JP2005098166A - Air-fuel ratio control device of internal combustion engine - Google Patents

Air-fuel ratio control device of internal combustion engine Download PDF

Info

Publication number
JP2005098166A
JP2005098166A JP2003331172A JP2003331172A JP2005098166A JP 2005098166 A JP2005098166 A JP 2005098166A JP 2003331172 A JP2003331172 A JP 2003331172A JP 2003331172 A JP2003331172 A JP 2003331172A JP 2005098166 A JP2005098166 A JP 2005098166A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
change
data
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003331172A
Other languages
Japanese (ja)
Other versions
JP4016921B2 (en
Inventor
Nobuaki Ikemoto
池本  宣昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003331172A priority Critical patent/JP4016921B2/en
Priority to DE102004043917A priority patent/DE102004043917A1/en
Priority to US10/938,815 priority patent/US7201160B2/en
Publication of JP2005098166A publication Critical patent/JP2005098166A/en
Priority to US11/520,812 priority patent/US7248960B2/en
Application granted granted Critical
Publication of JP4016921B2 publication Critical patent/JP4016921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase an air-fuel ratio control accuracy by performing air-fuel ratio control while reflecting the dynamic characteristics of an air-fuel ratio sensor. <P>SOLUTION: This air-fuel ratio control device of an internal combustion engine is formed such that an air-fuel ratio sensor 32 is disposed in the exhaust pipe 24 of the engine 10. An ECU 40 calculates an air-fuel ratio correction amount for matching a detected air-fuel ratio value from air-fuel ratio sensor signals to a target value, and controls the air-fuel ratio by using the air-fuel ratio correction amount. Also the ECU calculates the varied amounts of the air-fuel ratio detected value to rich side and lean side, calculates data on the varied amount of the air-fuel ratio correction amounts to rich side and lean side, and based on the data on the varied amounts of the calculated air-fuel ratio detected values to rich side and lean side and the data on the varied amounts of the calculated air-fuel ratio correction amounts to rich side and lean side, data on responsiveness in a variation to rich side and a variation in lean side can be calculated. In this device, control parameters on the air-fuel ratio control are corrected by using the data on the responsiveness calculated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関の空燃比制御装置に関するものである。   The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine.

従来より、内燃機関の排気管に空燃比センサを配設し、この空燃比センサの検出信号により内燃機関から排出される排ガスの空燃比(排気空燃比)を検出するようにした空燃比検出装置が実用化されている。そして、この空燃比検出装置を用いた空燃比制御システムでは、その検出空燃比が目標値で安定するよう空燃比フィードバック制御が実施されるようになっている。   Conventionally, an air-fuel ratio sensor is provided in an exhaust pipe of an internal combustion engine, and an air-fuel ratio detector (exhaust air-fuel ratio) of exhaust gas discharged from the internal combustion engine is detected by a detection signal of the air-fuel ratio sensor. Has been put to practical use. In the air-fuel ratio control system using this air-fuel ratio detection apparatus, air-fuel ratio feedback control is performed so that the detected air-fuel ratio is stabilized at the target value.

かかる場合、空燃比制御に際しては目標空燃比(例えば理論空燃比)に対して空燃比がリッチ側又はリーン側に変動する。また一方で、排気管に配設された触媒コンバータの浄化効率の向上等を目的として、理論空燃比近傍で排気空燃比をリッチ側及びリーン側に強制的に変動させるようにした技術も提案されている(例えば特許文献1)。   In such a case, during the air-fuel ratio control, the air-fuel ratio varies to the rich side or the lean side with respect to the target air-fuel ratio (for example, the theoretical air-fuel ratio). On the other hand, for the purpose of improving the purification efficiency of the catalytic converter disposed in the exhaust pipe, a technique for forcibly changing the exhaust air-fuel ratio to the rich side and the lean side in the vicinity of the theoretical air-fuel ratio has been proposed. (For example, Patent Document 1).

しかしながら、上記の如く空燃比がリッチ側又はリーン側に変動する場合、空燃比センサの出力がリッチ側に変化する時の応答性とリーン側に変化する時の応答性とが相違することに起因して検出空燃比の平均値が真の平均空燃比(例えば14.7)からずれてしまい、排気エミッションの悪化を招くという問題がある。つまり、一般に知られているように空燃比センサはジルコニア等の固体電解質体とそれを挟むように配される一対の電極とを有しており、電極間を伝導する酸素イオン量に応じて排ガス中の酸素濃度(すなわち空燃比)が検出される。この場合、センサ個体差や経時変化等の要因により前記各電極において反応速度が相違したりすると、空燃比がリッチ側に変化する時とリーン側に変化する時とでセンサ応答性が相違すると考えられ、上記問題が生じる。   However, when the air-fuel ratio fluctuates to the rich side or the lean side as described above, the response when the output of the air-fuel ratio sensor changes to the rich side is different from the response when the output changes to the lean side. Thus, there is a problem that the average value of the detected air-fuel ratio deviates from the true average air-fuel ratio (for example, 14.7), leading to deterioration of exhaust emission. In other words, as is generally known, an air-fuel ratio sensor has a solid electrolyte body such as zirconia and a pair of electrodes arranged so as to sandwich the solid electrolyte body, and exhaust gas according to the amount of oxygen ions conducted between the electrodes. The oxygen concentration (ie, air / fuel ratio) is detected. In this case, if the reaction speed differs between the electrodes due to factors such as individual sensor differences and changes over time, the sensor responsiveness will differ between when the air-fuel ratio changes to the rich side and when it changes to the lean side. This causes the above problem.

また、特許文献2では、内燃機関の排気系にあって三元触媒の上流側にリニアA/Fセンサを配設すると共に、同三元触媒の下流側にλO2センサを配設し、λO2センサの出力をモニタしつつリニアA/Fセンサの制御変数や空燃比補正係数を補正するようにしていた。そしてこれにより、高精度な空燃比制御を可能としていた。しかしながら、かかる技術を用いた場合であっても、上記の如く空燃比がリッチ側に変化する時とリーン側に変化する時とでセンサ応答性が相違すると、理論空燃比への収束速度がばらついてしまい、結果として空燃比の制御精度が低下する可能性があった。
特公平7−33793号公報 特開平2−67443号公報
In Patent Document 2, a linear A / F sensor is disposed upstream of the three-way catalyst in the exhaust system of the internal combustion engine, and a λO 2 sensor is disposed downstream of the three-way catalyst. The control variable and the air-fuel ratio correction coefficient of the linear A / F sensor are corrected while monitoring the output of the above. This makes it possible to perform highly accurate air-fuel ratio control. However, even when such a technique is used, if the sensor response is different between when the air-fuel ratio changes to the rich side and when it changes to the lean side as described above, the convergence speed to the theoretical air-fuel ratio varies. As a result, the control accuracy of the air-fuel ratio may be lowered.
Japanese Patent Publication No. 7-33793 JP-A-2-67443

本発明は、空燃比センサの動特性を反映して空燃比制御を実施することにより、空燃比の制御精度を向上させることができる内燃機関の空燃比制御装置を提供することを主たる目的とするものである。   The main object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine that can improve the control accuracy of the air-fuel ratio by performing air-fuel ratio control reflecting the dynamic characteristics of the air-fuel ratio sensor. Is.

請求項1に記載の発明では、空燃比センサ信号から検出された空燃比検出値のリッチ側、リーン側への変化量データがそれぞれ算出されると共に、空燃比補正量のリッチ側、リーン側への変化量データがそれぞれ算出される。また、前記算出された空燃比検出値のリッチ側、リーン側への変化量データと前記算出された空燃比補正量のリッチ側、リーン側への変化量データとに基づいて、リッチ側への変化時、リーン側への変化時のそれぞれについて前記空燃比センサの応答性データが算出される。そして、前記算出された応答性データを用いて空燃比制御に関する制御パラメータが補正される。   According to the first aspect of the present invention, the variation data of the air-fuel ratio detection value detected from the air-fuel ratio sensor signal to the rich side and the lean side are calculated, respectively, and the air-fuel ratio correction amount to the rich side and the lean side are calculated. Change amount data is calculated respectively. Further, based on the change amount data of the calculated air-fuel ratio detection value to the rich side and the lean side and the change amount data of the calculated air-fuel ratio correction amount to the rich side and the lean side, The response data of the air-fuel ratio sensor is calculated for each of the change time and the change time to the lean side. Then, the control parameter relating to the air-fuel ratio control is corrected using the calculated response data.

