 2009-02-17 2019-03-26 Trilumina Corp. Compact multi-zone infrared laser illuminator
US10615871B2 (en) 2009-02-17 2020-04-07 Trilumina Corp. High speed free-space optical communications
US10938476B2 (en) 2009-02-17 2021-03-02 Lumentum Operations Llc System for optical free-space transmission of a string of binary data
US11075695B2 (en) 2009-02-17 2021-07-27 Lumentum Operations Llc Eye-safe optical laser system
US11121770B2 (en) 2009-02-17 2021-09-14 Lumentum Operations Llc Optical laser device
US11405105B2 (en) 2009-02-17 2022-08-02 Lumentum Operations Llc System for optical free-space transmission of a string of binary data
JP2014525717A (en) * 2011-08-26 2014-09-29 ジョセフ,ジョン,アール. High-speed free space optical communication
US11095365B2 (en) 2011-08-26 2021-08-17 Lumentum Operations Llc Wide-angle illuminator module
US11451013B2 (en) 2011-08-26 2022-09-20 Lumentum Operations Llc Wide-angle illuminator module
WO2022201940A1 (en) * 2021-03-22 2022-09-29 日本電気株式会社 Light-receiving device, reception device, and communication device

Similar Documents

Publication Publication Date Title
JP2015096878A (en) Optical reception module and optical transmission module
JP2005102171A (en) Optical signal receiving system
US6864553B2 (en) Method and apparatus for a backsided and recessed optical package connection
CN1914840A (en) Optical signal transmission apparatus, system and method
US20080106804A1 (en) Light emitting module and light receiving module
Moon et al. Indoor positioning system using LED lights and a dual image sensor
US7043360B2 (en) Sensor unit
JP2023503843A (en) Apparatus and method for optical communication with remote node
KR101403912B1 (en) Complex carrier demodulation method and device
US20050051710A1 (en) Light signal receiving apparatus
US20090122395A1 (en) Light emitting device, light receiving device, spatial transmission device, lens design method, and illuminating device
EP0995969A3 (en) Semiconductor device, semiconductor laser and gyro
CN105680943B (en) A kind of visible light communication system, method and relevant device
CN110493868B (en) Visible light positioning method based on aperture receiver and weighted centroid positioning method
Faruque et al. Orthogonal on–off keying for free-space laser communications with ambient light cancellation
Liu et al. A simple and effective tracking scheme for visible light communication systems
US20040052535A1 (en) Modulating apparatus, transmitting apparatus and computer program product
JP4019507B2 (en) Optical space transmission device and optical space transmission method
JP2005117614A (en) In-vehicle camera system
CN112117835B (en) Laser alignment method and related device
CN111866411B (en) Content display apparatus, method, device, and computer-readable storage medium
US7308203B1 (en) Free space optical data link for aircraft
Vieira et al. Visible light communication cooperative system to support indoor guidance services
EP4155785A1 (en) Meta-optical device and method of manufacturing metasurface
CN113572527A (en) Heterogeneous light beam visible light communication physical layer safety pattern comprehensive system and method