JP2005101482A - Laser device and method for driving same - Google Patents

Laser device and method for driving same Download PDF

Info

Publication number
JP2005101482A
JP2005101482A JP2003392089A JP2003392089A JP2005101482A JP 2005101482 A JP2005101482 A JP 2005101482A JP 2003392089 A JP2003392089 A JP 2003392089A JP 2003392089 A JP2003392089 A JP 2003392089A JP 2005101482 A JP2005101482 A JP 2005101482A
Authority
JP
Japan
Prior art keywords
frequency modulation
switch element
time
control signal
modulation signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003392089A
Other languages
Japanese (ja)
Other versions
JP4120569B2 (en
Inventor
Hidekazu Tanaka
英一 田中
Tetsuo Kojima
哲夫 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003392089A priority Critical patent/JP4120569B2/en
Publication of JP2005101482A publication Critical patent/JP2005101482A/en
Application granted granted Critical
Publication of JP4120569B2 publication Critical patent/JP4120569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method for driving a laser device which can store the pulse waveform of a stable single peak in time. <P>SOLUTION: A plurality of Q switches 4 and 5 are arranged in a resonator, and each high frequency modulation signal generated by each high frequency modulation signal generating means 6 and 7 is inputted on the basis of a control signal corresponding to each Q switch generated by a control signal generating means 8 which is common to those Q switches 4 and 5, and the diffraction action of each Q switch element is controlled to execute pulse driving. A laser device is configured to measure an operation delay time corresponding to the control signal of each Q switch 4 and 5, and when any one of those Q switches is used as a reference, the operation delay time of the other Q switch is canceled, and an adjustment time based on the operation delay time measured for each control signal of each Q switch is set so that the operations can relatively be made in-phase. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はレーザ装置およびそのレーザ装置の駆動方法に関するもので、特に共振器中にQスイッチ素子を複数配置したレーザ装置およびその駆動方法に関するものである。   The present invention relates to a laser device and a driving method of the laser device, and more particularly to a laser device in which a plurality of Q switch elements are arranged in a resonator and a driving method thereof.

従来のQスイッチ方式のレーザ装置は、例えば特許文献1の図1に開示されたような装置構成を備えていた。特許文献1の図1に示す従来のレーザ装置のレーザ発振器では、YAG結晶とその励起源系とを含むキャビティに対して対向する位置に全反射鏡と出力鏡が共振器ミラーとして機能すべく設置されている。全反射鏡と出射鏡が構成する共振器内の光軸上で、第1A/O素子は全反射鏡側に、第2A/O素子は出力鏡側に配置されている。各々のA/O素子には高周波変調信号発生部が別個に接続されており、各々の高周波変調信号発生部はさらに共通の制御信号発生部に接続されている。なお、A/O素子とは音響光学素子を指し、Qスイッチ素子の一種である。   A conventional Q-switch type laser device has an apparatus configuration as disclosed in FIG. In the laser oscillator of the conventional laser apparatus shown in FIG. 1 of Patent Document 1, the total reflection mirror and the output mirror are installed to function as a resonator mirror at a position facing a cavity including the YAG crystal and its excitation source system. Has been. On the optical axis in the resonator formed by the total reflection mirror and the output mirror, the first A / O element is disposed on the total reflection mirror side, and the second A / O element is disposed on the output mirror side. Each A / O element is individually connected to a high frequency modulation signal generator, and each high frequency modulation signal generator is further connected to a common control signal generator. The A / O element refers to an acousto-optic element and is a kind of Q switch element.

A/O素子は振動子と例えば石英からなり、振動子を用いて石英を高周波で振動させると、石英内に超音波が伝送されるようになっている。この超音波により石英内に屈折率の疎密が形成され、石英が回折格子としての作用を発揮する。従って、外部からの高周波変調信号によって発生した超音波が伝送されている石英内にある入射角度θで入射したレーザ光は、音響光学効果によって生じる回折作用により2θだけ光路が曲げられることとなる。一方、超音波が伝送していない石英内では、レーザ光は直進する性質を有する。かかる回折作用を利用して、全反射鏡と出射鏡間のレーザ光を共振させたり、あるいは共振を抑制することが可能となって、Qスイッチ素子としての役割を果たす。   The A / O element is composed of a vibrator and, for example, quartz. When quartz is vibrated at a high frequency using the vibrator, ultrasonic waves are transmitted into the quartz. This ultrasonic wave forms a refractive index density in the quartz, and the quartz acts as a diffraction grating. Accordingly, the optical path of the laser beam incident at an incident angle θ in the quartz through which the ultrasonic wave generated by the external high-frequency modulation signal is transmitted is bent by 2θ due to the diffraction action caused by the acoustooptic effect. On the other hand, the laser beam has a property of going straight in quartz where ultrasonic waves are not transmitted. Utilizing this diffraction action, it becomes possible to resonate the laser light between the total reflection mirror and the exit mirror, or to suppress the resonance, thereby serving as a Q switch element.

次に、従来のレーザ装置の駆動方法を特許文献1の図2に基づき説明する。なお、特許文献1の図2中、C1とMrf1は第1A/O素子に対する制御信号と高周波変調信号を示し、C2とMrf2は第2A/O素子に対する制御信号と高周波変調信号を示している。また、n(t)は反転分布の時間変化を示し、P(t)はパルスレーザ波形、n∞は反転分布の限界値、niは反転分布の最大値、nfは反転分布の最小値、ntは反転分布のしきい値、をそれぞれ示している。   Next, a conventional laser device driving method will be described with reference to FIG. In FIG. 2 of Patent Document 1, C1 and Mrf1 indicate a control signal and a high-frequency modulation signal for the first A / O element, and C2 and Mrf2 indicate a control signal and a high-frequency modulation signal for the second A / O element. Also, n (t) represents the time variation of the inversion distribution, P (t) is the pulse laser waveform, n∞ is the limit value of the inversion distribution, ni is the maximum value of the inversion distribution, nf is the minimum value of the inversion distribution, nt Represents the threshold value of the inversion distribution.

第1A/O素子において、制御信号C1が印加されていた状態からオフの状態になると、第1A/O素子は今まで印加されていた高周波変調信号Mrf1から開放される。すなわち、高周波変調信号発生部は第1A/O素子に対する高周波変調信号Mrf1の印加を停止する。かかる印加停止により、第1A/O素子の回折作用がなくなり、キャビティ内の光は第1A/O素子を透過できるようになる。   When the first A / O element is turned off from the state in which the control signal C1 is applied, the first A / O element is released from the high-frequency modulation signal Mrf1 that has been applied so far. That is, the high frequency modulation signal generator stops applying the high frequency modulation signal Mrf1 to the first A / O element. By stopping the application, the diffraction effect of the first A / O element disappears, and the light in the cavity can pass through the first A / O element.

一方、制御信号発生部における所定の遅延時間Δtの経過後、第2A/O素子に対する制御信号C2をオフすると、第2A/O素子はそれまで印加されていた高周波変調信号Mrf2から開放される。すなわち、高周波変調信号発生部は第2A/O素子に対する高周波変調信号Mrf2の印加を停止する。かかる印加停止により、キャビティ内の光は第2A/O素子をも透過できるようになる。   On the other hand, when the control signal C2 for the second A / O element is turned off after a lapse of the predetermined delay time Δt in the control signal generator, the second A / O element is released from the high-frequency modulation signal Mrf2 that has been applied so far. That is, the high frequency modulation signal generation unit stops applying the high frequency modulation signal Mrf2 to the second A / O element. By stopping the application, the light in the cavity can be transmitted through the second A / O element.

第2A/O素子が高周波変調信号Mrf2から開放された時点から共振器損失が減少して共振器内の誘導放出が開始し、パルスレーザ光が発生する。すなわち、反転分布n(t)が減少し始めるとパルスレーザ光強度P(t)が増加し始めて反転分布のしきい値ntに達した時点でピーク強度に達して、その後パルスレーザ強度P(t)が低下する。   When the second A / O element is released from the high-frequency modulation signal Mrf2, the resonator loss is reduced, stimulated emission in the resonator is started, and pulsed laser light is generated. That is, when the inversion distribution n (t) starts to decrease, the pulse laser beam intensity P (t) starts to increase and reaches the peak intensity when the inversion distribution threshold nt is reached, and then the pulse laser intensity P (t ) Decreases.

次に、第1A/O素子に高周波変調信号Mrf1が再び印加されて共振器損失が増大し、この結果、パルスレーザ光が消滅する。すなわち、第1A/O素子で光軸が回折することにより誘導放出が抑制されるため、YAG結晶への連続励起により反転分布n(t)が増加する。   Next, the high frequency modulation signal Mrf1 is applied again to the first A / O element to increase the resonator loss, and as a result, the pulse laser beam disappears. That is, since the stimulated emission is suppressed by diffracting the optical axis in the first A / O element, the inversion distribution n (t) is increased by continuous excitation to the YAG crystal.

従って、第1A/O素子と第2A/O素子とが同時に高周波変調信号から開放されている時間ΔTに応じてパルスレーザ光のパルス幅tpが決まるので、高周波変調信号Mrf1と高周波変調信号Mrf2間の遅延時間、換言すれば制御信号C1と制御信号C2間の遅延時間であるΔtを任意に変えることにより、パルスレーザ光のパルス幅tpを制御でき、パルス繰返し周波数を増加させてもパルス幅tpを一定の狭い値にすることが可能であった。   Accordingly, since the pulse width tp of the pulse laser beam is determined according to the time ΔT in which the first A / O element and the second A / O element are simultaneously released from the high frequency modulation signal, the interval between the high frequency modulation signal Mrf1 and the high frequency modulation signal Mrf2 is determined. The pulse width tp of the pulsed laser beam can be controlled by arbitrarily changing the delay time, in other words, Δt, which is the delay time between the control signal C1 and the control signal C2, and even if the pulse repetition frequency is increased, the pulse width tp It was possible to have a constant narrow value.

特開平11−97783号公報Japanese Patent Application Laid-Open No. 11-97783

上記従来のレーザ装置において例えば励起入力を増大させた場合に、パルスレーザ波形が単一のピークではなく複数のピークを有する不具合がしばしば生じた。このような2つ以上のパルスを含むパルスレーザ波形では、ピーク位置が時間的に変動するようになる。特に、パルスピーク出力が低下して時間変動するようになり、これに伴い平均出力が低下し、ひいてはレーザ加工機における加工品質の悪化をもたらす結果となった。   In the conventional laser apparatus, for example, when the excitation input is increased, the problem that the pulse laser waveform has a plurality of peaks instead of a single peak often occurs. In such a pulsed laser waveform including two or more pulses, the peak position varies with time. In particular, the pulse peak output is reduced and fluctuates over time, with the result that the average output is reduced, and as a result, the processing quality of the laser processing machine is deteriorated.

この発明はかかる問題点を解決するためになされたものであり、時間的に安定な単一ピークのパルス波形を保持して、パルスピーク出力の低下、ひいては平均出力の低下を抑制することで高品質なレーザ加工機を提供できるようなレーザ装置およびそのレーザ装置の駆動方法を得ることを目的とする。   The present invention has been made to solve such a problem, and maintains a time-stable single peak pulse waveform to suppress a decrease in pulse peak output and consequently a decrease in average output. It is an object of the present invention to obtain a laser apparatus and a driving method of the laser apparatus that can provide a quality laser processing machine.

本発明に係るレーザ装置の駆動方法は、共振器内に複数のQスイッチ素子が配置され上記各Qスイッチ素子に共通の制御信号発生手段で発生する上記各Qスイッチ素子に対応した制御信号に基づき各高周波変調信号発生手段で生じた各高周波変調信号を入力させて上記各Qスイッチ素子の回折作用を制御してパルス駆動せしめるレーザ装置の駆動方法であって、各Qスイッチ素子の制御信号に対する動作遅延時間を実測するステップと、いずれか一つのQスイッチ素子を基準として他の各Qスイッチ素子の動作遅延時間を解消して各Qスイッチ素子の動作を同相とすべく上記各Qスイッチ素子に対応した制御信号毎に実測された上記動作遅延時間に基づき調整時間を設定するステップと、を含んでなる。   The laser device driving method according to the present invention is based on a control signal corresponding to each Q switch element generated by a control signal generating means common to each Q switch element in which a plurality of Q switch elements are arranged in a resonator. A method of driving a laser device in which each high frequency modulation signal generated by each high frequency modulation signal generating means is inputted and the diffraction action of each Q switch element is controlled to drive a pulse, and the operation of each Q switch element with respect to the control signal Corresponding to each Q switch element in order to make the operation of each Q switch element in phase by eliminating the operation delay time of each other Q switch element with the step of actually measuring the delay time and any one Q switch element as a reference Setting an adjustment time based on the operation delay time measured for each control signal.

また、本発明に係るレーザ装置は、一対の出力鏡と全反射鏡からなる共振器と、上記共振器内で光軸上に配置されたレーザ媒質と、上記共振器内の光軸上で上記レーザ媒質と上記出力鏡間および上記レーザ媒質と上記全反射鏡間にそれぞれ一つ以上配置されたQスイッチ素子と、上記Qスイッチ素子毎に設けられた位置調整機構と、上記Qスイッチ素子毎にそれぞれ高周波変調信号を入力せしめる複数の高周波変調信号発生手段と、上記各高周波変調信号発生手段に対して共通に設けられた制御信号発生手段と、を備える。   The laser device according to the present invention includes a resonator including a pair of output mirrors and a total reflection mirror, a laser medium disposed on the optical axis in the resonator, and the optical medium in the resonator. One or more Q switch elements arranged between the laser medium and the output mirror and between the laser medium and the total reflection mirror, a position adjusting mechanism provided for each Q switch element, and each Q switch element A plurality of high frequency modulation signal generating means for inputting high frequency modulation signals, respectively, and a control signal generating means provided in common to each of the high frequency modulation signal generating means.

本発明に係るレーザ装置の駆動方法では、各Qスイッチ素子の制御信号に対する動作遅延時間を予め実測して各制御信号間の時間調整を行ったので、各Qスイッチ素子が相対的に完全に同相で動作するため、時間的に安定な単一ピークのパルス波形を保持して、パルスピーク出力の低下、ひいては平均出力の低下を抑制できるようなレーザ装置の駆動が可能となる。   In the laser device driving method according to the present invention, since the operation delay time for the control signal of each Q switch element is measured in advance and the time adjustment between the control signals is performed, each Q switch element is relatively completely in phase. Therefore, it is possible to drive the laser device so that a time-stable single peak pulse waveform can be maintained and a decrease in pulse peak output and, in turn, a decrease in average output can be suppressed.

また、本発明に係るレーザ装置では、各Qスイッチ素子の制御信号に対する動作遅延時間に基づき位置調整機構によってQスイッチ素子の位置の微調整を行う結果、各Qスイッチ素子が相対的に完全に同相で動作するため、時間的に安定な単一ピークのパルス波形を保持して、パルスピーク出力の低下、ひいては平均出力の低下を抑制できるような高性能のレーザ装置が容易に得られる。   Further, in the laser apparatus according to the present invention, the position of the Q switch element is finely adjusted by the position adjustment mechanism based on the operation delay time with respect to the control signal of each Q switch element. Therefore, it is possible to easily obtain a high-performance laser apparatus capable of holding a pulse waveform having a single peak that is stable in time and suppressing a decrease in pulse peak output and, in turn, a decrease in average output.

実施の形態1.
本発明の発明者は、先ず、上述の不具合の原因を考察した。考察の対象としたレーザ装置の構成図を図1(a)、上記レーザ装置の構成中のキャビティ部分を図1(b)にそれぞれ示す。図1中、1はキャビティ、2は全反射鏡、3は出射鏡、4は第1A/O素子(第1Qスイッチ素子)、5は第2A/O素子(第2Qスイッチ素子)、6、7は高周波変調信号発生部(高周波変調信号発生手段)、8は制御信号発生部(制御信号発生手段)、をそれぞれ表す。各構成要素の機能は従来のレーザ装置とほぼ同じである。
Embodiment 1 FIG.
The inventor of the present invention first considered the cause of the above problems. FIG. 1A shows a configuration diagram of the laser device to be considered, and FIG. 1B shows a cavity portion in the configuration of the laser device. In FIG. 1, 1 is a cavity, 2 is a total reflection mirror, 3 is an exit mirror, 4 is a first A / O element (first Q switch element), 5 is a second A / O element (second Q switch element), 6, 7 Denotes a high-frequency modulation signal generator (high-frequency modulation signal generator), and 8 denotes a control signal generator (control signal generator). The function of each component is almost the same as that of a conventional laser device.

15は固体ロッドで、図1(a)のキャビティ1内のレーザ媒質に相当し、Nd:YAG結晶に代表されるような固体ロッドが一例として挙げられる。16〜19は例えばWalter Koechner著「Solid-State Laser Engineering」466頁に記載されたA/O素子(Qスイッチ素子)で、図1(a)の第1および第2A/O素子4,5に相当する。16は高周波変調信号Mrf1、Mrf2の出力先である超音波トランスデューサ、17は吸収体、18は石英ガラス、19は超音波の進行方向、20は発振を行なうためのガイドレーザ、21はガイドレーザ20から発するレーザ光、22はパワーメータ、23は励起源、をそれぞれ示す。   Reference numeral 15 denotes a solid rod, which corresponds to the laser medium in the cavity 1 of FIG. 1A, and a solid rod represented by an Nd: YAG crystal is an example. Reference numerals 16 to 19 denote A / O elements (Q switch elements) described on page 466 of “Solid-State Laser Engineering” by Walter Koechner, for example, in the first and second A / O elements 4 and 5 in FIG. Equivalent to. 16 is an ultrasonic transducer that is the output destination of the high-frequency modulation signals Mrf1 and Mrf2, 17 is an absorber, 18 is quartz glass, 19 is the traveling direction of the ultrasonic wave, 20 is a guide laser for oscillation, and 21 is a guide laser 20 Reference numeral 22 denotes a laser beam, 22 denotes a power meter, and 23 denotes an excitation source.

上述のレーザ装置において、例えば1キャビティ当りのラウンドトリップゲインを2.8以上という高利得下の動作で、1個当りのA/O素子で回折効率が30%以上で回折損失の立ち下がり時間が160nsec以下、1キャビティ当りに配置されるA/O素子数が2個以上、レーザ平均出力が200W以上の高出力動作、パルス繰り返し周波数が6kHz以下等の諸条件で、従来の駆動方法で動作させた場合、2つ以上のピークを有するパルスレーザ光を含むようになった。   In the above-described laser device, for example, when the round trip gain per cavity is an operation under a high gain of 2.8 or more, the diffraction efficiency is 30% or more per A / O element and the fall time of the diffraction loss. Operate by the conventional driving method under various conditions such as 160nsec or less, the number of A / O elements arranged per cavity is 2 or more, the average laser output is 200W or more, the pulse repetition frequency is 6kHz or less, etc. In this case, a pulse laser beam having two or more peaks is included.

図1のレーザ装置において、励起入力を増大させた場合での従来の駆動方法における第1A/O素子4の制御信号C1、高周波変調信号Mrf1、第2A/O素子5の制御信号C2、高周波変調信号Mrf2とレーザ出力の時間変化を図2に示す。励起入力を増大させた結果発生したレーザパルスでは、上述したように例えば2つ以上のパルスを含むパルス波形を形成し、かつ時間的に変動するようになる。特にパルスピーク出力が低下して時間変動する現象が頻発した。   In the laser apparatus of FIG. 1, the control signal C1, the high-frequency modulation signal Mrf1, the control signal C2 of the second A / O element 5, the high-frequency modulation in the first A / O element 4 in the conventional driving method when the excitation input is increased. FIG. 2 shows time changes of the signal Mrf2 and the laser output. In the laser pulse generated as a result of increasing the excitation input, as described above, for example, a pulse waveform including two or more pulses is formed and fluctuates with time. In particular, the phenomenon that the pulse peak output decreased and the time fluctuated frequently occurred.

かかる現象は、励起入力が高いために、キャビティ1内のいずれか一方のA/O素子に高周波変調信号が入力して回折作用が生じていても、なお、レーザ発振が生じる状態が維持されているため発生することを本発明の発明者は見出した。   This phenomenon is caused by a high excitation input, so that even if a high frequency modulation signal is input to any one of the A / O elements in the cavity 1 and a diffraction action occurs, the state in which laser oscillation occurs is maintained. The inventors of the present invention have found that this occurs.

かかる考察結果を鑑み、本発明の発明者は制御信号C1およびC2を同相として複数のA/O素子を完全に同期させて駆動すれば、上記問題が解決し得ることを着想した。しかしながら、実験の結果、制御信号C1およびC2を例え同相に設定したとしても、各A/O素子の回折作用を伴う動作で素子間の動作時間遅延が生じ、いずれか一方のA/O素子が動作している間にレーザ発振が生じる不具合が依然として未解決であることが判明した。   In view of such a consideration, the inventor of the present invention has come up with the idea that the above problem can be solved if a plurality of A / O elements are driven in complete synchronization with the control signals C1 and C2 in phase. However, as a result of the experiment, even if the control signals C1 and C2 are set in phase, an operation time delay occurs between the elements due to the diffraction action of each A / O element, and one of the A / O elements is It has been found that the problem of laser oscillation during operation is still unresolved.

各A/O素子間における動作の時間遅延の要因について、本発明の発明者がさらに実験および考察を進めたところ、以下の知見が得られた。   When the inventor of the present invention further advanced the experiment and consideration on the cause of the time delay of the operation between the A / O elements, the following knowledge was obtained.

上述のレーザ装置においてパワーメータ22をモニタしながらレーザ出力が最大になるように全反射鏡2および出射鏡3を調整した場合、例えば複数の励起源23が固体ロッド15に対して側面配置されていると各励起源における波長、出力、及びビーム品質のばらつき等により発振光軸14の方向における固体ロッド15内の励起分布は各励起源のばらつきを反映した非軸対称性を持つようになる。   When the total reflection mirror 2 and the emission mirror 3 are adjusted so that the laser output is maximized while monitoring the power meter 22 in the laser device described above, for example, a plurality of excitation sources 23 are arranged on the side of the solid rod 15. In this case, the excitation distribution in the solid rod 15 in the direction of the oscillation optical axis 14 has non-axial symmetry reflecting the variation of each excitation source due to variations in wavelength, output, and beam quality at each excitation source.

よって、発振光軸14を励起密度の最も高い所に通す結果となり、単に固体ロッド15の中心軸にガイド光21を一致させても発振光軸14はガイド光21の光軸とは一致しない。従って、発振光軸14がA/O素子のどの場所を通るかについては発振調整を行なわないと判明せず、各A/O素子において発振光軸の通る位置はそれぞれ異なるものとなってしまうことが判った。   Therefore, the oscillation optical axis 14 is passed through the place with the highest excitation density. Even if the guide light 21 is simply made to coincide with the central axis of the solid rod 15, the oscillation optical axis 14 does not coincide with the optical axis of the guide light 21. Therefore, it is not clear that the oscillation optical axis 14 passes through the A / O element unless the oscillation adjustment is performed, and the position through which the oscillation optical axis passes in each A / O element is different. I understood.

よって、図1(a)に示す制御信号発生部8から各A/O素子における発振光軸14までの信号到達時間差(動作遅延時間)について、高周波変調信号発生部6、7の入力制御信号C1、C2に対する出力高周波信号Mrf1、Mrf2の動作タイミングを例えゼロに時間調整したとしても、A/O素子内の超音波トランスデューサ16から実際の発振光軸14までの超音波の信号到達時間差によりレーザ光に対する回折損失の時間変化は各A/O素子間で完全には同相にならない。この様相を図3に示す。   Therefore, regarding the signal arrival time difference (operation delay time) from the control signal generator 8 to the oscillation optical axis 14 in each A / O element shown in FIG. 1A, the input control signal C1 of the high frequency modulation signal generators 6 and 7 is used. , Even if the operation timing of the output high-frequency signals Mrf1 and Mrf2 with respect to C2 is adjusted to zero, for example, the laser beam is caused by the difference in the arrival time of the ultrasonic wave from the ultrasonic transducer 16 to the actual oscillation optical axis 14 in the A / O element. The time variation of the diffraction loss with respect to the A / O element is not completely in phase. This aspect is shown in FIG.

A/O素子として石英ガラス18中において利用される音波の伝送速度は6×10mm/sec程度であり、このような場合、A/O素子4,5において発振光軸位置は例えば0.5mm程度ずれる。このため、A/O素子4,5における回折損失の時間変化は80nesc程度ずれたものとなる。また、上記レーザ装置構成では発振器におけるラウンドトリップゲインが大きいため、反転分布が発振閾値に到達してからレーザ出力がピーク値に到達するまで光の成長に要する時間、すなわち、ビルドアップタイムはA/O素子における回折損失の立ち下がり時間と同程度になり、回折損失が立ち下がり始めたすぐ後に反転分布は立ち下がり始めて、光は成長し始める。 The transmission speed of the sound wave used in the quartz glass 18 as the A / O element is about 6 × 10 6 mm / sec. In such a case, the oscillation optical axis position in the A / O elements 4 and 5 is, for example, 0. It shifts about 5mm. For this reason, the time change of the diffraction loss in the A / O elements 4 and 5 is shifted by about 80 nesc. In the above laser apparatus configuration, since the round trip gain in the oscillator is large, the time required for light growth from when the inversion distribution reaches the oscillation threshold until the laser output reaches the peak value, that is, the build-up time is A / It becomes the same as the fall time of the diffraction loss in the O element, and immediately after the diffraction loss starts to fall, the inversion distribution starts to fall and light starts to grow.

さらに、一共振器中での共振器損失における立下りに関する微分係数は前述による理由により2つの値を持つため、反転分布の立下りには2つの変曲点が現れ、レーザ出力の時間変化は例えば2つのパルスを含むパルス波形を形成するようになる。また、図4に示すように繰り返し動作に伴いレーザ出力のパルス波形は時間的に変動する結果となる。   Furthermore, since the differential coefficient regarding the fall in the resonator loss in one resonator has two values for the reason described above, two inflection points appear at the fall of the inversion distribution, and the time change of the laser output is For example, a pulse waveform including two pulses is formed. In addition, as shown in FIG. 4, the pulse waveform of the laser output varies with time as the operation is repeated.

高周波変調信号発生部6および7における入力制御信号C1、C2に対する出力高周波変調信号Mrf1、Mrf2の動作タイミングは高周波変調信号発生部の個体差等の要因により数100nsec程度ずれることがしばしば生じる。従って、共振器損失、反転分布及びレーザ出力における時間変化は図5に示すものとなる。このように、レーザ出力の時間変化は例えば2つのパルスを含むパルス波形を形成するようになる。また、かかる動作はパルスピーク出力の低下、時間変動、平均出力の低下を招き、ひいてはレーザ加工機における加工品質の悪化をもたらす結果となるのである。   The operation timing of the output high-frequency modulation signals Mrf1 and Mrf2 with respect to the input control signals C1 and C2 in the high-frequency modulation signal generators 6 and 7 often shifts by several hundred nsec due to factors such as individual differences in the high-frequency modulation signal generators. Therefore, the time variation in the resonator loss, inversion distribution, and laser output is as shown in FIG. As described above, the time change of the laser output forms, for example, a pulse waveform including two pulses. Further, such an operation causes a decrease in pulse peak output, a time variation, and a decrease in average output, which in turn results in deterioration of processing quality in the laser processing machine.

上記考察に基づき数々の実験を行った結果、発明者は本発明のレーザ装置の駆動方法、つまり2つのパルスを含まないような単一のピークを有するパルスレーザ光を維持しながらレーザ装置を安定に駆動させる方法を見出すに至った。以下に本発明のレーザ装置の駆動方法、さらに具体的には各A/O素子の素子動作上の相対的な時間遅延を調整する方法を説明する。   As a result of conducting a number of experiments based on the above consideration, the inventor has stabilized the laser device while maintaining the pulsed laser beam having a single peak that does not include two pulses. I came to find a way to drive. Hereinafter, a method for driving the laser apparatus of the present invention, more specifically, a method for adjusting a relative time delay in element operation of each A / O element will be described.

図6は各A/O素子における素子動作の相対的な時間遅延に対する調整方法を説明するためのレーザ装置の構成図である。図1(a)に示したレーザ装置に対して、レーザ光検出素子10と出力モニタ9が付加されている。   FIG. 6 is a configuration diagram of a laser apparatus for explaining a method for adjusting the relative time delay of element operation in each A / O element. A laser light detection element 10 and an output monitor 9 are added to the laser device shown in FIG.

本発明の実施の形態1におけるレーザ装置の駆動方法では、第1A/O素子4と第2A/O素子5へのそれぞれの制御信号C1,C2を基本的に同相に設定する。ただし、上述したようにレーザ装置の構成上、例え制御信号C1,C2が同相であっても様々な要因により各A/O素子4、5は相対的には完全に同相で動作する訳ではないので、以下に説明するように個々のレーザ装置で生じる制御信号に対する各A/O素子4、5の動作タイミングのずれ(動作遅延時間)を実測した上で、実際のレーザ装置動作時に各A/O素子間の相対的な時間遅延の調整を図る。   In the laser device driving method according to the first embodiment of the present invention, the control signals C1 and C2 to the first A / O element 4 and the second A / O element 5 are basically set in phase. However, as described above, due to the configuration of the laser device, even if the control signals C1 and C2 are in phase, the A / O elements 4 and 5 do not operate relatively completely in phase due to various factors. Therefore, as will be described below, after measuring the deviation (operation delay time) of the operation timing of each A / O element 4 and 5 with respect to the control signal generated in each laser device, each A / O element is operated during actual laser device operation. The relative time delay between the O elements is adjusted.

第1ステップとして、制御信号発生部8からテスト信号であるトリガ信号を発して第1A/O素子(第1Qスイッチ素子)4に対しては高周波変調信号T1を印加する一方、第2A/O素子(第2Qスイッチ素子)5に対しては高周波変調信号T1が入力しない状態とする。この結果、出力モニタ9にはレーザ光検出素子10によって受光されたパルスレーザ光のピーク値12が現れる。図7のように、パルスレーザ光のピーク値12と制御信号発生部8から得られたトリガ信号との時間差τ1を出力モニタ9によって測定する。レーザ装置の実動作時においては、かかる時間差τ1は制御信号が発生してから高周波変調信号によって第1A/O素子4で実効的な回折作用による回折損失が生じるまでの時間差を意味し、各A/O素子や個々のレーザ装置間で異なる値となる。   As a first step, a trigger signal, which is a test signal, is generated from the control signal generator 8 and a high frequency modulation signal T1 is applied to the first A / O element (first Q switch element) 4, while the second A / O element It is assumed that the high frequency modulation signal T1 is not input to the (second Q switch element) 5. As a result, the peak value 12 of the pulse laser beam received by the laser beam detection element 10 appears on the output monitor 9. As shown in FIG. 7, a time difference τ 1 between the peak value 12 of the pulse laser beam and the trigger signal obtained from the control signal generator 8 is measured by the output monitor 9. In the actual operation of the laser apparatus, the time difference τ1 means a time difference from when the control signal is generated to when a diffraction loss due to an effective diffraction action occurs in the first A / O element 4 due to the high frequency modulation signal. The value varies between / O elements and individual laser devices.

第2ステップとして、制御信号発生部8からテスト信号であるトリガ信号を発して第2A/O素子5に対して高周波変調信号T2を印加する一方、第1A/O素子4に対しては高周波変調信号T2が入力されない状態とする。この結果、出力モニタ9にはレーザ光検出素子10によって受光されたパルスレーザ光のピーク値12が現れる。第1ステップと同様、パルスレーザ光のピーク値12と制御信号発生部8から得られたトリガ信号との時間差τ2を出力モニタ9によって測定する。レーザ装置の実動作時においては、かかる時間差τ2は制御信号が発生してから高周波変調信号によって第2A/O素子5で実効的な回折作用が生じるまでの時間差を意味し、各A/O素子や個々のレーザ装置間で異なる値となる。   As a second step, a trigger signal, which is a test signal, is generated from the control signal generator 8 and a high frequency modulation signal T2 is applied to the second A / O element 5, while a high frequency modulation is applied to the first A / O element 4. It is assumed that the signal T2 is not input. As a result, the peak value 12 of the pulse laser beam received by the laser beam detection element 10 appears on the output monitor 9. Similar to the first step, the time difference τ 2 between the peak value 12 of the pulse laser beam and the trigger signal obtained from the control signal generator 8 is measured by the output monitor 9. In actual operation of the laser apparatus, the time difference τ2 means a time difference from when a control signal is generated until an effective diffractive action is generated in the second A / O element 5 by a high-frequency modulation signal. Or different values between individual laser devices.

第3ステップとして、上記第1および第2ステップで得られた時間差τ1とτ2との大小関係を判定する。   As a third step, the magnitude relationship between the time differences τ1 and τ2 obtained in the first and second steps is determined.

第4ステップとして、上述の時間差τ1、τ2が、τ1>τ2の関係を有する場合には制御信号C2の動作タイミングを制御信号C1に対してτ1―τ2の時間、遅延させるように設定する一方、時間差τ1、τ2が、τ1≦τ2の関係を有する場合には制御信号C1の動作タイミングを制御信号C2に対してτ2―τ1の時間、遅延させて各制御信号を発生させるように、予め実効的な各制御信号C1’,C2’を設定しておく。実効的な各制御信号C1’,C2’により各A/O素子の動作、つまり回折損失の時間変化を相対的に完全に同相とするためである。   As a fourth step, when the above-described time differences τ1 and τ2 have a relationship of τ1> τ2, the operation timing of the control signal C2 is set to be delayed by τ1−τ2 with respect to the control signal C1, When the time differences τ1 and τ2 have a relationship of τ1 ≦ τ2, the operation timing of the control signal C1 is effectively delayed in advance by τ2−τ1 with respect to the control signal C2 to generate each control signal. Each control signal C1 ′, C2 ′ is set in advance. This is because the operation of each A / O element, that is, the time change of the diffraction loss is made relatively completely in phase by the effective control signals C1 'and C2'.

すなわち、上記設定前の制御信号C1(t),C2(t)に対して相対的な時間遅延の調整後の実効的な制御信号C1’(t)、C2’(t)は、
(1)τ1>τ2の場合
C1’(t)=C1(t)
C2’(t)=C1(t+(τ1―τ2))
(2)τ1≦τ2の場合
C1’(t)=C2(t+(τ2―τ1))
C2’(t)=C2(t)
の関係が成立する。
That is, the effective control signals C1 ′ (t) and C2 ′ (t) after adjusting the time delay relative to the control signals C1 (t) and C2 (t) before the setting are
(1) When τ1> τ2 C1 ′ (t) = C1 (t)
C2 ′ (t) = C1 (t + (τ1−τ2))
(2) When τ1 ≦ τ2 C1 ′ (t) = C2 (t + (τ2−τ1))
C2 ′ (t) = C2 (t)
The relationship is established.

上述の方法によって、複数のA/O素子の一つを基準とした場合における他のA/O素子の動作上の相対的な時間遅延を基準となるA/O素子に対する動作タイミングのずれとして、例えば制御信号C1に対して制御信号C2で相対的な時間遅延を解消するように予め設定すれば、各A/O素子における素子動作、つまり回折損失の時間変化を同相で揃えることが可能となる。   By the above-described method, the relative time delay in the operation of the other A / O element when one of the plurality of A / O elements is used as a reference is regarded as the deviation of the operation timing with respect to the reference A / O element. For example, if the control signal C1 is set in advance so as to eliminate the relative time delay with the control signal C2, it is possible to align the element operation in each A / O element, that is, the time variation of the diffraction loss in phase. .

上述の方法によって調整されたレーザ装置における各A/O素子4,5の実効的な制御信号C1’,C2’に基づき各A/O素子を動作させた場合の回折損失の時間変化を図8に示す。図から分かるように、各A/O素子の回折損失の時間変化について元々両者間に存在した相対的な時間遅延がゼロになるように調整された結果、ほぼ完全に同相となって動作タイミングのずれが無くなる。   FIG. 8 shows the time variation of diffraction loss when each A / O element is operated based on the effective control signals C1 ′ and C2 ′ of each A / O element 4 and 5 in the laser apparatus adjusted by the above method. Shown in As can be seen from the figure, the time variation of the diffraction loss of each A / O element was adjusted so that the relative time delay that originally existed between the two became zero. The gap disappears.

上記制御信号C1’,C2’に基づきレーザ装置を駆動すると、共振器中における共振器損失、反転分布及びレーザ出力の時間変化は図9に示すようになる。つまり、第1A/O素子4と第2A/O素子5の相対的な動作タイミングのずれが無くなるので、一方のA/O素子のみが先行的に動作するような過渡的な状態が無くなるため、単一のピークを有するパルスレーザ光のみが発生する。この結果、時間的に安定なシングルパルスを取り出すことが可能となり、またパルスピーク出力の低下、平均出力の低下を抑制することが可能となり、ひいては高品質なレーザ加工を実現することが可能となる。   When the laser device is driven based on the control signals C1 'and C2', the resonator loss, the inversion distribution, and the time change of the laser output in the resonator are as shown in FIG. That is, since the relative operation timing shift between the first A / O element 4 and the second A / O element 5 is eliminated, there is no transitional state in which only one A / O element is operated in advance. Only pulsed laser light having a single peak is generated. As a result, it is possible to take out a single pulse that is stable in time, and it is possible to suppress a decrease in pulse peak output and a decrease in average output, thereby realizing high-quality laser processing. .

実施の形態2.
実施の形態1のレーザ装置の駆動方法では、制御信号C1、C2間の時間調整を図るものであったが、実施の形態2のレーザ装置では、レーザ装置の構成上の工夫により各A/O素子間の相対的な時間遅延を解消することを特徴とする。図10は、実施の形態2のレーザ装置の主要部の構成を示す図である。図中、24はA/O素子を発振光軸14の方向に対してほぼ直交する方向に移動する際の移動量を微調整する位置調整機構であり、25は位置調整機構24によるA/O素子の移動方向をそれぞれ表す。
Embodiment 2. FIG.
In the laser device driving method according to the first embodiment, the time between the control signals C1 and C2 is adjusted. However, in the laser device according to the second embodiment, each A / O is devised based on the configuration of the laser device. Relative time delay between elements is eliminated. FIG. 10 is a diagram illustrating a configuration of a main part of the laser device according to the second embodiment. In the figure, 24 is a position adjusting mechanism for finely adjusting the amount of movement when the A / O element is moved in a direction substantially perpendicular to the direction of the oscillation optical axis 14, and 25 is an A / O by the position adjusting mechanism 24. The movement direction of each element is shown.

実施の形態1で述べた時間差τ1、τ2が、τ1>τ2の関係を有する場合には、石英ガラス18中における音波の伝送速度をVpとして、第1A/O素子4を位置調整機構24により、
X=Vp×(τ1−τ2)
の移動量で矢印25の向き(発振光軸側)に移動させる。また、τ2>τ1の関係を有する場合には、第2A/O素子5を位置調整機構24により、
X=Vp×(τ2−τ1)
の移動量で矢印25の向き(発振光軸側)に移動させる。
When the time differences τ1 and τ2 described in the first embodiment have a relationship of τ1> τ2, the transmission speed of the sound wave in the quartz glass 18 is set to Vp, and the first A / O element 4 is moved by the position adjusting mechanism 24.
X = Vp × (τ1-τ2)
Is moved in the direction of the arrow 25 (oscillation optical axis side) by the movement amount of. When the relationship of τ2> τ1 is satisfied, the second A / O element 5 is moved by the position adjusting mechanism 24.
X = Vp × (τ2−τ1)
Is moved in the direction of the arrow 25 (oscillation optical axis side) by the movement amount of.

上述の方法によって、例えば第1A/O素子4に対する第2A/O素子5の相対的な時間遅延を解消するように、位置調整機構24により矢印25の方向に第2A/O素子5を上式によって設定された距離だけ平行移動すれば、各A/O素子間における素子動作タイミング、つまり回折損失の時間変化を同相で揃えることが可能となる。   By the above-described method, for example, the second A / O element 5 is moved in the direction of the arrow 25 by the position adjusting mechanism 24 so that the relative time delay of the second A / O element 5 with respect to the first A / O element 4 is eliminated. If the translation is performed by the distance set by the above, it is possible to align the element operation timing between the A / O elements, that is, the time variation of the diffraction loss in phase.

上述の方法によって調整されたレーザ装置における各A/O素子を動作させた場合の回折損失の時間変化は図8と同様のものになる。実施の形態1と同様、各A/O素子の回折損失の時間変化は元々両者間に存在した相対的な時間遅延がゼロになるように調整された結果、ほぼ完全に同相となって動作タイミングのずれが無くなる。   The time change of the diffraction loss when each A / O element in the laser apparatus adjusted by the above method is operated is the same as that shown in FIG. Similar to the first embodiment, the time variation of the diffraction loss of each A / O element is adjusted so that the relative time delay that originally existed between them becomes zero. The shift is eliminated.

上述の方法に基づき調整されたレーザ装置を駆動すると、共振器中における共振器損失、反転分布及びレーザ出力の時間変化は図9に示すようになる。実施の形態1と同様、第1A/O素子4と第2A/O素子5間の動作タイミングのずれが解消されるので、一方のA/O素子のみが先行的に動作するような過渡的な状態が無くなるため、単一のピークを有するパルスレーザ光のみが発生する。この結果、時間的に安定なシングルパルスを取り出すことが可能となり、またパルスピーク出力の低下、平均出力の低下を抑制することが可能となって、ひいては高品質なレーザ加工を実現することが可能となる。   When the laser device adjusted based on the above-described method is driven, the resonator loss, the inversion distribution, and the time change of the laser output in the resonator are as shown in FIG. As in the first embodiment, the operation timing shift between the first A / O element 4 and the second A / O element 5 is eliminated, so that only one A / O element operates in advance. Since the state disappears, only pulsed laser light having a single peak is generated. As a result, it is possible to take out a single pulse that is stable in time, and it is possible to suppress a decrease in pulse peak output and an average output, thereby realizing high-quality laser processing. It becomes.

上記各実施の形態におけるレーザ装置およびその駆動方法では、レーザ媒質と出力鏡間およびレーザ媒質と全反射鏡間にそれぞれ一つずつのQスイッチ素子を配置する構成を一例として説明したが、これに限るものではなく、二つ以上のQスイッチ素子を配置しても良く、また、レーザ媒質と出力鏡間あるいはレーザ媒質と全反射鏡間のどちらかに二つ以上のQスイッチ素子を配置してもよい。   In the laser device and the driving method thereof in each of the above embodiments, the configuration in which one Q switch element is disposed between the laser medium and the output mirror and between the laser medium and the total reflection mirror has been described as an example. It is not limited, and two or more Q switch elements may be arranged, and two or more Q switch elements are arranged either between the laser medium and the output mirror or between the laser medium and the total reflection mirror. Also good.

なお、上述の各実施の形態におけるレーザ装置およびその駆動方法では、上述のA/O素子に限らず電気光学的効果を用いたQスイッチ素子あるいは機械的機構を用いたQスイッチ素子も適用可能であることは言うまでもない。また、レーザ媒質が固体媒質のみならず、液体、気体媒質に対しても適用可能であることは言うまでもない。   In the laser apparatus and the driving method thereof in each of the above-described embodiments, not only the above-described A / O element but also a Q-switch element using an electro-optic effect or a Q-switch element using a mechanical mechanism can be applied. Needless to say. Needless to say, the laser medium can be applied not only to a solid medium but also to a liquid or gas medium.

(a)はレーザ装置の構成であり、(b)はレーザ装置中でキャビティ部分の構成を示した図である。(A) is a structure of a laser apparatus, (b) is the figure which showed the structure of the cavity part in a laser apparatus. 実施の形態1における動作説明図である。FIG. 3 is an operation explanatory diagram according to the first embodiment. 実施の形態1における動作説明図である。FIG. 3 is an operation explanatory diagram according to the first embodiment. 実施の形態1における動作説明図である。FIG. 3 is an operation explanatory diagram according to the first embodiment. 実施の形態1における動作説明図である。FIG. 3 is an operation explanatory diagram according to the first embodiment. 実施の形態1におけるレーザ装置の構成図である。1 is a configuration diagram of a laser device in Embodiment 1. FIG. 実施の形態1における動作説明図である。FIG. 3 is an operation explanatory diagram according to the first embodiment. 実施の形態1における動作説明図である。FIG. 3 is an operation explanatory diagram according to the first embodiment. 実施の形態1における動作説明図である。FIG. 3 is an operation explanatory diagram according to the first embodiment. 実施の形態2におけるレーザ装置の構成図である。FIG. 5 is a configuration diagram of a laser device in a second embodiment.

符号の説明Explanation of symbols

1 キャビティ、 2 全反射鏡、 3 出射鏡、 4 第1A/O素子、 5 第2A/O素子、 6 高周波変調信号発生部、 7 高周波変調信号発生部、 8 制御信号発生部、 9 出力モニタ、 10 レーザ光検出素子、 11 トリガ信号、 12 ピーク値、 14 発振光軸、 15 固体ロッド、 16 超音波トランスデューサ、 17 吸収体、 18 石英ガラス、 19 超音波の進行方向、 20 ガイドレーザ、 21 ガイド光、 22 パワーメータ、 23 励起源、 24 位置調整機構、 25 A/O素子の移動方向。

DESCRIPTION OF SYMBOLS 1 Cavity, 2 Total reflection mirror, 3 Output mirror, 4 1st A / O element, 5 2nd A / O element, 6 High frequency modulation signal generation part, 7 High frequency modulation signal generation part, 8 Control signal generation part, 9 Output monitor, DESCRIPTION OF SYMBOLS 10 Laser light detection element, 11 Trigger signal, 12 Peak value, 14 Oscillation optical axis, 15 Solid rod, 16 Ultrasonic transducer, 17 Absorber, 18 Quartz glass, 19 Ultrasonic traveling direction, 20 Guide laser, 21 Guide light , 22 Power meter, 23 Excitation source, 24 Position adjustment mechanism, 25 A / O element moving direction.

Claims (10)

共振器内に複数のQスイッチ素子が配置され前記各Qスイッチ素子に共通の制御信号発生手段で発生する前記各Qスイッチ素子に対応した制御信号に基づき各高周波変調信号発生手段で生じた各高周波変調信号を入力させて前記各Qスイッチ素子の回折作用を制御してパルス駆動せしめるレーザ装置の駆動方法であって、
前記各Qスイッチ素子の前記制御信号に対する動作遅延時間を実測するステップと、
いずれか一つのQスイッチ素子を基準として他の各Qスイッチ素子の動作遅延時間を解消して各Qスイッチ素子の動作を同相とすべく前記各Qスイッチ素子に対応した制御信号毎に実測された前記動作遅延時間に基づき調整時間を設定するステップと、
を含んでなるレーザ装置の駆動方法。
A plurality of Q switch elements are arranged in a resonator, and each high frequency modulation signal generating means generated by each high frequency modulation signal generating means based on a control signal corresponding to each Q switch element generated by a control signal generating means common to each Q switch element. A method of driving a laser device that inputs a modulation signal and controls the diffraction action of each of the Q switch elements to drive the laser device,
Measuring an operation delay time of each Q switch element with respect to the control signal;
Measured for each control signal corresponding to each Q switch element in order to eliminate the operation delay time of each other Q switch element and make the operation of each Q switch element in phase with any one Q switch element as a reference Setting an adjustment time based on the operation delay time;
A method for driving a laser device comprising:
共振器内に複数のQスイッチ素子が配置され前記各Qスイッチ素子に共通の制御信号発生手段で発生する前記各Qスイッチ素子に対応した制御信号に基づき各高周波変調信号発生手段で生じた各高周波変調信号を入力させて前記各Qスイッチ素子の回折作用を制御してパルス駆動せしめるレーザ装置の駆動方法であって、
前記制御信号発生手段からのトリガ信号によって前記高周波変調信号発生手段で発生した高周波変調信号T1を第1Qスイッチ素子に印加して回折作用を生ぜしめる一方、第2Qスイッチ素子には前記高周波変調信号T1を入力しない状態として前記レーザ装置から出射されたパルスレーザ光をレーザ光検出素子によって受光して、トリガ信号発生時とパルスレーザ光受光時間の時間差τ1を測定するステップと、
前記制御信号発生手段からのトリガ信号によって前記高周波変調信号発生手段で発生した高周波変調信号T2を前記第2Qスイッチ素子に印加して回折作用を生ぜしめる一方、前記第1Qスイッチ素子には前記高周波変調信号T2を入力しない状態として前記レーザ装置から出射されたパルスレーザ光を前記レーザ光検出素子によって受光して、トリガ信号発生時とパルスレーザ光受光時間の時間差τ2を測定するステップと、
前記時間差τ1とτ2との大小を判定するステップと、
前記時間差τ1、τ2がτ1>τ2の関係を有する場合には第2Qスイッチ素子に入力される制御信号C2の動作タイミングを第1Qスイッチ素子に入力される制御信号C1に対してτ1―τ2の時間、遅延させる一方、前記時間差τ1、τ2がτ1≦τ2の関係を有する場合には前記制御信号C1の動作タイミングを前記制御信号C2に対してτ2―τ1の時間、遅延させるように各制御信号C1,C2を時間調整するステップと、
を含んでなるレーザ装置の駆動方法。
A plurality of Q switch elements are arranged in a resonator, and each high frequency modulation signal generating means generated by each high frequency modulation signal generating means based on a control signal corresponding to each Q switch element generated by a control signal generating means common to each Q switch element. A method of driving a laser device that inputs a modulation signal and controls the diffraction action of each of the Q switch elements to drive a pulse.
The high frequency modulation signal T1 generated by the high frequency modulation signal generation means is applied to the first Q switch element by a trigger signal from the control signal generation means to cause a diffraction effect, while the second Q switch element has the high frequency modulation signal T1. Receiving a pulse laser beam emitted from the laser device in a state in which the laser beam is not input by a laser beam detection element, and measuring a time difference τ1 between the trigger signal generation time and the pulse laser beam reception time;
A high-frequency modulation signal T2 generated by the high-frequency modulation signal generation means is applied to the second Q switch element by a trigger signal from the control signal generation means to cause a diffractive action, while the high-frequency modulation is applied to the first Q switch element. Receiving a pulsed laser beam emitted from the laser device in a state where the signal T2 is not input by the laser beam detecting element, and measuring a time difference τ2 between the time when the trigger signal is generated and the pulsed laser beam receiving time;
Determining the magnitude of the time differences τ1 and τ2,
When the time differences τ1 and τ2 have a relationship of τ1> τ2, the operation timing of the control signal C2 input to the second Q switch element is set to the time of τ1−τ2 with respect to the control signal C1 input to the first Q switch element. On the other hand, when the time differences τ1, τ2 have a relationship of τ1 ≦ τ2, the control signal C1 is delayed so that the operation timing of the control signal C1 is delayed by τ2-τ1 with respect to the control signal C2. , C2 time adjustment,
A method for driving a laser device comprising:
前記Qスイッチ素子が、音響光学素子で構成されていることを特徴とする請求項1または2記載のレーザ装置の駆動方法。 3. The method of driving a laser device according to claim 1, wherein the Q switch element is constituted by an acousto-optic element. 前記Qスイッチ素子が、電気光学素子あるいは機械的機構による素子で構成されていることを特徴とする請求項1または2記載のレーザ装置の駆動方法。 3. The method of driving a laser device according to claim 1, wherein the Q switch element is constituted by an electro-optical element or an element by a mechanical mechanism. 前記レーザ装置のレーザ発振器におけるレーザ媒質が、固体媒質であることを特徴する請求項1または2記載のレーザ装置の駆動方法。 3. The laser device driving method according to claim 1, wherein the laser medium in the laser oscillator of the laser device is a solid medium. 一対の出力鏡と全反射鏡からなる共振器と、
前記共振器内で光軸上に配置されたレーザ媒質と、
前記共振器内の光軸上に配置された複数のQスイッチ素子と、
前記Qスイッチ素子の少なくとも一つに設けられた位置調整機構と、
前記Qスイッチ素子毎にそれぞれ高周波変調信号を入力せしめる複数の高周波変調信号発生手段と、
前記各高周波変調信号発生手段に対して共通に設けられた制御信号発生手段と、
を備えることを特徴とするレーザ装置。
A resonator composed of a pair of output mirrors and a total reflection mirror;
A laser medium disposed on the optical axis in the resonator;
A plurality of Q switch elements disposed on an optical axis in the resonator;
A position adjusting mechanism provided in at least one of the Q switch elements;
A plurality of high frequency modulation signal generating means for inputting a high frequency modulation signal for each of the Q switch elements;
Control signal generating means provided in common for each of the high frequency modulation signal generating means;
A laser device comprising:
前記位置調整機構による前記Qスイッチ素子の移動方向が、前記共振器の光軸と略直交する方向であることを特徴とする請求項6記載のレーザ装置。 The laser apparatus according to claim 6, wherein a moving direction of the Q switch element by the position adjusting mechanism is a direction substantially orthogonal to an optical axis of the resonator. 前記位置調整機構の移動量が、前記各Qスイッチ素子の動作遅延時間に基づいて決定されることを特徴とする請求項6記載のレーザ装置。 The laser apparatus according to claim 6, wherein an amount of movement of the position adjusting mechanism is determined based on an operation delay time of each Q switch element. 前記各Qスイッチ素子間の動作遅延時間が、
前記制御信号発生手段からのトリガ信号によって前記高周波変調信号発生手段で発生した高周波変調信号を一つのQスイッチ素子に印加して回折作用を生ぜしめる一方、他のQスイッチ素子には前記高周波変調信号を入力しない状態として前記レーザ装置から出射されたパルスレーザ光をレーザ光検出素子により受光して、トリガ信号発生時とパルスレーザ光受光時間との時間差を測定する方法を各Qスイッチ素子毎に適用して得られた動作遅延時間であることを特徴とする請求項8記載のレーザ装置。
The operation delay time between the Q switch elements is
A high frequency modulation signal generated by the high frequency modulation signal generation means is applied to one Q switch element by a trigger signal from the control signal generation means to generate a diffractive action, while the other Q switch element has the high frequency modulation signal. Applying a method for measuring the time difference between the trigger signal generation time and the pulse laser beam reception time by receiving the pulse laser beam emitted from the laser device with the laser beam detection element in a state where the laser beam is not input for each Q switch element 9. The laser device according to claim 8, wherein the operation delay time is obtained.
前記各Qスイッチ素子が前記全反射鏡と前記レーザ媒質間に設置された第1A/O素子および前記出力鏡と前記レーザ媒質間に設置された第2A/O素子からなり、
前記第1および第2Qスイッチ素子の各動作遅延時間がそれぞれ、
前記制御信号発生手段からのトリガ信号によって前記高周波変調信号発生手段で発生した高周波変調信号T1を第1Qスイッチ素子に印加して回折作用を生ぜしめる一方、第2Qスイッチ素子には前記高周波変調信号T1を入力しない状態として前記レーザ装置から出射されたパルスレーザ光をレーザ光検出素子によって受光することにより測定されたトリガ信号発生時とパルスレーザ光受光時間の時間差τ1と、
前記制御信号発生手段からのトリガ信号によって前記高周波変調信号発生手段で発生した高周波変調信号T2を前記第2Qスイッチ素子に印加して回折作用を生ぜしめる一方、前記第1Qスイッチ素子には前記高周波変調信号T2を入力しない状態として前記レーザ装置から出射されたパルスレーザ光を前記レーザ光検出素子によって受光することにより測定されたトリガ信号発生時とパルスレーザ光受光時間の時間差τ2、であることを特徴とする請求項8記載のレーザ装置。
Each Q switch element comprises a first A / O element installed between the total reflection mirror and the laser medium, and a second A / O element installed between the output mirror and the laser medium,
Each operation delay time of the first and second Q switch elements is respectively
The high-frequency modulation signal T1 generated by the high-frequency modulation signal generation means is applied to the first Q switch element by the trigger signal from the control signal generation means to cause a diffractive action, while the second Q switch element has the high-frequency modulation signal T1. A time difference τ1 between a trigger signal generation and a pulsed laser beam receiving time measured by receiving a pulsed laser beam emitted from the laser device in a state in which the laser beam is not input by a laser beam detection element,
A high-frequency modulation signal T2 generated by the high-frequency modulation signal generation means is applied to the second Q switch element by a trigger signal from the control signal generation means to cause a diffractive action, while the high-frequency modulation is applied to the first Q switch element. The time difference τ2 between the time when the trigger signal is generated and the time when the pulse laser beam is received is measured by receiving the pulse laser beam emitted from the laser device with the laser beam detecting element in a state where the signal T2 is not input. The laser device according to claim 8.
JP2003392089A 2003-08-26 2003-11-21 LASER DEVICE AND METHOD FOR DRIVING THE LASER DEVICE Expired - Fee Related JP4120569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003392089A JP4120569B2 (en) 2003-08-26 2003-11-21 LASER DEVICE AND METHOD FOR DRIVING THE LASER DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003301621 2003-08-26
JP2003392089A JP4120569B2 (en) 2003-08-26 2003-11-21 LASER DEVICE AND METHOD FOR DRIVING THE LASER DEVICE

Publications (2)

Publication Number Publication Date
JP2005101482A true JP2005101482A (en) 2005-04-14
JP4120569B2 JP4120569B2 (en) 2008-07-16

Family

ID=34467172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003392089A Expired - Fee Related JP4120569B2 (en) 2003-08-26 2003-11-21 LASER DEVICE AND METHOD FOR DRIVING THE LASER DEVICE

Country Status (1)

Country Link
JP (1) JP4120569B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594917A (en) * 2013-10-31 2014-02-19 中国科学院长春光学精密机械与物理研究所 Double-acousto-optic Q-switched CO2 laser device
JP2014239111A (en) * 2013-06-06 2014-12-18 株式会社島津製作所 Pulse laser device
CN106785875A (en) * 2017-01-22 2017-05-31 昆山华辰光电科技有限公司 The MOPA optical fiber lasers of adjustable pulse width

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239111A (en) * 2013-06-06 2014-12-18 株式会社島津製作所 Pulse laser device
CN103594917A (en) * 2013-10-31 2014-02-19 中国科学院长春光学精密机械与物理研究所 Double-acousto-optic Q-switched CO2 laser device
CN106785875A (en) * 2017-01-22 2017-05-31 昆山华辰光电科技有限公司 The MOPA optical fiber lasers of adjustable pulse width

Also Published As

Publication number Publication date
JP4120569B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
US7116688B2 (en) Laser system and method for generation of a pulse sequence with controllable parameters and computer program product
US6477188B1 (en) Light source
US8207474B2 (en) Self-seeded single-frequency laser peening method
KR20100135850A (en) Combining multiple laser beams to form high repetition rate, high average power polarized laser beam
JP4162876B2 (en) Laser equipment
KR20100126420A (en) Laser micromaching using programmable pulse shapes
US9680285B2 (en) Laser light-source apparatus and laser pulse light generating method
KR100639585B1 (en) Laser control method, laser apparatus, laser treatment method used for the same, laser treatment apparatus
CN101000407A (en) Beam splitting device and method of linear polarization laser double-pulse of adjustable pulse space
CN101461105A (en) Laser pulse generating divice and method, and laser working apparatus and method
JP3465478B2 (en) Optical parametric oscillator
JP4120569B2 (en) LASER DEVICE AND METHOD FOR DRIVING THE LASER DEVICE
CN110364921A (en) Laser pulse control system and laser pulse control method
EP1020967A2 (en) A device for and a method of pulsing and amplifying singlemode laser light
CN115377786B (en) System and method for improving laser pulse time domain contrast
JP2014103287A (en) Solid-state laser device
US4390991A (en) Adaptive laser output coupler
JP5165210B2 (en) Q-switched laser device
JP2012015463A (en) Yag laser annealing device and annealing method by yag laser light
JP2005045019A (en) Q switch laser device
US20180129114A1 (en) Laser light-source apparatus and laser pulse light generating method
JPH1197783A (en) Q switched pulse laser driving method
JP2003069118A (en) Laser processing device
JPS6115384A (en) Ultrasonic q-switch laser
JP6201437B2 (en) Pulse laser equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Effective date: 20070802

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Effective date: 20071207

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20080414

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120509

LAPS Cancellation because of no payment of annual fees