上記構成によれば、空燃比センサのリッチ側変化時及びリッチ側変化時の応答性データが個別に得られる。そのため、前記応答性データから空燃比センサの動特性を知り得ることができ、その動特性を反映して空燃比制御に関する制御パラメータが補正できる。これにより、空燃比の制御精度を向上させることができる。   According to the above configuration, response data when the air-fuel ratio sensor changes on the rich side and on the rich side change can be obtained individually. Therefore, the dynamic characteristics of the air-fuel ratio sensor can be known from the response data, and the control parameters relating to the air-fuel ratio control can be corrected by reflecting the dynamic characteristics. Thereby, the control accuracy of the air-fuel ratio can be improved.

なおここで言う、リッチ側への変化、リーン側への変化とは、空燃比検出値や空燃比補正量の変化の方向を表現したものであり、リッチ向きの変化又はリーン向きの変化と解釈されるものである。故に、理論空燃比を跨いでリッチ側又はリーン側に変化する場合に限定されるものではない。空燃比補正量のリッチ側、リーン側の変化は空燃比検出値の変化に合わせて例えば燃料増量、燃料減量させるための変化を言う。   Here, the change to the rich side and the change to the lean side express the change direction of the air-fuel ratio detection value and the air-fuel ratio correction amount, and are interpreted as the change in the rich direction or the change in the lean direction. It is what is done. Therefore, the present invention is not limited to the case of changing to the rich side or the lean side across the theoretical air-fuel ratio. Changes on the rich side and lean side of the air-fuel ratio correction amount refer to changes for increasing or decreasing the fuel amount, for example, in accordance with changes in the air-fuel ratio detection value.

請求項2に記載の発明では、リッチ側への変化時、リーン側への変化時における各応答性データの差分に応じて前記制御パラメータが補正されるため、リッチ変化・リーン変化の応答性の違いに合った空燃比制御が実現できる。   In the second aspect of the present invention, since the control parameter is corrected according to the difference between the responsiveness data when changing to the rich side and when changing to the lean side, the response of the rich change / lean change Air-fuel ratio control that matches the difference can be realized.

請求項3に記載の発明では、リッチ側への変化時、リーン側への変化時の各応答性データを等しくするような応答性パラメータが算出され、その応答性パラメータを用いて制御パラメータが補正される。この場合、前記応答性パラメータを用いることにより、空燃比センサのリッチ側への応答性とリーン側への応答性とに差があってもその差が解消され、空燃比の制御精度向上が可能となる。   In the third aspect of the present invention, the responsiveness parameter that equalizes the responsiveness data at the time of the change to the rich side and the change to the lean side is calculated, and the control parameter is corrected using the responsiveness parameter. Is done. In this case, by using the response parameter, even if there is a difference between the response to the rich side and the response to the lean side of the air-fuel ratio sensor, the difference is eliminated, and the control accuracy of the air-fuel ratio can be improved. It becomes.

補正対象となる制御パラメータとしては、以下のものが挙げられる。つまり、請求項4に記載の発明では、制御パラメータとしての空燃比補正量を補正することとしている。請求項5に記載の発明では、制御パラメータとしての空燃比目標値を補正することとしている。請求項6に記載の発明では、制御パラメータとしての制御ゲインを補正することとしている。これらの何れであってもセンサ応答性に適合した好適な空燃比制御が実現できる。なお、空燃比補正量、空燃比目標値、制御ゲインのうち少なくとも2つを補正対象とすることも可能である。   Examples of control parameters to be corrected include the following. That is, in the invention described in claim 4, the air-fuel ratio correction amount as the control parameter is corrected. In the invention according to claim 5, the air-fuel ratio target value as the control parameter is corrected. In the invention described in claim 6, the control gain as the control parameter is corrected. Any of these can realize suitable air-fuel ratio control suitable for sensor response. It should be noted that at least two of the air-fuel ratio correction amount, the air-fuel ratio target value, and the control gain can be corrected.

請求項7に記載の発明では、リッチ側への変化時、リーン側への変化時のそれぞれについて、空燃比検出値の変化量データと空燃比補正量の変化量データとの比から応答性データが算出される。この場合、空燃比検出値の変化と空燃比補正量の変化とを対比させて応答性データが求められるため、応答性データの信頼性が増す。よって、制御パラメータの補正がより好適に実施できるようになる。   According to the seventh aspect of the present invention, the responsiveness data is obtained from the ratio between the change amount data of the air-fuel ratio detection value and the change amount data of the air-fuel ratio correction amount for each of the change to the rich side and the change to the lean side. Is calculated. In this case, since the response data is obtained by comparing the change in the air-fuel ratio detection value with the change in the air-fuel ratio correction amount, the reliability of the response data is increased. Therefore, the control parameter can be corrected more preferably.

請求項8に記載の発明では、空燃比偏差が増加するよう変化する場合に前記制御パラメータの補正が実施されるため、空燃比偏差の変化が大きくなるような状態を解消することが可能となる。   In the invention according to claim 8, since the control parameter is corrected when the air-fuel ratio deviation changes so as to increase, it is possible to eliminate the state where the change in the air-fuel ratio deviation becomes large. .

請求項9に記載したように、前記空燃比検出値の変化量データや前記空燃比補正量の変化量データとしては、それらの変化速度又は変化加速度が算出されると良い。特にこの場合、変化速度又は変化加速度がなまし演算により算出されると良い。   As described in claim 9, as the change amount data of the air-fuel ratio detection value and the change amount data of the air-fuel ratio correction amount, their change speed or change acceleration may be calculated. Particularly in this case, the change speed or the change acceleration may be calculated by a smoothing calculation.

請求項10に記載の発明では、空燃比がリッチ側及びリーン側に強制変動される構成にあって、その空燃比変動に伴い前記空燃比検出値がリッチ側に変化する時、又は前記空燃比検出値がリーン側に変化する時の変化量データを基に前記制御パラメータの補正が実施される。この場合、空燃比がリッチ側又はリーン側に変化した時の変化量データを十分に得ることができ、信頼性の高い制御パラメータ補正が実現できる。なお、こうして空燃比を強制変動させる場合、空燃比変動の周期や振幅を予め規定しておくと良い。   In the invention according to claim 10, the air-fuel ratio is forcibly changed to the rich side and the lean side, and when the air-fuel ratio detection value changes to the rich side as the air-fuel ratio changes, or the air-fuel ratio The control parameter is corrected based on change amount data when the detected value changes to the lean side. In this case, sufficient amount of change data can be obtained when the air-fuel ratio changes to the rich side or the lean side, and highly reliable control parameter correction can be realized. When the air-fuel ratio is forcibly changed in this way, the cycle and amplitude of the air-fuel ratio change should be specified in advance.

請求項11に記載の発明では、前記空燃比検出値の平均値が目標値平均から所定値以上離れた場合に前記制御パラメータの補正が実施されるため、空燃比検出値の平均値が目標値平均から大きくずれるような状態を解消することが可能となる。   In the invention according to claim 11, since the control parameter is corrected when the average value of the air-fuel ratio detection value is a predetermined value or more away from the target value average, the average value of the air-fuel ratio detection value is the target value. It is possible to eliminate a state that deviates greatly from the average.

以下、本発明を具体化した一実施の形態を図面に従って説明する。本実施の形態は、内燃機関である車載多気筒ガソリンエンジンを対象にエンジン制御システムを構築するものとしており、当該制御システムにおいては電子制御ユニット(以下、ECUという)を中枢として燃料噴射量の制御や点火時期の制御等を実施することとしている。先ずは、図1を用いてエンジン制御システムの全体概略構成図を説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings. In the present embodiment, an engine control system is constructed for an in-vehicle multi-cylinder gasoline engine that is an internal combustion engine. In the control system, an electronic control unit (hereinafter referred to as ECU) is used as a center to control the fuel injection amount. And control of ignition timing. First, an overall schematic configuration diagram of the engine control system will be described with reference to FIG.

図1に示すエンジン10において、吸気管11の最上流部にはエアクリーナ12が設けられ、このエアクリーナ12の下流側には吸入空気量を検出するためのエアフローメータ13が設けられている。エアフローメータ13の下流側には、DCモータ等のアクチュエータによって開度調節されるスロットルバルブ14と、スロットル開度を検出するためのスロットル開度センサ15とが設けられている。スロットルバルブ14の下流側にはサージタンク16が設けられ、このサージタンク16には吸気管圧力を検出するための吸気管圧力センサ17が設けられている。また、サージタンク16には、エンジン10の各気筒に空気を導入する吸気マニホールド18が接続されており、吸気マニホールド18において各気筒の吸気ポート近傍には燃料を噴射供給する電磁駆動式の燃料噴射弁19が取り付けられている。   In the engine 10 shown in FIG. 1, an air cleaner 12 is provided at the most upstream portion of the intake pipe 11, and an air flow meter 13 for detecting the intake air amount is provided downstream of the air cleaner 12. A throttle valve 14 whose opening is adjusted by an actuator such as a DC motor and a throttle opening sensor 15 for detecting the throttle opening are provided on the downstream side of the air flow meter 13. A surge tank 16 is provided downstream of the throttle valve 14, and an intake pipe pressure sensor 17 for detecting the intake pipe pressure is provided in the surge tank 16. The surge tank 16 is connected to an intake manifold 18 that introduces air into each cylinder of the engine 10. In the intake manifold 18, an electromagnetically driven fuel injection that injects fuel near the intake port of each cylinder. A valve 19 is attached.

エンジン10の吸気ポート及び排気ポートにはそれぞれ吸気バルブ21及び排気バルブ22が設けられており、吸気バルブ21の開動作により空気と燃料との混合気が燃焼室23内に導入され、排気バルブ22の開動作により燃焼後の排ガスが排気管24に排出される。エンジン10のシリンダヘッドには各気筒毎に点火プラグ27が取り付けられており、点火プラグ27には、点火コイル等よりなる図示しない点火装置を通じて、所望とする点火時期において高電圧が印加される。この高電圧の印加により、各点火プラグ27の対向電極間に火花放電が発生し、燃焼室23内に導入した混合気が着火され燃焼に供される。   An intake valve 21 and an exhaust valve 22 are respectively provided in the intake port and the exhaust port of the engine 10, and an air / fuel mixture is introduced into the combustion chamber 23 by the opening operation of the intake valve 21, and the exhaust valve 22. By the opening operation, the exhaust gas after combustion is discharged to the exhaust pipe 24. A spark plug 27 is attached to the cylinder head of the engine 10 for each cylinder, and a high voltage is applied to the spark plug 27 at a desired ignition timing through an ignition device (not shown) including an ignition coil. By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug 27, and the air-fuel mixture introduced into the combustion chamber 23 is ignited and used for combustion.

排気管24には、排出ガス中のCO,HC,NOx等を浄化するための三元触媒等の触媒31が設けられ、この触媒31の上流側には排ガスを検出対象として混合気の空燃比を検出するための空燃比センサ32(リニアA/Fセンサ等)が設けられている。また、エンジン10のシリンダブロックには、冷却水温を検出する冷却水温センサ33や、エンジンの所定クランク角毎に(例えば30°CA周期で)矩形状のクランク角信号を出力するクランク角度センサ34が取り付けられている。   The exhaust pipe 24 is provided with a catalyst 31 such as a three-way catalyst for purifying CO, HC, NOx and the like in the exhaust gas, and the air-fuel ratio of the air-fuel mixture is detected on the upstream side of the catalyst 31 with exhaust gas as a detection target. An air-fuel ratio sensor 32 (linear A / F sensor or the like) is provided for detecting the above. Further, the cylinder block of the engine 10 includes a coolant temperature sensor 33 that detects the coolant temperature, and a crank angle sensor 34 that outputs a rectangular crank angle signal for each predetermined crank angle of the engine (for example, at a cycle of 30 ° CA). It is attached.

上述した各種センサの出力は、エンジン制御を司るECU40に入力される。ECU40は、CPU、ROM、RAM等よりなるマイクロコンピュータを主体として構成され、ROMに記憶された各種の制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁19の燃料噴射量や点火プラグ27による点火時期を制御する。特に燃料噴射量制御では、空燃比センサ32により検出された空燃比(検出空燃比)と目標空燃比との偏差に基づいて空燃比補正量としての空燃比補正係数FAFを算出し、この空燃比補正係数FAFを用いた空燃比F/B制御を実施することとしている。   The outputs of the various sensors described above are input to the ECU 40 that controls the engine. The ECU 40 is configured mainly by a microcomputer including a CPU, a ROM, a RAM, and the like, and executes various control programs stored in the ROM, so that the fuel injection amount and ignition of the fuel injection valve 19 according to the engine operating state. The ignition timing by the plug 27 is controlled. In particular, in the fuel injection amount control, an air-fuel ratio correction coefficient FAF is calculated as an air-fuel ratio correction amount based on the deviation between the air-fuel ratio (detected air-fuel ratio) detected by the air-fuel ratio sensor 32 and the target air-fuel ratio. The air-fuel ratio F / B control using the correction coefficient FAF is performed.

ここで、空燃比センサ32の構成を図8を用いて説明する。本空燃比センサ32は積層型構造のセンサ素子50を有し、図8にはセンサ素子50の断面構成を示す。実際には当該センサ素子50は図8の紙面直交方向に延びる長尺状をなし、素子全体がハウジングや素子カバー内に収容される構成となっている。   Here, the configuration of the air-fuel ratio sensor 32 will be described with reference to FIG. The air-fuel ratio sensor 32 has a sensor element 50 having a laminated structure, and FIG. 8 shows a cross-sectional configuration of the sensor element 50. Actually, the sensor element 50 has a long shape extending in a direction orthogonal to the paper surface of FIG. 8, and the entire element is accommodated in a housing or an element cover.

センサ素子50は、固体電解質層51、拡散抵抗層52、遮蔽層53及び絶縁層54を有し、これらが図の上下に積層されて構成されている。同素子50の周囲には図示しない保護層が設けられている。長方形板状の固体電解質層51は部分安定化ジルコニア製のシートよりなり、その固体電解質層51を挟んで上下一対の電極55,56が対向配置されている。電極55,56は白金Pt等により形成されている。拡散抵抗層52は電極55へ排ガスを導入するための多孔質シートからなり、遮蔽層53は排ガスの透過を抑制するための緻密層からなる。これら各層52,53は何れも、アルミナ、ジルコニア等のセラミックスをシート成形法等により成形したものであるが、ポロシティの平均孔径及び気孔率の違いによりガス透過率が相違するものとなっている。   The sensor element 50 includes a solid electrolyte layer 51, a diffusion resistance layer 52, a shielding layer 53, and an insulating layer 54, which are stacked on the upper and lower sides of the drawing. A protective layer (not shown) is provided around the element 50. The rectangular plate-shaped solid electrolyte layer 51 is made of a partially stabilized zirconia sheet, and a pair of upper and lower electrodes 55 and 56 are arranged opposite to each other with the solid electrolyte layer 51 interposed therebetween. The electrodes 55 and 56 are made of platinum Pt or the like. The diffusion resistance layer 52 is composed of a porous sheet for introducing exhaust gas into the electrode 55, and the shielding layer 53 is composed of a dense layer for suppressing permeation of exhaust gas. Each of these layers 52 and 53 is made of a ceramic such as alumina or zirconia by a sheet forming method or the like, but has different gas permeability due to the difference in the average pore diameter and porosity of the porosity.

絶縁層54はアルミナ、ジルコニア等のセラミックスからなり、電極56に対面する部位には大気ダクト57が形成されている。また、同絶縁層54には白金Pt等により形成されたヒータ58が埋設されている。ヒータ58はバッテリ電源からの通電により発熱する発熱体よりなり、その発熱により素子全体が加熱される。なお以下の説明では、電極55を拡散層側電極、電極56を大気側電極とも言う。   The insulating layer 54 is made of ceramics such as alumina and zirconia, and an air duct 57 is formed at a portion facing the electrode 56. In addition, a heater 58 made of platinum Pt or the like is embedded in the insulating layer 54. The heater 58 is a heating element that generates heat when energized from a battery power source, and the entire element is heated by the generated heat. In the following description, the electrode 55 is also referred to as a diffusion layer side electrode, and the electrode 56 is also referred to as an atmosphere side electrode.

上記センサ素子50において、その周囲の排ガスは拡散抵抗層52の側方部位から導入されて拡散層側電極55に達する。排ガスがリーンの場合、排ガス中の酸素は電極55,56間の電圧印加により拡散層側電極55で分解され、イオン化されて固体電解質層51を通過した後、大気側電極56より大気ダクト57に排出される。このとき、大気側電極56→拡散層側電極55の向きに電流が流れ、その電流レベルに応じたセンサ信号が出力される。また、排ガスがリッチの場合、逆に大気ダクト57内の酸素が大気側電極56で分解され、イオン化されて固体電解質層51を通過した後、拡散層側電極55より排出される。そして、排ガス中のHCやCO等の未燃成分と触媒反応する。このとき、拡散層側電極55→大気側電極56の向きに電流が流れ、その電流レベルに応じたセンサ信号が出力される。   In the sensor element 50, the surrounding exhaust gas is introduced from the side portion of the diffusion resistance layer 52 and reaches the diffusion layer side electrode 55. When the exhaust gas is lean, oxygen in the exhaust gas is decomposed by the diffusion layer side electrode 55 by applying a voltage between the electrodes 55 and 56, ionized and passes through the solid electrolyte layer 51, and then is passed from the atmosphere side electrode 56 to the atmosphere duct 57. Discharged. At this time, a current flows in the direction from the atmosphere side electrode 56 to the diffusion layer side electrode 55, and a sensor signal corresponding to the current level is output. On the other hand, when the exhaust gas is rich, oxygen in the atmosphere duct 57 is decomposed by the atmosphere side electrode 56, ionized and passes through the solid electrolyte layer 51 and then discharged from the diffusion layer side electrode 55. And it reacts with unburned components such as HC and CO in the exhaust gas. At this time, a current flows in the direction from the diffusion layer side electrode 55 to the atmosphere side electrode 56, and a sensor signal corresponding to the current level is output.

上記の如く空燃比センサ32(センサ素子50)では、拡散層側電極55及び大気側電極56で酸素の分解反応等が行われるが、各電極55,56で反応速度が異なると、リッチ時、リーン時の各々でセンサ応答性が相違する。この応答性の相違はセンサ個体差や経時変化を要因とし、センサ応答性が相違すると、空燃比制御に悪影響が及ぶことが考えられる。そこで本実施の形態の空燃比制御装置では、空燃比の制御精度を向上させるべく、空燃比制御に関する制御パラメータとしての空燃比補正係数FAFを、リッチ側への変化時におけるセンサ応答性とリーン側への変化時におけるセンサ応答性とに基づいて補正することとし、その詳細を以下に説明する。   As described above, in the air-fuel ratio sensor 32 (sensor element 50), the oxygen decomposition reaction or the like is performed by the diffusion layer side electrode 55 and the atmosphere side electrode 56. Sensor response is different at each lean. This difference in responsiveness is caused by individual sensor differences and changes over time. If the sensor responsiveness is different, it is considered that the air-fuel ratio control is adversely affected. Therefore, in the air-fuel ratio control apparatus of the present embodiment, in order to improve the control accuracy of the air-fuel ratio, the air-fuel ratio correction coefficient FAF as a control parameter relating to the air-fuel ratio control is changed to the sensor response and the lean side when changing to the rich side. Correction will be made based on the sensor responsiveness at the time of the change to, and the details will be described below.

図2は、空燃比制御装置の構成を機能別に示す機能ブロック図であり、それら各機能を簡単に説明する。空燃比調整部M1では、空燃比センサ信号から算出した検出空燃比φsigと目標空燃比との偏差に基づいて空燃比補正係数FAFが算出されると共に、後述する応答性検出部M4から取り込まれるパラメータαにより空燃比補正係数FAFが補正される。空燃比補正係数記憶部M2では、少なくとも空燃比補正係数FAFの今回値と前回値とが記憶され、検出空燃比記憶部M3では、少なくとも検出空燃比φsigの今回値と前回値とが記憶される。応答性検出部M4では、空燃比補正係数FAFと検出空燃比φsigとに基づいて、空燃比センサ32のリッチ側、リーン側への応答性を表す応答性パラメータ(パラメータα)が算出される。なおここでは、空燃比を燃料過剰率(燃料量/空気量)で説明するが、これに代えて空気過剰率を用いる構成であっても何ら差し支えはない。   FIG. 2 is a functional block diagram showing the configuration of the air-fuel ratio control apparatus by function, and each of these functions will be briefly described. In the air-fuel ratio adjustment unit M1, an air-fuel ratio correction coefficient FAF is calculated based on the deviation between the detected air-fuel ratio φsig calculated from the air-fuel ratio sensor signal and the target air-fuel ratio, and parameters taken in from a response detection unit M4 described later The air-fuel ratio correction coefficient FAF is corrected by α. The air-fuel ratio correction coefficient storage unit M2 stores at least the current value and the previous value of the air-fuel ratio correction coefficient FAF, and the detected air-fuel ratio storage unit M3 stores at least the current value and the previous value of the detected air-fuel ratio φsig. . The responsiveness detection unit M4 calculates a responsiveness parameter (parameter α) representing the responsiveness of the air-fuel ratio sensor 32 to the rich side and the lean side based on the air-fuel ratio correction coefficient FAF and the detected air-fuel ratio φsig. Here, the air-fuel ratio will be described as an excess fuel ratio (fuel amount / air amount), but there is no problem even if a configuration using an excess air ratio is used instead.

本実施の形態では、空燃比調整部M1が「補正量算出手段」及び「制御パラメータ補正手段」に相当し、応答性検出部M4が「空燃比検出値変化算出手段」、「補正量変化算出手段」、「応答性データ算出手段」及び「パラメータ算出手段」に相当する。   In the present embodiment, the air-fuel ratio adjustment unit M1 corresponds to “correction amount calculation unit” and “control parameter correction unit”, and the responsiveness detection unit M4 includes “air-fuel ratio detection value change calculation unit” and “correction amount change calculation”. Means ”,“ responsiveness data calculation means ”and“ parameter calculation means ”.

上記の各機能はECU40が実行する制御プログラムにより実現されるようになっており、空燃比調整部M1及び応答性検出部M4についてその処理手順を説明する。   Each of the above functions is realized by a control program executed by the ECU 40, and the processing procedure of the air-fuel ratio adjusting unit M1 and the responsiveness detecting unit M4 will be described.

図3は、空燃比調整部M1におけるFAF算出処理を示すフローチャートである。図3において、先ずステップS101では、空燃比F/B条件が成立しているか否かを判別する。空燃比F/B条件には、例えば冷却水温が所定温度以上であること、高回転・高負荷状態でないこと、空燃比センサ32が活性状態にあることなどが含まれる。条件成立の場合ステップS102に進み、目標空燃比φrefと検出空燃比φsigとから空燃比偏差errを算出する(err=φref−φsig)。その後、ステップS103では、空燃比偏差の今回値err(k)と前回値err(k−1)との差から偏差変化量Δerrを算出し、続くステップS104では、偏差変化量Δerrが0よりも大きいか否かを判別する。   FIG. 3 is a flowchart showing FAF calculation processing in the air-fuel ratio adjustment unit M1. In FIG. 3, first, in step S101, it is determined whether or not an air-fuel ratio F / B condition is satisfied. The air-fuel ratio F / B condition includes, for example, that the coolant temperature is equal to or higher than a predetermined temperature, is not in a high rotation / high load state, and that the air-fuel ratio sensor 32 is in an active state. If the condition is satisfied, the process proceeds to step S102, and an air-fuel ratio deviation err is calculated from the target air-fuel ratio φref and the detected air-fuel ratio φsig (err = φref−φsig). Thereafter, in step S103, the deviation change amount Δerr is calculated from the difference between the current value err (k) of the air-fuel ratio deviation and the previous value err (k−1), and in step S104, the deviation change amount Δerr is greater than zero. Determine whether it is larger.

Δerr≦0の場合ステップS105に進み、周知のPI制御手法に基づいて次式により空燃比補正係数FAFを算出する。   When Δerr ≦ 0, the process proceeds to step S105, and an air-fuel ratio correction coefficient FAF is calculated by the following equation based on a known PI control method.

FAF=KFp・err+KFi・Σerr
KFpは比例定数、KFiは積分定数である。
FAF = KFp · err + KFi · Σerr
KFp is a proportional constant, and KFi is an integral constant.

また、Δerr>0の場合ステップS106に進み、後述するパラメータαを用いて次式により空燃比補正係数FAFを算出する。すなわちこの場合、通常のFAF算出値に対してパラメータαにより空燃比補正係数FAFが補正されることとなる。   If Δerr> 0, the process proceeds to step S106, and an air-fuel ratio correction coefficient FAF is calculated by the following equation using a parameter α described later. That is, in this case, the air-fuel ratio correction coefficient FAF is corrected by the parameter α with respect to the normal FAF calculation value.

FAF=α(KFp・err+KFi・Σerr)
なお、空燃比補正係数FAFの算出手法について限定はなく、過去のFAF値を反映させてFAF値の今回値を算出するもの、エンジン10の動的挙動を表したモデルを用いてFAF値を算出するものなどが任意に適用できる。
FAF = α (KFp · err + KFi · Σerr)
The method for calculating the air-fuel ratio correction coefficient FAF is not limited, and the FAF value is calculated using a model that reflects the past FAF value and calculates the current value of the FAF value, or a model that represents the dynamic behavior of the engine 10. Anything can be applied arbitrarily.

空燃比F/B条件が不成立の場合にはステップS107に進み、空燃比補正係数FAFを1とする。   If the air-fuel ratio F / B condition is not satisfied, the process proceeds to step S107, and the air-fuel ratio correction coefficient FAF is set to 1.

次に、図4〜図6は、応答性検出部M4における演算処理を示すフローチャートであり、そのうち図4は空燃比補正係数FAFの変化速度を算出するためのFAF変化速度算出処理を示すフローチャート、図5は検出空燃比φsigの変化速度を算出するためのφsig変化速度算出処理を示すフローチャート、図6はパラメータα算出処理を示すフローチャートである。   Next, FIGS. 4 to 6 are flowcharts showing calculation processing in the responsiveness detection unit M4, and FIG. 4 is a flowchart showing FAF change rate calculation processing for calculating the change rate of the air-fuel ratio correction coefficient FAF. FIG. 5 is a flowchart showing the φsig change rate calculation process for calculating the change rate of the detected air-fuel ratio φsig, and FIG. 6 is a flowchart showing the parameter α calculation process.

先ず図4のFAF変化速度算出処理において、ステップS201では、今現在、空燃比補正係数FAFの演算中であるか否かを判別し、FAF演算中であることを条件にステップS202に進む。ステップS202では、空燃比補正係数の今回値FAF(k)と前回値FAF(k−1)との差からその変化量ΔFAFを算出する。その後、ステップS203では、空燃比補正係数の変化量ΔFAFが0よりも大きいか否かを判別する。ここで、ΔFAF>0であることは、燃料噴射弁19による燃料噴射量が増量側に補正され、それに伴い空燃比がリッチ側に変化することを意味する。   First, in the FAF change speed calculation process of FIG. 4, in step S201, it is determined whether or not the air-fuel ratio correction coefficient FAF is currently being calculated, and the process proceeds to step S202 on condition that the FAF calculation is being performed. In step S202, the change amount ΔFAF is calculated from the difference between the current value FAF (k) and the previous value FAF (k−1) of the air-fuel ratio correction coefficient. Thereafter, in step S203, it is determined whether or not the change amount ΔFAF of the air-fuel ratio correction coefficient is larger than zero. Here, ΔFAF> 0 means that the fuel injection amount by the fuel injection valve 19 is corrected to the increase side, and accordingly the air-fuel ratio changes to the rich side.

ΔFAF>0の場合ステップS204に進み、リッチ側に変化する時の空燃比補正係数の変化速度ΔFAFRを次式により算出する。   When ΔFAF> 0, the process proceeds to step S204, and the change rate ΔFAFR of the air-fuel ratio correction coefficient when changing to the rich side is calculated by the following equation.

ΔFAFR(k)=ΔFAFR(k−1)+ksm1(ΔFAF(k)−ΔFAF(k−1))
上式中、ksm1はなまし率である。
ΔFAFR (k) = ΔFAFR (k−1) + ksm1 (ΔFAF (k) −ΔFAF (k−1))
In the above equation, ksm1 is an annealing rate.

また、ΔFAF≦0の場合ステップS205に進み、リーン側に変化する時の空燃比補正係数の変化速度ΔFAFLを次式により算出する。   If ΔFAF ≦ 0, the process proceeds to step S205, and the change rate ΔFAFL of the air-fuel ratio correction coefficient when changing to the lean side is calculated by the following equation.

ΔFAFL(k)=ΔFAFL(k−1)+ksm1(ΔFAF(k)−ΔFAF(k−1))
以上により、リッチ変化時及びリーン変化時における空燃比補正量の変化量データとして空燃比補正係数の変化速度ΔFAFR,ΔFAFLが算出される。
ΔFAFL (k) = ΔFAFL (k−1) + ksm1 (ΔFAF (k) −ΔFAF (k−1))
As described above, the change rates ΔFAFR and ΔFAFL of the air-fuel ratio correction coefficient are calculated as change amount data of the air-fuel ratio correction amount at the time of rich change and lean change.

次に、図5のφsig変化速度算出処理において、ステップS301では、今現在、検出空燃比φsigの演算中であるか否かを判別し、φsig演算中であることを条件にステップS302に進む。ステップS302では、検出空燃比の今回値φsig(k)と前回値φsig(k−1)との差からその変化量Δφsigを算出する。その後、ステップS303では、検出空燃比の変化量Δφsigが0よりも大きいか否かを判別する。ここで、Δφsig>0であることは、燃料過剰率が増加しており空燃比がリッチ側に変化することを意味する。   Next, in the φsig change speed calculation process of FIG. 5, in step S301, it is determined whether or not the detected air-fuel ratio φsig is currently being calculated, and the process proceeds to step S302 on condition that φsig is being calculated. In step S302, the amount of change Δφsig is calculated from the difference between the current value φsig (k) of the detected air-fuel ratio and the previous value φsig (k−1). Thereafter, in step S303, it is determined whether or not the change amount Δφsig of the detected air-fuel ratio is greater than zero. Here, Δφsig> 0 means that the excess fuel ratio increases and the air-fuel ratio changes to the rich side.

Δφsig>0の場合ステップS304に進み、リッチ側に変化する時の検出空燃比の変化速度ΔφsigRを次式により算出する。   When Δφsig> 0, the process proceeds to step S304, and the change rate ΔφsigR of the detected air-fuel ratio when changing to the rich side is calculated by the following equation.

ΔφsigR(k)=ΔφsigR(k−1)+ksm2(Δφsig(k)−Δφsig(k−1))
上式中、ksm2はなまし率である。
ΔφsigR (k) = ΔφsigR (k−1) + ksm2 (Δφsig (k) −Δφsig (k−1))
In the above equation, ksm2 is an annealing rate.

また、Δφsig≦0の場合ステップS305に進み、リーン側に変化する時の検出空燃比の変化速度ΔφsigLを次式により算出する。   If Δφsig ≦ 0, the process proceeds to step S305, and the change rate ΔφsigL of the detected air-fuel ratio when changing to the lean side is calculated by the following equation.

ΔφsigL(k)=ΔφsigL(k−1)+ksm2(Δφsig(k)−Δφsig(k−1))
以上により、リッチ変化時及びリーン変化時におけるセンサ信号の変化量データとして検出空燃比の変化速度ΔφsigR,ΔφsigLが算出される。
ΔφsigL (k) = ΔφsigL (k−1) + ksm2 (Δφsig (k) −Δφsig (k−1))
As described above, the change rates ΔφsigR and ΔφsigL of the detected air-fuel ratio are calculated as the change amount data of the sensor signal at the time of rich change and lean change.

また、図6のパラメータα算出処理において、ステップS401では、リッチ側への空燃比変化時における検出空燃比の変化速度ΔφsigRと空燃比補正係数の変化速度ΔFAFRとの比compR(=ΔφsigR(k)/ΔFAFR(k))を算出すると共に、リーン側への空燃比変化時における検出空燃比の変化速度ΔφsigLと空燃比補正係数の変化速度ΔFAFLとの比compL(=ΔφsigL(k)/ΔFAFL(k))を算出する。   In the parameter α calculation process of FIG. 6, in step S401, the ratio compR (= ΔφsigR (k) between the change rate ΔφsigR of the detected air-fuel ratio and the change rate ΔFAFR of the air-fuel ratio correction coefficient when the air-fuel ratio changes to the rich side. / ΔFAFR (k)) and the ratio compL (= ΔφsigL (k) / ΔFAFL (k) between the change rate ΔφsigL of the detected air-fuel ratio and the change rate ΔFAFL of the air-fuel ratio correction coefficient when the air-fuel ratio changes to the lean side )) Is calculated.

その後、ステップS402では、前記算出したcompRとcompLとの比compRLを算出し、続くステップS403では、compRLを目標値(=1)にするためのPI補償器を使ってパラメータαを算出する。すなわち、
e=compRL−1
α=1+kp・e+ki(Σe)
としてパラメータαを算出する。なお、kpは比例定数、kiは積分定数である。
Thereafter, in step S402, a ratio compRL between the calculated compR and compL is calculated. In subsequent step S403, a parameter α is calculated using a PI compensator for setting compRL to a target value (= 1). That is,
e = compRL-1
α = 1 + kp · e + ki (Σe)
The parameter α is calculated as follows. Note that kp is a proportionality constant and ki is an integration constant.

以上により、リッチ変化時及びリーン変化時における空燃比センサ32の応答性データとしてcompR,compLが算出されると共に、応答性パラメータとしてパラメータαが算出される。上記の通り算出されたパラメータαは、前記図3のステップS106において空燃比補正係数FAFの算出に用いられる。   Thus, compR and compL are calculated as responsiveness data of the air-fuel ratio sensor 32 at the time of rich change and lean change, and the parameter α is calculated as a responsiveness parameter. The parameter α calculated as described above is used for calculating the air-fuel ratio correction coefficient FAF in step S106 of FIG.

図7は、空燃比φと空燃比補正係数FAFの挙動を示すタイムチャートである。図7では、所定周期で目標空燃比を理論空燃比(φ=1)に対してリッチ側及びリーン側に強制変動させるものとしており、それに応じて検出空燃比φsig及び空燃比補正係数FAFが推移する様子を示している。なおこの空燃比変動は、例えばエンジン10の冷間始動時における触媒コンバータの早期活性化や通常運転時における触媒浄化効率の向上(機能再生)を目的に実施されるものであって、具体的には数Hz程度の周期でリッチ側、リーン側それぞれに向けて空燃比が変動される。   FIG. 7 is a time chart showing the behavior of the air-fuel ratio φ and the air-fuel ratio correction coefficient FAF. In FIG. 7, the target air-fuel ratio is forcibly changed to the rich side and the lean side with respect to the theoretical air-fuel ratio (φ = 1) in a predetermined cycle, and the detected air-fuel ratio φsig and the air-fuel ratio correction coefficient FAF change accordingly. It shows how to do. The air-fuel ratio fluctuation is carried out for the purpose of, for example, early activation of the catalytic converter at the cold start of the engine 10 and improvement of catalyst purification efficiency (functional regeneration) during normal operation. The air-fuel ratio fluctuates toward the rich side and the lean side with a period of about several Hz.

(a)では、検出空燃比φsigの波形が全体的にリーン側にシフトしており、実際の空燃比(実空燃比)の平均値が図の平均空燃比ズレ分だけリーン側にシフトしている。これは、リッチ側への空燃比変化時よりもリーン側への空燃比変化時の方が高応答であることが理由であると考えられる。これに対して(b)では、リッチ変化・リーン変化の応答差に基づいて空燃比補正係数FAFが図の点線から実線に補正されている。これにより、(a)に見られるような平均空燃比ズレが解消される。   In (a), the waveform of the detected air-fuel ratio φsig is shifted to the lean side as a whole, and the average value of the actual air-fuel ratio (actual air-fuel ratio) is shifted to the lean side by the average air-fuel ratio deviation in the figure. Yes. This is considered to be because the response is higher when the air-fuel ratio changes to the lean side than when the air-fuel ratio changes to the rich side. On the other hand, in (b), the air-fuel ratio correction coefficient FAF is corrected from the dotted line to the solid line based on the response difference between the rich change and the lean change. This eliminates the average air-fuel ratio deviation as seen in (a).

以上詳述した本実施の形態によれば、以下の優れた効果が得られる。   According to the embodiment described above in detail, the following excellent effects can be obtained.

空燃比センサ32のリッチ側変化時の応答性とリーン側変化時の応答性とを個別に検出するようにしたため、応答性データから空燃比センサ32の動特性を知り得ることができ、その動特性を反映して空燃比補正係数FAFの補正が実施できる。これにより、空燃比の制御精度が向上し、排気エミッションの悪化等の不都合を抑制することができる。この場合特に、空燃比センサ32のリッチ側への応答性とリーン側への応答性とを等しくするようなパラメータαを算出し、そのパラメータαを用いて空燃比補正係数FAFを補正する構成としたため、空燃比センサ32のリッチ側への応答性とリーン側への応答性とに差があってもその差が解消されるようにして空燃比補正が実施できる。従って、リッチ側又はリーン側への予期しない空燃比ズレが解消でき、ひいては空燃比の制御精度向上が実現できる。   Since the responsiveness when the air-fuel ratio sensor 32 changes on the rich side and the responsiveness when the lean-side change changes are individually detected, the dynamic characteristics of the air-fuel ratio sensor 32 can be known from the responsiveness data. The air-fuel ratio correction coefficient FAF can be corrected reflecting the characteristics. Thereby, the control accuracy of the air-fuel ratio is improved, and inconveniences such as deterioration of exhaust emission can be suppressed. In this case, in particular, a parameter α that makes the responsiveness to the rich side and the responsiveness to the lean side of the air-fuel ratio sensor 32 equal is calculated, and the air-fuel ratio correction coefficient FAF is corrected using the parameter α. Therefore, even if there is a difference between the responsiveness to the rich side and the responsiveness to the lean side of the air-fuel ratio sensor 32, the air-fuel ratio correction can be performed so that the difference is eliminated. Therefore, an unexpected air-fuel ratio shift to the rich side or the lean side can be eliminated, and as a result, the control accuracy of the air-fuel ratio can be improved.

また、リッチ側への変化時、リーン側への変化時のそれぞれについて検出空燃比φsigの変化量データ(ΔφsigR,ΔφsigL)と空燃比補正係数FAFの変化量データ(ΔFAFR,ΔFAFL)との比から応答性データ(compR,compL)を算出する構成としたため、検出空燃比φsigの変化と空燃比補正係数FAFの変化とを対比させて応答性データが求められる。それ故、応答性データの信頼性が増し、FAF補正がより好適に実施できるようになる。   Further, from the ratio between the change amount data (ΔφsigR, ΔφsigL) of the detected air-fuel ratio φsig and the change amount data (ΔFAFR, ΔFAFL) of the air-fuel ratio correction coefficient FAF for each of the change to the rich side and the change to the lean side. Since the responsiveness data (compR, compL) is calculated, the responsiveness data is obtained by comparing the change in the detected air-fuel ratio φsig with the change in the air-fuel ratio correction coefficient FAF. Therefore, the reliability of the responsiveness data is increased, and the FAF correction can be performed more suitably.

また、空燃比がリッチ側及びリーン側に強制変動される構成にあって、空燃比平均のズレを解消することができる。故に、空燃比変動時において、その変動の中心を常に所望の空燃比(例えば理論空燃比)とすることができる。   Further, in the configuration in which the air-fuel ratio is forcibly fluctuated to the rich side and the lean side, the deviation of the air-fuel ratio average can be eliminated. Therefore, when the air-fuel ratio fluctuates, the center of the fluctuation can always be a desired air-fuel ratio (for example, the theoretical air-fuel ratio).

なお、本発明は上記実施の形態の記載内容に限定されず、例えば次のように実施しても良い。   In addition, this invention is not limited to the content of description of the said embodiment, For example, you may implement as follows.

上記実施の形態では、リッチ側及びリーン側への応答性を無くすように設定したパラメータαを用いて空燃比補正係数FAFを補正したが、この構成を変更する。例えば、空燃比センサ32のリッチ側、リーン側へのそれぞれの応答性データ(compR,compL)を個別に用いて空燃比補正係数FAFを補正する。この場合、リッチ側への応答性データとリーン側への応答性データの少なくとも一方を用いて補正を実施すれば良く、その使い分けは応答性変化の状態に応じて行うと良い。   In the above embodiment, the air-fuel ratio correction coefficient FAF is corrected using the parameter α set so as to eliminate the response to the rich side and the lean side, but this configuration is changed. For example, the air-fuel ratio correction coefficient FAF is corrected using the response data (compR, compL) to the rich side and lean side of the air-fuel ratio sensor 32 individually. In this case, the correction may be performed using at least one of the response data to the rich side and the response data to the lean side, and the proper use may be performed according to the state of the response change.

上記実施の形態では、空燃比検出値、空燃比補正量のリッチ側又はリーン側への変化量データとして、検出空燃比の変化速度ΔφsigR,ΔφsigL、空燃比補正係数の変化速度ΔFAFR,ΔFAFLを用いたが、これに代えて、検出空燃比の変化加速度、空燃比補正係数の変化加速度を用いる構成としても良い。   In the above embodiment, the detected air-fuel ratio change rate ΔφsigR, ΔφsigL, and the change rate ΔFAFR, ΔFAFL of the air-fuel ratio correction coefficient are used as the air-fuel ratio detection value and the change amount data of the air-fuel ratio correction amount to the rich side or lean side. However, instead of this, it is possible to use a change acceleration of the detected air-fuel ratio and a change acceleration of the air-fuel ratio correction coefficient.

上記実施の形態では、前記図3の処理において偏差変化量Δerrが0よりも大きい場合にパラメータαによるFAF補正を実施する構成としたが、空燃比変動時における検出空燃比φsigの平均値が目標値平均から所定値以上離れた場合に空燃比補正係数FAFの補正を実施する構成としても良い。   In the above embodiment, the FAF correction is performed with the parameter α when the deviation change amount Δerr is larger than 0 in the processing of FIG. 3, but the average value of the detected air-fuel ratio φsig when the air-fuel ratio varies is the target value. A configuration may be adopted in which the air-fuel ratio correction coefficient FAF is corrected when a predetermined value or more is deviated from the value average.

補正対象となる制御パラメータとしては、空燃比補正係数FAF以外に空燃比目標値やフィードバックゲイン(制御ゲイン)であっても良い。なお、空燃比補正係数FAF、空燃比目標値、フィードバックゲインのうち少なくとも2つを補正対象とすることも可能である。   The control parameter to be corrected may be an air-fuel ratio target value or a feedback gain (control gain) other than the air-fuel ratio correction coefficient FAF. It should be noted that at least two of the air-fuel ratio correction coefficient FAF, the air-fuel ratio target value, and the feedback gain can be corrected.

発明の実施の形態におけるエンジン制御システムの概略を示す構成図である。It is a block diagram which shows the outline of the engine control system in embodiment of invention. 空燃比検出装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of an air fuel ratio detection apparatus. FAF算出処理を示すフローチャートである。It is a flowchart which shows FAF calculation processing. FAF変化速度の算出処理を示すフローチャートである。It is a flowchart which shows the calculation process of FAF change speed. φsig変化速度の算出処理を示すフローチャートである。It is a flowchart which shows the calculation process of (phi) sig change speed. パラメータαの算出処理を示すフローチャートである。It is a flowchart which shows the calculation process of parameter (alpha). 空燃比と空燃比補正係数の挙動を示すタイムチャートである。It is a time chart which shows the behavior of an air fuel ratio and an air fuel ratio correction coefficient. センサ素子の構成を示す断面図である。It is sectional drawing which shows the structure of a sensor element.

符号の説明Explanation of symbols

10…エンジン、
24…排気管、
32…空燃比センサ、
40…ECU、M1…空燃比調整部、M4…応答性検出部。
10 ... Engine,
24 ... exhaust pipe,
32 ... Air-fuel ratio sensor,
40: ECU, M1: Air-fuel ratio adjusting unit, M4: Responsiveness detecting unit.

Claims (11)

内燃機関の排気通路に設置された空燃比センサと、
空燃比センサ信号から検出された空燃比検出値を目標値に一致させるための空燃比補正量を算出する補正量算出手段とを備え、前記空燃比補正量を用いて空燃比を制御する内燃機関の空燃比制御装置において、
前記空燃比検出値のリッチ側、リーン側への変化量データをそれぞれ算出する空燃比検出値変化算出手段と、
前記空燃比補正量のリッチ側、リーン側への変化量データをそれぞれ算出する補正量変化算出手段と、
前記算出した空燃比検出値のリッチ側、リーン側への変化量データと前記算出した空燃比補正量のリッチ側、リーン側への変化量データとに基づいて、リッチ側への変化時、リーン側への変化時のそれぞれについて前記空燃比センサの応答性データを算出する応答性データ算出手段と、
前記算出した応答性データを用いて空燃比制御に関する制御パラメータを補正する制御パラメータ補正手段と、
を備えたことを特徴とする内燃機関の空燃比制御装置。
An air-fuel ratio sensor installed in the exhaust passage of the internal combustion engine;
An internal combustion engine comprising: a correction amount calculating means for calculating an air-fuel ratio correction amount for making the air-fuel ratio detection value detected from the air-fuel ratio sensor signal coincide with a target value, and controlling the air-fuel ratio using the air-fuel ratio correction amount In the air-fuel ratio control apparatus of
Air-fuel ratio detection value change calculation means for calculating change data of the air-fuel ratio detection value to the rich side and lean side, respectively;
Correction amount change calculation means for calculating change amount data of the air-fuel ratio correction amount to the rich side and lean side, respectively;
Based on the change amount data of the calculated air-fuel ratio detection value to the rich side and the lean side and the change amount data of the calculated air-fuel ratio correction amount to the rich side and the lean side, when changing to the rich side, the lean Responsiveness data calculating means for calculating responsiveness data of the air-fuel ratio sensor for each of the changes to the side;
Control parameter correction means for correcting control parameters relating to air-fuel ratio control using the calculated response data;
An air-fuel ratio control apparatus for an internal combustion engine, comprising:
前記制御パラメータ補正手段は、リッチ側への変化時、リーン側への変化時における各応答性データの差分に応じて前記制御パラメータを補正する請求項1記載の内燃機関の空燃比制御装置。 2. The air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein the control parameter correction unit corrects the control parameter according to a difference between the responsiveness data when changing to the rich side and when changing to the lean side. 前記応答性データ算出手段により算出したリッチ側への変化時、リーン側への変化時の各応答性データを等しくするような応答性パラメータを算出するパラメータ算出手段を更に備え、
前記制御パラメータ補正手段は、前記応答性パラメータを用いて前記制御パラメータを補正する請求項1記載の内燃機関の空燃比検出装置。
A parameter calculating means for calculating a responsiveness parameter that equalizes each responsiveness data at the time of change to the lean side at the time of change to the rich side calculated by the responsiveness data calculation means;
The air-fuel ratio detection apparatus for an internal combustion engine according to claim 1, wherein the control parameter correction means corrects the control parameter using the responsiveness parameter.
前記制御パラメータ補正手段は、前記制御パラメータとしての空燃比補正量を補正する請求項1乃至3の何れかに記載の内燃機関の空燃比制御装置。 The air-fuel ratio control apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the control parameter correction means corrects an air-fuel ratio correction amount as the control parameter. 前記制御パラメータ補正手段は、前記制御パラメータとしての空燃比目標値を補正する請求項1乃至3の何れかに記載の内燃機関の空燃比制御装置。 The air-fuel ratio control apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the control parameter correction means corrects an air-fuel ratio target value as the control parameter. 前記制御パラメータ補正手段は、前記制御パラメータとしての制御ゲインを補正する請求項1乃至3の何れかに記載の内燃機関の空燃比制御装置。 The air-fuel ratio control apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the control parameter correction means corrects a control gain as the control parameter. 前記応答性データ算出手段は、リッチ側への変化時、リーン側への変化時のそれぞれについて、前記空燃比検出値の変化量データと前記空燃比補正量の変化量データとの比から応答性データを算出する請求項1乃至6の何れかに記載の内燃機関の空燃比制御装置。 The responsiveness data calculating means is responsive from a ratio between the change amount data of the air-fuel ratio detection value and the change amount data of the air-fuel ratio correction amount for each of the change to the rich side and the change to the lean side. The air-fuel ratio control apparatus for an internal combustion engine according to any one of claims 1 to 6, wherein data is calculated. 空燃比偏差が増加するよう変化する場合に、前記制御パラメータの補正を実施する請求項1乃至7の何れかに記載の内燃機関の空燃比制御装置。 The air-fuel ratio control apparatus for an internal combustion engine according to any one of claims 1 to 7, wherein the control parameter is corrected when the air-fuel ratio deviation changes so as to increase. 前記空燃比検出値の変化量データとしてその変化速度又は変化加速度を算出し、前記空燃比補正量の変化量データとしてその変化速度又は変化加速度を算出する請求項1乃至8の何れかに記載の内燃機関の空燃比検出装置。 The change speed or change acceleration is calculated as change amount data of the air-fuel ratio detection value, and the change speed or change acceleration is calculated as change amount data of the air-fuel ratio correction amount. An air-fuel ratio detection device for an internal combustion engine. 空燃比をリッチ側及びリーン側に強制変動させる空燃比変動手段を備え、該空燃比変動手段による空燃比変動に伴い前記空燃比検出値がリッチ側に変化する時、又は前記空燃比検出値がリーン側に変化する時の変化量データを基に前記制御パラメータの補正を実施する請求項1乃至9の何れかに記載の内燃機関の空燃比制御装置。 Air-fuel ratio changing means for forcibly changing the air-fuel ratio to the rich side and the lean side, and when the air-fuel ratio detection value changes to the rich side as the air-fuel ratio changes by the air-fuel ratio changing means, or the air-fuel ratio detection value is The air-fuel ratio control apparatus for an internal combustion engine according to any one of claims 1 to 9, wherein the control parameter is corrected based on change amount data when changing to a lean side. 前記空燃比検出値の平均値を算出する手段を備え、該空燃比検出値の平均値が目標値平均から所定値以上離れた場合に、前記制御パラメータの補正を実施する請求項10記載の内燃機関の空燃比制御装置。
11. The internal combustion engine according to claim 10, further comprising means for calculating an average value of the detected air-fuel ratio, wherein the control parameter is corrected when the average value of the detected air-fuel ratio is more than a predetermined value from the target value average. Engine air-fuel ratio control device.
JP2003331172A 2003-09-11 2003-09-24 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP4016921B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003331172A JP4016921B2 (en) 2003-09-24 2003-09-24 Air-fuel ratio control device for internal combustion engine
DE102004043917A DE102004043917A1 (en) 2003-09-11 2004-09-10 Air-fuel ratio sensor monitoring device, air-fuel ratio measuring device and air-fuel ratio control
US10/938,815 US7201160B2 (en) 2003-09-11 2004-09-13 Air-fuel ratio sensor monitor, air-fuel ratio detector, and air-fuel ratio control
US11/520,812 US7248960B2 (en) 2003-09-11 2006-09-14 Air-fuel ratio sensor monitor, air-fuel ratio detector, and air-fuel ratio control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003331172A JP4016921B2 (en) 2003-09-24 2003-09-24 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005098166A true JP2005098166A (en) 2005-04-14
JP4016921B2 JP4016921B2 (en) 2007-12-05

Family

ID=34459902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003331172A Expired - Fee Related JP4016921B2 (en) 2003-09-11 2003-09-24 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4016921B2 (en)

Also Published As

Publication number Publication date
JP4016921B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
US7248960B2 (en) Air-fuel ratio sensor monitor, air-fuel ratio detector, and air-fuel ratio control
JP2009281328A (en) Device for detecting abnormal air-fuel ratio variation among cylinders of multi-cylinder internal combustion engine
KR101442391B1 (en) Emission control system for internal combustion engine
US10352263B2 (en) Fuel injection amount control apparatus for an internal combustion engine
JPWO2012008038A1 (en) Exhaust gas purification device for internal combustion engine
US20220113280A1 (en) Gas sensor
JP6447568B2 (en) Nitrogen oxide sensor
US8452521B2 (en) Inter-cylinder air-fuel ratio imbalance determination apparatus for an internal combustion engine
US10072594B2 (en) Exhaust sensor
JP2005121003A (en) Malfunction detecting device for air-fuel ratio sensor
JP6551314B2 (en) Gas sensor controller
JP6255948B2 (en) Gas sensor control device
JP4228488B2 (en) Gas concentration sensor heater control device
JP3420932B2 (en) Method for detecting element resistance of gas concentration sensor
JP3572927B2 (en) Air-fuel ratio control device for internal combustion engine
JP2008138569A (en) Air-fuel ratio control device of internal combustion engine
JP4016921B2 (en) Air-fuel ratio control device for internal combustion engine
JP4196794B2 (en) Air-fuel ratio detection device for internal combustion engine
JP2009013991A (en) Malfunction detection device for air-fuel ratio sensor
JP7303129B2 (en) gas sensor
JPH10169500A (en) Output correcting device for air-fuel ratio sensor
JP6756317B2 (en) Internal combustion engine exhaust system
JP5459513B2 (en) Air-fuel ratio control device for internal combustion engine
JP2006071429A (en) Gas concentration detecting apparatus
CN113389625B (en) Control device for exhaust gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060907

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees