JP2005097797A - Instrument for simulating environment within clothing and evaluation method therefor - Google Patents

Instrument for simulating environment within clothing and evaluation method therefor Download PDF

Info

Publication number
JP2005097797A
JP2005097797A JP2003334836A JP2003334836A JP2005097797A JP 2005097797 A JP2005097797 A JP 2005097797A JP 2003334836 A JP2003334836 A JP 2003334836A JP 2003334836 A JP2003334836 A JP 2003334836A JP 2005097797 A JP2005097797 A JP 2005097797A
Authority
JP
Japan
Prior art keywords
humidity
temperature
environment
environment simulation
garment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003334836A
Other languages
Japanese (ja)
Other versions
JP3958731B2 (en
Inventor
Sanki Kato
三貴 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaken Test Center General Incorporated Foundation
Original Assignee
Japan Synthetic Textile Inspection Institute Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Textile Inspection Institute Foundation filed Critical Japan Synthetic Textile Inspection Institute Foundation
Priority to JP2003334836A priority Critical patent/JP3958731B2/en
Publication of JP2005097797A publication Critical patent/JP2005097797A/en
Application granted granted Critical
Publication of JP3958731B2 publication Critical patent/JP3958731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simulation apparatus and evaluation method for the environment within clothing, enabling the measurement and analysis even under unsteady state of the temperature and humidity in clothing, dispensing with the use of a large-sized apparatus and capable of easily measuring a plurality of specimens in high accuracy. <P>SOLUTION: A plurality of vessels each containing a clothing environment simulation chamber partitioned with a moisture-permeable waterproof sheet and a specimen are detachably mounted on the upper surface of a water-retention member laminated on a plane heat-generating member and the temperature and humidity in the clothing environment simulation chambers and at least the outer environment are simultaneously measured with time. The transfer properties of heat and water vapor are analyzed by using the difference of the temperature values, the difference of the humidity values or the absolute humidity or the water content in air as the index of humidity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は衣服内環境模擬測定装置および評価方法に関するものである。より詳しくは、衣服を着用した際に人体から衣服を通して外界に熱および水分が移動する状態を模擬し、主として織物、編物、コーティング布、シート、不織布等の衣服に用いる繊維材料の熱および水分の移動特性を明らかにする衣服内環境模擬測定装置および評価方法に関するものである。   The present invention relates to an in-clothes environment simulation measuring apparatus and an evaluation method. More specifically, it simulates the state in which heat and moisture move from the human body through the clothing to the outside world when the clothing is worn. The present invention relates to an in-clothes environment simulation measuring device and an evaluation method for clarifying movement characteristics.

衣服内環境を模擬した測定装置および評価方法は、快適な衣類を開発するための繊維材料の熱と水蒸気の移動特性に関する基礎的な情報を得るために重要であり、これまでにも多くの研究開発がなされてきた。例えば[特許文献1]には測定対象試料の両側に位置させる薄層状の一対の空間を形成する手段と、これら空間に予めそれぞれ所定の温度湿度に調節した空気を通過させる一対の手段と、上記空間内での空気の温度湿度変化を検出する手段からなり、例えば着衣直後のような衣服内の温度と湿度とが非定常状態での測定が可能な装置が開示されている。   Measuring devices and evaluation methods that simulate the environment in clothes are important for obtaining basic information on the heat and water vapor transfer characteristics of fiber materials to develop comfortable clothing, and many studies have been conducted so far. Development has been done. For example, in [Patent Document 1], a pair of means for forming a pair of thin layers positioned on both sides of a sample to be measured, a pair of means for passing air adjusted to a predetermined temperature and humidity in advance in these spaces, An apparatus is disclosed which includes means for detecting a change in temperature and humidity of air in a space, and can measure the temperature and humidity in a garment such as immediately after garments in an unsteady state.

また[特許文献1]にはこのほか、定常状態での測定に適した代表的な従来装置、すなわち外部環境及び擬似皮膚板の条件を制御し衣服内環境模擬室の水分と熱の移動特性を同時かつ経時的に測定できる装置や、衣服素材によって仕切られた三つの小空間内に温度湿度センサを設け所定の温度湿度の外部環境が順次各空間に影響を及ぼす状況を観察する装置や、衣服素材の両側に異なる温度湿度に精密に制御した空気を流し一方の空気の温度湿度を変化させることによって衣服素材の温度が変化する状況を観察する装置が開示されている。   In addition to [Patent Document 1], in addition to the typical conventional apparatus suitable for measurement in a steady state, that is, the conditions of the external environment and the artificial skin plate are controlled, the moisture and heat transfer characteristics of the environment simulation room in the clothes are described. A device that can be measured simultaneously and over time, a device that has temperature and humidity sensors in three small spaces partitioned by clothing material, and that observes the situation where the external environment of a given temperature and humidity sequentially affects each space, and clothing An apparatus for observing a situation in which the temperature of a clothing material changes by flowing precisely controlled air at different temperatures and humidity on both sides of the material and changing the temperature and humidity of one of the air is disclosed.

これらの装置は温度と相対湿度の精度良い測定を行うことができる。しかしながらこれらの装置は着衣直後のような衣服内の温度と湿度とが非定常状態での測定に適したものが少ない。またこれらの装置は、精度良い測定を行うために空気を所定の温度湿度に調節して送風する大型の装置や、所定の温度に調節した温水を循環する装置等が必要である。更に衣類用素材の開発段階のように試料を数多く測定する場合には、装置がさらに大型化するか、測定に長時間を必要とする。このため、着衣直後のような衣服内の温度と湿度とが非定常状態での測定が可能で、大型の設備を必要とせず、複数の試料の測定も簡便にかつ精度良く行うことができる装置や評価方法が望まれる。   These devices can accurately measure temperature and relative humidity. However, few of these devices are suitable for measurement in the unsteady state of the temperature and humidity in the garment immediately after clothing. In addition, these devices require a large device that adjusts air to a predetermined temperature and humidity and blows air, a device that circulates hot water adjusted to a predetermined temperature, and the like in order to perform accurate measurement. Further, when measuring a large number of samples as in the development stage of clothing materials, the apparatus becomes larger or requires a long time for measurement. For this reason, it is possible to measure the temperature and humidity in the clothing in an unsteady state immediately after clothing, without the need for large equipment, and to measure multiple samples easily and accurately And an evaluation method are desired.

このような観点から、本出願人は先に[特許文献2]で発汗状態を模擬した温湿度特性の簡易評価方法の発明を提案したが、多数の試料を測定する場合には精密な装置を多数要するか測定に長時間を要する場合があり、また試料間差を明確に評価できない場合もあり、さらに測定を簡便かつ精度良く行うことができる装置や評価方法が望まれる。
特開平10−18172号公報 特開2001−99832号公報
From this point of view, the present applicant previously proposed an invention for a simple evaluation method of temperature and humidity characteristics simulating the sweating state in [Patent Document 2], but when measuring a large number of samples, an accurate apparatus was used. There are cases where a large number of samples are required or a long time is required for the measurement, and there are cases where differences between samples cannot be clearly evaluated. Further, an apparatus and an evaluation method capable of performing measurement easily and accurately are desired.
Japanese Patent Laid-Open No. 10-18172 JP 2001-99832 A

本発明は衣服内の温度と湿度とが非定常状態での測定や解析も可能で、大型の設備を必要とせず、複数の試料の測定も簡便にかつ精度良く行うことができる衣服内環境模擬測定装置および評価方法を提供することを目的とする。   The present invention can measure and analyze the temperature and humidity in the clothes in an unsteady state, does not require a large facility, and can easily and accurately measure a plurality of samples. An object is to provide a measuring apparatus and an evaluation method.

本発明は第1に、衣服内環境模擬室内の温度と湿度とを同時かつ経時的に測定する衣服内環境模擬測定装置において、発熱性部材の上に配した保水性部材の上に、透湿防水性シート状部材と試料とで仕切った衣服内環境模擬室を有する容器を着脱自在に積載したことを特徴とする衣服内環境模擬測定装置である。
本発明は第2に、該容器を複数個積載してなる上記の衣服内環境模擬測定装置である。
本発明は第3に、マイクロヒータをエアブリッジ形成したセンサチップを温度と湿度の測定器として用いてなる上記の衣服内環境模擬測定装置である。
本発明は第4に、該容器の衣服内環境模擬室を仕切る透湿防水性シート状部材の下側に、開口型の模擬皮膚環境温度湿度調整室を設けてなる上記の衣服内環境模擬測定装置である。
本発明は第5に、該容器の衣服内環境模擬室を仕切る試料の上側に、開口型の外部環境温度湿度調整室を設けてなる上記の衣服内環境模擬測定装置である。
本発明は第6に、該試験試料用の表面温度測定用の温度計を配してなる上記の衣服内環境模擬測定装置である。
本発明は第7に、該保水性部材に給水するための給水装置を配してなる上記の衣服内環境模擬測定装置である。
本発明は第8に、衣服内環境模擬室内および少なくとも外部環境の温度と湿度とを同時かつ経時的に測定する衣服内環境模擬評価方法において、それぞれの温度測定値の差または湿度測定値の差を使って非平衡状態を含む試験試料の熱および水蒸気の移動特性を解析することを特徴とする衣服内環境模擬評価方法である。
本発明は第9に、衣服内環境模擬室内および少なくとも外部環境の温度と湿度とを同時かつ経時的に測定する衣服内環境模擬評価方法において、湿度の指標として絶対湿度または空気中水分量を用いて試験試料の水蒸気の移動特性を解析することを特徴とする衣服内環境模擬評価方法である。
The present invention firstly relates to an in-clothes environment simulation measuring apparatus for simultaneously measuring the temperature and humidity in the in-clothes environment simulation room over time, on the water retaining member disposed on the heat generating member. An in-clothes environment simulation measuring apparatus, wherein a container having an in-clothes environment simulation chamber partitioned by a waterproof sheet-like member and a sample is detachably loaded.
Secondly, the present invention is the above-described in-clothes environment simulation measuring device in which a plurality of the containers are stacked.
The third aspect of the present invention is the above-mentioned simulated environment for clothes environment using a sensor chip having a microheater formed as an air bridge as a temperature and humidity measuring device.
Fourthly, the present invention provides the above-mentioned simulated environment measurement for clothing, wherein an open-type simulated skin environment temperature / humidity adjustment chamber is provided below the moisture-permeable waterproof sheet-like member that partitions the simulated clothing environment chamber of the container. Device.
Fifthly, the present invention is the above-mentioned garment environment simulation measuring apparatus in which an open-type external environment temperature / humidity adjustment chamber is provided above the sample partitioning the garment environment simulation chamber of the container.
Sixthly, the present invention is the above-mentioned environment simulation measuring apparatus in clothing, in which a thermometer for measuring the surface temperature of the test sample is arranged.
Seventhly, the present invention is the above-mentioned environment simulation measuring device in clothes, which is provided with a water supply device for supplying water to the water retention member.
Eighthly, according to the present invention, there is provided a method for simulating and evaluating the environment in a garment and at least the temperature and humidity of at least the external environment simultaneously and over time. This is a simulation method for evaluating the environment in clothes characterized by analyzing the heat and water vapor transfer characteristics of a test sample including a non-equilibrium state.
Ninthly, the present invention uses absolute humidity or moisture content in the air as an index of humidity in a simulated environment evaluation method for clothing environment that simultaneously and temporally measures the temperature and humidity of the clothing environment simulation room and at least the external environment. This is a simulated environment evaluation method in clothes characterized by analyzing the movement characteristics of water vapor in a test sample.

本発明により、従来は不可能であった、衣服内の温度と湿度とが非定常状態でも測定や解析が可能で、大型の設備を必要とせず、複数の試料の測定も簡便にかつ精度良く行うことができる衣服内環境模擬測定装置および評価方法を提供することことができる。   According to the present invention, measurement and analysis are possible even when the temperature and humidity in the clothes are unsteady, which was not possible in the past, and does not require a large facility, and measurement of multiple samples is simple and accurate. It is possible to provide an in-clothes environment simulation measuring apparatus and an evaluation method that can be performed.

本発明において、試験の対象とする試料は、主として織物、編物、コーティング布、シート、不織布等の繊維材料のほか、紙、フィルム等の平面状透湿素材である。
以下に図面を用いて本発明の好ましい態様について説明する。
図1は本発明の実施に適する衣服内環境模擬測定装置の一例の概念図である。
この装置の主要部分は、平面状発熱性部材8と、その上に積層した保水性部材7と、その上面に着脱自在に積載しかつ透湿防水性シート状部材2と試料3とで仕切った衣服内環境模擬室4を有する容器1と、衣服内環境模擬室内等の雰囲気の温度と湿度とを同時かつ経時的に測定する温度湿度測定器とで構成する。
ここに衣服内環境模擬室内等とは、衣服内環境模擬室内と、外部環境または外部環境温度湿度調整室内を含み、このほか必要に応じて模擬皮膚環境温度湿度調整室内をも含む。外部環境温度湿度調整室および模擬皮膚環境温度湿度調整室については後述する。
In the present invention, the sample to be tested is mainly a flat moisture-permeable material such as paper and film in addition to fiber materials such as woven fabric, knitted fabric, coated fabric, sheet, and nonwoven fabric.
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a conceptual diagram of an example of an in-clothes environment simulation measuring apparatus suitable for implementing the present invention.
The main part of this apparatus is a flat exothermic member 8, a water retention member 7 laminated thereon, and is detachably loaded on the upper surface and partitioned by a moisture permeable waterproof sheet member 2 and a sample 3. A container 1 having an in-clothes environment simulation room 4 and a temperature / humidity measuring device for simultaneously measuring the temperature and humidity of the atmosphere in the in-clothes environment simulation room and the like over time.
Here, the garment environment simulation room and the like include a garment environment simulation room and an external environment or an external environment temperature and humidity adjustment room, and also includes a simulated skin environment temperature and humidity adjustment room as necessary. The external environment temperature / humidity adjustment chamber and the simulated skin environment temperature / humidity adjustment chamber will be described later.

上述した従来の装置は、厳密に制御された密閉型環境装置内で試料の取り付けや交換を行うものであり、これら作業は煩雑で時間を要する。本発明は透湿防水性シート状部材と試料とを予め取り付けた容器を積載するのみであるので、作業が容易になると同時に、系の温度湿度も早期に安定させることができる。
平面状発熱性部材8は電熱ヒータ等(図示せず)で加熱される部材で、その材質はアルミニウム等の熱伝導性が良好な材質であることが好ましい。必要に応じて模擬汗腺を設けたり、多孔質体としても良い。また平面状発熱性部材8の上面内の温度分布は±2℃以内、好ましくは±1℃以内、より好ましくは±0.5℃以内であることが望ましい。しかしながら驚くべきことに、後述する本発明方法の一つである差分法を用いることにより、これら範囲外の温度分布であっても精度の良い試験結果が得られ、装置の簡便化を達成することができる。
The above-described conventional apparatus is for attaching and exchanging samples in a strictly controlled sealed environment apparatus, and these operations are complicated and time-consuming. In the present invention, since only a container in which a moisture-permeable and waterproof sheet-like member and a sample are attached in advance is loaded, the operation becomes easy and the temperature and humidity of the system can be stabilized at an early stage.
The planar exothermic member 8 is a member heated by an electric heater or the like (not shown), and the material is preferably a material having good thermal conductivity such as aluminum. A simulated sweat gland may be provided if necessary, or a porous body may be used. The temperature distribution in the upper surface of the planar exothermic member 8 is desirably within ± 2 ° C., preferably within ± 1 ° C., and more preferably within ± 0.5 ° C. However, surprisingly, by using the difference method, which is one of the methods of the present invention described later, accurate test results can be obtained even with temperature distributions outside these ranges, and the simplification of the apparatus can be achieved. Can do.

平面状発熱性部材8の上面の表面積は容器1の下面の表面積と同等以上であることが好ましく、平面状発熱性部材8一つに対して容器1を複数積載できる表面積をもつことがより好ましい。また平面状発熱性部材8の上面の容器を積載する表面以外は非透湿性部材で被覆して、不必要な水の蒸発を防止してもよい。本発明装置は着脱容易なので一つの容器を使用して試験を行ってもよいが、複数の容器を使用して複数の試料についての試験を同時に行うことがより好ましく、そうすることにより試験時間を大幅に短縮することができる。図1には二つの容器1を使用した例を示したが、これに限定されたものではない。複数の容器を使用して同時に試験することにより、例えば対照試料と試験試料との特性の相互比較を、同時に精度良くかつ容易に行えるようになる。この相互比較法は、理論解析用試料を作製するための定性的スクリーニングの段階で多数の試料の特性を迅速に比較する場合に特に有用である。   The surface area of the upper surface of the planar exothermic member 8 is preferably equal to or greater than the surface area of the lower surface of the container 1, and more preferably has a surface area capable of stacking a plurality of containers 1 on one planar exothermic member 8. . Further, the surface other than the surface on which the container on the upper surface of the planar exothermic member 8 is loaded may be covered with a moisture-impermeable member to prevent unnecessary evaporation of water. Since the apparatus of the present invention is easy to attach and detach, the test may be performed using a single container. However, it is more preferable to perform a test on a plurality of samples simultaneously using a plurality of containers, thereby reducing the test time. It can be greatly shortened. Although the example using two containers 1 was shown in FIG. 1, it is not limited to this. By simultaneously testing using a plurality of containers, for example, it becomes possible to accurately and easily compare characteristics of a control sample and a test sample at the same time. This intercomparison method is particularly useful when rapidly comparing the characteristics of a large number of samples at the stage of qualitative screening for preparing a sample for theoretical analysis.

保水性部材7は平面状発熱性部材8の上面に積層する。保水性部材7と平面状発熱性部材8とは、それらに蓄積した空気中の塵埃や水蒸気を発生させるために使用する水の中の微量成分残留物の除去作業、保水性部材7の交換作業、試験開始時に行う保水性部材7への給水作業等を容易にするために、この保水性部材7と平面状発熱性部材8とは必ずしも機械的に固定する必要はない。
保水性部材7は、保水性がある平面状の材料、すなわち織物、編物、シート、不織布、ろ紙等を用いることができるが、平面状発熱性部材8からの伝熱が均一かつ速やかで耐久性がある薄い緻密な織物が望ましい。材質は天然繊維、再生繊維、合成繊維を用いることができるが、綿等のセルロース系繊維や吸水性合成繊維を用いることが望ましい。繊維は直径が小で、異形断面であることが望ましい。
The water retaining member 7 is laminated on the upper surface of the planar exothermic member 8. The water retaining member 7 and the planar exothermic member 8 are used to remove trace component residues in the water used to generate dust and water vapor in the air accumulated in them, and to replace the water retaining member 7. In order to facilitate the water supply operation to the water retention member 7 performed at the start of the test, the water retention member 7 and the planar exothermic member 8 do not necessarily have to be mechanically fixed.
The water-retaining member 7 may be a planar material having water retention, that is, a woven fabric, a knitted fabric, a sheet, a nonwoven fabric, a filter paper, etc., but the heat transfer from the planar exothermic member 8 is uniform, quick and durable. There is a thin dense fabric that is desirable. Natural fibers, regenerated fibers, and synthetic fibers can be used as the material, but it is desirable to use cellulosic fibers such as cotton and water-absorbing synthetic fibers. The fibers are preferably small in diameter and have a modified cross section.

保水性部材7は試験開始前に水中に浸すこと等により充分含水させたのち、予め例えば人体の皮膚温度に近い30〜40℃程度に加熱しておいた発熱性部材上に密着させて積層する。驚くべきことに本発明の構成にすることにより、例えば試験開始前に保水性部材7を水中に漬けて引き上げる程度の簡単な操作を行うのみで足り、含水量を厳密に制御することなく、後述する模擬皮膚環境温度湿度調整室5内を再現性ある湿度とすることができる。保水性部材7には、必要に応じて図2に示すように給水してもよい。   The water-retaining member 7 is sufficiently hydrated by immersing it in water before the start of the test, and is then adhered and laminated on, for example, a heat-generating member that has been heated to about 30 to 40 ° C., which is close to the skin temperature of the human body. . Surprisingly, with the configuration of the present invention, it is only necessary to perform a simple operation such as soaking the water-retaining member 7 in water before the test is started, and the water content is not strictly controlled, which will be described later. The simulated skin environment temperature and humidity adjustment chamber 5 can be made to have reproducible humidity. You may supply the water retention member 7 as shown in FIG. 2 as needed.

容器1の外形は、円柱や角柱のように線対称または面対称であることが望ましい。この容器1には、透湿防水性シート状部材2と平面状の試料3とで容器1を平行に仕切った衣服内環境模擬室4を設ける。衣服内環境模擬室4は、人体の皮膚と衣料との間の衣服内環境を模擬するものである。
このように形成した衣服内環境模擬室4のみをそのまま使用しても良いが、後述の差分法により試料の熱および水蒸気の移動特性を解析するためには、容器の衣服内環境模擬室4を仕切る透湿防水性シート状部材2の下側に続けて、開口型の模擬皮膚環境温度湿度調整室5を設けることが望ましい。この場合、開口型の模擬皮膚環境温度湿度調整室5の側壁に相当する例えば円筒体17には、図3に示すように開口21を設け、保水性部材7より発生した水蒸気がその蒸気圧により強制的に衣服内環境模擬室4に送り込まれないようにすることが望ましい。驚くべきことに、このように構成することにより、再現性ある模擬皮膚環境温度湿度調整室5内の環境温度湿度が得られることが判明した。
The outer shape of the container 1 is desirably line-symmetric or plane-symmetric like a cylinder or a prism. This container 1 is provided with an in-clothes environment simulation chamber 4 in which the container 1 is partitioned in parallel by a moisture-permeable and waterproof sheet-like member 2 and a flat sample 3. The in-clothes environment simulation room 4 simulates the in-clothes environment between the human skin and clothing.
Only the in-clothes environment simulation chamber 4 formed in this way may be used as it is. However, in order to analyze the movement characteristics of the heat and water vapor of the sample by the difference method described later, the in-clothes environment simulation chamber 4 is provided. It is desirable to provide an open-type simulated skin environment temperature / humidity adjusting chamber 5 below the moisture-permeable waterproof sheet-like member 2 to be partitioned. In this case, for example, the cylindrical body 17 corresponding to the side wall of the open-type simulated skin environment temperature / humidity adjustment chamber 5 is provided with an opening 21 as shown in FIG. 3, and water vapor generated from the water retention member 7 is caused by the vapor pressure. It is desirable not to be forcibly sent to the in-clothing environment simulation room 4. Surprisingly, it has been found that the environment temperature and humidity in the simulated skin environment temperature and humidity adjustment chamber 5 can be obtained with such a configuration.

また試験室内等の環境の変動の影響をより減少させるために、容器の衣服内環境模擬室4を仕切る試料3の上側に続けて、開口型の外部環境温度湿度調整室6を設けることが望ましい。さらに試験室内等の環境の変動の影響を減少させるためには、図2に示すように、外部環境温度湿度調整室6の上方に空隙を介して、温度湿度を調整した空気の導入路20を設けた蓋14を設けることがより望ましい。このように構成すると導入空気が衣服内環境模擬室4に強制的に送り込まれるのを防止することができ、さらに例えばシルカゲル充填管内を通過させた相対湿度10%の空気を導入することで、外部環境温度湿度調整室6内の湿度はほぼ50%の一定に保つことができる。   In order to further reduce the influence of environmental fluctuations such as in the test chamber, it is desirable to provide an open-type external environment temperature and humidity adjustment chamber 6 on the upper side of the sample 3 partitioning the environment simulation chamber 4 in the container. . Further, in order to reduce the influence of environmental fluctuations such as in the test chamber, as shown in FIG. 2, an air introduction path 20 with adjusted temperature and humidity is provided above the external environment temperature and humidity adjustment chamber 6 via a gap. It is more desirable to provide the provided lid 14. If comprised in this way, it can prevent that introduction air is forcibly sent into the environment simulation room 4 in clothes, and also introduces the air of relative humidity 10% which passed the inside of a silica gel filling pipe | tube, for example, and external The humidity in the environmental temperature / humidity adjusting chamber 6 can be kept constant at about 50%.

衣服内環境模擬室4を仕切る透湿防水性シート状部材2は人体の皮膚を模擬し、かつ平面状発熱性部材8より供給される熱とこの熱により保水性部材7から発生する水蒸気を迅速かつ均一に衣服内環境模擬室に移動させるためのもので、透湿性と防水性即ち非吸水性をもつシート状部材であり、特に透湿度が1000〜50000g/m2・日の疎水性ポリマーからなる多孔質膜が好ましく、例えばポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン等の疎水性ポリマーからなる微多孔質フィルムが好ましく、特に延伸微多孔質ポリテトラフルオロエチレンフィルムが好ましい。厚さは特に制限はないが、100μm未満が好ましい。 The moisture-permeable and waterproof sheet-like member 2 that partitions the clothing environment simulation room 4 simulates the skin of the human body and quickly supplies heat supplied from the flat exothermic member 8 and water vapor generated from the water-retaining member 7 by this heat. In addition, it is a sheet-like member having moisture permeability and waterproofness, that is, non-water-absorbing property, especially for the moisture permeability of 1000 to 50000 g / m 2 · day of a hydrophobic polymer. For example, a microporous film made of a hydrophobic polymer such as polyethylene, polypropylene, or polytetrafluoroethylene is preferable, and a stretched microporous polytetrafluoroethylene film is particularly preferable. The thickness is not particularly limited, but is preferably less than 100 μm.

このように構成した容器1は、保水性部材7の上面に必ずしも機械的に固定する必要はなく、固定手段なしに単に積載するだけでもよい。このように容器1を保水性部材7の上面に固定手段なしに積載しても、精度良い試験を行うことができることは驚くべきことである。   The container 1 configured in this way does not necessarily need to be mechanically fixed to the upper surface of the water retention member 7, and may simply be loaded without fixing means. As described above, it is surprising that even if the container 1 is loaded on the upper surface of the water retention member 7 without fixing means, a test can be performed with high accuracy.

上述した衣服内環境模擬室4、模擬皮膚環境温度湿度調整室5、外部環境温度湿度調整室6の温度と湿度とは温度湿度センサ9で検出し、温度湿度測定器10で両者を同時にかつ経時的に計測、記録する。記録した測定値は、コンピュータにより解析することができる。
温度と湿度の測定は、一般には熱電対やポリーマーセンサが用いられることが殆どであるが、本発明者の研究によるとこれら従来型のセンサを用いると結露を生じることが多く、このことが衣服内環境模擬室4内の温度湿度の測定値の変動を引き起こす大きな要因であることが判明した。本発明ではマイクロヒータをエアブリッジ形成したセンサチップを用いることで、この問題を解決することができることも見出した。
The temperature and humidity in the garment environment simulation room 4, simulated skin environment temperature / humidity adjustment room 5, and external environment temperature / humidity adjustment room 6 described above are detected by a temperature / humidity sensor 9, and the temperature / humidity measuring instrument 10 detects both of them at the same time. Measure and record automatically. The recorded measurements can be analyzed by a computer.
In general, thermocouples and polymer sensors are used for temperature and humidity measurements. However, according to research conducted by the inventor, there are many cases where condensation occurs when these conventional sensors are used. It was found that this was a major factor causing fluctuations in the measured values of temperature and humidity in the garment environment simulation room 4. In the present invention, it has also been found that this problem can be solved by using a sensor chip in which a microheater is formed as an air bridge.

図2は本発明の実施に適する衣服内環境模擬測定装置の他の一例の概念図であり、その構成は殆ど上述した。図2ではまた温度センサ15と温度測定器12を使用し、試料3の表面温度をも同時に測定し、吸湿に伴う試料の発熱性も試験できるようにした例である。
次に、容器について、より詳細に説明する。
FIG. 2 is a conceptual diagram of another example of an in-clothes environment simulation measuring apparatus suitable for carrying out the present invention, and the configuration thereof has been almost described above. FIG. 2 also shows an example in which the temperature sensor 15 and the temperature measuring device 12 are used to measure the surface temperature of the sample 3 at the same time so that the exothermic property of the sample accompanying moisture absorption can be tested.
Next, the container will be described in more detail.

図3は図2に概略を示した容器1の一例の正面断面概略図、図4は図3容器側面のA−A断面図の一例の概略図である。本例では、容器1本体の横断面が円筒形の場合を示す。
衣服内環境模擬室4、模擬皮膚環境温度湿度調整室5、外部環境温度湿度調整室6の主要部分は、円筒体17とフランジ16とで構成する。これらの材質は任意に選ぶことができるが、測定環境温度および湿度の変動の影響を抑制し、供給雰囲気中の水分の容器系外への逃散を抑制し、吸湿等に伴う反応熱の容器系外への逃散を抑制し、かつ容器内の観察を容易にするために、透明な合成樹脂製、例えばアクリル樹脂や塩化ビニル樹脂製等であることが好ましい。特に5〜15mm程度の比較的肉厚の合成樹脂を用いることは、その重量が上述した固定手段なしの積載を一層効果的にする点で望ましい。
円筒体17とフランジ16とは接着するか、旋盤加工等により一体ものとすることが望ましい。
3 is a schematic front sectional view of an example of the container 1 schematically shown in FIG. 2, and FIG. 4 is a schematic diagram of an example of an AA sectional view of the side of the container in FIG. In this example, the case where the cross section of the container 1 body is cylindrical is shown.
The main parts of the garment environment simulation chamber 4, the simulated skin environment temperature / humidity adjustment chamber 5, and the external environment temperature / humidity adjustment chamber 6 include a cylindrical body 17 and a flange 16. These materials can be selected arbitrarily, but the influence of fluctuations in the measurement environment temperature and humidity is suppressed, the escape of moisture in the supply atmosphere to the outside of the container system, and the reaction heat container system accompanying moisture absorption etc. In order to suppress escape to the outside and facilitate observation inside the container, it is preferably made of a transparent synthetic resin, such as an acrylic resin or a vinyl chloride resin. In particular, the use of a synthetic resin having a relatively thick thickness of about 5 to 15 mm is desirable in terms of making the loading without the fixing means more effective.
It is desirable that the cylindrical body 17 and the flange 16 are bonded or integrated by a lathe process or the like.

透湿防水性シート状部材2と平面状の試料3は、円筒体17の間に挟み、容器1内に密閉する。透湿防水性シート状部材2と平面状の試料3は必要に応じ、別途作成した試料台(図示せず)に挟んだり貼付したりしてもよい。また透湿防水性シート状部材2と平面状の試料3端部からの雰囲気の漏洩や外部雰囲気中の水蒸気の吸湿を防止するために、パッキンを使用したり、試料の大きさを容器の円筒体外部の直径より小としたり、円筒体相互をはめ込み構造としてもよい。   The moisture-permeable and waterproof sheet-like member 2 and the flat sample 3 are sandwiched between the cylindrical bodies 17 and sealed in the container 1. The moisture-permeable and waterproof sheet-like member 2 and the planar sample 3 may be sandwiched or stuck on a separately prepared sample stand (not shown) as necessary. Further, in order to prevent leakage of the atmosphere from the moisture permeable and waterproof sheet-like member 2 and the end of the flat sample 3 and the moisture absorption of water vapor in the external atmosphere, a packing is used, or the size of the sample is changed to the cylinder of the container. The diameter may be smaller than the diameter outside the body, or the cylindrical bodies may be fitted into each other.

衣服内環境模擬室4と模擬皮膚環境温度湿度調整室5、外部環境温度湿度調整室6とは、フランジに設けたボルト穴18等を用い、ボルトやナット等を介して締結するが、密閉性が保てれば、他の治具を用いてもよい。外部環境温度湿度調整室6の上方に間隙を介して蓋を設ける場合も同様である。   The garment environment simulation chamber 4, the simulated skin environment temperature / humidity adjustment chamber 5, and the external environment temperature / humidity adjustment chamber 6 are fastened through bolts, nuts, and the like using bolt holes 18 provided in the flange, but are hermetically sealed. However, other jigs may be used as long as they can be maintained. The same applies to the case where a lid is provided above the external environmental temperature / humidity adjustment chamber 6 via a gap.

開口型の模擬皮膚環境温度湿度調整室5の側壁に相当する例えば円筒体17には、開口21を設けると、保水性部材7より発生した水蒸気がその蒸気圧により強制的に衣服内環境模擬室4に送り込まれることが防止でき、より実際に近い測定結果を得ることができる。また例えば空気を水充填管中に通して飽和水蒸気含有空気をこの衣服内環境模擬室4に導入したり、水滴を保水性部材7上に滴下してもよい。   For example, the cylindrical body 17 corresponding to the side wall of the open-type simulated skin environment temperature / humidity adjustment chamber 5 is provided with an opening 21, and water vapor generated from the water retaining member 7 is forcibly forced by the vapor pressure of the water retention member 7. 4 can be prevented, and a measurement result closer to actuality can be obtained. Further, for example, air may be passed through a water-filled tube to introduce saturated water vapor-containing air into the in-clothing environment simulation chamber 4, or a water droplet may be dropped onto the water retention member 7.

外部環境温度湿度調整室6の上方に空隙を介して蓋14を設ける場合には、温度湿度を調整した空気の導入路20を設けるとよい。導入空気の湿度の調整は、例えば空気をシリカゲルや塩化カルシウム充填管中を通過させることにより簡便に行うことができる。上記空隙は導入空気量にもよるが、意外なことに1〜30mm程度の間の任意の間隔としてもほぼ一定の湿度となる。
図3には衣服内環境模擬室4が一つの場合を例示したが、重ね着の模擬試験を行う場合には、試料を複数枚重ねて試験してもよいし、衣服内環境模擬室4を複数個使用して試験してもよい。
When the lid 14 is provided above the external environment temperature / humidity adjustment chamber 6 via a gap, an air introduction path 20 with adjusted temperature / humidity may be provided. The humidity of the introduced air can be easily adjusted, for example, by passing air through a silica gel or calcium chloride filled tube. Although the gap depends on the amount of introduced air, it is surprising that the air gap is almost constant even at an arbitrary interval between about 1 to 30 mm.
FIG. 3 illustrates the case where there is only one garment environment simulation room 4. However, when performing a layering simulation test, a plurality of samples may be stacked and tested. Multiple tests may be used.

センサ9は温度湿度センサである。従来、雰囲気の湿度測定に多く用いられている湿度計測器は高分子やセラミックス等の検知材料膜のセンサを用いたもので、これらは水分の吸収・放出量に応じて膜の静電容量や電気伝導度の値をとらえ、相対湿度の値に変換しているので時定数が大であり遅れが生じるため、一定時間経過後の安定した値を扱うのに適している。これらセンサを本発明の測定装置に用いてもよいが、応答が遅く、雰囲気湿度の瞬時の変化に伴う試料の吸湿放湿特性の測定用には十分な性能を有しているとはいえない。さらに本発明者の研究によれば、外部環境温度湿度調整室6や衣服内環境模擬室4内の相対湿度が高い場合は特に、従来型のセンサ周辺に結露を生じ、湿度の測定値に誤差を生じることも判明した。   The sensor 9 is a temperature / humidity sensor. Conventionally, humidity measuring instruments often used for atmospheric humidity measurement use sensors for sensing materials such as polymers and ceramics, and these measure the capacitance of the film according to the amount of moisture absorbed and released. Since the value of electrical conductivity is taken and converted to the value of relative humidity, the time constant is large and a delay occurs, so that it is suitable for handling a stable value after a certain period of time. Although these sensors may be used in the measuring apparatus of the present invention, they are slow in response and cannot be said to have sufficient performance for measuring the moisture absorption and desorption characteristics of samples accompanying instantaneous changes in atmospheric humidity. . Further, according to the study of the present inventor, condensation occurs around the conventional sensor, especially when the relative humidity in the external environment temperature / humidity adjusting chamber 6 or the in-clothing environment simulation chamber 4 is high, resulting in an error in the measured humidity value. It has also been found that

この理由から、本発明に用いる湿度測定器としては、例えば[特許文献3]および[特許文献4]に例示されるマイクロヒータをエアブリッジ形成したセンサチップを用いた湿度測定器が好適である。この方式の小型センサユニットを搭載した高速湿度測定器(例えばリコーエレメックス株式会社製の高速絶対湿度計測器RHM−1000S型)はマイクロ構造のセンサを搭載し、気体(水蒸気)の熱伝導に応じた熱交換量をヒータの抵抗値の値として捕らえ絶対湿度として計測することができ、またヒータは微少熱容量であるため急速に発熱させることができ微少空間の絶対湿度を捕らえ出力するので、従来型センサの欠点であった水分の吸脱着の緩やかな動きを回避し、再現性の高い俊敏な応答が得られ、非定常状態においてもより正しい測定結果を得ることができる。また微小なヒータを用いているため、結露を防止することもできる。さらにこの計測器は、湿度と同時に微少空間の雰囲気の温度も出力することができ、ほぼ同一付近の温度・絶対湿度の状態もわかるので、本発明の実施に好適である。   For this reason, as the humidity measuring device used in the present invention, for example, a humidity measuring device using a sensor chip in which a micro heater exemplified in [Patent Document 3] and [Patent Document 4] is formed as an air bridge is suitable. A high-speed humidity measuring instrument equipped with a small sensor unit of this type (for example, a high-speed absolute humidity measuring instrument RHM-1000S manufactured by Ricoh Elemex Co., Ltd.) is equipped with a micro-structured sensor that responds to the heat conduction of gas (water vapor). The amount of heat exchanged can be captured as the resistance value of the heater and measured as absolute humidity, and since the heater has a very small heat capacity, it can quickly generate heat and capture and output the absolute humidity in a very small space. It avoids the slow movement of moisture adsorption / desorption, which was a defect of the sensor, and provides an agile response with high reproducibility, and a more accurate measurement result can be obtained even in an unsteady state. Further, since a minute heater is used, it is possible to prevent condensation. Furthermore, this measuring instrument can output the temperature of the atmosphere in a very small space as well as the humidity, and the temperature / absolute humidity in the vicinity of the same can be known. Therefore, this measuring instrument is suitable for implementing the present invention.

ただしマイクロヒータ部分は175μm×175μm程度の微少面積である場合が多く、例えば織物や編物試料の近傍で湿度を測定する際に織り目や編み目を通過してくる空気の影響を受けることがある。このためセンサ9の先端のマイクロヒータ部分は試料3に密接させて設置するのでなく、試料から1mm程度以上離れた場所に設置するとよい。
試料3の表面には必要に応じて温度センサ15、好ましくはフィルム形状の温度センサを設置して、吸湿に伴う発熱による試料表面温度の変化を測定できるようにしてもよい。
これら湿度または温度の測定値は連続的に測定し記録できることが望ましく、記録のための記憶装置を設けることが望ましい。また測定値の解析等のために、データ処理装置を設けることが望ましい。
以上に本発明の装置について説明したが、次に本発明の評価方法の特徴について説明する。測定方法については、実施例で詳細に説明することにする。
However, the microheater portion often has a very small area of about 175 μm × 175 μm. For example, when the humidity is measured in the vicinity of a woven fabric or a knitted sample, the microheater portion may be affected by air passing through the weave or stitch. For this reason, the microheater portion at the tip of the sensor 9 should not be placed in close contact with the sample 3 but should be placed at a location about 1 mm or more away from the sample.
A temperature sensor 15, preferably a film-shaped temperature sensor, may be provided on the surface of the sample 3 as necessary, so that a change in the sample surface temperature due to heat generation due to moisture absorption may be measured.
It is desirable that these measured values of humidity or temperature can be continuously measured and recorded, and it is desirable to provide a storage device for recording. It is desirable to provide a data processing device for analysis of measured values.
The apparatus of the present invention has been described above. Next, features of the evaluation method of the present invention will be described. The measurement method will be described in detail in Examples.

本発明の評価方法の一つは上述のように、衣服内環境模擬室内および少なくとも外部環境につき、温度と湿度とを同時かつ経時的に測定する衣服内環境模擬評価方法に属するものであるが、それぞれの温度測定値の差または湿度測定値の差を使って非平衡状態を含む試験試料の熱および水蒸気の移動特性を解析することに特徴がある。   As described above, one of the evaluation methods of the present invention belongs to the in-garment environment simulation evaluation method in which the temperature and humidity are measured simultaneously and over time for the indoor environment simulation room and at least the external environment. It is characterized in that the heat and water vapor transfer characteristics of the test sample including the non-equilibrium state are analyzed using the difference between the temperature measurement values or the difference between the humidity measurement values.

試験開始直後は、衣服内環境模擬室内と外部環境(外部環境温度湿度調整室内の環境を含む)、さらには模擬皮膚環境温度湿度調整室の温度と湿度とは刻々と変化する非定常状態であり、その様子は試料により異なる。前述の文献にも記載されているように、温度と湿度の測定値そのままでも有用な情報が得られる。しかしながら本発明者の詳細な研究によれば、それぞれの室間の温度の差または湿度の差を用いると、本発明のような簡便な評価方法であっても雰囲気の微妙な変動等による各室内の温度と湿度の微妙な変動を相殺したより精度良い解析ができることが判明した。   Immediately after the start of the test, the temperature and humidity of the simulated environment inside the clothes and outside environment (including the environment inside the external environment temperature and humidity adjustment room) and the simulated skin environment temperature and humidity adjustment room are in an unsteady state that changes every moment. The state varies depending on the sample. As described in the above-mentioned literature, useful information can be obtained even with the measured values of temperature and humidity as they are. However, according to the detailed study of the present inventor, if the difference in temperature or humidity between the respective rooms is used, each room due to subtle fluctuations in the atmosphere or the like can be obtained even with the simple evaluation method as in the present invention. It was found that more accurate analysis can be made by offsetting subtle fluctuations in temperature and humidity.

一般に、同一雰囲気内の同一測定点の温度の差を使って繊維や布帛の特性評価を行う技術は、吸湿発熱効果の評価(例えば[特許文献5]、[特許文献6]および[特許文献7])を行う場合に使用されているが、本発明は衣服内環境模擬室内および少なくとも外部環境の少なくとも二つの異なる雰囲気の異なる測定点での温度の差を使って繊維や布帛の特性評価を行うものである。   In general, the technique for evaluating the characteristics of fibers and fabrics using the difference in temperature at the same measurement point in the same atmosphere is an evaluation of the hygroscopic heat generation effect (for example, [Patent Document 5], [Patent Document 6] and [Patent Document 7]. )), The present invention evaluates the properties of fibers and fabrics using temperature differences at different measurement points in at least two different atmospheres in the garment environment simulation chamber and at least the external environment. Is.

また一般に、同一雰囲気内の同一測定点の湿度の差を使って繊維や布帛の特性評価を行う技術は、吸放湿性の評価(例えば[特許文献8]、[特許文献9]および[特許文献10])を行う場合に使用されているが、本発明は衣服内環境模擬室内および少なくとも外部環境の少なくとも二つの異なる雰囲気の異なる測定点での湿度の差を使って繊維や布帛の特性評価を行うものである。   In general, the technique for evaluating the properties of fibers and fabrics using the difference in humidity at the same measurement point in the same atmosphere is an evaluation of moisture absorption / release (for example, [Patent Document 8], [Patent Document 9] and [Patent Document]. 10]), the present invention evaluates the properties of fibers and fabrics using the difference in humidity at different measurement points in at least two different atmospheres in the garment environment simulation chamber and at least the external environment. Is what you do.

本発明の評価方法のさらに別の一つは上述のように、衣服内環境模擬室内および少なくとも外部環境につき、温度と湿度とを同時かつ経時的に測定する衣服内環境模擬評価方法に属するもので、湿度の指標として絶対湿度または空気中水分量を用いることに特徴がある。   As described above, another evaluation method of the present invention belongs to an in-garment environment simulation evaluation method in which temperature and humidity are measured simultaneously and over time in the in-garment environment simulation room and at least the external environment. It is characterized by using absolute humidity or moisture content in the air as an index of humidity.

前述の文献に記載されているように各室内雰囲気の湿度の指標は一般には相対湿度が用いられている。温度および相対湿度から計算できる絶対湿度または空気中水分量を用いた繊維関連の技術として、炭素繊維または黒鉛繊維の製造条件として規定した例(例えば[特許文献11])があるが、本発明とは目的、構成、効果が全く異なるものである。本発明者の詳細な研究によると、衣服内環境模擬評価方法に湿度の指標として絶対湿度または空気中水分量を用いると、相対湿度を用いては達し得ないより精度良い解析ができることが判明した。
特開平10−213470号公報 特開平10−253415号公報 特開2000−199180号公報 特開2001−49579号公報 特開2001−248070号公報 特開2003−227015号公報 特開2003−227016号公報 特開2003−227017号公報 特開平6−264311号公報 以下に、本発明に係わる代表例を詳細に説明する。
As described in the above-mentioned document, relative humidity is generally used as an indicator of the humidity of each indoor atmosphere. As a fiber-related technique using absolute humidity or air moisture content that can be calculated from temperature and relative humidity, there is an example (for example, [Patent Document 11]) defined as a production condition of carbon fiber or graphite fiber. Are completely different in purpose, structure and effect. According to the detailed study of the present inventor, it was found that using absolute humidity or moisture content in the air as a humidity index in the garment environment simulation evaluation method enables more accurate analysis that cannot be achieved using relative humidity. .
JP-A-10-213470 JP-A-10-253415 JP 2000-199180 A JP 2001-49579 A JP 2001-248070 A JP 2003-227015 A JP 2003-227016 A JP 2003-227017 A In the following, representative examples according to the present invention will be described in detail.

容器の組み立て
図2に示した概念図に準じた装置を用いた。
容器は図3および図4に準じた構造のアクリル樹脂製で、その主要部は中空円筒形(外径75mm、内径55mm)のものを用いた。模擬皮膚環境温度湿度調整室5と衣服内環境模擬室4と外部環境温度湿度調整室6下部と蓋14それぞれを構成する円筒体17の外形および内径は同一とした。また衣服内環境模擬室4の円筒体17の長さは53mm、模擬皮膚環境温度湿度調整室5の円筒体17および外部環境温度湿度調整室6下部の円筒体17の長さはそれぞれ35mm、外部環境温度湿度調整室6上部の蓋14の円筒体17の長さは30mmとした。模擬皮膚環境温度湿度調整室5の側壁には直径14mmの開口を設け、蓋14の円筒部側壁には調湿空気導入路20を設け、蓋14の円筒体と外部環境温度湿度調整室6の下部円筒体との間隙は10mmとした。組み立てた容器全体の重さはgであった。
Assembling the container An apparatus according to the conceptual diagram shown in FIG. 2 was used.
The container was made of an acrylic resin having a structure according to FIGS. 3 and 4, and the main part thereof was a hollow cylinder (outer diameter 75 mm, inner diameter 55 mm). The outer shape and the inner diameter of the cylindrical body 17 constituting the simulated skin environment temperature / humidity adjustment chamber 5, the in-clothes environment simulation chamber 4, the external environment temperature / humidity adjustment chamber 6 and the lid 14 are the same. The length of the cylindrical body 17 in the garment environment simulation chamber 4 is 53 mm, the length of the cylindrical body 17 in the simulated skin environment temperature / humidity adjustment chamber 5 and the length of the cylindrical body 17 in the lower part of the external environment temperature / humidity adjustment chamber 6 is 35 mm, respectively. The length of the cylindrical body 17 of the lid 14 at the upper part of the environmental temperature / humidity adjusting chamber 6 was 30 mm. An opening having a diameter of 14 mm is provided on the side wall of the simulated skin environment temperature and humidity adjustment chamber 5, and a humidity control air introduction path 20 is provided on the side wall of the cylindrical portion of the lid 14, so that the cylindrical body of the lid 14 and the external environment temperature and humidity adjustment chamber 6 The gap with the lower cylindrical body was 10 mm. The total weight of the assembled container was g.

また透湿防水性シート状部材2としては、JIS L 1099(繊維製品の透湿度試験方法)に規定されている、空孔率約80%の微多孔構造をもつ、厚さ約25μm、透湿度約10000のポリテトラフルオロエチレンフィルム(商品名「ゴアテックス」膜)を、試験試料には、JIS L 0803(染色堅牢度試験用添付白布)に規定された貼付白布を用いた。   Further, the moisture-permeable and waterproof sheet-like member 2 has a microporous structure with a porosity of about 80%, a thickness of about 25 μm, and a moisture permeability as defined in JIS L 1099 (a method for testing moisture permeability of textile products). About 10,000 polytetrafluoroethylene film (trade name “GORE-TEX” film) was used as the test sample, and an adhesive white cloth defined in JIS L 0803 (attached white cloth for dyeing fastness test) was used.

試料の調整と容器への取り付けは、次のようにして行った。透湿防水性シート状部材と、各種の添付白布から選んだ試料とから、直径70mmの試験片をそれぞれ切り出し、外径71mm、内径55mm、深さ0.5mmの試料把持部と外形68mm、内径58mmのパッキン挿入部とを有する一枚の厚さ5mmの二枚一組(計10mm)の試料台(図示せず)にそれぞれはさみ、模擬皮膚環境温度湿度調整室5と衣服内環境模擬室4との間、および衣服内環境模擬室4と外部環境温度湿度調整室6との間にパッキンを介してそれぞれ装着し、各室の円筒体に設けた外形98mmのフランジの開口18に挿入したボルトとこれに嵌合するナットとにより締結して密閉するとともに一体化させた。   The sample was prepared and attached to the container as follows. A test piece having a diameter of 70 mm was cut out from a moisture-permeable and waterproof sheet-like member and a sample selected from various attached white cloths, and an outer diameter of 71 mm, an inner diameter of 55 mm, and a depth of 0.5 mm of a sample gripping part and an outer diameter of 68 mm and an inner diameter of A pair of 5 mm-thick two sample sets (total 10 mm) having a 58 mm packing insertion portion are respectively sandwiched between the simulated skin environment temperature / humidity adjustment chamber 5 and the clothing environment simulation chamber 4. , And between the garment environment simulation chamber 4 and the external environment temperature / humidity adjustment chamber 6 via packings, respectively, and bolts inserted into the openings 18 of flanges with an outer diameter of 98 mm provided in the cylindrical body of each chamber. And a nut fitted thereto, which are fastened and sealed and integrated.

また容器1の衣服内環境模擬室4、模擬皮膚環境温度湿度調整室5、外部環境温度湿度調整室6の各室には、それぞれの内部雰囲気温度湿度測定用の小型センサユニット(リコーエレメックス株式会社製の高速絶対湿度計測器RHM−1000S型)を搭載したセンサケーブルをシリコンゴム製の栓中に貫通させ、各室の側壁に設けた直径14mmの開口に挿入し、密閉した。   In addition, a small sensor unit (Ricoh Elemex Co., Ltd.) for measuring the internal atmosphere temperature and humidity is provided in each of the chamber 1, the simulated environment for clothing environment 4, the simulated skin environment temperature / humidity adjustment chamber 5, and the external environment temperature / humidity adjustment chamber 6. A sensor cable equipped with a high-speed absolute humidity measuring instrument RHM-1000S (manufactured by company) was passed through a plug made of silicon rubber, inserted into a 14 mm diameter opening provided in the side wall of each chamber, and sealed.

測定準備
このようにして組み立てた容器には次いで、外部環境温度湿度調整室6上部の蓋14から調湿空気を300cc/分の割合で導入した。導入する調湿空気は、空気中の水分をシリカゲル充填管で除去して調整した相対湿度10%の除湿空気を用いた。この調湿空気は、温度および湿度の測定開始以前から供給を開始し、測定中は連続的に供給した。
また温度湿度測定装置も起動し、各測定値はインターフェース(リコーエレメックス株式会社製RS485型)を介してパソコンに連続的に収集、記録した。
Preparation for measurement Next, the air conditioned air was introduced into the container thus assembled at a rate of 300 cc / min from the lid 14 at the top of the external environmental temperature and humidity adjustment chamber 6. The humidity control air to be introduced was dehumidified air having a relative humidity of 10% adjusted by removing moisture in the air with a silica gel filled tube. The humidity-controlled air was supplied before the start of temperature and humidity measurement, and was continuously supplied during the measurement.
In addition, the temperature and humidity measuring apparatus was activated, and each measured value was continuously collected and recorded on a personal computer via an interface (RS485 type manufactured by Ricoh Elemex Co., Ltd.).

平面状の発熱性部材(図2の番号8)としては、表面温度の均一性に特に留意して作製した縦30cm、横45cmの低温用ホットプレートを試作して用い、保水性部材(図2の番号7)としては、JIS L 0803(染色堅牢度試験用添付白布)に規定された綿貼付白布を用いた。この綿貼付白布の蒸発性自由水分量をJIS L 1096(一般織物試験方法)に規定される方法で測定したところ、2.91g/202.5cmであった。
このホットプレートの上面に、水中に漬けて含水させた上記綿の添付白布を気泡が含まれないように平面状に積層し、ホットプレートの表面温度が所定温度(本実施例の場合は36℃)になるように調節した。
そののち、実施例1で説明したようにして組み立てた容器の模擬皮膚環境温度湿度調整室5下側の開口端を下にして、ホットプレート上の含水綿添付白布面の上に積載した。この含水綿添付白布には、水を満たしたビーカーから綿布の毛細管現象を利用して水を供給した。
As the planar exothermic member (number 8 in FIG. 2), a low temperature hot plate having a length of 30 cm and a width of 45 cm, which was produced with particular attention to the uniformity of the surface temperature, was used as a prototype, and a water retention member (FIG. 2). No. 7) was a cotton-coated white cloth defined in JIS L 0803 (attached white cloth for dyeing fastness test). It was 2.91g / 202.5cm < 2 > when the evaporative free water content of this cotton sticking white cloth was measured by the method prescribed | regulated to JISL1096 (general fabric test method).
On the upper surface of this hot plate, the above-mentioned cotton attached white cloth soaked in water and soaked in water is laminated in a flat shape so as not to contain bubbles, and the surface temperature of the hot plate is a predetermined temperature (36 ° C. in the case of this embodiment). ).
After that, the container assembled as described in Example 1 was loaded on the surface of the white cloth attached to the water-containing cotton on the hot plate with the open end of the simulated skin environment temperature / humidity adjusting chamber 5 on the lower side facing down. Water was supplied to the white cotton-attached white cloth from a beaker filled with water by utilizing the capillary phenomenon of the cotton cloth.

衣服内環境模擬室の温度、相対湿度特性測定
実施例1〜2で容器を組み立て、装置の測定準備を行ったのち、標準状態(20℃、65%RH)の恒温恒湿湿内で、試験容器内各室の温度および相対湿度の測定を60分間連続して行った。なお試料としては、JIS L 0803(染色堅牢度試験用添付白布)に規定されたナイロン、絹、ウール、レーヨン、キュプラ、綿、エステル各添付白布を用いた。それら試料の60分間の測定値の全平均値を用い、最小有意差法により試料間の有意差検定を行った。
相対湿度の差について、代表的な結果を表1から表3に示す。表中の**印および*印はそれぞれ危険率1%および5%で有意であることを表す。添付白布のナイロンとキュプラ・綿、絹とレーヨン・キュプラ・綿、ウールとレーヨン・綿との差は1%の危険率で有意であった。またウールとキュプラとの差は5%の危険率で有意であった。
Measurement of temperature and relative humidity characteristics in environment simulation room in clothes After assembling the container in Examples 1 and 2 and preparing for measurement of the device, test in a constant temperature and humidity of standard condition (20 ° C, 65% RH) The temperature and relative humidity of each chamber in the container were measured continuously for 60 minutes. As samples, nylon, silk, wool, rayon, cupra, cotton, ester attached white cloths specified in JIS L 0803 (attached white cloth for dyeing fastness test) were used. Using the total average value of the 60-minute measured values of these samples, the significance test between samples was performed by the least significant difference method.
Tables 1 to 3 show typical results of the relative humidity difference. The ** and * marks in the table represent significance at a risk rate of 1% and 5%, respectively. The difference between nylon and cupra / cotton, silk and rayon / cupra / cotton, wool and rayon / cotton in the attached white fabric was significant at a 1% risk. The difference between wool and cupra was significant at a risk rate of 5%.

Figure 2005097797
Figure 2005097797

Figure 2005097797
Figure 2005097797

Figure 2005097797
Figure 2005097797

また温度の差について、代表的な結果を表4から表5に示す。添付白布のナイロンと絹・キュプラ、絹とウール・レーヨン・綿・エステルとの差は1%の危険率で有意であった。またナイロンと綿との差は5%の危険率で有意であった   Tables 4 to 5 show typical results of temperature differences. The difference between the attached white cloth nylon and silk / cupra, and silk / wool / rayon / cotton / ester was significant at 1% risk. The difference between nylon and cotton was significant at a 5% risk rate.

Figure 2005097797
Figure 2005097797

Figure 2005097797
Figure 2005097797

衣服内環境模擬室の空気中の絶対湿度測定
実施例3の表2では添付白布の絹とウール・エステルとの相対湿度差は有意でなかった。そこで絶対湿度を求めて再検討してみた。最小有意差法で解析した例を表6に示す。その結果、衣服内気候模擬室内の絶対湿度は、絹とウール・エステルとの差が1%の危険率で有意となり、検出力が高まったことが判る。絶対湿度が異なるということは、温度が同一の場合には水蒸気圧が異なることになり、水蒸気の透過性に差異をもたらすと考えられる。
Measurement of Absolute Humidity in Air in Garment Environment Simulation Room In Table 2 of Example 3, the relative humidity difference between the silk of the attached white cloth and the wool ester was not significant. So I tried to reexamine the absolute humidity. Table 6 shows an example analyzed by the least significant difference method. As a result, it can be seen that the absolute humidity in the simulated climate room in the clothes was significant when the difference between silk and wool ester was 1%, and the detection power increased. When the absolute humidity is different, the water vapor pressure is different when the temperature is the same, which is considered to cause a difference in water vapor permeability.

Figure 2005097797
Figure 2005097797

測定初期と後期の熱および水分移動特性
実施例3で得られた温度と相対湿度の測定時間に対する挙動は、測定初期と後期とでは挙動が大きく異なる。すなわち温度、相対湿度とも測定初期(特に0〜10分)では変化が急な非平衡状態であり、測定後期(特に50〜60分)では変化が緩慢で平衡状態に近い。
そこでJIS L 1096(一般織物試験方法)とJIS L 1099(繊維製品の透湿度測定方法)とに規定されている方法に従い添付白布各試料の通気量と透湿度とを測定し、測定初期および後期の衣服内環境模擬室内の温度と湿度指標との相関性を検討してみた。
まず水分移動に関係する因子の相関係数は表7に示すとおりで、湿度の指標としての絶対湿度は測定初期では通気量と最も相関性が高く、測定後期では透湿度と最も相関性が高いことが判った。これに対し、湿度の指標として相対湿度を用いた場合は、湿度の指標として絶対湿度を用いた場合よりも相関性が低く、傾向が把握しにくいことも判った。
Heat and moisture transfer characteristics at the initial stage and the later stage The behavior of the temperature and relative humidity obtained in Example 3 with respect to the measurement time is greatly different between the initial stage and the latter stage of measurement. That is, both the temperature and the relative humidity are in a non-equilibrium state where the change is abrupt at the beginning of measurement (especially 0 to 10 minutes), and the change is slow and close to the equilibrium state at the latter stage of measurement (particularly 50 to 60 minutes).
Therefore, according to the method specified in JIS L 1096 (General textile test method) and JIS L 1099 (Fiber product moisture permeability measurement method), the air flow rate and moisture permeability of each sample of the attached white cloth are measured, and the initial and latter stages of the measurement. We examined the correlation between temperature and humidity index in the simulated indoor environment of clothes.
First, the correlation coefficient of the factors related to moisture movement is as shown in Table 7. Absolute humidity as an index of humidity has the highest correlation with the air flow rate at the beginning of measurement, and has the highest correlation with moisture permeability at the latter stage of measurement. I found out. On the other hand, when relative humidity was used as the humidity index, it was also found that the correlation was lower than when absolute humidity was used as the humidity index, and the tendency was difficult to grasp.

Figure 2005097797
また布帛性量を含めた熱移動に関係する因子の相関係数は表8に示すとおりで、測定初期および測定後期とも、相関係数は布帛質量>通気量>布帛厚さ>透湿度の順に大であった。
Figure 2005097797
The correlation coefficients of factors related to heat transfer including the amount of fabric properties are as shown in Table 8, and the correlation coefficients are in the order of fabric mass> aeration amount> fabric thickness> moisture permeability in both the initial stage and the latter stage of measurement. It was big.

Figure 2005097797
Figure 2005097797

差分解析
図1に示した概念図に準じた装置で、上部解放開放型容器を用い、温度のみを調節した事務所内で行った以外は実施例1〜実施例3と同様にして試験を行った。
模擬皮膚環境温度湿度調整室内の相対湿度は驚くべきことに試験開始後1分程度で100%に到達した。しかしながら模擬皮膚環境温度湿度調整室内の温度は、試料にもよるが試験開始後20〜30分は急速に上昇し、その後も徐々に上昇する場合があることが判明した。また衣服内環境模擬室内の温度もその影響を受け、同様な傾向を示した。しかしながら各室の温度の差分を求めると、実際には10〜20分程度で定常状態になることがわかり、より現実に近い解析をすることができる。表9にウール添付白布の場合の例を示す。
Differential analysis Using the apparatus according to the conceptual diagram shown in FIG. 1, tests were conducted in the same manner as in Examples 1 to 3 except that an upper open-open container was used and the temperature was adjusted in an office. .
Surprisingly, the relative humidity in the simulated skin environment temperature / humidity adjustment chamber reached 100% in about one minute after the start of the test. However, it has been found that the temperature in the simulated skin environment temperature / humidity adjustment chamber rises rapidly for 20 to 30 minutes after the start of the test, although it depends on the sample, and gradually increases thereafter. The temperature in the simulated indoor environment was affected by this, and showed the same tendency. However, when the temperature difference between the chambers is obtained, it can be seen that the steady state is actually reached in about 10 to 20 minutes, and a more realistic analysis can be performed. Table 9 shows an example of a white fabric with wool.

Figure 2005097797
Figure 2005097797

本発明の実施に適する装置の一例の概念図Conceptual diagram of an example of an apparatus suitable for carrying out the present invention 本発明の実施に適する装置の他の一例の概念図Conceptual diagram of another example of an apparatus suitable for carrying out the present invention 容器1の正面の断面図の一例の概略図Schematic of an example of a cross-sectional view of the front of the container 1 容器の側面の断面図の一例の概略図Schematic of an example of a cross-sectional view of the side of the container

符号の説明Explanation of symbols

1 容器
2 透湿防水性シート状部材
3 試料
4 衣服内環境模擬室
5 模擬皮膚環境温度湿度調整室
6 外部環境温度湿度調整室
7 保水性部材
8 発熱性部材
9 温度湿度センサ
10 温度湿度測定器
11 空気供給器
12 温度測定器
13 温度測定器
14 蓋
15 温度センサ
16 フランジ
17 円筒体
18 ボルト穴
19 ボルト
20 空気導入路
21 開口
DESCRIPTION OF SYMBOLS 1 Container 2 Moisture-permeable waterproof sheet-like member 3 Sample 4 Garment environment simulation chamber 5 Simulated skin environment temperature / humidity adjustment chamber 6 External environment temperature / humidity adjustment chamber 7 Water retention member 8 Heat generating member 9 Temperature / humidity sensor 10 Temperature / humidity measuring instrument DESCRIPTION OF SYMBOLS 11 Air supply device 12 Temperature measuring device 13 Temperature measuring device 14 Cover 15 Temperature sensor 16 Flange 17 Cylindrical body 18 Bolt hole 19 Bolt 20 Air introduction path 21 Opening

Claims (9)

衣服内環境模擬室内の温度と湿度とを同時かつ経時的に測定する衣服内環境模擬測定装置において、発熱性部材の上に配した保水性部材の上に、透湿防水性シート状部材と試料とで仕切った衣服内環境模擬室を有する容器を着脱自在に積載したことを特徴とする衣服内環境模擬測定装置。   In a garment environment simulation measuring apparatus that simultaneously and temporally measures the temperature and humidity in a garment environment simulation room, a moisture permeable waterproof sheet-like member and a sample are placed on a water retaining member disposed on a heat generating member. A garment environment simulation measuring device, wherein a container having a garment environment simulation room partitioned between and is detachably loaded. 該容器を複数個積載してなる請求項1記載の衣服内環境模擬測定装置。   The in-clothes environment simulation measuring apparatus according to claim 1, wherein a plurality of the containers are stacked. マイクロヒータをエアブリッジ形成したセンサチップを温度と湿度の測定器として用いてなる請求項1または2記載の衣服内環境模擬測定装置。   The in-clothes environment simulation measuring apparatus according to claim 1 or 2, wherein a sensor chip in which a micro heater is formed as an air bridge is used as a temperature and humidity measuring device. 該容器の衣服内環境模擬室を仕切る透湿防水性シート状部材の下側に、開口型の模擬皮膚環境温度湿度調整室を設けてなる請求項1〜3のいずれか1項記載の衣服内環境模擬測定装置。   The inside of a garment according to any one of claims 1 to 3, wherein an open-type simulated skin environment temperature / humidity adjustment chamber is provided below the moisture-permeable waterproof sheet-like member that partitions the garment environment simulation chamber of the container. Environmental simulation measuring device. 該容器の衣服内環境模擬室を仕切る試料の上側に、開口型の外部環境温度湿度調整室を設けてなる請求項1〜4のいずれか1項記載の衣服内環境模擬測定装置。   The in-garment environment simulation measuring apparatus according to any one of claims 1 to 4, wherein an open-type external environment temperature / humidity adjustment chamber is provided above a sample that partitions the in-garment environment simulation chamber of the container. 該試験試料の表面温度測定用の温度計を配してなる請求項1〜5のいずれか1項記載の衣服内環境模擬測定装置。   The in-clothes environment simulation measuring apparatus according to any one of claims 1 to 5, further comprising a thermometer for measuring the surface temperature of the test sample. 該保水性部材に給水するための給水装置を配してなる請求項1〜6のいずれか1項記載の衣服内環境模擬測定装置。   The in-clothes environment simulation measuring device according to any one of claims 1 to 6, wherein a water supply device for supplying water to the water retention member is arranged. 衣服内環境模擬室内および少なくとも外部環境の温度と湿度とを同時かつ経時的に測定する衣服内環境模擬評価方法において、それぞれの温度測定値の差または湿度測定値の差を使って非平衡状態を含む試験試料の熱および水蒸気の移動特性を解析することを特徴とする衣服内環境模擬評価方法。   In the clothing environment simulation evaluation method that measures the temperature and humidity of the indoor environment simulation room and at least the external environment simultaneously and over time, the difference between each temperature measurement value or the difference between humidity measurement values is used to determine the non-equilibrium state. A simulated environment evaluation method for clothes characterized by analyzing heat and water vapor transfer characteristics of a test sample. 衣服内環境模擬室内および少なくとも外部環境の温度と湿度とを同時かつ経時的に測定する衣服内環境模擬評価方法において、湿度の指標として絶対湿度または空気中水分量を用いて試験試料の水蒸気の移動特性を解析することを特徴とする衣服内環境模擬評価方法。   Movement of water vapor in the test sample using absolute humidity or moisture content in the air as an indicator of humidity in a simulated environmental evaluation method for measuring the temperature and humidity of the indoor environment and at least the external environment simultaneously and over time A clothing environment simulation evaluation method characterized by analyzing characteristics.
JP2003334836A 2003-09-26 2003-09-26 In-garment environment simulation measuring apparatus and evaluation method Expired - Fee Related JP3958731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003334836A JP3958731B2 (en) 2003-09-26 2003-09-26 In-garment environment simulation measuring apparatus and evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003334836A JP3958731B2 (en) 2003-09-26 2003-09-26 In-garment environment simulation measuring apparatus and evaluation method

Publications (2)

Publication Number Publication Date
JP2005097797A true JP2005097797A (en) 2005-04-14
JP3958731B2 JP3958731B2 (en) 2007-08-15

Family

ID=34462398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003334836A Expired - Fee Related JP3958731B2 (en) 2003-09-26 2003-09-26 In-garment environment simulation measuring apparatus and evaluation method

Country Status (1)

Country Link
JP (1) JP3958731B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101241052B (en) * 2008-03-06 2010-06-02 广州大学 Car cockpit gaseous pollutant test sampling simulation chamber
CN102253079A (en) * 2011-04-18 2011-11-23 宁波纺织仪器厂 Fabric thermal resistance and moisture resistance tester capable of complementing water automatically
CN103163282A (en) * 2011-12-08 2013-06-19 财团法人纺织产业综合研究所 Equipment for measuring moisture absorption and heat release of textile
WO2013125145A1 (en) * 2012-02-24 2013-08-29 一般財団法人カケンテストセンター Heat absorption/generation measurement device and heat absorption/generation measurement method
JP2015203568A (en) * 2014-04-10 2015-11-16 株式会社ゴールドウイン Clothing internal environment simulated measurement device
CN106226200A (en) * 2016-08-03 2016-12-14 宁波纺织仪器厂 The equal wind system of textile Temperature and Humidity Control
CN109115648A (en) * 2018-08-06 2019-01-01 东华大学 The test method of fiber moisture absorption heating performance
CN110398512A (en) * 2019-08-27 2019-11-01 武汉国灸科技开发有限公司 The temperature testing device of spontaneous heating moxibustion plaster
CN110514694A (en) * 2019-09-26 2019-11-29 王公华 Textile material thermal insulation property test method and tester based on ambient temperature compensation
CN111829913B (en) * 2020-08-18 2024-04-19 湖南科技大学 Detection method for fire-fighting suit thermal shock resistance detection device in fire scene environment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833694A (en) * 2015-04-21 2015-08-12 青岛大学 Fabric cold feeling testing apparatus
CN105911092B (en) * 2016-06-02 2018-10-12 上海理工大学 The Study of The Underground top of space soil body stores the experimental provision of heat release Evolution
CN105928976B (en) * 2016-06-02 2018-06-08 上海理工大学 The incorgruous experimental provision for storing heat release Evolution of Study of The Underground space soil body transverse and longitudinal

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101241052B (en) * 2008-03-06 2010-06-02 广州大学 Car cockpit gaseous pollutant test sampling simulation chamber
CN102253079A (en) * 2011-04-18 2011-11-23 宁波纺织仪器厂 Fabric thermal resistance and moisture resistance tester capable of complementing water automatically
CN103163282A (en) * 2011-12-08 2013-06-19 财团法人纺织产业综合研究所 Equipment for measuring moisture absorption and heat release of textile
US9297794B2 (en) 2012-02-24 2016-03-29 Kaken Test Center Sorption exothermicity measurement device and sorption exothermicity measurement method
CN104115007A (en) * 2012-02-24 2014-10-22 一般财团法人化检检验机构 Heat absorption/generation measurement device and heat absorption/generation measurement method
WO2013125145A1 (en) * 2012-02-24 2013-08-29 一般財団法人カケンテストセンター Heat absorption/generation measurement device and heat absorption/generation measurement method
JP2015203568A (en) * 2014-04-10 2015-11-16 株式会社ゴールドウイン Clothing internal environment simulated measurement device
CN106226200A (en) * 2016-08-03 2016-12-14 宁波纺织仪器厂 The equal wind system of textile Temperature and Humidity Control
CN106226200B (en) * 2016-08-03 2023-10-17 宁波纺织仪器厂 Textile temperature and humidity control air homogenizing system
CN109115648A (en) * 2018-08-06 2019-01-01 东华大学 The test method of fiber moisture absorption heating performance
CN109115648B (en) * 2018-08-06 2023-12-12 东华大学 Method for testing moisture absorption and heat generation performances of fibers
CN110398512A (en) * 2019-08-27 2019-11-01 武汉国灸科技开发有限公司 The temperature testing device of spontaneous heating moxibustion plaster
CN110514694A (en) * 2019-09-26 2019-11-29 王公华 Textile material thermal insulation property test method and tester based on ambient temperature compensation
CN111829913B (en) * 2020-08-18 2024-04-19 湖南科技大学 Detection method for fire-fighting suit thermal shock resistance detection device in fire scene environment

Also Published As

Publication number Publication date
JP3958731B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
JP3958731B2 (en) In-garment environment simulation measuring apparatus and evaluation method
McCullough et al. A comparison of standard methods for measuring water vapour permeability of fabrics
EP2700942B1 (en) Apparatus for measuring perviousness to water vapor
Huang et al. Comparison of test methods for measuring water vapor permeability of fabrics
KR101562078B1 (en) Apparatus for environmental simulation measurement of wound coating material on the skin and measurement method therefor
KR100752776B1 (en) Measuring device of insulating and moisture transpirating proterty for dressing system
US4663969A (en) Measuring water vapor transmission through materials
Mullins Matric potential
US8495907B2 (en) Method and apparatus for measuring drying time of quick wet and dried fabrics
US3521865A (en) Generation of accurately known vapor concentrations by permeation
EP3306300A1 (en) Humidity-dependent-mass measurement device and humidity-dependent-mass measurement method
Pause Measuring the water vapor permeability of coated fabrics and laminates
US9297794B2 (en) Sorption exothermicity measurement device and sorption exothermicity measurement method
Ebrahimi-Birang et al. Assessment of the WP4-T device for measuring total suction
KR20140142541A (en) Moisture transmission testing instrument
JP2003337111A (en) Method and apparatus for testing hygroscopic and exothermic property
CN109115648B (en) Method for testing moisture absorption and heat generation performances of fibers
JP2004157086A (en) Measuring equipment and method for moisture absorption and releasing property
KR101046363B1 (en) Method and apparatus for measuring calorie change according to moisture adsorption and desorption of sheet-like fiber samples
KR20110045401A (en) Drying Device Capable of Measuring Weight of Specimen and Measuring Method of Porosity using thereof
Gibson et al. Measurement of water vapor diffusion through polymer films and fabric/membrane laminates using a diode laser spectroscope
Rudtsch Thermal conductivity measurements for the separation of heat and mass diffusion in moist porous materials
IT9020658A1 (en) APPARATUS TO TRY THE STEAM TRANSMISSION THROUGH TEXTILE MATERIALS.
CN85106179A (en) Measure the steam breathability of material
Heinisch et al. Drying speed testing of PES fabric with defined moisture management

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070510

R150 Certificate of patent or registration of utility model

Ref document number: 3958731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees