JP2005101036A - Method for manufacturing semiconductor element - Google Patents

Method for manufacturing semiconductor element Download PDF

Info

Publication number
JP2005101036A
JP2005101036A JP2003329516A JP2003329516A JP2005101036A JP 2005101036 A JP2005101036 A JP 2005101036A JP 2003329516 A JP2003329516 A JP 2003329516A JP 2003329516 A JP2003329516 A JP 2003329516A JP 2005101036 A JP2005101036 A JP 2005101036A
Authority
JP
Japan
Prior art keywords
insulating film
forming
wiring
layer wiring
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003329516A
Other languages
Japanese (ja)
Other versions
JP4245446B2 (en
Inventor
Fumihiro Betsumiya
史浩 別宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP2003329516A priority Critical patent/JP4245446B2/en
Publication of JP2005101036A publication Critical patent/JP2005101036A/en
Application granted granted Critical
Publication of JP4245446B2 publication Critical patent/JP4245446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a reliable semiconductor element that prevents a decrease in the dimensional precision and disconnection of upper-layer wiring, by improving the flatness of an upper-layer insulating film formed on lower-layer wiring. <P>SOLUTION: After a polysiloxane-based and alkoxysilane-based organic silica liquid 24 filled into a container 23 is rotated and applied onto a buried insulating film 6 for 3,000-4,000 revolutions/minute from a plurality of supply ports 22 having the same hole diameter being provided at a supply plate 21, preparatory drying is made in a nitrogen atmosphere at 100°C or less, thus forming a thick flattened insulating film 7a made of organic silica. Then, by using a heat plate 26 heated to 300°C by an internal heater 25, the thick flattened insulating film 7a is pressurized and dried to form a flattened insulating film 7b with hardly any irregularities. Then, by a dry etching technique using CF<SB>4</SB>gas, the flattened insulating film 7b and one portion of the upper layer insulating film 6 are etched back for flattening. In this case, since flat properties before etchback are superior, flattening is made further uniformly. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は半導体素子の製造方法に関し、特に配線上に層間絶縁膜が形成された半導体素子の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor element, and more particularly to a method for manufacturing a semiconductor element in which an interlayer insulating film is formed on a wiring.

近年、半導体デバイスでは高速化、高性能化への要求から、半導体素子がますます微細化され構造が複雑になっている。それに従い、半導体素子の高集積化のために種々の多層配線技術が採用されている。このような半導体素子は、例えば、特開平6−65746号公報に開示されている。図4(a)〜図5(f)は従来の半導体素子41の製造方法を説明するための要部断面図である。   In recent years, semiconductor devices have become increasingly finer and more complicated in structure due to demands for higher speed and higher performance. Accordingly, various multilayer wiring techniques are employed for high integration of semiconductor elements. Such a semiconductor element is disclosed in, for example, JP-A-6-65746. FIG. 4A to FIG. 5F are cross-sectional views of relevant parts for explaining a conventional method of manufacturing the semiconductor element 41.

先ず、図4(a)に示すように、能動素子を形成した半導体基板42の上に、CVD法により酸化シリコンからなる配線下絶縁膜43を形成する。次に、配線下絶縁膜43の上にスパッタ法によりアルミニウムを堆積してパターニングし、下層配線44を形成する。次に、図4(b)に示すように、配線下絶縁膜43と下層配線44の全面に、プラズマCVD法により酸化シリコンからなる下地絶縁膜45と、常圧CVD法により酸化シリコンからなる埋込み絶縁膜46を形成し、下層絶縁膜とする。このとき、下層配線44の影響により埋込み絶縁膜46上に段差ができる。この段差を緩和するため、図4(c)に示すように、埋込み絶縁膜46の上に、有機シリカ液を5000回転/分で回転塗布し、300℃の窒素雰囲気中で熱処理を行うことにより、有機シリカからなる平坦化絶縁膜47を形成する。   First, as shown in FIG. 4A, an under-wire insulating film 43 made of silicon oxide is formed on a semiconductor substrate 42 on which active elements are formed by a CVD method. Next, aluminum is deposited on the insulating film 43 under the wiring by sputtering and patterned to form a lower layer wiring 44. Next, as shown in FIG. 4B, a base insulating film 45 made of silicon oxide by a plasma CVD method and an embedding made of silicon oxide by an atmospheric pressure CVD method are formed on the entire surface of the lower wiring insulating film 43 and the lower wiring 44. An insulating film 46 is formed to form a lower insulating film. At this time, a step is formed on the buried insulating film 46 due to the influence of the lower layer wiring 44. In order to alleviate this level difference, as shown in FIG. 4C, an organic silica solution is spin-coated on the buried insulating film 46 at 5000 rpm, and heat treatment is performed in a nitrogen atmosphere at 300 ° C. Then, a planarization insulating film 47 made of organic silica is formed.

次に、図5(d)に示すように、CFガスを用いたドライエッチング技術により、平坦化絶縁膜47と埋込み絶縁膜46の一部をエッチバックして平坦化した後、後処理として酸素プラズマ処理を10秒間行なう。次に、図5(e)に示すように、プラズマCVD法により酸化シリコンからなる上層絶縁膜48を形成した後、公知のフォトリソグラフィ技術と異方性エッチング技術により、下地、埋込み及び上層絶縁膜45、46、48にコンタクトホール49を形成する。最後に、図5(f)に示すように、下層配線44に接続させるように、スパッタ法によりアルミニウムからなる上層配線50を形成し、半導体素子41を得る。
特開平6−65746号公報(第4頁、0029段落〜0032段落、図5)
Next, as shown in FIG. 5D, a part of the planarizing insulating film 47 and the embedded insulating film 46 is etched back and planarized by a dry etching technique using CF 4 gas, and then as post-processing. Oxygen plasma treatment is performed for 10 seconds. Next, as shown in FIG. 5E, after an upper insulating film 48 made of silicon oxide is formed by plasma CVD, the underlying, buried, and upper insulating films are formed by a known photolithography technique and anisotropic etching technique. Contact holes 49 are formed in 45, 46 and 48. Finally, as shown in FIG. 5F, the upper layer wiring 50 made of aluminum is formed by sputtering so as to be connected to the lower layer wiring 44, and the semiconductor element 41 is obtained.
JP-A-6-65746 (page 4, paragraphs 0029 to 0032, FIG. 5)

しかし、従来の半導体素子41の製造方法には、以下のような問題があった。図4(c)に示すように、下層配線44の上にプラズマ及び常圧CVD法により下地絶縁膜45と埋込み絶縁膜46からなる下層絶縁膜を形成した後、回転塗布法により有機シリカからなる平坦化絶縁膜47を形成する。この回転塗布法は、一定量の有機シリカ液を滴下した後、高速回転させることによりその遠心力で有機シリカ液を塗り広げるものであるため、下層配線44による下地段差の影響を受けて、平坦化絶縁膜47が凹凸状に形成される。その後、平坦化絶縁膜47と埋込み絶縁膜46の一部をドライエッチング法でエッチバックすることにより、凸部が除去されて凹凸が多少緩和された表面状態になるが、初期の凹凸が大きいので完全に平坦化することができない。特に、大電流を必要とする半導体素子41では下層配線43を厚く形成する必要があるため、より下地段差が大きくなり、平坦性が悪くなる。   However, the conventional method for manufacturing the semiconductor element 41 has the following problems. As shown in FIG. 4C, after forming a lower insulating film comprising a base insulating film 45 and a buried insulating film 46 on the lower wiring 44 by plasma and atmospheric pressure CVD, it is made of organic silica by spin coating. A planarization insulating film 47 is formed. In this spin coating method, a predetermined amount of the organic silica liquid is dropped and then rotated at a high speed to spread the organic silica liquid by the centrifugal force. An insulating film 47 is formed in an uneven shape. Thereafter, a part of the planarizing insulating film 47 and the embedded insulating film 46 is etched back by a dry etching method, so that the convex portions are removed and the irregularities are somewhat relaxed, but the initial irregularities are large. It cannot be completely flattened. In particular, in the semiconductor element 41 that requires a large current, it is necessary to form the lower layer wiring 43 thick, so that the base step becomes larger and the flatness becomes worse.

上層絶縁膜48の表面に大きな段差が存在すると、フォトリソグラフィ工程における露光系のレンズ焦点が合わなくなり、コンタクトホール49や上層配線50の寸法精度が悪くなる。さらには、段差部における上層配線50の膜厚が薄くなり配線切れが生じ、製品歩留りが低下するという問題があった。   If there is a large step on the surface of the upper insulating film 48, the lens focus of the exposure system in the photolithography process is not adjusted, and the dimensional accuracy of the contact hole 49 and the upper wiring 50 is deteriorated. Furthermore, the film thickness of the upper layer wiring 50 at the stepped portion is reduced, causing a problem that the wiring is cut off and the product yield is lowered.

また、平坦化絶縁膜47をドライエッチング法によりエッチバックする代わりに、公知のCMP装置を使用して研磨するようにすれば、下地材料の影響が少ない状態で研磨できるので平坦性の向上が期待できるが、研磨前の平坦化絶縁膜47に大きな段差が存在するため、均一な圧力が加わらずマイクロスクラッチが生じ、半導体素子41の信頼性が著しく低下するという問題もあった。   In addition, if the planarization insulating film 47 is polished using a known CMP apparatus instead of being etched back by the dry etching method, it is possible to polish the substrate with less influence of the underlying material, so that improvement in flatness is expected. However, since there is a large step in the planarization insulating film 47 before polishing, there is a problem that the microscratch occurs without applying a uniform pressure, and the reliability of the semiconductor element 41 is significantly lowered.

本発明は、上記問題点を解決するために考えられたもので、下層配線上に形成される上層絶縁膜の平坦性を改善することにより、上層配線の寸法精度低下や断線を防止することができる高信頼性の半導体素子の製造方法を提供することを目的とする。   The present invention has been conceived to solve the above-described problems, and by improving the flatness of the upper insulating film formed on the lower layer wiring, it is possible to prevent the dimensional accuracy of the upper layer wiring from being lowered and the disconnection from occurring. An object of the present invention is to provide a method for manufacturing a highly reliable semiconductor device.

上記目的を達成するために、本発明の請求項1記載の半導体素子の製造方法は、下層配線上に下層絶縁膜を形成する工程と、前記下層絶縁膜上に平坦化絶縁膜を形成する工程と、前記前記下層絶縁膜の一部と平坦化絶縁膜をエッチバックする工程と、前記下層絶縁膜と前記平坦化膜上に上層絶縁膜を形成する工程と、前記下層絶縁膜及び上層絶縁膜にコンタクトホールを形成する工程と、前記コンタクトホールを介して前記下層配線に接続する上層配線を形成する工程を備える半導体素子の製造方法であって、前記下層絶縁膜上に前記平坦化絶縁膜を形成する際に、複数の供給口を有する供給プレートから前記平坦化絶縁膜の材料を前記下層絶縁膜上に回転塗布した後、熱プレートにより上部から昇温加圧することを特徴とする。この方法によれば、平坦化絶縁膜の材料を下層絶縁膜上に回転塗布して厚く形成した後、未固化の状態で上から昇温加圧するので、下層配線による下地段差の影響を受けず、凹凸のない平坦化絶縁膜を形成することができる。   In order to achieve the above object, a method of manufacturing a semiconductor device according to claim 1 of the present invention includes a step of forming a lower insulating film on a lower wiring and a step of forming a planarizing insulating film on the lower insulating film. Etching back a part of the lower insulating film and the planarizing insulating film; forming an upper insulating film on the lower insulating film and the planarizing film; and the lower insulating film and the upper insulating film. Forming a contact hole, and forming an upper wiring connected to the lower wiring through the contact hole, wherein the planarization insulating film is formed on the lower insulating film. When forming, the material of the planarization insulating film is spin-coated on the lower insulating film from a supply plate having a plurality of supply ports, and then heated and pressurized from above by a heat plate. According to this method, the material of the planarization insulating film is spin-coated on the lower insulating film and formed thick, and then heated and pressurized from above in an unsolidified state, so that it is not affected by the underlying step due to the lower wiring. A planarization insulating film without unevenness can be formed.

また、請求項2記載の半導体素子の製造方法は、下層配線上に下層絶縁膜を形成する工程と、前記下層絶縁膜上に平坦化絶縁膜を形成する工程と、前記下層絶縁膜と前記平坦化絶縁膜にコンタクトホールを形成する工程と、前記コンタクトホールを介して前記下層配線に接続する上層配線を形成する工程を備える半導体素子の製造方法であって、前記下層絶縁膜上に前記平坦化絶縁膜を形成する際に、複数の供給口を有する供給プレートから前記平坦化絶縁膜の材料を前記下層絶縁膜上に回転塗布した後、熱プレートにより上部から昇温加圧することを特徴とする。この方法によれば、平坦化絶縁膜が上層絶縁膜を兼用するので、平坦化絶縁膜のエッチバック工程と上層絶縁膜の形成工程が不要になる。これにより、工程が大幅に短縮するので、製造コストを低減することができる。   According to a second aspect of the present invention, there is provided a method for manufacturing a semiconductor device, comprising: forming a lower insulating film on a lower wiring; forming a planarizing insulating film on the lower insulating film; and the lower insulating film and the flat A method of manufacturing a semiconductor device, comprising: a step of forming a contact hole in an insulating insulating film; and a step of forming an upper layer wiring connected to the lower layer wiring through the contact hole, wherein the planarization is performed on the lower insulating film When forming the insulating film, the material of the planarization insulating film is spin-coated on the lower insulating film from a supply plate having a plurality of supply ports, and then heated and pressurized from above by a heat plate. . According to this method, since the planarizing insulating film also serves as the upper insulating film, the etch back process for the planarizing insulating film and the process for forming the upper insulating film are not required. Thereby, since a process is shortened significantly, manufacturing cost can be reduced.

以上説明したように、本発明の半導体素子の製造方法によれば、供給プレートの複数の供給口から有機シリカ液を全面に塗布した後、熱プレートにより上から加圧しながら乾燥するようにしたので、下層配線による下地段差の影響を受けず、凹凸のない平坦化絶縁膜を形成することができる。その結果、平坦化絶縁膜上に形成される上層絶縁膜も平坦になり、上層配線の寸法精度低下や断線等を防止することができる。また、平坦化絶縁膜をドライエッチング法によりエッチバックする代わりにCMP装置を使用して研磨する場合も、マイクロスクラッチのない高品質の半導体素子を得ることができる。   As described above, according to the method for manufacturing a semiconductor device of the present invention, the organic silica liquid is applied to the entire surface from a plurality of supply ports of the supply plate, and then dried while being pressed from above with a heat plate. Therefore, it is possible to form a flattened insulating film without unevenness without being affected by a base step due to the lower layer wiring. As a result, the upper insulating film formed on the flattening insulating film is also flattened, and it is possible to prevent a decrease in dimensional accuracy of the upper wiring and disconnection. In addition, when a planarization insulating film is polished using a CMP apparatus instead of being etched back by a dry etching method, a high-quality semiconductor element free from micro scratches can be obtained.

また、有機シリカ液の代わりにポリイミドを回転塗布するようにすれば、平坦化絶縁膜と上層絶縁膜を兼用できるので、平坦化絶縁膜のエッチバック工程と、上層絶縁膜の形成工程が不要になる。その結果、工程が大幅に短縮され、製造コストを低減することができる。   In addition, if polyimide is spin-coated instead of the organic silica liquid, the planarization insulating film and the upper insulating film can be used together, so the etch-back process for the planarizing insulating film and the process for forming the upper insulating film are unnecessary. Become. As a result, the process can be greatly shortened and the manufacturing cost can be reduced.

以下、本発明の好ましい実施の形態を、図面を参照して説明する。図1(a)〜図3(i)は本発明の半導体素子1の製造方法を説明するための要部断面図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1A to FIG. 3I are cross-sectional views of relevant parts for explaining a method for manufacturing a semiconductor element 1 of the present invention.

先ず、図1(a)に示すように、能動素子を形成した半導体基板2の上に、プラズマCVD法により酸化シリコンからなる配線下絶縁膜3を形成する。次に、配線下絶縁膜3の上にスパッタ法によりアルミニウムを堆積してパターニングし、下層配線4を形成する。次に、図1(b)に示すように、配線下絶縁膜3と下層配線4の全面に、プラズマCVD法により酸化シリコンからなる下地絶縁膜5を形成した後、図1(c)に示すように、常圧CVD法により酸化シリコンからなる埋込み絶縁膜6を形成する。この下地絶縁膜5と埋込み絶縁膜6が、下層絶縁膜となる。   First, as shown in FIG. 1A, an under-wiring insulating film 3 made of silicon oxide is formed by plasma CVD on a semiconductor substrate 2 on which active elements are formed. Next, aluminum is deposited on the insulating film 3 under the wiring by sputtering and patterned to form the lower wiring 4. Next, as shown in FIG. 1B, a base insulating film 5 made of silicon oxide is formed by plasma CVD on the entire surface of the lower wiring insulating film 3 and the lower wiring 4, and then shown in FIG. 1C. Thus, the buried insulating film 6 made of silicon oxide is formed by the atmospheric pressure CVD method. The base insulating film 5 and the buried insulating film 6 become a lower insulating film.

次に、図2(d)に示すように、供給プレート21に設けられた複数の同一孔径を有する供給口22から、容器23に充填されたポリシロキサン系、アルコキシラン系の有機シリカ液24を、埋込み絶縁膜6の上に3000〜4000回転/分で回転塗布した後、100℃以下の窒素雰囲気中で予備乾燥を行い、有機シリカからなる厚い平坦化絶縁膜7aを形成する。次に、図2(e)に示すように、内部ヒータ25により300℃に加熱された熱プレート26を用いて、厚い平坦化絶縁膜7aを加圧乾燥することにより、凹凸のほんどない平坦化絶縁膜7bを形成する。次に、図2(f)に示すように、CFガスを用いたドライエッチング技術により、平坦化絶縁膜7bと埋込み絶縁膜6の一部をエッチバックして平坦化する。このとき、エッチバック前の平坦性が優れているので、さらに均一に平坦化することができる。次に、後処理として酸素プラズマ処理を10秒間行なう。 Next, as shown in FIG. 2 (d), the polysiloxane-based or alkoxylane-based organic silica liquid 24 filled in the container 23 is supplied from a plurality of supply ports 22 having the same hole diameter provided in the supply plate 21. Then, after spin coating on the buried insulating film 6 at 3000 to 4000 rpm, preliminary drying is performed in a nitrogen atmosphere at 100 ° C. or lower to form a thick planarized insulating film 7a made of organic silica. Next, as shown in FIG. 2 (e), the thick planarization insulating film 7a is pressure-dried by using the heat plate 26 heated to 300 ° C. by the internal heater 25, so that the unevenness is almost flat. An insulating film 7b is formed. Next, as shown in FIG. 2F, the planarization insulating film 7b and part of the buried insulating film 6 are etched back and planarized by a dry etching technique using CF 4 gas. At this time, since the flatness before etch-back is excellent, the surface can be more uniformly flattened. Next, oxygen plasma treatment is performed as a post-treatment for 10 seconds.

次に、図3(g)に示すように、プラズマCVD法により酸化シリコンからなる上層絶縁膜8を形成した後、図3(h)に示すように、公知のフォトリソグラフィ技術と異方性エッチング技術により、下地、埋込み及び上層絶縁膜5、6、8にコンタクトホール9を形成する。最後に、図3(i)に示すように、下層配線4に接続させるように、スパッタ法によりアルミニウムからなる上層配線10を形成し、半導体素子1を得る。   Next, as shown in FIG. 3G, after forming an upper insulating film 8 made of silicon oxide by plasma CVD, as shown in FIG. 3H, a known photolithography technique and anisotropic etching are performed. Contact holes 9 are formed in the base, buried, and upper insulating films 5, 6, and 8 by a technique. Finally, as shown in FIG. 3I, the upper layer wiring 10 made of aluminum is formed by sputtering so as to be connected to the lower layer wiring 4, and the semiconductor element 1 is obtained.

上述したように、本発明によれば、供給プレート21に設けられた複数の同一孔径を有する供給口22から、有機シリカ液24を埋込み絶縁膜6の上に塗布するので、有機シリカ液24の塗布量を容易に増加させることができる。さらに、回転数を下げて塗り広げるので、埋込み絶縁膜6上に厚い平坦化絶縁膜7aを形成することができる。さらに、厚い平坦化絶縁膜7aを低温にて予備乾燥を行なった後、上から熱プレート26で加圧乾燥するので、下層配線4による下地段差の影響を受けることなく、凹凸のほとんどない平坦化絶縁膜7bを形成することができる。   As described above, according to the present invention, since the organic silica liquid 24 is applied to the embedded insulating film 6 from the plurality of supply ports 22 provided in the supply plate 21 and having the same hole diameter, The coating amount can be easily increased. Further, since the coating is spread at a lower rotational speed, a thick planarization insulating film 7 a can be formed on the embedded insulating film 6. Further, since the thick planarization insulating film 7a is preliminarily dried at a low temperature and then dried with pressure on the heat plate 26 from above, the planarization without almost unevenness without being affected by the underlying step due to the lower layer wiring 4. The insulating film 7b can be formed.

その結果、平坦化絶縁膜7bのエッチバック後に形成される上層絶縁膜8の表面も平坦になり、上層配線10の寸法精度低下や断線を防止することができる。また、CMP装置を使用して平坦化絶縁膜7bの研磨を行なう場合にも、均一な圧力が加わるのでマイクロスクラッチの発生を防止することができ、高信頼性の半導体素子1を得ることができる。   As a result, the surface of the upper insulating film 8 formed after the etch back of the flattening insulating film 7b is also flattened, and a reduction in dimensional accuracy and disconnection of the upper wiring 10 can be prevented. Further, even when polishing the planarization insulating film 7b using a CMP apparatus, since a uniform pressure is applied, the generation of micro scratches can be prevented, and a highly reliable semiconductor element 1 can be obtained. .

なお、下地段差の程度により、有機シリカ液24の回転塗布条件、加圧条件は適宜変更することができる。   In addition, the spin coating conditions and the pressurizing conditions of the organic silica liquid 24 can be appropriately changed depending on the level of the base step.

また、上述した実施例では、平坦化絶縁膜7bの材料にポリシロキサン系、アルコキシラン系の有機シリカを使用する場合について説明したが、塗布が可能で誘電率の低い材料であればよく、例えば、シラノール系の無機シリカやポリイミドを塗布して平坦化するようにしてもよい。いずれも、塗布可能な低誘電率の材料であり、素子特性を損なうことなく凹凸のない平坦化絶縁膜を形成することができる。   In the above-described embodiment, the case where polysiloxane-based or alkoxylane-based organic silica is used as the material of the planarization insulating film 7b has been described. However, any material that can be applied and has a low dielectric constant may be used. Alternatively, it may be flattened by applying silanol-based inorganic silica or polyimide. Each is a material having a low dielectric constant that can be applied, and a flattened insulating film without unevenness can be formed without impairing element characteristics.

特に、ポリイミドを使用すれば、配線間の寄生容量を低減する上層絶縁膜8として兼用できるので、平坦化絶縁膜7bのエッチバック工程と上層絶縁膜8の形成工程が不要になり、工程が大幅に短縮され、製造コストを低減することができる。   In particular, if polyimide is used, it can also be used as the upper insulating film 8 for reducing the parasitic capacitance between the wirings, so that the etch back process of the planarizing insulating film 7b and the forming process of the upper insulating film 8 are not necessary, and the process is greatly increased. The manufacturing cost can be reduced.

なお、上述した実施例では、下層配線4と上層配線10にアルミニウムを使用したが、ポリシリコン、チタン、窒化チタン、タングステン、窒化タングステン、金、銅、金属シリサイドを使用してもよい。   In the above-described embodiment, aluminum is used for the lower layer wiring 4 and the upper layer wiring 10, but polysilicon, titanium, titanium nitride, tungsten, tungsten nitride, gold, copper, and metal silicide may be used.

供給プレートの複数の供給口から有機シリカ液を全面に塗布した後、熱プレートにより上から加圧しながら乾燥することによって、下層配線による下地段差の影響を受けず、凹凸のない平坦化絶縁膜を形成することができる。その結果、平坦化絶縁膜上に形成される上層絶縁膜も平坦になり、上層配線の寸法精度低下や断線等を防止することができる。   After applying organosilica liquid to the entire surface from a plurality of supply ports of the supply plate and drying it while applying pressure from above with a heat plate, a flattened insulating film that is not affected by the underlying step due to the lower layer wiring and has no irregularities Can be formed. As a result, the upper insulating film formed on the flattening insulating film is also flattened, and it is possible to prevent a decrease in dimensional accuracy of the upper wiring and disconnection.

本発明の半導体素子の製造方法を説明する要部断面図Sectional drawing of the principal part explaining the manufacturing method of the semiconductor element of this invention 本発明の半導体素子の製造方法を説明する要部断面図Sectional drawing of the principal part explaining the manufacturing method of the semiconductor element of this invention 本発明の半導体素子の製造方法を説明する要部断面図Sectional drawing of the principal part explaining the manufacturing method of the semiconductor element of this invention 従来の半導体素子の製造方法を説明する要部断面図Cross-sectional view of relevant parts for explaining a conventional method of manufacturing a semiconductor device 従来の半導体素子の製造方法を説明する要部断面図Cross-sectional view of relevant parts for explaining a conventional method of manufacturing a semiconductor device

符号の説明Explanation of symbols

1 本発明の半導体素子
2 半導体基板
3 配線下絶縁膜
4 下層配線
5 下地絶縁膜
6 埋込み絶縁膜
7a 厚い平坦化絶縁膜
7b 平坦化絶縁膜
8 上層絶縁膜
9 コンタクトホール
10 上層配線
21 供給プレート
22 供給口
23 容器
24 有機シリカ液
25 内部ヒータ
26 熱プレート
41 従来の半導体素子
42 半導体基板
43 配線下絶縁膜
44 下層配線
45 下地絶縁膜
46 埋込み絶縁膜
47 平坦化絶縁膜
48 上層絶縁膜
49コンタクトホール
50 上層配線
DESCRIPTION OF SYMBOLS 1 Semiconductor device 2 Semiconductor substrate 3 Insulating film under wiring 4 Lower layer wiring 5 Underlying insulating film 6 Embedded insulating film 7a Thick planarized insulating film 7b Flattened insulating film 8 Upper layer insulating film 9 Contact hole 10 Upper layer wiring 21 Supply plate 22 Supply port 23 Container 24 Organic silica liquid 25 Internal heater 26 Heat plate 41 Conventional semiconductor element 42 Semiconductor substrate 43 Insulating film under wiring 44 Lower layer wiring 45 Underlying insulating film 46 Embedded insulating film 47 Flattening insulating film 48 Upper insulating film 49 Contact hole 50 upper layer wiring

Claims (2)

下層配線上に下層絶縁膜を形成する工程と、前記下層絶縁膜上に平坦化絶縁膜を形成する工程と、前記前記下層絶縁膜の一部と平坦化絶縁膜をエッチバックする工程と、前記下層絶縁膜と前記平坦化膜上に上層絶縁膜を形成する工程と、前記下層絶縁膜及び上層絶縁膜にコンタクトホールを形成する工程と、前記コンタクトホールを介して前記下層配線に接続する上層配線を形成する工程を備える半導体素子の製造方法であって、前記下層絶縁膜上に前記平坦化絶縁膜を形成する際に、複数の供給口を有する供給プレートから前記平坦化絶縁膜の材料を前記下層絶縁膜上に回転塗布した後、熱プレートにより上部から昇温加圧することを特徴とする半導体素子の製造方法。   Forming a lower insulating film on the lower wiring; forming a planarizing insulating film on the lower insulating film; etching back a portion of the lower insulating film and the planarizing insulating film; A step of forming an upper layer insulating film on the lower layer insulating film and the planarizing film; a step of forming a contact hole in the lower layer insulating film and the upper layer insulating film; and an upper layer wiring connected to the lower layer wiring through the contact hole A method of manufacturing a semiconductor device comprising the step of: forming a material for the planarization insulating film from a supply plate having a plurality of supply ports when forming the planarization insulating film on the lower insulating film. A method of manufacturing a semiconductor device, comprising spin-coating on a lower insulating film and then heating and pressurizing from above with a heat plate. 下層配線上に下層絶縁膜を形成する工程と、前記下層絶縁膜上に平坦化絶縁膜を形成する工程と、前記下層絶縁膜と前記平坦化絶縁膜にコンタクトホールを形成する工程と、前記コンタクトホールを介して前記下層配線に接続する上層配線を形成する工程を備える半導体素子の製造方法であって、前記下層絶縁膜上に前記平坦化絶縁膜を形成する際に、複数の供給口を有する供給プレートから前記平坦化絶縁膜の材料を前記下層絶縁膜上に回転塗布した後、熱プレートにより上部から昇温加圧することを特徴とする半導体素子の製造方法。   Forming a lower insulating film on the lower wiring; forming a planarizing insulating film on the lower insulating film; forming a contact hole in the lower insulating film and the planarizing insulating film; and the contact A method of manufacturing a semiconductor device comprising a step of forming an upper layer wiring connected to the lower layer wiring through a hole, and having a plurality of supply ports when forming the planarization insulating film on the lower layer insulating film A method of manufacturing a semiconductor device, comprising: applying a material for the planarizing insulating film from a supply plate onto the lower insulating film by spin coating, and then heating and pressurizing from above with a heat plate.
JP2003329516A 2003-09-22 2003-09-22 Manufacturing method of semiconductor device Expired - Fee Related JP4245446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003329516A JP4245446B2 (en) 2003-09-22 2003-09-22 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003329516A JP4245446B2 (en) 2003-09-22 2003-09-22 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2005101036A true JP2005101036A (en) 2005-04-14
JP4245446B2 JP4245446B2 (en) 2009-03-25

Family

ID=34458738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329516A Expired - Fee Related JP4245446B2 (en) 2003-09-22 2003-09-22 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4245446B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012806A (en) * 2017-07-03 2019-01-24 東京エレクトロン株式会社 Coating film formation method, coating film formation device and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012806A (en) * 2017-07-03 2019-01-24 東京エレクトロン株式会社 Coating film formation method, coating film formation device and storage medium

Also Published As

Publication number Publication date
JP4245446B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
US5516729A (en) Method for planarizing a semiconductor topography using a spin-on glass material with a variable chemical-mechanical polish rate
US6010963A (en) Global planarization using SOG and CMP
US6184159B1 (en) Interlayer dielectric planarization process
JPH11204645A (en) Interlayer insulating film of semiconductor device and manufacture thereof
TW584954B (en) Semiconductor device having buried conductor therein and fabricating methods thereof
JP3946880B2 (en) Contact plug forming method for semiconductor device
JP3047343B2 (en) Method for manufacturing semiconductor device
KR20010082972A (en) Wiring of Semiconductor Device and Method for Manufacturing Thereof
JP4245446B2 (en) Manufacturing method of semiconductor device
KR100254567B1 (en) Method of forming contact plug and planarization of insulator layer of semiconductor device
JPH08222632A (en) Multilayer interconnection forming method and structure thereof
JP3127983B2 (en) Method for manufacturing semiconductor device
US7166546B2 (en) Planarization for integrated circuits
US20150206794A1 (en) Method for Removing Micro Scratches In Chemical Mechanical Polishing Processes
JP3353539B2 (en) Method for manufacturing semiconductor device
US6541368B2 (en) Metal lines of semiconductor devices and methods for forming
JP2002124513A (en) Method of planarizing substrate, semiconductor device and its manufacturing method
KR100207476B1 (en) A fabricating method of semiconductor device using cmp process
JP2000091340A (en) Wiring formation of semiconductor device
KR100524928B1 (en) Method for forming a metal line using damascene process
JPH077766B2 (en) Method for manufacturing flattening film in semiconductor device
JP2917917B2 (en) Method for manufacturing semiconductor device
KR100562319B1 (en) Method for fabricating inter metal dielectric of semiconductor device
KR100558039B1 (en) Method of planarization an insulating film in a semiconductor devide
KR100693785B1 (en) Method for forming interlayer dielectric in semiconductor memory device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20050119

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A711 Notification of change in applicant

Effective date: 20050513

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Effective date: 20060523

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20130116

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20130116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees