JP2005098554A - Heat pump cycle - Google Patents

Heat pump cycle Download PDF

Info

Publication number
JP2005098554A
JP2005098554A JP2003330390A JP2003330390A JP2005098554A JP 2005098554 A JP2005098554 A JP 2005098554A JP 2003330390 A JP2003330390 A JP 2003330390A JP 2003330390 A JP2003330390 A JP 2003330390A JP 2005098554 A JP2005098554 A JP 2005098554A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
heat exchanger
internal heat
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003330390A
Other languages
Japanese (ja)
Inventor
Jun Iwase
潤 岩瀬
Hisasuke Sakakibara
久介 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003330390A priority Critical patent/JP2005098554A/en
Publication of JP2005098554A publication Critical patent/JP2005098554A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Abstract

<P>PROBLEM TO BE SOLVED: To maintain a high coefficient of result even if atmospheric temperature is changed by changing internal heat exchange quantity without using electric control. <P>SOLUTION: A container 7a is provided with a gas-liquid separator communication passage 7b in a side surface thereof, a compressor communication passage 7c in a top side thereof and an internal heat exchanger communication passage 7d in a ground side thereof. A float 71 having the predetermined density is provided inside the container 7a, and a flow passage changing means 7 for changing a refrigerant flow passage flowing to the compressor communication passage 7c and the internal heat exchanger communication passage 7d by vertically moving the float 71 in response to density of the refrigerant flowing from the gas-liquid separator communication passage 7b is arranged to control heat exchange quantity in an internal heat exchanger 6. Even if atmospheric temperature is changed, a high coefficient of result can be always maintained by changing quantity of the refrigerant flowing to the internal heat exchanger 6 with the float 71 vertically moving in response to density of the refrigerant to adjust quantity of the refrigerant to the internal heat exchange quantity corresponding to the pressure of the refrigerant (evaporation temperature of the refrigerant). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、低温側の熱を高温側に移動させるヒートポンプサイクルに関するものであり、空調装置や給湯装置に適用して有効である。   The present invention relates to a heat pump cycle that moves heat on a low temperature side to a high temperature side, and is effective when applied to an air conditioner or a hot water supply device.

従来、ヒートポンプサイクル(冷凍サイクル)の能力を向上させる手段として、減圧される前の高圧冷媒と圧縮機に吸入される低圧冷媒とを熱交換させる内部熱交換器を設ける手段が知られている。内部熱交換器は、膨張弁等の減圧手段に流入する高温・高圧冷媒を圧縮機に吸入される低温・低圧冷媒により冷却することにより、蒸発器入口における冷媒の比エンタルピを減少させて蒸発器での比エンタルピ変化量(吸熱能力)を向上させ、また、ガスクーラーの入口における冷媒の比エンタルピを増加させてガスクーラーでの比エンタルピ変化量(放熱量)を向上させるものである。   Conventionally, as means for improving the capacity of a heat pump cycle (refrigeration cycle), means for providing an internal heat exchanger for exchanging heat between the high-pressure refrigerant before being decompressed and the low-pressure refrigerant sucked into the compressor is known. The internal heat exchanger reduces the specific enthalpy of the refrigerant at the evaporator inlet by cooling the high-temperature and high-pressure refrigerant flowing into the decompression means such as the expansion valve with the low-temperature and low-pressure refrigerant sucked into the compressor. The amount of change in specific enthalpy (heat absorption capacity) at the gas cooler is increased, and the specific enthalpy change (heat release amount) at the gas cooler is increased by increasing the specific enthalpy of the refrigerant at the inlet of the gas cooler.

しかしながら内部熱交換器は、圧縮機に吸入される冷媒を加熱するため、圧縮機に吸入される冷媒の密度が低下してしまい、サイクル内を循環する質量流量が低下し、かえってヒートポンプサイクル(冷凍サイクル)の能力を低下させてしまうおそれがある。そこで本出願人は、この内部熱交換器を設けたヒートポンプサイクルに関して、特許文献1に示すものを先に出願している。これは、空気温度の高い高負荷時と空気温度の低い低負荷時とで、ヒートポンプサイクル(冷凍サイクル)の能力が向上する(高い成績係数を維持する)ように内部熱交換器での熱交換量を可変制御するものである。
特開2002−349977号公報
However, since the internal heat exchanger heats the refrigerant sucked into the compressor, the density of the refrigerant sucked into the compressor is lowered, the mass flow rate circulating in the cycle is lowered, and instead the heat pump cycle (refrigeration). Cycle) ability may be reduced. Therefore, the present applicant has previously applied for the heat pump cycle provided with the internal heat exchanger shown in Patent Document 1. This is because the heat pump cycle (refrigeration cycle) capacity is improved (maintains a high coefficient of performance) at high loads with high air temperatures and low loads with low air temperatures. The amount is variably controlled.
Japanese Patent Laid-Open No. 2002-349977

しかしながら、上記特許文献1では、熱交換量を可変制御するための流量調節に電気的な弁手段を用いており、可変制御用のセンサ・モータ(もしくはソレノイド)・制御回路などによるコストアップが問題となる。本発明は、この問題点に鑑みて成されたものであり、その目的は、電気的な制御を用いずに内部熱交換量を可変して、空気温度が変化しても常に高い成績係数を維持することのできるヒートポンプサイクル(冷凍サイクル)を提供することにある。   However, in the above-mentioned Patent Document 1, an electric valve means is used for flow rate adjustment for variably controlling the heat exchange amount, and there is a problem of cost increase due to a variable control sensor, motor (or solenoid), control circuit, etc. It becomes. The present invention has been made in view of this problem, and its purpose is to change the internal heat exchange amount without using electrical control, so that a high coefficient of performance is always obtained even if the air temperature changes. The object is to provide a heat pump cycle (refrigeration cycle) that can be maintained.

本発明は上記目的を達成するために、請求項1ないし請求項3に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、冷媒を吸入圧縮する圧縮機(1)と、圧縮機(1)から吐出した冷媒を冷却する放熱器(2)と、冷媒を蒸発させて熱を吸収する蒸発器(3)と、放熱器(2)から流出した高圧冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル(41)、ノズル(41)から噴射する高い速度の冷媒流により蒸発器(3)にて蒸発した気相冷媒を吸引し、ノズル(41)から噴射する冷媒と蒸発器(3)から吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させる昇圧部(4a、4b)を有するエジェクタ(4)と、
冷媒を気相冷媒と液相冷媒とに分離して冷媒を蓄える気液分離器(5)と、放熱器(2)から流出した高圧冷媒と圧縮機(1)に吸入される低圧冷媒とを熱交換する内部熱交換器(6)とを備え、蒸発器(3)における吸熱が凝縮域にある冷媒を用いて低温側の熱を高温側に移動させるヒートポンプサイクルにおいて、
容器(7a)の側面側には気液分離器(5)からの冷媒が流入する気液分離器連通路(7b)、容器(7a)の天側には圧縮機(1)へ冷媒を供給する圧縮機連通路(7c)、容器(7a)の地側には内部熱交換器(6)を経由して圧縮機(1)へ冷媒を供給する内部熱交換器連通路(7d)を設けると共に、容器(7a)内に所定密度のフロート(71)を設け、気液分離器連通路(7b)から流入する冷媒の密度によってフロート(71)が上下することにより圧縮機連通路(7c)と内部熱交換器連通路(7d)とに流れる冷媒流路を可変する流路可変手段(7)を、気液分離器(5)と圧縮機(1)と内部熱交換器(6)との間に配置して、内部熱交換器(6)における熱交換量を調節するようにしたことを特徴としている。
In order to achieve the above object, the present invention employs technical means described in claims 1 to 3. That is, according to the first aspect of the present invention, the compressor (1) that sucks and compresses the refrigerant, the radiator (2) that cools the refrigerant discharged from the compressor (1), and the refrigerant is evaporated to absorb heat. The evaporator (3), the nozzle (41) for converting the pressure energy of the high-pressure refrigerant flowing out from the radiator (2) into velocity energy and decompressing and expanding the refrigerant, and the high-speed refrigerant flow injected from the nozzle (41) The vapor phase refrigerant evaporated in the evaporator (3) is sucked by the above, and the velocity energy is converted into pressure energy while the refrigerant injected from the nozzle (41) and the refrigerant sucked from the evaporator (3) are mixed. An ejector (4) having a boosting section (4a, 4b) for boosting the pressure of
A gas-liquid separator (5) that separates the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant and stores the refrigerant, a high-pressure refrigerant that has flowed out of the radiator (2), and a low-pressure refrigerant that is sucked into the compressor (1). In a heat pump cycle comprising an internal heat exchanger (6) for exchanging heat, and moving heat on the low temperature side to the high temperature side using a refrigerant whose endotherm in the evaporator (3) is in the condensation region,
The gas-liquid separator communication path (7b) into which refrigerant from the gas-liquid separator (5) flows is supplied to the side surface of the container (7a), and the refrigerant is supplied to the compressor (1) on the top side of the container (7a). An internal heat exchanger communication path (7d) for supplying refrigerant to the compressor (1) via the internal heat exchanger (6) is provided on the ground side of the compressor communication path (7c) and the container (7a). At the same time, a float (71) having a predetermined density is provided in the container (7a), and the float (71) moves up and down depending on the density of the refrigerant flowing from the gas-liquid separator communication path (7b), whereby the compressor communication path (7c). And a flow path varying means (7) for varying the flow path of the refrigerant flowing through the internal heat exchanger communication path (7d), a gas-liquid separator (5), a compressor (1), and an internal heat exchanger (6). It arrange | positions between these, It was characterized by adjusting the heat exchange amount in an internal heat exchanger (6).

図1は本発明の一実施形態におけるヒートポンプサイクルの模式図であり、図4は図1のヒートポンプサイクルにおけるモリエル線図である。本発明ではフロン・代替フロン・自然冷媒などを冷媒に用いており、蒸発器(3)における吸熱が凝縮域にある。このようなヒートポンプサイクル(冷凍サイクル)では気液分離器(5)出口の冷媒状態は飽和蒸気線上にあり、冷媒圧力(冷媒の蒸発温度)によって冷媒の密度が一義的に決まるため、その冷媒密度を利用して所定密度のフロート(71)を容器(7a)中で上下させ、内部熱交換器(6)を通る流路と通らない流路とを可変するようにしたものである。   FIG. 1 is a schematic diagram of a heat pump cycle in one embodiment of the present invention, and FIG. 4 is a Mollier diagram in the heat pump cycle of FIG. In the present invention, chlorofluorocarbon, alternative chlorofluorocarbon, natural refrigerant or the like is used as the refrigerant, and the heat absorption in the evaporator (3) is in the condensation region. In such a heat pump cycle (refrigeration cycle), the refrigerant state at the gas-liquid separator (5) outlet is on the saturated vapor line, and the refrigerant density is uniquely determined by the refrigerant pressure (refrigerant evaporation temperature). The float (71) of a predetermined density is moved up and down in the container (7a) by using the above, and the flow path passing through the internal heat exchanger (6) and the flow path not passing through are changed.

より具体的には、気液分離器(5)の出口圧力が低い(空気温度が低い)時はフロート(71)は冷媒より重くなり、容器(7a)内で沈むことより内部熱交換器連通路(7d)が塞がれて、冷媒は圧縮機連通路(7c)から直接圧縮機(1)へ導入される。また、気液分離器(5)出口の圧力が高い(空気温度が高い)時はフロート(71)は冷媒より軽くなり、容器(7a)内で浮かぶことより圧縮機連通路(7c)が塞がれて、冷媒は内部熱交換器連通路(7d)から内部熱交換器(6)へ導入する事ができる。   More specifically, when the outlet pressure of the gas-liquid separator (5) is low (air temperature is low), the float (71) becomes heavier than the refrigerant and sinks in the container (7a), so The passage (7d) is closed, and the refrigerant is directly introduced into the compressor (1) from the compressor communication passage (7c). Further, when the pressure at the outlet of the gas-liquid separator (5) is high (the air temperature is high), the float (71) is lighter than the refrigerant and floats in the container (7a), thereby closing the compressor communication path (7c). As a result, the refrigerant can be introduced into the internal heat exchanger (6) from the internal heat exchanger communication path (7d).

図5は、放熱器2の空気流れ上流側(放熱器2前面)での空気温度Tamとサイクルの成績係数(COP=蒸発器で発生する冷凍能力/圧縮機の仕事量)との関係を示す数値シミュレーション結果であり、一点鎖線は常に高圧冷媒と低圧冷媒を熱交換させた場合を示し、破線は内部熱交換器を有していない場合を示し、実線は本実施形態を示している。そして、図5から明らかなように、本実施形態によれば、高圧冷媒に関する物理量である放熱器2の空気流れ上流側(放熱器2前面)での空気温度Tamに基づいて、高圧冷媒と低圧冷媒との熱交換量を可変しているので、サイクルの成績係数を常に高く維持することが可能である。   FIG. 5 shows the relationship between the air temperature Tam on the upstream side of the air flow of the radiator 2 (front surface of the radiator 2) and the coefficient of performance of the cycle (COP = refrigeration capacity generated in the evaporator / compressor work). It is a numerical simulation result, a dashed-dotted line shows the case where a high pressure refrigerant | coolant and a low pressure refrigerant are always heat-exchanged, a broken line shows the case where it does not have an internal heat exchanger, and the continuous line has shown this embodiment. As apparent from FIG. 5, according to the present embodiment, the high-pressure refrigerant and the low-pressure are based on the air temperature Tam on the upstream side of the air flow of the radiator 2 (the front surface of the radiator 2), which is a physical quantity related to the high-pressure refrigerant. Since the amount of heat exchange with the refrigerant is variable, the coefficient of performance of the cycle can always be kept high.

この請求項1に記載の発明によれば、電気的な制御を用いずに、冷媒密度によって上下するフロート(71)によって内部熱交換器(6)へ流通する冷媒量を可変して、冷媒圧力(冷媒の蒸発温度)に応じた内部熱交換量に調整することにより、空気温度(Tam)が変化しても常に高い成績係数(COP)を維持することのできるヒートポンプサイクル(冷凍サイクル)とすることができる。   According to the first aspect of the present invention, the refrigerant pressure flowing into the internal heat exchanger (6) can be varied by the float (71) that rises and falls depending on the refrigerant density without using electrical control, and the refrigerant pressure By adjusting the internal heat exchange amount according to (evaporation temperature of refrigerant), a heat pump cycle (refrigeration cycle) that can always maintain a high coefficient of performance (COP) even if the air temperature (Tam) changes. be able to.

また、請求項2に記載の発明では、流路可変手段(7)を、蒸発器出口部の冷媒が常に飽和蒸気状態であるヒートポンプサイクルに適用ことを特徴としており、請求項3に記載の発明では、流路可変手段(7)を、圧縮機吸入部の冷媒が常に飽和蒸気状態であるヒートポンプサイクルに適用ことを特徴としている。   The invention according to claim 2 is characterized in that the flow path varying means (7) is applied to a heat pump cycle in which the refrigerant at the outlet of the evaporator is always in a saturated vapor state, and the invention according to claim 3 Then, the flow path varying means (7) is characterized by being applied to a heat pump cycle in which the refrigerant in the compressor suction portion is always in a saturated vapor state.

本発明は、蒸発器出口部、または圧縮機吸入部の冷媒が常に飽和蒸気状態であれば、エジェクタサイクル以外のヒートポンプサイクルにも適用することができる。この請求項2または請求項3に記載の発明によれば、エジェクタサイクル以外のヒートポンプサイクルにおいても、空気温度(Tam)が変化しても、より確実に高い成績係数(COP)を維持することができる。尚、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   The present invention can be applied to a heat pump cycle other than the ejector cycle as long as the refrigerant in the evaporator outlet or the compressor suction portion is always in a saturated vapor state. According to the invention described in claim 2 or claim 3, even in a heat pump cycle other than the ejector cycle, even if the air temperature (Tam) changes, a higher coefficient of performance (COP) can be more reliably maintained. it can. In addition, the code | symbol in the bracket | parenthesis of each said means is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.

(第1実施形態)
以下、本発明の実施の形態について図面を用いて説明する。図1は、本発明の一実施形態におけるエジェクタ4を用いたヒートポンプサイクルの模式図であり、本実施形態は、本発明に係るエジェクタサイクル(ヒートポンプサイクル)を、フロン・代替フロン・自然冷媒などを冷媒とする空調装置に適用したものである。図1中の1は、図示しない駆動用のモータやエンジンなどの駆動源から駆動力を得て、冷媒を吸入圧縮する可変容量型の圧縮機である。また2は、圧縮機1から吐出した冷媒と室外空気とを熱交換させて冷媒を冷却する放熱器(高圧側熱交換器、コンデンサ)である。
(First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a heat pump cycle using an ejector 4 according to an embodiment of the present invention. In the present embodiment, an ejector cycle (heat pump cycle) according to the present invention is replaced with chlorofluorocarbon, alternative chlorofluorocarbon, natural refrigerant, and the like. The present invention is applied to an air conditioner used as a refrigerant. Reference numeral 1 in FIG. 1 denotes a variable capacity compressor that obtains driving force from a driving source (not shown) such as a driving motor or an engine and sucks and compresses the refrigerant. Reference numeral 2 denotes a radiator (high-pressure side heat exchanger, condenser) that cools the refrigerant by exchanging heat between the refrigerant discharged from the compressor 1 and outdoor air.

3は、室内に吹き出す空気と液相冷媒とを熱交換させ、液相冷媒を蒸発させることにより室内に吹き出す空気から吸熱して冷凍能力を発揮する蒸発器(低圧側熱交換器、エバポレータ)である。また4は、放熱器2から流出する冷媒を減圧膨張させて蒸発器3にて蒸発した気相冷媒を吸引すると共に、膨張エネルギーを圧力エネルギーに変換して圧縮機1の吸入圧を上昇させるエジェクタ(減圧手段)である。   3 is an evaporator (low pressure side heat exchanger, evaporator) that performs heat exchange between the air blown into the room and the liquid phase refrigerant, and absorbs heat from the air blown into the room by evaporating the liquid phase refrigerant to exert a refrigerating capacity. is there. The ejector 4 expands the refrigerant flowing out of the radiator 2 under reduced pressure and sucks the gas-phase refrigerant evaporated in the evaporator 3, and converts the expansion energy into pressure energy to increase the suction pressure of the compressor 1. (Pressure reduction means).

ここで、エジェクタ4は、図2に示すように、放熱器2から流出した高圧冷媒の圧力エネルギー(圧力ヘッド)を速度エネルギー(速度ヘッド)に変換して、冷媒を略等エントロピ的に減圧膨張させるノズル41と、ノズル41から噴射する高い速度の冷媒流(ジェット流)により蒸発器3にて蒸発した気相冷媒を吸引する混合部4a、およびノズル41から噴射する冷媒と蒸発器3から吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させるディフューザ部4b等の昇圧部からなるものである。   Here, as shown in FIG. 2, the ejector 4 converts the pressure energy (pressure head) of the high-pressure refrigerant flowing out from the radiator 2 into velocity energy (speed head), and decompresses and expands the refrigerant in a substantially isentropic manner. The nozzle 41 to be discharged, the mixing unit 4a for sucking the vapor-phase refrigerant evaporated in the evaporator 3 by the high-speed refrigerant flow (jet flow) jetted from the nozzle 41, and the refrigerant jetted from the nozzle 41 and the suction from the evaporator 3 It is composed of a boosting section such as a diffuser section 4b that boosts the pressure of the refrigerant by converting velocity energy into pressure energy while mixing with the refrigerant.

ちなみに、本実施形態に係るノズル41は、通路途中に通路面積が最も縮小した喉部41aを有し、且つ、喉部41aからノズル41の出口までの寸法が、通路断面積が縮小し始める部位から喉部41aまでの寸法より大きい末広ノズル(divergent Nozzle、de Laval Nozzle)である。尚、本実施形態では、混合部4aの直径はディフューザ部4bまで一定であるが、混合部4aの断面積をディフューザ部4bに向かうほど大きくなるようにテーパ状としても良い。   Incidentally, the nozzle 41 according to the present embodiment has a throat portion 41a having the smallest passage area in the middle of the passage, and the dimension from the throat portion 41a to the outlet of the nozzle 41 starts to reduce the passage sectional area. A divergent nozzle larger than the dimension from the throat portion 41a to the throat portion 41a. In the present embodiment, the diameter of the mixing portion 4a is constant up to the diffuser portion 4b. However, the cross-sectional area of the mixing portion 4a may be tapered so as to increase toward the diffuser portion 4b.

また、ノズル41から吹き出す駆動流冷媒の運動量と、蒸発器3からエジェクタ4に吸引される吸引流冷媒の運動量との和が保存されるように駆動流冷媒と吸引流冷媒とが混合されるので、混合部4aにおいても冷媒の圧力が(静圧)が上昇する。一方、ディフューザ部4bにおいては、前述の如く、通路断面積を徐々に拡大することにより、冷媒の速度エネルギー(動圧)を圧力エネルギー(静圧)に変換するので、エジェクタ4においては、混合部4a及びディフューザ部4bの両者にて冷媒圧力を昇圧する。そこで、混合部4aとディフューザ部4bとを合わせて昇圧部と呼ぶ。   Further, since the sum of the momentum of the driving flow refrigerant blown from the nozzle 41 and the momentum of the suction flow refrigerant sucked from the evaporator 3 to the ejector 4 is preserved, the driving flow refrigerant and the suction flow refrigerant are mixed. The refrigerant pressure (static pressure) also increases in the mixing unit 4a. On the other hand, in the diffuser portion 4b, as described above, the velocity energy (dynamic pressure) of the refrigerant is converted into pressure energy (static pressure) by gradually increasing the cross-sectional area of the passage. The refrigerant pressure is increased by both 4a and the diffuser section 4b. Therefore, the mixing unit 4a and the diffuser unit 4b are collectively referred to as a boosting unit.

また、図1中5は、エジェクタ4から流出した冷媒が流入すると共に、その流入した冷媒を気相冷媒と液相冷媒とに分離して冷媒を蓄える気液分離器であり、分離された気相冷媒は圧縮機1に吸引され、分離された液相冷媒は蒸発器3側に吸引される。尚、気液分離器5と蒸発器3とを結ぶ冷媒通路3aは、蒸発器3に吸引される冷媒を減圧して蒸発器3内の圧力(蒸発圧力)を確実に低下させるために、キャピラリチューブや固定絞りの如く、冷媒が流通することにより所定の圧力損失が発生するように設定されている。   Further, reference numeral 5 in FIG. 1 denotes a gas-liquid separator that stores the refrigerant by flowing the refrigerant flowing out from the ejector 4 and storing the refrigerant by separating the flowing refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant. The phase refrigerant is sucked into the compressor 1 and the separated liquid refrigerant is sucked into the evaporator 3 side. The refrigerant passage 3a connecting the gas-liquid separator 5 and the evaporator 3 is a capillary for reducing the pressure of the refrigerant sucked by the evaporator 3 and reliably reducing the pressure (evaporation pressure) in the evaporator 3. Like a tube or a fixed throttle, it is set so that a predetermined pressure loss occurs when the refrigerant flows.

また6は、放熱器2から流出した高圧冷媒(エジェクタ4にて減圧される前の冷媒)と気液分離器5から流出して圧縮機1に吸入される低圧冷媒とを熱交換する内部熱交換器である。尚、本発明の要部として、気液分離器5と圧縮機1と内部熱交換器6との間には、気液分離器5から流出して圧縮機1に吸入される低圧冷媒の流路を、内部熱交換器6を通る流路と通らない流路とに可変するようにした可変器(流路可変手段)7を配置している。   Reference numeral 6 denotes internal heat that exchanges heat between the high-pressure refrigerant that has flowed out of the radiator 2 (the refrigerant before being depressurized by the ejector 4) and the low-pressure refrigerant that has flowed out of the gas-liquid separator 5 and sucked into the compressor 1. It is an exchanger. As a main part of the present invention, the flow of low-pressure refrigerant that flows out from the gas-liquid separator 5 and is sucked into the compressor 1 is interposed between the gas-liquid separator 5, the compressor 1, and the internal heat exchanger 6. A variable device (flow path variable means) 7 is arranged so that the path can be changed between a flow path passing through the internal heat exchanger 6 and a flow path not passing through the internal heat exchanger 6.

図3は、本発明の一実施形態における可変器7の構造を示す断面模式図である。可変器7は、容器7aの側面側に気液分離器5からの冷媒が流入する気液分離器連通路7bを設け、容器7aの天側には圧縮機1へ冷媒を供給する圧縮機連通路7cと、容器7aの地側には内部熱交換器6を経由して圧縮機1へ冷媒を供給する内部熱交換器連通路7dとを設けている。   FIG. 3 is a schematic cross-sectional view showing the structure of the variable device 7 in one embodiment of the present invention. The variable device 7 is provided with a gas-liquid separator communication path 7b through which the refrigerant from the gas-liquid separator 5 flows on the side surface side of the container 7a, and a compressor link that supplies the refrigerant to the compressor 1 on the top side of the container 7a. A passage 7c and an internal heat exchanger communication passage 7d for supplying the refrigerant to the compressor 1 via the internal heat exchanger 6 are provided on the ground side of the container 7a.

また、容器7a内には所定密度に調節したフロート71を設けており、気液分離器連通路7bから流入する冷媒の密度によってこのフロート71が上下することにより、圧縮機1に直接流れる圧縮機連通路7cと、内部熱交換器6を経由してから圧縮機1へ流れる内部熱交換器連通路7dとに流れる冷媒流路を可変するようになっている。フロート71は中実の樹脂体であり、適当な密度の樹脂材に調整材を混入して所定密度となるよう調整して成型したものである。   Further, a float 71 adjusted to a predetermined density is provided in the container 7a, and the float 71 moves up and down depending on the density of the refrigerant flowing from the gas-liquid separator communication path 7b, so that the compressor flows directly to the compressor 1. The refrigerant flow path that flows to the communication path 7c and the internal heat exchanger communication path 7d that flows to the compressor 1 after passing through the internal heat exchanger 6 is made variable. The float 71 is a solid resin body, which is molded by adjusting a predetermined density by mixing an adjusting material in a resin material having an appropriate density.

この可変器7により、気液分離器5から流入する冷媒の密度(温度)に応じて内部熱交換器6に流れる冷媒量が自動的に調節され、内部熱交換器6における熱交換量を成績係数COPが高く維持するように自動調節されるようにしたものである。   This variable unit 7 automatically adjusts the amount of refrigerant flowing into the internal heat exchanger 6 according to the density (temperature) of the refrigerant flowing from the gas-liquid separator 5, and determines the amount of heat exchange in the internal heat exchanger 6. The coefficient COP is automatically adjusted so as to keep it high.

次に、上記構成のエジェクタサイクル(ヒートポンプサイクル)の概略作動について述べる。圧縮機1が起動すると、気液分離器5から気相冷媒が圧縮機1に吸入され、圧縮された冷媒が放熱器2に吐出される。そして、放熱器2にて冷却された冷媒は、エジェクタ4のノズル41にて略等エントロピ(断熱)的に減圧膨張して蒸発器3内の冷媒を吸引する。次に、蒸発器3から吸引された冷媒とノズル41から吹き出す冷媒とは、混合部4aにて混合しながらディフューザ部4bにてその動圧が静圧に変換されて気液分離器5に戻る。   Next, the general operation of the ejector cycle (heat pump cycle) having the above-described configuration will be described. When the compressor 1 is started, the gas-phase refrigerant is sucked into the compressor 1 from the gas-liquid separator 5, and the compressed refrigerant is discharged to the radiator 2. The refrigerant cooled by the radiator 2 is decompressed and expanded substantially isentropically (adiabatically) at the nozzle 41 of the ejector 4 and sucks the refrigerant in the evaporator 3. Next, the refrigerant sucked from the evaporator 3 and the refrigerant blown out from the nozzle 41 are mixed in the mixing unit 4a and converted into static pressure in the diffuser unit 4b and returned to the gas-liquid separator 5. .

つまり、ノズル41から流出したジェット流(駆動流冷媒)は、蒸発器3から冷媒を吸引加速させながら、自らはその流速を低下させて行く。このとき、混合部4aの冷媒出口部(ディフューザ部4bの冷媒入口部)において、蒸発器3から吸引した吸引ガス(吸引流冷媒)の流速と駆動流冷媒の流速とが略等しくなるように混合し、その混合した冷媒は、ディフューザ部4b内に流入してその流速を低下させながら、圧力を上昇させる。一方、エジェクタ4にて蒸発器3内の冷媒が吸引されるため、蒸発器3には気液分離器5から液相冷媒が流入し、その流入した冷媒は、室内に吹き出す空気から吸熱して蒸発する。   That is, the jet flow (driving flow refrigerant) flowing out from the nozzle 41 itself decreases its flow velocity while sucking and accelerating the refrigerant from the evaporator 3. At this time, in the refrigerant outlet part of the mixing part 4a (refrigerant inlet part of the diffuser part 4b), mixing is performed so that the flow rate of the suction gas (suction flow refrigerant) sucked from the evaporator 3 and the flow rate of the driving flow refrigerant become substantially equal. Then, the mixed refrigerant flows into the diffuser portion 4b and increases the pressure while decreasing the flow velocity. On the other hand, since the refrigerant in the evaporator 3 is sucked by the ejector 4, the liquid phase refrigerant flows into the evaporator 3 from the gas-liquid separator 5, and the refrigerant flowing in absorbs heat from the air blown into the room. Evaporate.

次に、本実施形態の特徴と作用効果について述べる。まず、容器7aの側面側には気液分離器5からの冷媒が流入する気液分離器連通路7b、容器7aの天側には圧縮機1へ冷媒を供給する圧縮機連通路7c、容器7aの地側には内部熱交換器6を経由して圧縮機1へ冷媒を供給する内部熱交換器連通路7dを設けると共に、容器7a内に所定密度のフロート71を設け、気液分離器連通路7bから流入する冷媒の密度によってフロート71が上下することにより圧縮機連通路7cと内部熱交換器連通路7dとに流れる冷媒流路を可変する可変器7を、気液分離器5と圧縮機1と内部熱交換器6との間に配置して、内部熱交換器6における熱交換量を調節するようにしている。   Next, features and operational effects of this embodiment will be described. First, a gas-liquid separator communication path 7b into which refrigerant from the gas-liquid separator 5 flows is provided on the side surface side of the container 7a, a compressor communication path 7c for supplying refrigerant to the compressor 1 is provided on the top side of the container 7a, and the container An internal heat exchanger communication path 7d for supplying a refrigerant to the compressor 1 via the internal heat exchanger 6 is provided on the ground side of 7a, and a float 71 having a predetermined density is provided in the container 7a. The variable unit 7 that changes the refrigerant flow path flowing in the compressor communication path 7c and the internal heat exchanger communication path 7d by the float 71 moving up and down depending on the density of the refrigerant flowing in from the communication path 7b, and the gas-liquid separator 5 It arrange | positions between the compressor 1 and the internal heat exchanger 6, and adjusts the heat exchange amount in the internal heat exchanger 6. FIG.

図4は図1のヒートポンプサイクルにおけるモリエル線図である。本発明ではフロン・代替フロン・自然冷媒などを冷媒に用いており、蒸発器3における吸熱が凝縮域にある。このようなヒートポンプサイクル(冷凍サイクル)では気液分離器5出口の冷媒状態は飽和蒸気線上にあり、冷媒圧力(冷媒の蒸発温度)によって冷媒の密度が一義的に決まるため、その冷媒密度を利用して所定密度のフロート71を容器7a中で上下させ、内部熱交換器6を通る流路と通らない流路とを可変するようにしたものである。   FIG. 4 is a Mollier diagram in the heat pump cycle of FIG. In the present invention, chlorofluorocarbon, alternative chlorofluorocarbon, natural refrigerant or the like is used as the refrigerant, and the heat absorption in the evaporator 3 is in the condensation region. In such a heat pump cycle (refrigeration cycle), the refrigerant state at the outlet of the gas-liquid separator 5 is on the saturated vapor line, and the refrigerant density is uniquely determined by the refrigerant pressure (refrigerant evaporation temperature). Thus, the float 71 having a predetermined density is moved up and down in the container 7a so that the flow path passing through the internal heat exchanger 6 and the flow path not passing through the internal heat exchanger 6 are variable.

より具体的には、気液分離器5の出口圧力が低い(空気温度が低い)時はフロート71は冷媒より重くなり、容器7a内で沈むことより内部熱交換器連通路7dが塞がれて、冷媒は圧縮機連通路7cから直接圧縮機1へ導入される。また、気液分離器5出口の圧力が高い(空気温度が高い)時はフロート71は冷媒より軽くなり、容器7a内で浮かぶことより圧縮機連通路7cが塞がれて、冷媒は内部熱交換器連通路7dから内部熱交換器6へ導入する事ができる。   More specifically, when the outlet pressure of the gas-liquid separator 5 is low (air temperature is low), the float 71 becomes heavier than the refrigerant and sinks in the container 7a, thereby blocking the internal heat exchanger communication path 7d. Thus, the refrigerant is directly introduced into the compressor 1 from the compressor communication path 7c. When the pressure at the outlet of the gas-liquid separator 5 is high (the air temperature is high), the float 71 is lighter than the refrigerant, and floats in the container 7a to close the compressor communication path 7c. It can be introduced into the internal heat exchanger 6 from the exchanger communication path 7d.

図5は、放熱器2の空気流れ上流側(放熱器2前面)での空気温度Tamとサイクルの成績係数(COP=蒸発器で発生する冷凍能力/圧縮機の仕事量)との関係を示す数値シミュレーション結果であり、一点鎖線は常に高圧冷媒と低圧冷媒を熱交換させた場合を示し、破線は内部熱交換器を有していない場合を示し、実線は本実施形態を示している。そして、図5から明らかなように、本実施形態によれば、高圧冷媒に関する物理量である放熱器2の空気流れ上流側(放熱器2前面)での空気温度Tamに基づいて、高圧冷媒と低圧冷媒との熱交換量を可変しているので、サイクルの成績係数を常に高く維持することが可能である。   FIG. 5 shows the relationship between the air temperature Tam on the upstream side of the air flow of the radiator 2 (front surface of the radiator 2) and the coefficient of performance of the cycle (COP = refrigeration capacity generated in the evaporator / compressor work). It is a numerical simulation result, a dashed-dotted line shows the case where a high pressure refrigerant | coolant and a low pressure refrigerant are always heat-exchanged, a broken line shows the case where it does not have an internal heat exchanger, and the continuous line has shown this embodiment. As apparent from FIG. 5, according to the present embodiment, the high-pressure refrigerant and the low-pressure are based on the air temperature Tam on the upstream side of the air flow of the radiator 2 (the front surface of the radiator 2), which is a physical quantity related to the high-pressure refrigerant. Since the amount of heat exchange with the refrigerant is variable, the coefficient of performance of the cycle can always be kept high.

これにより、電気的な制御を用いずに、冷媒密度によって上下するフロート71によって内部熱交換器6へ流通する冷媒量を可変して、冷媒圧力(冷媒の蒸発温度)に応じた内部熱交換量に調整することにより、空気温度Tamが変化しても常に高い成績係数COPを維持することのできるヒートポンプサイクル(冷凍サイクル)とすることができる。   As a result, the amount of refrigerant flowing through the internal heat exchanger 6 is varied by the float 71 that rises and falls depending on the refrigerant density without using electrical control, and the amount of internal heat exchange according to the refrigerant pressure (refrigerant evaporation temperature). By adjusting to, a heat pump cycle (refrigeration cycle) that can always maintain a high coefficient of performance COP even when the air temperature Tam changes can be obtained.

(その他の実施形態)
上述の実施形態は、エジェクタサイクルに本発明の可変器(流路可変手段)7を適用したものであるが、本発明の可変器7は蒸発器出口部、または圧縮機吸入部の冷媒が常に飽和蒸気状態であれば、エジェクタサイクル以外のヒートポンプサイクルにも適用することができ、これにより、エジェクタサイクル以外のヒートポンプサイクルにおいても、空気温度Tamが変化しても、より確実に高い成績係数COPを維持することができる。また、上述の実施形態では、冷房専用の空調装置であったが、本発明はこれに限定されるものではなく、冷暖房切替可能な空調装置やヒートポンプ運転により給湯水を加熱する給湯装置などにも適用することができる。
(Other embodiments)
In the above-described embodiment, the variable device (flow path variable means) 7 of the present invention is applied to the ejector cycle. However, the variable device 7 of the present invention always has the refrigerant at the outlet of the evaporator or the refrigerant at the suction portion of the compressor. If it is in a saturated steam state, it can be applied to a heat pump cycle other than the ejector cycle. As a result, even in a heat pump cycle other than the ejector cycle, even if the air temperature Tam changes, a higher coefficient of performance COP can be ensured. Can be maintained. Further, in the above-described embodiment, the air conditioner is dedicated to cooling. However, the present invention is not limited to this, and the present invention is not limited to this. Can be applied.

本発明の一実施形態におけるエジェクタを用いたヒートポンプサイクルの模式図である。It is a schematic diagram of the heat pump cycle using the ejector in one Embodiment of this invention. 図1のヒートポンプサイクルに適用されるエジェクタ4の模式図である。FIG. 2 is a schematic diagram of an ejector 4 applied to the heat pump cycle of FIG. 本発明の一実施形態における可変器7の構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the variable device 7 in one Embodiment of this invention. 図1のヒートポンプサイクルにおけるモリエル線図である。FIG. 2 is a Mollier diagram in the heat pump cycle of FIG. 本発明の効果を示す空気温度Tamと成績係数COPとの関係グラフである。It is a relationship graph of the air temperature Tam which shows the effect of this invention, and a coefficient of performance COP.

符号の説明Explanation of symbols

1…圧縮機
2…放熱器
3…蒸発器
4…エジェクタ
4a…混合部(昇圧部)
4b…ディフューザ部(昇圧部)
5…気液分離器
6…内部熱交換器
7…可変器(流路可変手段)
7a…容器
7b…気液分離器連通路
7c…圧縮機連通路
7d…内部熱交換器連通路
41…ノズル
71…フロート
DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Radiator 3 ... Evaporator 4 ... Ejector 4a ... Mixing part (pressure | voltage rise part)
4b ... Diffuser section (boost section)
5 ... Gas-liquid separator 6 ... Internal heat exchanger 7 ... Variable device (flow path variable means)
7a ... Container 7b ... Gas-liquid separator communication passage 7c ... Compressor communication passage 7d ... Internal heat exchanger communication passage 41 ... Nozzle 71 ... Float

Claims (3)

冷媒を吸入圧縮する圧縮機(1)と、
前記圧縮機(1)から吐出した冷媒を冷却する放熱器(2)と、
冷媒を蒸発させて熱を吸収する蒸発器(3)と、
前記放熱器(2)から流出した高圧冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル(41)、前記ノズル(41)から噴射する高い速度の冷媒流により前記蒸発器(3)にて蒸発した気相冷媒を吸引し、前記ノズル(41)から噴射する冷媒と前記蒸発器(3)から吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させる昇圧部(4a、4b)を有するエジェクタ(4)と、
冷媒を気相冷媒と液相冷媒とに分離して冷媒を蓄える気液分離器(5)と、
前記放熱器(2)から流出した高圧冷媒と前記圧縮機(1)に吸入される低圧冷媒とを熱交換する内部熱交換器(6)とを備え、
前記蒸発器(3)における吸熱が凝縮域にある冷媒を用いて低温側の熱を高温側に移動させるヒートポンプサイクルにおいて、
容器(7a)の側面側には前記気液分離器(5)からの冷媒が流入する気液分離器連通路(7b)、前記容器(7a)の天側には前記圧縮機(1)へ冷媒を供給する圧縮機連通路(7c)、前記容器(7a)の地側には前記内部熱交換器(6)を経由して前記圧縮機(1)へ冷媒を供給する内部熱交換器連通路(7d)を設けると共に、前記容器(7a)内に所定密度のフロート(71)を設け、前記気液分離器連通路(7b)から流入する冷媒の密度によって前記フロート(71)が上下することにより前記圧縮機連通路(7c)と前記内部熱交換器連通路(7d)とに流れる冷媒流路を可変する流路可変手段(7)を前記気液分離器(5)と前記圧縮機(1)と前記内部熱交換器(6)との間に配置して、前記内部熱交換器(6)における熱交換量を調節するようにしたことを特徴とするヒートポンプサイクル。
A compressor (1) for sucking and compressing refrigerant;
A radiator (2) for cooling the refrigerant discharged from the compressor (1);
An evaporator (3) for evaporating the refrigerant and absorbing heat;
The pressure energy of the high-pressure refrigerant flowing out of the radiator (2) is converted into velocity energy to decompress and expand the refrigerant, and the evaporator (3) by the high-speed refrigerant flow injected from the nozzle (41). ), The vapor phase refrigerant evaporated is sucked, and the velocity energy is converted into pressure energy while mixing the refrigerant injected from the nozzle (41) and the refrigerant sucked from the evaporator (3), thereby adjusting the pressure of the refrigerant. An ejector (4) having a boosting section (4a, 4b) for boosting;
A gas-liquid separator (5) for separating the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant and storing the refrigerant;
An internal heat exchanger (6) for exchanging heat between the high-pressure refrigerant flowing out of the radiator (2) and the low-pressure refrigerant sucked into the compressor (1),
In the heat pump cycle in which the heat absorbed in the evaporator (3) is moved to the high temperature side by using the refrigerant in the condensation region,
A gas-liquid separator communication path (7b) into which the refrigerant from the gas-liquid separator (5) flows is provided on the side surface side of the container (7a), and the compressor (1) is provided on the top side of the container (7a). A compressor communication passage (7c) for supplying a refrigerant, and an internal heat exchanger connected to the compressor (1) via the internal heat exchanger (6) on the ground side of the container (7a). A passage (7d) is provided, and a float (71) having a predetermined density is provided in the container (7a). The float (71) moves up and down depending on the density of the refrigerant flowing from the gas-liquid separator communication passage (7b). Thus, the gas-liquid separator (5) and the compressor are provided with flow path variable means (7) for changing the flow path of the refrigerant flowing through the compressor communication path (7c) and the internal heat exchanger communication path (7d). (1) between the internal heat exchanger (6) and the internal heat exchanger (6). Heat pump cycle, characterized in that so as to adjust the heat exchange amount.
前記流路可変手段(7)を、蒸発器出口部の冷媒が常に飽和蒸気状態であるヒートポンプサイクルに適用ことを特徴とする請求項1に記載のヒートポンプサイクル。   The heat pump cycle according to claim 1, wherein the flow path varying means (7) is applied to a heat pump cycle in which a refrigerant at an evaporator outlet is always in a saturated vapor state. 前記流路可変手段(7)を、圧縮機吸入部の冷媒が常に飽和蒸気状態であるヒートポンプサイクルに適用ことを特徴とする請求項1に記載のヒートポンプサイクル。   The heat pump cycle according to claim 1, wherein the flow path varying means (7) is applied to a heat pump cycle in which a refrigerant in a compressor suction portion is always in a saturated vapor state.
JP2003330390A 2003-09-22 2003-09-22 Heat pump cycle Pending JP2005098554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330390A JP2005098554A (en) 2003-09-22 2003-09-22 Heat pump cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330390A JP2005098554A (en) 2003-09-22 2003-09-22 Heat pump cycle

Publications (1)

Publication Number Publication Date
JP2005098554A true JP2005098554A (en) 2005-04-14

Family

ID=34459375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330390A Pending JP2005098554A (en) 2003-09-22 2003-09-22 Heat pump cycle

Country Status (1)

Country Link
JP (1) JP2005098554A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329452A (en) * 2005-05-23 2006-12-07 Tokyo Gas Co Ltd Carbon dioxide heat pump cooling/heating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329452A (en) * 2005-05-23 2006-12-07 Tokyo Gas Co Ltd Carbon dioxide heat pump cooling/heating system

Similar Documents

Publication Publication Date Title
JP4120296B2 (en) Ejector and ejector cycle
JP4522641B2 (en) Vapor compression refrigerator
US7779647B2 (en) Ejector and ejector cycle device
JP4600200B2 (en) Ejector refrigeration cycle
US6729158B2 (en) Ejector decompression device with throttle controllable nozzle
JP2004085156A (en) Refrigerating cycle
US20150260435A1 (en) Heat exchanging device and heat pump
JP4832458B2 (en) Vapor compression refrigeration cycle
JP4096824B2 (en) Vapor compression refrigerator
JP2004177027A (en) Ejector cycle
JP2007147198A (en) Vapor compression type refrigeration cycle using ejector, and its low-pressure-system component
JP2004324955A (en) Vapor compression type refrigerating machine
JP2007078340A (en) Ejector type refrigerating cycle
JP2005009758A (en) Ejector cycle
JP4000966B2 (en) Vapor compression refrigerator
JP4665601B2 (en) Cycle using ejector
KR100555944B1 (en) Vapor compression refrigerant cycle system
JP2005009774A (en) Ejector cycle
JP2005016747A (en) Refrigeration cycle device
JP2003279177A (en) Water heater, ejector for vapor compression type refrigerating cycle, and vapor compression type refrigerating cycle
JP4577365B2 (en) Cycle using ejector
JP2004239493A (en) Heat pump cycle
JP2002349977A (en) Heat pump cycle
JP2005037056A (en) Ejector cycle
JP2007032945A (en) Ejector type cycle, and flow control valve of same