JP2005099045A - C-scan ultrasonic flaw detection method and apparatus - Google Patents
C-scan ultrasonic flaw detection method and apparatus Download PDFInfo
- Publication number
- JP2005099045A JP2005099045A JP2004352178A JP2004352178A JP2005099045A JP 2005099045 A JP2005099045 A JP 2005099045A JP 2004352178 A JP2004352178 A JP 2004352178A JP 2004352178 A JP2004352178 A JP 2004352178A JP 2005099045 A JP2005099045 A JP 2005099045A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- reflected
- wave
- plate
- internal defect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/023—Solids
- G01N2291/0234—Metals, e.g. steel
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/042—Wave modes
- G01N2291/0427—Flexural waves, plate waves, e.g. Lamb waves, tuning fork, cantilever
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/048—Transmission, i.e. analysed material between transmitter and receiver
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
本発明は、Cスキャン超音波探傷方法および装置に係り、特に圧延金属板の切出しサンプルのなかの10〜 100μm 程度の内部欠陥の検出に用いるのに好適なCスキャン超音波探傷方法および装置に関するものである。 The present invention relates to a C-scan ultrasonic flaw detection method and apparatus, and more particularly to a C-scan ultrasonic flaw detection method and apparatus suitable for use in detecting an internal defect of about 10 to 100 μm in a cut sample of a rolled metal sheet. It is.
近年、自動車、缶などの素材となる薄鋼板は、軽量化、素材コスト削減のため、薄肉化が進むと共に、部品点数を削減して製作コストを低減するため、プレス、絞り等の加工において素材の著しい変形を伴う強い加工が施されるようになっている。
鋼板に強い加工を施すとき、変形の著しい部分に非金属介在物等からなる内部欠陥が存在すると割れが発生するが、鋼板の肉厚が薄いほど内部欠陥による割れの発生は顕著となり、かつ、割れの原因となる内部欠陥のサイズも微小化する。また欠陥の形態と割れの発生にも関係があり、欠陥形態として球状の単体、一方向に伸延した単体、微小球状欠陥の集合体などがあるが、それぞれによって割れの発生しやすさには違いがみられる。また、サワーガス用のラインパイプに用いられる厚鋼板など使用条件の厳しい製品も増加し、10μm 程度の大きさの微小介在物でも水素誘起割れの原因となり有害とされ、欠陥形態によっても水素誘起割れの発生しやすさは相違する。
In recent years, thin steel sheets used as materials for automobiles, cans, etc. have been made thinner in order to reduce weight and reduce material costs, and to reduce production costs by reducing the number of parts and materials used in processing such as pressing and drawing. Strong processing with significant deformation of the material is applied.
When performing strong processing on the steel sheet, cracks occur if there are internal defects consisting of non-metallic inclusions, etc., in the part where the deformation is significant, but the occurrence of cracks due to internal defects becomes more pronounced as the thickness of the steel sheet is thin, and The size of internal defects that cause cracking is also reduced. There is also a relationship between the form of defects and the occurrence of cracks. Defect forms include spherical single bodies, single bodies that extend in one direction, and aggregates of microspherical defects. Is seen. In addition, products with severe usage conditions such as thick steel plates used in sour gas line pipes are increasing, and even small inclusions with a size of about 10 μm are considered to be harmful and cause hydrogen-induced cracking. Ease of occurrence is different.
このようなことから、前記した鋼板では内部欠陥を極力少なくすること、欠陥形態を割れの発生しにくいものとすることが要求され、製品の内部欠陥の発生レベルおよびその形態を微小欠陥まで含め評価することが必要になっている。
このような鋼板の内部欠陥検出およびその形態の評価手段として、製品の一部をサンプルとして切出し、このサンプルのなかの内部欠陥をCスキャン超音波探傷装置と称される装置を用いて探傷することが広く用いられてきた。図11に従来のCスキャン超音波探傷装置による探傷法を示す。
For this reason, it is required that the above-described steel sheet has as few internal defects as possible, and that the defect form is less likely to be cracked. It is necessary to do.
As a means for detecting the internal defect of such a steel sheet and evaluating its form, a part of the product is cut out as a sample, and the internal defect in this sample is detected using a device called a C-scan ultrasonic flaw detector. Has been widely used. FIG. 11 shows a flaw detection method using a conventional C-scan ultrasonic flaw detector.
すなわち、溶媒液中に浸漬された被検査板101 の上方の点集束型超音波送受信子102 は、コントローラ114 の信号によって移動する走査装置104 によって走査され、かつ電気パルス発生器116 から一定時間間隔で送信される電気パルスを超音波に変換し、被検査板101 に向けて略垂直に超音波ビーム103 を送信するとともに、被検査板101 の内部欠陥および表面からの反射波を受信し、電気信号に変換する。 That is, the point-focusing type ultrasonic transceiver 102 above the inspection plate 101 immersed in the solvent liquid is scanned by the scanning device 104 that is moved by the signal of the controller 114 and is spaced from the electric pulse generator 116 at a constant time interval. The electrical pulse transmitted in step 1 is converted into an ultrasonic wave, and the ultrasonic beam 103 is transmitted substantially vertically toward the inspected plate 101, and the internal defect of the inspected plate 101 and the reflected wave from the surface are received. Convert to signal.
受信された信号は受信増幅器111 で増幅され、ゲート回路112 で欠陥からの反射波が抽出される。抽出された信号はピーク値検出回路113 に送られ、ここで欠陥反射波の振幅が検出され、コントローラ114 に送信される。コントローラ114 は前記欠陥反射波の振幅と前記走査装置104 の位置信号とを表示器115 に出力し、表示器115 は内部欠陥の2次元分布図を表示し、このようにして内部欠陥を検出する。 The received signal is amplified by the receiving amplifier 111, and the reflected wave from the defect is extracted by the gate circuit 112. The extracted signal is sent to the peak value detection circuit 113, where the amplitude of the defect reflected wave is detected and transmitted to the controller 114. The controller 114 outputs the amplitude of the defect reflected wave and the position signal of the scanning device 104 to the display 115, and the display 115 displays a two-dimensional distribution map of the internal defects, thus detecting the internal defects. .
このような1つの点集束型超音波送受信子102 で被検査板101 に略垂直に超音波を送信し、被検査板101 からの反射波を受信して欠陥を検出する方法では、超音波ビームが表面に入射したとき、大振幅であり、かつ、残響がしばらく持続する表面エコーが発生するため、表面近傍の欠陥反射波が前記表面エコーあるいはその残響と重なって存在が識別できなくなり、表面近傍の欠陥を検出することができないという問題があった。 In such a method in which ultrasonic waves are transmitted substantially perpendicularly to the inspected plate 101 by one point-focusing type ultrasonic transmitter / receiver 102 and a reflected wave from the inspected plate 101 is received to detect a defect, an ultrasonic beam is used. When a surface is incident on the surface, a surface echo having a large amplitude and reverberation is generated for a while, so that a defect reflected wave in the vicinity of the surface overlaps the surface echo or the reverberation, and the presence cannot be identified. There was a problem that it was not possible to detect defects.
また、Cスキャン超音波探傷方法あるいは装置に関する従来技術としては、高周波の超音波を用いる特許文献1、2などが挙げられる。前者は30〜100MHz、後者は15〜50MHz の何れも高周波の超音波を用いビーム径を小さくすることにより、分解能を向上させ、内部欠陥の検出能を向上させたものである。また、後者は、超音波周波数、焦点距離および被検査板と焦点位置との関係を最適化することにより、表面近傍に存在する微小欠陥の検出を確実にし、探傷結果の定量的評価を可能としたものである。
しかし、特許文献1、2に記載のように、高周波の超音波を用い焦点のビーム径を小さくすると、一方では、焦点深度が低下することが一般に知られている(例えば、R.Saglio et al "THE USE OF FOCUSED PROBES FOR DETECTION, IMAGING, AND SIZING OF FLAWS", in Proc. First Intrenational Symposium on Ultrasonic Materials Characterization-Gaithersburg Md.(1978)参照)。 However, as described in Patent Documents 1 and 2, it is generally known that, when high-frequency ultrasonic waves are used and the focal beam diameter is reduced, the focal depth decreases (for example, R. Saglio et al. "THE USE OF FOCUSED PROBES FOR DETECTION, IMAGING, AND SIZING OF FLAWS", in Proc. First Intrenational Symposium on Ultrasonic Materials Characterization-Gaithersburg Md. (1978)).
なお、焦点深度とは、例えば、送受信する超音波ビームの中心軸上での音圧が、焦点位置の音圧に比べ−6dB以内である範囲の長さのことであり、焦点深度が大きいほど被検査板の板厚の方向に広い範囲にわたって内部欠陥を検出することが可能である。前記文献によれば、超音波の周波数をf、速度をC、超音波送受信子に内蔵されている振動子の径をD、焦点距離をFとしたとき、焦点位置での超音波ビーム径dおよび焦点深度Lはそれぞれ(1) ,(2) 式のように表される。 The depth of focus is, for example, the length of the range in which the sound pressure on the central axis of the ultrasonic beam to be transmitted and received is within −6 dB compared to the sound pressure at the focus position, and the greater the depth of focus, the greater the depth of focus. It is possible to detect internal defects over a wide range in the direction of the plate thickness of the plate to be inspected. According to the above document, when the frequency of ultrasonic waves is f, the velocity is C, the diameter of the transducer built in the ultrasonic transceiver is D, and the focal length is F, the ultrasonic beam diameter d at the focal position is as follows. And the focal depth L are expressed by the equations (1) and (2), respectively.
d=(C/f)×(F/D) …………………(1)
L=(C/f)×(F/D)2 …………………(2)
(1) 式から、焦点位置での超音波ビーム径dを小さくするために、周波数fを高くすると、(2) 式より焦点深度Lが小さくなることがわかる。このため、高周波超音波を用いた探傷では、被検査板の板厚方向の全断面を均一な感度で探傷することが難しく、焦点位置以外の深さに存在する欠陥の検出能は大きく低下し、検出洩れが多発する欠点がある。このため欠陥を板厚方向にわたり洩れなく検出するためには、焦点位置を変更して、必要回数探傷を実施し直す必要があり、探傷に時間がかかる欠点があった。
d = (C / f) × (F / D) (1)
L = (C / f) × (F / D) 2 ………………… (2)
From the equation (1), it can be seen that when the frequency f is increased in order to reduce the ultrasonic beam diameter d at the focal position, the focal depth L is reduced from the equation (2). For this reason, in flaw detection using high-frequency ultrasonic waves, it is difficult to detect the entire cross section in the plate thickness direction of the inspected plate with uniform sensitivity, and the ability to detect defects existing at depths other than the focal position is greatly reduced. There is a drawback in that detection omissions occur frequently. For this reason, in order to detect a defect without omission in the thickness direction, it is necessary to change the focal position and perform the flaw detection as many times as necessary.
また、特許文献2では、表面直下の不感帯が低減されているとはいえ、皆無とは言えず、垂直探傷法によるCスキャン超音波探傷には依然として表面近傍に存在する微小欠陥が検出できないという問題が残されている。
ところで、本発明者らは、上記問題点を解消すべく、既に特願平6−7176号において、被検査板を挟んでラインフォーカス型超音波送信センサと1次元アレー型超音波センサとを対向配置し、該送信センサから帯状超音波ビームを被検査板に向けてほぼ垂直に送信し、被検査板に入射した超音波によって生起された内部欠陥からの反射波を前記1次元アレー型超音波受信センサによって受信し、受信された超音波を増幅し、反射波のみを抽出した後に所定の振幅に達した反射波の有無を検出することを特徴とする超音波探傷方法および装置を提案し、これによって表面直下での不感帯なしに、全厚にわたり一度に一定幅の線状の領域を探傷することが可能になった。
Further, in Patent Document 2, although the dead zone directly under the surface is reduced, it cannot be said that there is none, and the problem that a micro defect still existing in the vicinity of the surface cannot be detected in the C-scan ultrasonic flaw detection by the vertical flaw detection method. Is left.
By the way, in order to solve the above-mentioned problems, the present inventors have already faced the line focus type ultrasonic transmission sensor and the one-dimensional array type ultrasonic sensor with Japanese Patent Application No. 6-7176 across the board to be inspected. And transmitting a band-like ultrasonic beam from the transmitting sensor toward the inspection plate substantially perpendicularly, and reflecting a reflected wave from an internal defect caused by the ultrasonic wave incident on the inspection plate to the one-dimensional array type ultrasonic wave. Proposing an ultrasonic flaw detection method and apparatus characterized by detecting the presence or absence of a reflected wave that has reached a predetermined amplitude after amplifying the received ultrasonic wave received by a receiving sensor and extracting only the reflected wave, As a result, it became possible to detect a linear region having a constant width all over the thickness without a dead zone immediately below the surface.
しかしながら、この方法では、微小な欠陥までその有無は明瞭にわかるものの、送受信する超音波が2次元的に集束していないため、幅方向の分解能が低く、欠陥の形態までは判別できない問題があった。
この発明は、前記従来技術の問題点を解消すべくなされたもので、Cスキャン超音波探傷において、被検査板の表面近くでの不感帯がなく、1回の走査で板厚方向全断面の探傷ができ、微細な内部欠陥の形態まで検出することが可能なCスキャン超音波探傷方法および装置を提供することを目的とする。
However, with this method, the presence or absence of a minute defect can be clearly seen, but since the ultrasonic waves to be transmitted and received are not two-dimensionally focused, the resolution in the width direction is low, and there is a problem that the form of the defect cannot be identified. It was.
The present invention has been made to solve the problems of the prior art, and in C-scan ultrasonic flaw detection, there is no dead band near the surface of the plate to be inspected, and flaw detection in the entire cross section in the plate thickness direction in one scan. It is an object of the present invention to provide a C-scan ultrasonic flaw detection method and apparatus capable of detecting even fine internal defect forms.
本発明は、以下のとおりである。
1. 液中に浸漬された被検査板を挟んで、点集束型の超音波送信子と点集束型の超音波受信子とを対向配置して走査するとともに、前記超音波送信子から点集束した超音波を被検査板内に略垂直に入射し、前記超音波が内部欠陥の上側で反射して被検査板の表面に向かい、表面で反射して、裏面から液中に伝播し受信される反射波と、前記超音波が最初に被検査板の裏面で反射し、内部欠陥に向かい、内部欠陥の下側で反射した後、裏面から液中に伝播し受信される反射波の両方を前記超音波受信子で受信し、増幅された受信信号のうち、伝播距離が長い方の内部欠陥からの反射波による信号を抽出し、該抽出された信号に基づいて被検査板の内部欠陥を検出することを特徴とするCスキャン超音波探傷方法。
2. 超音波の透過波が前記超音波受信子に到達する時刻をτ0 とし、該超音波が被検査板の厚さ方向に伝播するのに要する時間をτ1 とするとき、(τ0 +τ1 )以後で、かつ(τ0 +2×τ1 )以前に受信した信号から内部欠陥からの反射波による信号を抽出することを特徴とする上記1.に記載のCスキャン超音波探傷方法。
3. 被検査板の表面に超音波を略垂直に送信する点集束型の超音波送信子と、被検査板を挟んで前記点集束型超音波送信子と対向する位置に配置し、前記超音波が内部欠陥の上側で反射して被検査板の表面に向かい、表面で反射して、裏面から液中に伝播し受信される反射波と、前記超音波が最初に被検査板の裏面で反射し、内部欠陥に向かい、内部欠陥の下側で反射した後、裏面から液中に伝播し受信される反射波の両方を受信する点集束型の超音波受信子と、前記超音波送信子と前記超音波受信子とを被検査板を挟んで支持する支持アームと、該支持アームを走査する走査装置と、前記超音波送信子に内蔵された圧電振動子に送信する電気パルスを発生する電気パルス発生装置と、受信信号を増幅する増幅装置と、増幅された受信信号のうち、伝播距離が長い方の内部欠陥からの反射波による信号を抽出するゲート手段と、を備えたことを特徴とするCスキャン超音波探傷装置。
4. 前記ゲート手段は、超音波の透過波が前記超音波受信子に到達する時刻をτ0 とし、該超音波が被検査板の厚さ方向に伝播するのに要する時間をτ1 とするとき、(τ0 +τ1 )以後で、かつ(τ0 +2×τ1 )以前に受信した信号から内部欠陥からの反射波による信号を抽出するように設定されていることを特徴とする請求項3記載のCスキャン超音波探傷装置。
The present invention is as follows.
1. A point-focusing type ultrasonic transmitter and a point-focusing type ultrasonic receiver are placed opposite to each other with a test plate immersed in the liquid in between and scanned, and point focusing is performed from the ultrasonic transmitter. Is incident on the inspected plate approximately perpendicularly, and the ultrasonic wave is reflected on the upper side of the internal defect and directed to the surface of the inspected plate, reflected on the surface, and propagated into the liquid from the back surface and received. The reflected wave and the reflected wave that is reflected first on the back surface of the inspected plate, directed toward the internal defect, reflected on the lower side of the internal defect, and then propagated into the liquid from the back surface and received. Of the received signals received and amplified by the ultrasonic receiver, a signal due to a reflected wave from an internal defect having a longer propagation distance is extracted, and the internal defect of the inspection plate is detected based on the extracted signal. A C-scan ultrasonic flaw detection method characterized by detecting.
2. When (τ 0 + τ 1) and after, when τ 0 is the time at which the transmitted ultrasonic wave reaches the ultrasonic receiver and τ 1 is the time required for the ultrasonic wave to propagate in the thickness direction of the plate to be inspected And (τ 0 + 2 × τ 1), a signal by a reflected wave from an internal defect is extracted from a signal received before (τ 0 + 2 × τ 1).
3. A point-focusing-type ultrasonic transmitter that transmits ultrasonic waves to the surface of the board to be inspected substantially perpendicularly, and a position that faces the point-focusing-type ultrasonic transmitter with the board to be inspected interposed therebetween. The sound wave is reflected on the upper side of the internal defect and is directed to the surface of the inspected plate, reflected on the surface, propagated into the liquid from the back surface and received, and the ultrasonic wave is first reflected on the back surface of the inspected plate. A point-focusing ultrasonic receiver that receives both reflected waves that are reflected, faced to an internal defect, reflected on the lower side of the internal defect, then propagated into the liquid from the back surface, and the ultrasonic transmitter And a support arm that supports the ultrasonic receiver with a test plate interposed therebetween, a scanning device that scans the support arm, and an electric pulse that is transmitted to a piezoelectric vibrator built in the ultrasonic transmitter An electric pulse generator, an amplifying device for amplifying the received signal, and an amplified received signal Chi, C scan ultrasonic inspection apparatus characterized by comprising a gate means for propagation distance extracts the signal due to reflected waves from the internal defects of the longer.
4. When the gate means sets τ0 as the time when the transmitted ultrasonic wave reaches the ultrasonic receiver, and τ1 as the time required for the ultrasonic wave to propagate in the thickness direction of the inspection plate, 4. The C-scan exceeding the C scan according to claim 3, wherein the signal is set to extract a signal due to a reflected wave from an internal defect from a signal received after (τ0 + τ1) and before (τ0 + 2 × τ1). Sonic flaw detector.
本発明によれば、液中に浸漬された被検査板を挟んで、点集束型の超音波送信子と点集束型の超音波受信子とを対向配置して走査するとともに、前記超音波送信子から点集束した超音波を被検査板内に略垂直に入射し、前記超音波の透過波と、前記超音波によって生起された内部欠陥からの反射波とを前記超音波受信子で受信し、該受信信号を増幅した信号から前記内部欠陥からの反射波の信号を抽出し、該抽出された信号に基づいて被検査板の内部欠陥を検出するようにしたので、被検査板表裏面近傍での内部欠陥であっても不感帯なく、全断面にわたり均一な感度で検出することが可能である。これによって製品の品質管理および品質そのものの向上に寄与することが可能である。 According to the present invention, a point-focusing type ultrasonic transmitter and a point-focusing type ultrasonic receiver are arranged to face each other with a test plate immersed in a liquid interposed therebetween, and the ultrasonic transmission is performed. Ultrasound that has been point-focused from the child is incident substantially perpendicularly into the inspected plate, and the ultrasonic wave transmitted by the ultrasonic wave and the reflected wave from the internal defect generated by the ultrasonic wave are received by the ultrasonic wave receiver. Since the signal of the reflected wave from the internal defect is extracted from the amplified signal, and the internal defect of the inspection board is detected based on the extracted signal, the vicinity of the front and back surfaces of the inspection board It is possible to detect even an internal defect with a uniform sensitivity over the entire cross section without a dead zone. This can contribute to quality control of the product and improvement of the quality itself.
図1は本発明の一実施例の構成を示す一部斜視図を含むブロック線図である。
図1において、11は点集束型超音波送信子(以下、単に超音波送信子という)、12は点集束型超音波受信子(以下、単に超音波受信子という)で、被検査板13を挟んで対向配置される。14は超音波送信子11、超音波受信子12を支持するコの字状の支持アームである。なお、超音波送信子11および超音波受信子12と被検査板13との間には、超音波伝播媒質として好適に使用される水が介在されている。
FIG. 1 is a block diagram including a partial perspective view showing the configuration of an embodiment of the present invention.
In FIG. 1, 11 is a point-focusing ultrasonic transmitter (hereinafter simply referred to as an ultrasonic transmitter), 12 is a point-focusing ultrasonic receiver (hereinafter simply referred to as an ultrasonic receiver), Oppositely arranged with a sandwich. Reference numeral 14 denotes a U-shaped support arm that supports the ultrasonic transmitter 11 and the ultrasonic receiver 12. Note that water that is suitably used as an ultrasonic propagation medium is interposed between the ultrasonic transmitter 11 and the ultrasonic receiver 12 and the board 13 to be inspected.
15は支持アーム14を走査する走査装置である。16は内蔵したクロック回路(図示せず)から、一定の時間間隔で電気パルスを超音波送信子11に内蔵した圧電振動子(図示せず)に送信する電気パルス発生器である。17は超音波受信子12からの信号を受信する受信増幅器、18はゲート回路、19はピーク値検出回路、20はコントローラ、21は表示器である。
超音波送信子11は、電気パルス発生器16から一定の時間間隔で送信された電気パルスを超音波に変換し、水を介して被検査板13に略垂直に超音波送信ビーム11Aを送信する。超音波受信子12は、被検査板13に入射した超音波によって生起された内部欠陥からの反射波を含む超音波受信ビーム12Aを水を介して受信する。そして、支持アーム14はコントローラ20からの信号で駆動される走査装置15によって走査され、これによって対向配置された超音波送信子11と超音波受信子12を被検査板13の面を方形走査し、その内部欠陥を探傷する。
A scanning device 15 scans the support arm 14. Reference numeral 16 denotes an electric pulse generator that transmits electric pulses from a built-in clock circuit (not shown) to a piezoelectric vibrator (not shown) built in the ultrasonic transmitter 11 at regular time intervals. Reference numeral 17 denotes a receiving amplifier that receives a signal from the ultrasonic receiver 12, 18 denotes a gate circuit, 19 denotes a peak value detection circuit, 20 denotes a controller, and 21 denotes a display.
The ultrasonic transmitter 11 converts the electric pulse transmitted from the electric pulse generator 16 at a predetermined time interval into an ultrasonic wave, and transmits the ultrasonic transmission beam 11A substantially perpendicularly to the inspected plate 13 through water. . The ultrasonic receiver 12 receives an ultrasonic reception beam 12A including a reflected wave from an internal defect caused by the ultrasonic wave incident on the inspection plate 13 through water. Then, the support arm 14 is scanned by the scanning device 15 driven by a signal from the controller 20, and the ultrasonic transmitter 11 and the ultrasonic receiver 12 which are arranged to face each other are squarely scanned on the surface of the inspected plate 13. Investigate its internal defects.
受信増幅器17で増幅された受信信号はゲート回路18で、内部欠陥からの反射波を前記受信信号から抽出する。この抽出された信号はピーク値検出回路19に送信され、ピーク値検出回路19では前記反射波の振幅を検出して、アナログ量またはデイジタル量としてコントローラ20に出力する。コントローラ20は前記反射波の振幅と走査装置15の位置信号とを表示器21に出力し、内部欠陥の2次元分布図を作成する。 The received signal amplified by the receiving amplifier 17 is extracted by the gate circuit 18 from the received signal. The extracted signal is transmitted to the peak value detection circuit 19, and the peak value detection circuit 19 detects the amplitude of the reflected wave and outputs it to the controller 20 as an analog amount or a digital amount. The controller 20 outputs the amplitude of the reflected wave and the position signal of the scanning device 15 to the display 21 to create a two-dimensional distribution map of internal defects.
ここで、ゲート回路18の機能について、図2を用いて詳しく説明する。
まず、被検査板13の厚みをtとし、内部欠陥22が被検査板13の表面13aの近く、すなわち表面13aからの距離dがt/2以下に存在する場合を例にすると、超音波送信子11から送信された超音波送信ビーム11Aは、液中を伝播して被検査板13の表面13aに達すると、被検査板13の内部に入射してその内部に伝播する。
Here, the function of the gate circuit 18 will be described in detail with reference to FIG.
First, when the thickness of the inspected plate 13 is t and the internal defect 22 is near the surface 13a of the inspected plate 13, that is, the distance d from the surface 13a is equal to or less than t / 2, ultrasonic transmission is taken as an example. When the ultrasonic transmission beam 11A transmitted from the child 11 propagates in the liquid and reaches the surface 13a of the inspected plate 13, it enters the inspected plate 13 and propagates therein.
このとき、被検査板13の内部に伝播した超音波はその一部が直進し、直接透過波30として超音波受信子12で受信される。また、内部欠陥22が超音波の伝播経路に存在すると、最初にこの内部欠陥22の上側で1回反射して表面13aに向かい、表面13aで反射して、被検査板13の厚さt内を 0.5往復伝播し、裏面13bから液中に伝播し受信される反射波31と、最初に被検査板の厚さt内を 0.5往復伝播し裏面13bで反射し、内部欠陥22に向かい、内部欠陥22の下側で1回反射した後、裏面13bから液中に伝播し受信される反射波32とが生起される。 At this time, a part of the ultrasonic wave propagating into the inspected plate 13 goes straight and is received by the ultrasonic receiver 12 as a direct transmitted wave 30. Further, when the internal defect 22 exists in the ultrasonic wave propagation path, first, it is reflected once on the upper side of the internal defect 22, directed to the surface 13 a, reflected by the surface 13 a, and within the thickness t of the inspected plate 13. 0.5 reciprocally propagates, and the reflected wave 31 propagates in the liquid from the back surface 13b and is received, and first propagates 0.5 reciprocally within the thickness t of the inspected plate and is reflected by the back surface 13b toward the internal defect 22, After being reflected once on the lower side of the defect 22, a reflected wave 32 is generated which propagates from the back surface 13b into the liquid and is received.
なお、これらの反射波31および32は、さらに裏面13bで1回以上反射し、被検査板13の厚さt内を1往復以上して、超音波受信子12に受信される反射波が生起されるが、ここでは図示を省略した。
このように、本発明は受信し増幅した信号から、前記した内部欠陥からの反射波の信号を抽出して、それに基づき内部欠陥を検出する。内部欠陥22が被検査板13の表面13aからの距離dがt/2以下に存在する場合は、反射波32が反射波31よりも遅れて超音波受信子12に到達する。
The reflected waves 31 and 32 are further reflected once or more on the back surface 13b, and the reflected wave received by the ultrasonic receiver 12 is generated one or more times within the thickness t of the board 13 to be inspected. However, illustration is omitted here.
As described above, the present invention extracts the reflected wave signal from the internal defect from the received and amplified signal, and detects the internal defect based on the extracted signal. When the internal defect 22 has a distance d from the surface 13a of the inspection plate 13 of t / 2 or less, the reflected wave 32 reaches the ultrasonic receiver 12 later than the reflected wave 31.
さらに、dがt/2以下である場合において、超音波受信子12で受信される信号の時間的推移を図3で説明する。この図において、τ0 は被検査板13の厚さt内を 0.5往復伝播した直接透過波30が超音波受信子12に到達した時刻、τ1 は超音波が被検査板13の厚さt内を 0.5往復伝播するのに要する時間である。なお、33は被検査板13の厚さt内を0.5 往復伝播し、さらに被検査板13を1往復した透過波の信号である。 Furthermore, when d is t / 2 or less, the temporal transition of the signal received by the ultrasonic receiver 12 will be described with reference to FIG. In this figure, τ0 is the time when the directly transmitted wave 30 propagated 0.5 times in the thickness t of the inspection plate 13 reaches the ultrasonic receiver 12, and τ1 is the ultrasonic wave in the thickness t of the inspection plate 13. This is the time required for 0.5 round-trip propagation. Reference numeral 33 denotes a transmitted wave signal which propagates 0.5 times in the thickness t of the board to be inspected 0.5 and further travels once in the board 13 to be inspected.
このように、反射波32の伝播距離が反射波31の伝播距離よりも大きいために、反射波32が反射波31よりも遅れて受信される。この図より、内部欠陥22による反射波32は、被検査板13の厚さt内を 0.5往復伝播した前記直接透過波30が超音波受信子12に到達した時刻τ0 から超音波が被検査板13の厚さt内を0.5 往復伝播するのに要する時間τ1 経過した以後であって、直接透過波30による不感帯領域から外れたところに現れ、かつ時刻τ0 から(2×τ1 )経過以前であって、透過波33よりも早い時間に現れる。 Thus, since the propagation distance of the reflected wave 32 is larger than the propagation distance of the reflected wave 31, the reflected wave 32 is received later than the reflected wave 31. From this figure, the reflected wave 32 due to the internal defect 22 is reflected from the time τ 0 when the directly transmitted wave 30 that has propagated 0.5 times in the thickness t of the inspection plate 13 reaches the ultrasonic receiver 12. Appears after the time τ1 required for 0.5 reciprocal propagation within the thickness t of 13 has elapsed from the dead zone region of the direct transmitted wave 30 and before (2 × τ1) has elapsed since time τ0. Appears earlier than the transmitted wave 33.
また、内部欠陥22の位置が表面13aに近くなるほどτ2 (τ2 は超音波が被検査板13中の内部欠陥22までの距離dを1往復する、すなわち距離2dだけ伝播するのに要する時間)が小さくなるが、透過波33よりも早い時間に現れる。そのため、内部欠陥22が表面13aの直下に存在しても、内部欠陥22による反射波32を明瞭に識別して抽出できるので、これを抽出して内部欠陥22を検出するのが好ましい。 Further, the closer the position of the internal defect 22 is to the surface 13a, the more τ2 (τ2 is the time required for the ultrasonic wave to make one round trip to the distance d to the internal defect 22 in the inspected plate 13, that is, the time required for propagation by the distance 2d). Although it becomes smaller, it appears earlier than the transmitted wave 33. Therefore, even if the internal defect 22 exists directly under the surface 13a, the reflected wave 32 caused by the internal defect 22 can be clearly identified and extracted. Therefore, it is preferable to extract this and detect the internal defect 22.
内部欠陥22による反射波32の現れる時間τは下記式(3) で表される。
(τ0 +τ1 )≦τ≦(τ0 +2×τ1 ) ………………(3)
なお、直接透過波30の到達から該透過波の残響が終了するまでの時間をτD (図3参照)としたとき、時刻(τ0 +τD )以後で、かつ、(τ0 +2×τ1 )以前に受信した信号を抽出するようにすれば、反射波31および32の両方を検出することが可能である。
The time τ when the reflected wave 32 appears due to the internal defect 22 is expressed by the following formula (3).
(Τ0 + τ1) ≦ τ ≦ (τ0 + 2 × τ1) ……………… (3)
When the time from the arrival of the directly transmitted wave 30 to the end of the reverberation of the transmitted wave is τD (see FIG. 3), it is received after the time (τ0 + τD) and before (τ0 + 2 × τ1). If the processed signal is extracted, it is possible to detect both the reflected waves 31 and 32.
以上の説明は、内部欠陥が表面の近くに存在する場合についてであるが、次に裏面13bの近く、すなわち、表面13aからの距離dがt/2以上の位置に存在する場合について、図4、図5を用いて説明する。
この場合、図2と異なり内部欠陥22による反射波31の伝播距離が反射波32の伝播距離よりも大きくなるので、反射波31が遅れて受信される。
The above description is about the case where the internal defect exists near the front surface. Next, FIG. This will be described with reference to FIG.
In this case, unlike FIG. 2, the propagation distance of the reflected wave 31 due to the internal defect 22 is longer than the propagation distance of the reflected wave 32, so that the reflected wave 31 is received with a delay.
この反射波31が前述したと同様に、直接透過波30による不感帯領域から外れたところに現れ、また、透過波33よりも早い時間に現れる。そのため、内部欠陥22が裏面13bの直下に存在しても、内部欠陥22による反射波31を明瞭に識別して抽出できるので、内部欠陥22が検出できて好ましい。
これまで説明したように、被検査板13を 0.5往復伝播した直接透過波30と、さらに被検査板13を1往復伝播した透過波33との間に現れる伝播距離が長い方の内部欠陥からの反射波を抽出するのが、ノイズとなる雑エコー成分が小さいので好ましい。
As described above, the reflected wave 31 appears outside the dead zone region due to the direct transmitted wave 30 and appears earlier than the transmitted wave 33. Therefore, even if the internal defect 22 exists directly under the back surface 13b, the reflected wave 31 due to the internal defect 22 can be clearly identified and extracted, so that the internal defect 22 can be detected and is preferable.
As explained so far, the direct propagation wave 30 that has propagated 0.5 reciprocatingly through the plate 13 to be inspected and the transmitted wave 33 that has propagated 1 reciprocating propagation through the substrate 13 to be inspected from the internal defect with the longer propagation distance. It is preferable to extract the reflected wave because a miscellaneous echo component that becomes noise is small.
ただし、本発明においては、超音波が被検査板13を 0.5往復伝播し、さらに被検査板13を1往復以上の整数回往復伝播した透過波と該透過波よりもさらに被検査板13を1往復伝播した透過波との間に現れる伝播距離が長い方の内部欠陥からの反射波を抽出するようにしてもよい。
その際、本発明では、2次元的に集束した点集束型の超音波送信子と点集束型の超音波受信子を用い、超音波送信子と超音波受信子を被検査板に対して相対的に走査しているので、幅方向の分解能が高く、内部欠陥の形態を検出することが可能となった。さらに本発明は、図6に示すように、超音波送信子11からの超音波送信ビーム11Aが超音波受信子12の表面で焦点Fを結ぶようにし、かつ、超音波受信子12の超音波受信ビーム12Aの焦点Gは超音波送信子11の表面となるようにするとよい。
However, in the present invention, the ultrasonic wave propagates 0.5 reciprocatingly through the plate 13 to be inspected, and further propagates through the inspected plate 13 by an integer number of reciprocations of one or more reciprocating times, and the inspected plate 13 1 more than the transmitted wave. You may make it extract the reflected wave from the internal defect with a longer propagation distance which appears between the transmitted waves which propagated back and forth.
In this case, in the present invention, a point-focusing type ultrasonic transmitter and a point-focusing type ultrasonic receiver that are two-dimensionally focused are used, and the ultrasonic transmitter and the ultrasonic receiver are relative to the plate to be inspected. Therefore, the resolution in the width direction is high, and the form of internal defects can be detected. Furthermore, in the present invention, as shown in FIG. 6, the ultrasonic transmission beam 11A from the ultrasonic transmitter 11 is focused on the surface of the ultrasonic receiver 12, and the ultrasonic wave of the ultrasonic receiver 12 is set. The focal point G of the reception beam 12A may be the surface of the ultrasonic transmitter 11.
このようにすると、超音波送信子11から送信される超音波送信ビーム11Aの強度は、被検査板13の表面に近いほど低くなるので、そこに存在する内部欠陥からの反射波の強度は小さくなるが、一方、超音波受信子12の受信効率は焦点Fに近い方が大きいので、被検査板13の表面に近いほど大きくなる。そのため、超音波受信子12で受信された内部欠陥からの反射波の強度は両者の効果が相殺して、内部欠陥の存在する位置が変化してもほぼ一定とすることができ、厚さ方向にわたって均一な感度とすることができるからである。 In this way, the intensity of the ultrasonic transmission beam 11A transmitted from the ultrasonic transmitter 11 becomes lower as it approaches the surface of the inspected plate 13, so the intensity of the reflected wave from the internal defect existing there is small. On the other hand, since the reception efficiency of the ultrasonic receiver 12 is larger near the focal point F, it becomes larger as it is closer to the surface of the inspected plate 13. Therefore, the intensity of the reflected wave from the internal defect received by the ultrasonic receiver 12 can be made almost constant even if the position where the internal defect exists is changed by canceling the effect of both, and the thickness direction This is because the sensitivity can be uniform over the entire area.
図7は、本発明法と従来法で人工欠陥を検出した結果を示したものである。
すなわち、本発明法は前出図6に示したような焦点F,Gが結ぶように配置した周波数25MHz 、水中焦点距離38mmの超音波送信子11および超音波受信子12を用いて測定したものであり、また従来法は前出図11に示したように、一方向から一つの点集束型の周波数25MHz 、水中焦点距離38mmの超音波送受信子で超音波を送信し、受信する方法で測定したものである。なお、人工欠陥は板厚5.5mm の被検査板13に、表面からの距離を変化させて、厚さ方向と直角に0.2 mmφの横ドリル孔を開けて製作したものである。
FIG. 7 shows the result of detecting an artificial defect by the method of the present invention and the conventional method.
That is, the method of the present invention was measured using an ultrasonic transmitter 11 and an ultrasonic receiver 12 having a frequency of 25 MHz and an underwater focal length of 38 mm arranged so that the focal points F and G are connected as shown in FIG. In the conventional method, as shown in FIG. 11, measurement is performed by transmitting and receiving ultrasonic waves from one direction to one point focusing type with a frequency of 25 MHz and an underwater focal length of 38 mm. It is a thing. The artificial defect was manufactured by changing the distance from the surface of the inspected plate 13 having a thickness of 5.5 mm and making a 0.2 mmφ horizontal drill hole perpendicular to the thickness direction.
この図から、本発明法は、従来法に比較して反射波の振幅が欠陥の表面からの距離に依らず一定であり、格段に優れた焦点深さを有し、厚さ方向にわたって均一な感度で検出できることがわかる。 From this figure, compared with the conventional method, the method of the present invention has a constant amplitude of the reflected wave regardless of the distance from the surface of the defect, has a remarkably excellent focal depth, and is uniform over the thickness direction. It can be seen that it can be detected with sensitivity.
次に、点集束型の超音波送信子11、点集束型の超音波受信子12および被検査板13の位置関係について、実験データに基づいて詳細に説明する。
図8は、前出図6に示したように焦点F,Gが結ぶように超音波送信子11と超音波受信子12を配置し、そのときの超音波送信子11と超音波受信子12間の距離をLS とし、厚さtが4.5mm である被検査板13を超音波送信子11と超音波受信子12の間で移動して超音波受信子12と被検査板13の間の距離L2 を変化させたときの、被検査板13の内部欠陥からの反射波の振幅およびS/Nを測定したものである。
Next, the positional relationship among the point-focusing type ultrasonic transmitter 11, the point-focusing type ultrasonic receiver 12, and the inspected plate 13 will be described in detail based on experimental data.
In FIG. 8, the ultrasonic transmitter 11 and the ultrasonic receiver 12 are arranged so that the focal points F and G are connected as shown in FIG. 6, and the ultrasonic transmitter 11 and the ultrasonic receiver 12 at that time are arranged. The distance between them is LS, and the inspected plate 13 having a thickness t of 4.5 mm is moved between the ultrasonic transmitter 11 and the ultrasonic receiver 12 to move between the ultrasonic receiver 12 and the inspected plate 13. This is a measurement of the amplitude and S / N of the reflected wave from the internal defect of the inspected plate 13 when the distance L2 is changed.
用いた超音波送信子11および超音波受信子12は周波数25MHz 、水中焦点距離38mmである。
これより、被検査板13は超音波送信子11と超音波受信子12間のどの位置においても、内部欠陥による反射波の振幅およびS/Nはほとんど変化がない。すなわち、被検査板13は超音波送信子11と超音波受信子12間のどの位置においてもよいことがわかる。
The used ultrasonic transmitter 11 and ultrasonic receiver 12 have a frequency of 25 MHz and an underwater focal length of 38 mm.
As a result, the amplitude and S / N of the reflected wave due to the internal defect hardly change at any position between the ultrasonic transmitter 11 and the ultrasonic receiver 12 in the inspection target plate 13. That is, it can be seen that the inspected plate 13 may be at any position between the ultrasonic transmitter 11 and the ultrasonic receiver 12.
超音波送信子11と超音波受信子12の焦点距離が等しい場合、すなわち、前出図6に示したように、超音波送信ビーム11Aの焦点Fが超音波受信子12の表面に一致し、超音波受信ビーム12Aの焦点Gが超音波送信子11の表面と一致するように超音波送信子11と超音波受信子12を配置したとき、超音波送信子11と超音波受信子12との間の距離をLS0とすると、この距離LS0は下記(4) 式のように表される。 When the focal lengths of the ultrasonic transmitter 11 and the ultrasonic receiver 12 are equal, that is, as shown in FIG. 6, the focal point F of the ultrasonic transmission beam 11A coincides with the surface of the ultrasonic receiver 12, When the ultrasonic transmitter 11 and the ultrasonic receiver 12 are arranged so that the focal point G of the ultrasonic reception beam 12A coincides with the surface of the ultrasonic transmitter 11, the ultrasonic transmitter 11 and the ultrasonic receiver 12 Assuming that the distance between them is LS0, the distance LS0 is expressed by the following equation (4).
LS0=FL −{(CM /CL )−1}×t ………………(4)
ただし、FL ;点集束型の超音波送信子11の焦点距離、または点集束型の超音波受信子12の焦点距離、t;被検査板の板厚、CM ;被検査材中での超音波の伝播速度、CL ;液中での超音波の伝播速度である。
図9はこのように超音波送信子11と超音波受信子12の焦点距離が等しい場合、距離LS0を基準距離として、水中で超音波送信子11と超音波受信子12との間の距離を変化させ、被検査板の内部欠陥からの反射波の振幅を測定したものである。用いた超音波送信子11および超音波受信子12は周波数;25MHz 、水中焦点距離;38mmであり、被検査板は板厚tが4.5 mmの薄鋼板を用いた。
LS0 = FL − {(CM / CL) −1} × t (4)
Where FL: focal length of the point-focusing type ultrasonic transmitter 11 or focal length of the point-focusing type ultrasonic receiver 12, t: plate thickness of the plate to be inspected, CM: ultrasonic wave in the material to be inspected Is the propagation velocity of ultrasonic waves in the liquid.
FIG. 9 shows the distance between the ultrasonic transmitter 11 and the ultrasonic receiver 12 in water when the focal lengths of the ultrasonic transmitter 11 and the ultrasonic receiver 12 are equal in this way, with the distance LS0 as the reference distance. The amplitude of the reflected wave from the internal defect of the board to be inspected is measured. The ultrasonic transmitter 11 and the ultrasonic receiver 12 used had a frequency of 25 MHz, an underwater focal length of 38 mm, and a thin steel plate having a thickness t of 4.5 mm was used as the inspected plate.
図9に示す結果から、距離LS が基準距離LS0よりも小さいときには反射波の振幅は若干大きいが、距離LS が基準距離LS0よりも大きくなると反射波の振幅は急激に低下することがわかる。反射波の振幅が基準距離LS0の場合よりも3dB以上低下することは、欠陥検出におけるS/Nの低下につながり、好ましくないので、超音波送信子11と超音波受信子12との間の距離LS (mm)は下記(5) 式を満足することが必要である。 From the result shown in FIG. 9, it can be seen that when the distance LS is smaller than the reference distance LS0, the amplitude of the reflected wave is slightly large, but when the distance LS is larger than the reference distance LS0, the amplitude of the reflected wave rapidly decreases. A reduction of 3 dB or more in the amplitude of the reflected wave from the reference distance LS0 leads to a decrease in S / N in defect detection, which is not preferable. Therefore, the distance between the ultrasonic transmitter 11 and the ultrasonic receiver 12 LS (mm) must satisfy the following formula (5).
LS ≦LS0+FL ×5/38 ………………(5)
すなわち、
LS ≦FL −{(CM /CL )−1}×t+FL ×5/38 …………(6)
として表される。
なお、(6) 式のFL の係数5/38は超音波送信子11および超音波受信子12の焦点距離が38mm以外の場合も考えて、一般化を図ったものである。
LS ≤ LS0 + FL x 5/38 (5)
That is,
LS ≦ FL − {(CM / CL) −1} × t + FL × 5/38 (6)
Represented as:
In addition, the coefficient 5/38 of FL in the equation (6) is generalized in consideration of the case where the focal lengths of the ultrasonic transmitter 11 and the ultrasonic receiver 12 are other than 38 mm.
超音波送信子11の焦点距離と超音波受信子12の焦点距離が等しくないときにも、次のように配置することにより、前出図7および図8に示したものと同様の効果を得ることができる。
例えば、超音波送信子11の焦点距離が超音波受信子12の焦点距離よりも大きいときには、超音波送信ビーム11Aの焦点Fが超音波受信子12の表面に一致するように超音波送信子11と超音波受信子12を配置する。このとき、被検査板13を超音波受信ビーム12Aの焦点Gよりも超音波受信子12に近い位置におけば、前出図6を用いて説明したものと同様のことが成立する。また、超音波受信子12の焦点距離が超音波送信子11の焦点距離よりも大きいときには、超音波受信ビーム12Aの焦点Gが超音波送信子11の表面と一致するように超音波送信子11と超音波受信子12を配置する。このとき、被検査板13を超音波送信ビーム11Aの焦点Fよりも超音波送信子11に近い位置におけば、前出図6を用いて説明したものと同様のことが成立する。
Even when the focal length of the ultrasonic transmitter 11 and the focal length of the ultrasonic receiver 12 are not equal, the same effects as those shown in FIGS. 7 and 8 can be obtained by arranging as follows. be able to.
For example, when the focal length of the ultrasonic transmitter 11 is larger than the focal length of the ultrasonic receiver 12, the ultrasonic transmitter 11 so that the focal point F of the ultrasonic transmission beam 11 A coincides with the surface of the ultrasonic receiver 12. And an ultrasonic receiver 12 are arranged. At this time, if the inspected plate 13 is positioned closer to the ultrasonic receiver 12 than the focal point G of the ultrasonic reception beam 12A, the same thing as that described with reference to FIG. Further, when the focal length of the ultrasonic receiver 12 is larger than the focal length of the ultrasonic transmitter 11, the ultrasonic transmitter 11 so that the focal point G of the ultrasonic reception beam 12A coincides with the surface of the ultrasonic transmitter 11. And an ultrasonic receiver 12 are arranged. At this time, if the inspected plate 13 is positioned closer to the ultrasonic transmitter 11 than the focal point F of the ultrasonic transmission beam 11A, the same thing as described with reference to FIG.
なお、超音波送信子11の焦点距離と超音波受信子12の焦点距離が等しくないときの両者の間隔LS について、超音波送信子11の焦点距離が超音波受信子12の焦点距離よりも大きい場合を例にとって図10に示す実験データにより詳細に説明する。
このとき、大きい方の焦点距離をFL 、超音波送信ビーム11Aの焦点Fが超音波受信子12の表面に一致するように超音波送信子11と超音波受信子12とを配置したとき、超音波送信子11と超音波受信子12との間の距離をLS0とすると、この距離LS0は下記(7) 式のように表される。
Note that the focal length of the ultrasonic transmitter 11 is larger than the focal length of the ultrasonic receiver 12 with respect to the distance LS between the focal length of the ultrasonic transmitter 11 and the ultrasonic receiver 12 when they are not equal. The case will be described in detail with reference to experimental data shown in FIG.
At this time, when the ultrasonic transmitter 11 and the ultrasonic receiver 12 are arranged so that the larger focal length is FL and the focal point F of the ultrasonic transmission beam 11A coincides with the surface of the ultrasonic receiver 12, Assuming that the distance between the sound wave transmitter 11 and the ultrasonic wave receiver 12 is LS0, the distance LS0 is expressed by the following equation (7).
LS0=FL −{(CM /CL )−1}×t ………………(7)
図10はこの距離LS0を基準距離として、水中で超音波送信子11と超音波受信子12との間の距離を変化させ、被検査板の内部欠陥からの反射波の振幅を測定したものである。用いた超音波送信子11は周波数;25MHz 、水中焦点距離;38mmであり、超音波受信子12は周波数;25MHz 、水中焦点距離;25mmである。被検査板は板厚tが4.5 mmの薄鋼板を用いた。
LS0 = FL − {(CM / CL) −1} × t (7)
FIG. 10 shows the measurement of the amplitude of the reflected wave from the internal defect of the inspected plate by changing the distance between the ultrasonic transmitter 11 and the ultrasonic receiver 12 in water using the distance LS0 as a reference distance. is there. The ultrasonic transmitter 11 used has a frequency of 25 MHz and an underwater focal length of 38 mm, and the ultrasonic receiver 12 has a frequency of 25 MHz and an underwater focal length of 25 mm. A thin steel plate having a thickness t of 4.5 mm was used as the inspected plate.
前出図9と同様に、距離LS が基準距離LS0よりも小さいときには反射波の振幅は若干大きいが、距離LS が基準距離LS0よりも大きくなると反射波の振幅は急激に低下することがわかる。反射波の振幅が基準距離LS0の場合よりも3dB以上低下することは、欠陥検出におけるS/Nの低下につながり、好ましくないと判断されるため、超音波送信子11と超音波受信子12との間の距離LS (mm)は下記(8) 式を満足することが必要である。 As in FIG. 9, the amplitude of the reflected wave is slightly large when the distance LS is smaller than the reference distance LS0, but it can be seen that the amplitude of the reflected wave rapidly decreases when the distance LS is larger than the reference distance LS0. The fact that the amplitude of the reflected wave is reduced by 3 dB or more as compared with the case of the reference distance LS0 leads to a decrease in S / N in defect detection, and it is judged that it is not preferable. Therefore, the ultrasonic transmitter 11 and the ultrasonic receiver 12 The distance LS (mm) between the two must satisfy the following equation (8).
LS ≦LS0+FL ×5/38 ………………(8)
すなわち、
LS ≦FL −{(CM /CL )−1}×t+FL ×5/38 …………(9)
として表される。なお、(9) 式のFL の係数5/38は超音波送信子11および超音波受信子12の焦点距離が38mm以外の場合も考えて、一般化を図ったものである。
LS ≤ LS0 + FL x 5/38 (8)
That is,
LS ≦ FL − {(CM / CL) −1} × t + FL × 5/38 (9)
Represented as: In addition, the coefficient 5/38 of FL in the equation (9) is generalized in consideration of cases where the focal lengths of the ultrasonic transmitter 11 and the ultrasonic receiver 12 are other than 38 mm.
また超音波受信子12の焦点距離が超音波送信子11の焦点距離が大きい場合について、超音波送信子11として周波数;25MHz 、水中焦点距離;25mm、超音波受信子12として周波数;25MHz 、水中焦点距離;38mmのものを用いて実験を行ったところ、図示は省略するが、図10とほぼ同等の結果を得ることができた。したがって、超音波送信子11の焦点距離と超音波受信子12の焦点距離が等しくないときには、大きい方をFL とし、超音波送信子11と超音波受信子12との間の距離LS が前出(9) 式となるように、超音波送信子11と超音波受信子12とを配置すればよい。 When the focal length of the ultrasonic receiver 12 is large, the ultrasonic transmitter 11 has a large focal length; the frequency as the ultrasonic transmitter 11; 25 MHz, the underwater focal length; 25 mm; the frequency as the ultrasonic receiver 12; 25 MHz, underwater When an experiment was conducted using a focal length of 38 mm, the result was almost the same as that shown in FIG. Therefore, when the focal length of the ultrasonic transmitter 11 and the focal length of the ultrasonic receiver 12 are not equal, the larger one is FL, and the distance LS between the ultrasonic transmitter 11 and the ultrasonic receiver 12 is the same as the above. The ultrasonic transmitter 11 and the ultrasonic receiver 12 may be arranged so as to satisfy the equation (9).
被検査板13として厚さ1.2 〜5.5 mmの薄鋼板の欠陥探傷を行う際に、本発明法を適用した。このとき用いた超音波送信子11としては周波数25MHz 、水中焦点距離38mmのものを用いて、25MHz の周波数の超音波を送信し、また超音波受信子12としては周波数25MHz 、水中焦点距離38mmのものを用いて探傷した。その結果、欠陥の厚さ方向の位置によらずに、10μm φの超微小欠陥を検出することができた。 The present invention method was applied when defect inspection was performed on a thin steel plate having a thickness of 1.2 to 5.5 mm as the inspected plate 13. As the ultrasonic transmitter 11 used at this time, an ultrasonic wave having a frequency of 25 MHz and an underwater focal length of 38 mm was used to transmit an ultrasonic wave having a frequency of 25 MHz, and as the ultrasonic receiver 12, a frequency of 25 MHz and an underwater focal length of 38 mm was used. We used a thing to detect flaws. As a result, it was possible to detect an ultra-fine defect of 10 μm φ regardless of the position in the thickness direction of the defect.
なお、上記した実施例においては、超音波送信子11と超音波受信子12を支持アーム14で保持することにより被検査板に対して対向配置された前記超音波送信子と前記超音波受信子を走査するようにしたが、本発明はこれに限るものではなく、逆に被検査板側を走査するように構成してもよいことは、言うまでもない。 In the above-described embodiment, the ultrasonic transmitter 11 and the ultrasonic receiver 12 which are disposed to face the board to be inspected by holding the ultrasonic transmitter 11 and the ultrasonic receiver 12 by the support arm 14. However, the present invention is not limited to this, and it goes without saying that it may be configured to scan the inspected plate side.
11 超音波送信子(点集束型超音波送信子)
11A 超音波送信ビーム
12 超音波受信子(点集束型超音波受信子)
12A 超音波受信ビーム
13 被検査板
13a 表面
13b 裏面
14 支持アーム
15 走査装置
16 電気パルス発生器
17 受信増幅器
18 ゲート回路
19 ピーク値検出回路
20 コントローラ
21 表示器
22 内部欠陥
30 直接透過波
31, 32 反射波
33 透過波
11 Ultrasonic Transmitter (Point Focusing Ultrasonic Transmitter)
11A Ultrasonic transmission beam
12 Ultrasonic receiver (Point-focusing type ultrasonic receiver)
12A Ultrasonic receiving beam
13 Board to be inspected
13a surface
13b reverse side
14 Support arm
15 Scanning device
16 Electric pulse generator
17 Receiver amplifier
18 Gate circuit
19 Peak value detection circuit
20 Controller
21 Display
22 Internal defects
30 Direct transmitted wave
31, 32 Reflected wave
33 Transmitted wave
Claims (4)
被検査板を挟んで前記点集束型超音波送信子と対向する位置に配置し、前記超音波が内
部欠陥の上側で反射して被検査板の表面に向かい、表面で反射して、裏面から液中に伝播
し受信される反射波と、前記超音波が最初に被検査板の裏面で反射し、内部欠陥に向かい
、内部欠陥の下側で反射した後、裏面から液中に伝播し受信される反射波の両方を受信す
る点集束型の超音波受信子と、
前記超音波送信子と前記超音波受信子とを被検査板を挟んで支持する支持アームと、
該支持アームを走査する走査装置と、
前記超音波送信子に内蔵された圧電振動子に送信する電気パルスを発生する電気パルス
発生装置と、
受信信号を増幅する増幅装置と、増幅された受信信号のうち、伝播距離が長い方の内部欠陥からの反射波による信号を抽出するゲート手段と、
を備えたことを特徴とするCスキャン超音波探傷装置。 A point-focusing type ultrasonic transmitter that transmits ultrasonic waves substantially vertically to the surface of the inspection plate;
Arranged at a position facing the point-focusing ultrasonic transmitter across the board to be inspected, the ultrasonic wave is reflected on the upper side of the internal defect and directed to the surface of the board to be inspected, reflected on the surface, and from the back surface The reflected wave that is propagated and received in the liquid and the ultrasonic wave are first reflected on the back surface of the board to be inspected, directed to the internal defect, reflected on the lower side of the internal defect, and then propagated into the liquid from the back surface and received. A point-focusing ultrasonic receiver that receives both reflected waves, and
A support arm that supports the ultrasonic transmitter and the ultrasonic receiver with an inspection plate interposed therebetween;
A scanning device for scanning the support arm;
An electric pulse generator for generating an electric pulse to be transmitted to a piezoelectric vibrator incorporated in the ultrasonic transmitter;
An amplifying device for amplifying the received signal; and gate means for extracting a signal due to a reflected wave from an internal defect having a longer propagation distance among the amplified received signal;
A C-scan ultrasonic flaw detector characterized by comprising:
The gate means has a time (τ0) when τ0 is a time at which the transmitted ultrasonic wave reaches the ultrasonic receiver and τ1 is a time required for the ultrasonic wave to propagate in the thickness direction of the inspection plate. 4. The C-scan ultrasonic flaw detection as set forth in claim 3, wherein the signal is set to extract a signal due to a reflected wave from an internal defect from a signal received after + τ1) and before (τ0 + 2 × τ1). apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004352178A JP3821149B2 (en) | 2004-12-06 | 2004-12-06 | C-scan ultrasonic flaw detection method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004352178A JP3821149B2 (en) | 2004-12-06 | 2004-12-06 | C-scan ultrasonic flaw detection method and apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10500595A Division JP3653785B2 (en) | 1995-04-28 | 1995-04-28 | C-scan ultrasonic flaw detection method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005099045A true JP2005099045A (en) | 2005-04-14 |
JP3821149B2 JP3821149B2 (en) | 2006-09-13 |
Family
ID=34464434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004352178A Expired - Fee Related JP3821149B2 (en) | 2004-12-06 | 2004-12-06 | C-scan ultrasonic flaw detection method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3821149B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7355899B1 (en) | 2022-07-28 | 2023-10-03 | 株式会社日立パワーソリューションズ | Ultrasonic inspection equipment and ultrasonic inspection method |
-
2004
- 2004-12-06 JP JP2004352178A patent/JP3821149B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7355899B1 (en) | 2022-07-28 | 2023-10-03 | 株式会社日立パワーソリューションズ | Ultrasonic inspection equipment and ultrasonic inspection method |
WO2024024832A1 (en) * | 2022-07-28 | 2024-02-01 | 株式会社日立パワーソリューションズ | Ultrasonic inspection apparatus and ultrasonic inspection method |
JP2024017882A (en) * | 2022-07-28 | 2024-02-08 | 株式会社日立パワーソリューションズ | Ultrasonic inspection device and ultrasonic inspection method |
Also Published As
Publication number | Publication date |
---|---|
JP3821149B2 (en) | 2006-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007058391A1 (en) | Pipe ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method | |
EP0826148A1 (en) | Ultrasonic inspection | |
Osumi et al. | Imaging slit in metal plate using aerial ultrasound source scanning and nonlinear harmonic method | |
JP2009097942A (en) | Noncontact-type array probe, and ultrasonic flaw detection apparatus and method using same | |
Watanabe et al. | Detection of defects on reverse side of metal plate using MHz-range air-coupled Lamb wave | |
JP2014077708A (en) | Inspection device and inspection method | |
WO2019111381A1 (en) | Ultrasonic flaw detection device | |
JP4144699B2 (en) | Probe and material evaluation test method using the same | |
JP3653785B2 (en) | C-scan ultrasonic flaw detection method and apparatus | |
JP3821149B2 (en) | C-scan ultrasonic flaw detection method and apparatus | |
JP2009058238A (en) | Method and device for defect inspection | |
JPH1183815A (en) | Ultrasonic flaw detecting method and detector | |
JP2017161513A (en) | Ultrasonic flaw detecting device, and ultrasonic flaw detecting method | |
JP3612849B2 (en) | C-scan ultrasonic flaw detection method and apparatus | |
JP3241519B2 (en) | Ultrasonic flaw detection method and apparatus | |
WO2020159385A9 (en) | A method and device for non-destructive testing of a plate material | |
Kays et al. | Air-coupled ultrasonic non-destructive testing of aerospace components | |
Imano et al. | Experimental study on the mode conversion of lamb wave using a metal plate having a notch type defect | |
JPS6228869B2 (en) | ||
JP2002277447A (en) | Ultrasonic flaw detection method and apparatus | |
JPH05288722A (en) | Method for ultrasonic examination of sheet defect | |
RU2644438C1 (en) | Method of ultrasonic controlling surface and subsurface defects of metal products and device for its implementation | |
JP3629908B2 (en) | Line focus type ultrasonic flaw detection method and apparatus | |
JP2007263956A (en) | Ultrasonic flaw detection method and apparatus | |
IMANO | Experimental study on the mode conversion of Lamb waves in a metal plate of stepped thickness using optical detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060530 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060612 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100630 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110630 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120630 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120630 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130630 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140630 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |