JP2005097640A - Vacuum deposition system - Google Patents

Vacuum deposition system Download PDF

Info

Publication number
JP2005097640A
JP2005097640A JP2003329518A JP2003329518A JP2005097640A JP 2005097640 A JP2005097640 A JP 2005097640A JP 2003329518 A JP2003329518 A JP 2003329518A JP 2003329518 A JP2003329518 A JP 2003329518A JP 2005097640 A JP2005097640 A JP 2005097640A
Authority
JP
Japan
Prior art keywords
vapor deposition
substrate
vacuum
processed
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003329518A
Other languages
Japanese (ja)
Inventor
Eiji Hata
英二 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP2003329518A priority Critical patent/JP2005097640A/en
Publication of JP2005097640A publication Critical patent/JP2005097640A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum deposition system capable of reducing the difference in the angles of incidence of vapor deposition flows between the central part and the outer circumferential part of the substrate to be treated as possible without upsizing a vacuum chamber. <P>SOLUTION: The vacuum deposition system 101 is provided with: a vacuum chamber 2; a vacuum pump 3; a substrate holder 5 holding a semiconductor substrate 4; a substrate holder rotation mechanism 102 rotating the substrate holder 5 with an axis as the center; four vapor deposition boats 103a to 103d storing vapor deposition materials 6 of the same kind; four electron guns 104a to 104d emitting electron beams 8; a shutter 11 releasing/shielding vapor deposition flows 10 from the four vapor deposition materials 6; and a collimator plate 105 arranged between the semiconductor substrate 4 and the vapor deposition materials 6 and allowing only the vapor deposition flows 10 with fixed small angles θ of incidence to the semiconductor substrate 4 to pass separately from the shutter 11. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、真空中で蒸着原料を蒸発させ被処理基板表面に被着させて成膜する真空蒸着装置に関する。   The present invention relates to a vacuum evaporation apparatus for forming a film by evaporating a deposition material in a vacuum and depositing it on a surface of a substrate to be processed.

従来の真空蒸着装置の一例の縦断面図を図4に示す。   FIG. 4 shows a longitudinal sectional view of an example of a conventional vacuum deposition apparatus.

真空蒸着装置1は、内部を高真空状態に維持することのできる真空チャンバ2と、真空チャンバ2内を高真空に排気する真空ポンプ3と、真空チャンバ2内に配置され、被処理基板としての例えば半導体基板4を保持する基板ホルダ5と、基板ホルダ5と対向して配置され、蒸着原料6を収容した蒸着ボート7と、その蒸着原料6を加熱する加熱手段としての電子ビーム8(図中破線矢印)を発射する電子銃9と、電子ビーム8を集束及び偏向するための磁力を与える集束コイル(図示せず)及び偏向コイル(図示せず)と、蒸着原料6からの蒸着流10(図中実線矢印)を放出したり遮断したりするシャッタ11とで構成されている。   The vacuum deposition apparatus 1 is disposed in a vacuum chamber 2 capable of maintaining the inside in a high vacuum state, a vacuum pump 3 that exhausts the inside of the vacuum chamber 2 to a high vacuum, and a vacuum chamber 2 as a substrate to be processed. For example, a substrate holder 5 that holds the semiconductor substrate 4, a vapor deposition boat 7 that is disposed opposite to the substrate holder 5 and contains the vapor deposition raw material 6, and an electron beam 8 as a heating means for heating the vapor deposition raw material 6 (in the drawing). An electron gun 9 that emits a broken line arrow, a focusing coil (not shown) and a deflection coil (not shown) for applying a magnetic force for focusing and deflecting the electron beam 8, and a deposition flow 10 ( The shutter 11 emits or blocks a solid arrow).

ここで、シャッタ11は蒸着原料6の上方に回転移動してきて蒸着流10を遮断し、蒸着原料6の上方から所定の待機位置に退避することで蒸着流10を放出するようになっている。図4では、シャッタ11が退避し、蒸着流10が放出されている状態を示す。   Here, the shutter 11 rotates and moves above the vapor deposition material 6 so as to block the vapor deposition flow 10 and retreats from the vapor deposition material 6 to a predetermined standby position to discharge the vapor deposition flow 10. FIG. 4 shows a state in which the shutter 11 is retracted and the vapor deposition flow 10 is released.

次に、真空蒸着装置1の動作を説明する。先ず、基板ホルダ5に半導体基板4を保持させ、真空ポンプ3を作動し、真空チャンバ2内を減圧し所望の真空度にする。   Next, operation | movement of the vacuum evaporation system 1 is demonstrated. First, the semiconductor substrate 4 is held on the substrate holder 5 and the vacuum pump 3 is operated to reduce the pressure in the vacuum chamber 2 to a desired degree of vacuum.

次に、真空チャンバ2内が所望の真空度に達したら、電子銃9より電子ビーム8を発射し、この電子ビーム8を集束コイル(図示せず)及び偏向コイル(図示せず)で集束及び偏向し、蒸着原料6の表面に略垂直に照射させ、蒸着原料6を加熱溶解させる。   Next, when the inside of the vacuum chamber 2 reaches a desired degree of vacuum, an electron beam 8 is emitted from the electron gun 9, and the electron beam 8 is focused and focused by a focusing coil (not shown) and a deflection coil (not shown). It deflects and irradiates the surface of the deposition material 6 substantially perpendicularly, and the deposition material 6 is heated and dissolved.

そして、最初に、蒸着原料6表面の不純物を蒸発させたり、表面状態を均一にしたりすることを目的に、所謂、ガス出し作業を行う。このガス出し作業は、シャッタ11を遮断状態にして行う。   First, a so-called gas out operation is performed for the purpose of evaporating impurities on the surface of the deposition material 6 and making the surface state uniform. This gas discharge operation is performed with the shutter 11 in the shut-off state.

その後、ガス出し作業が終了したら、シャッタ11を放出状態にして半導体基板4表面に向けて蒸着流10を放出し所定の成膜を施す。   Thereafter, when the gas out operation is completed, the shutter 11 is released, and the vapor deposition flow 10 is discharged toward the surface of the semiconductor substrate 4 to perform a predetermined film formation.

次に、成膜が完了したら、その時点で、シャッタ11を遮断状態にするとともに電子銃9を停止させて成膜を終了する(例えば、特許文献1参照。)。
特開2001−271157(第2頁、0003段落、第2図)
Next, when the film formation is completed, at that time, the shutter 11 is turned off and the electron gun 9 is stopped to complete the film formation (see, for example, Patent Document 1).
JP 2001-271157 (2nd page, paragraph 0003, FIG. 2)

尚、上記では、蒸着原料6の加熱方法として、電子ビーム8による加熱方法で説明したが抵抗加熱や高周波加熱などの加熱方法であってもよい。   In the above description, the heating method using the electron beam 8 has been described as the heating method for the vapor deposition material 6, but a heating method such as resistance heating or high-frequency heating may be used.

しかしながら、上述のような従来の真空蒸着装置1では、蒸着流10は比較的小面積な蒸着原料6から半導体基板4表面に対して放射状に放出されるため、どうしても半導体基板4の中心部と外周部とでは蒸着流10の入射角θ(半導体基板4表面に対する法線と蒸着流10とが成す角度)に差が生じた。   However, in the conventional vacuum vapor deposition apparatus 1 as described above, since the vapor deposition flow 10 is emitted radially from the vapor deposition raw material 6 having a relatively small area to the surface of the semiconductor substrate 4, the central portion and the outer periphery of the semiconductor substrate 4 inevitably. There is a difference between the incident angle θ of the vapor deposition flow 10 (the angle formed by the normal to the surface of the semiconductor substrate 4 and the vapor deposition flow 10).

即ち、蒸着原料6の真上にある半導体基板4中心付近での蒸着流10の入射角θはほぼ0°となるが、半導体基板4外周部の蒸着流10の入射角θは無視できない大きさとなり、その結果、半導体基板4中心付近は膜厚が厚く、半導体基板4外周部は膜厚が薄くなる傾向があった。そして、この傾向は半導体基板4サイズの大型化に伴って顕著となった。   That is, the incident angle θ of the vapor deposition flow 10 near the center of the semiconductor substrate 4 directly above the vapor deposition raw material 6 is approximately 0 °, but the incident angle θ of the vapor deposition flow 10 on the outer periphery of the semiconductor substrate 4 is not negligible. As a result, the thickness near the center of the semiconductor substrate 4 tends to be thick, and the outer peripheral portion of the semiconductor substrate 4 tends to be thin. And this tendency became remarkable with the enlargement of the semiconductor substrate 4 size.

これに対して、半導体基板4に対する蒸着流10の入射角θを全体に小さくしようとすると、例えば半導体基板4(基板ホルダ5)と蒸着原料6(蒸着ボート7)との間の距離を極力大きくすればよい。しかし、半導体基板4(基板ホルダ5)と蒸着原料6(蒸着ボート7)との間の距離を大きくすれば、真空チャンバ2自体を大型化させることになり、結果的に成膜レートの減少や真空排気時間の増大を招くことになった。   On the other hand, if the incident angle θ of the vapor deposition flow 10 with respect to the semiconductor substrate 4 is to be reduced as a whole, for example, the distance between the semiconductor substrate 4 (substrate holder 5) and the vapor deposition raw material 6 (vapor deposition boat 7) is increased as much as possible. do it. However, if the distance between the semiconductor substrate 4 (substrate holder 5) and the vapor deposition material 6 (vapor deposition boat 7) is increased, the vacuum chamber 2 itself is enlarged, resulting in a decrease in film formation rate. This resulted in an increase in evacuation time.

本発明の目的は、真空チャンバを大型化することなく、被処理基板の中心部と外周部における蒸着流の入射角の差を極力小さくできる真空蒸着装置を提供することである。   An object of the present invention is to provide a vacuum deposition apparatus capable of minimizing the difference in the incident angle of the deposition flow between the central portion and the outer peripheral portion of the substrate to be processed without increasing the size of the vacuum chamber.

本発明の真空蒸着装置は、
少なくとも、
内部を高真空状態に維持することのできる真空チャンバと、
真空チャンバ内を高真空に排気する真空ポンプと、
真空チャンバ内に配置され、被処理基板を保持する基板ホルダと、
基板ホルダと対向して配置され、同種の蒸着原料を収容した複数個の蒸着ボートと、
複数個の蒸着ボート内の蒸着原料を加熱して蒸着流を発生させる加熱手段と、
被処理基板と蒸着原料との間に配置され、蒸着流を放出したり遮断したりするシャッタと、
シャッタとは別に、被処理基板と蒸着原料との間に配置され、蒸着流の内、被処理基板に対して一定の小さい入射角で入射する蒸着流のみを通過させるコリメータ板とを備え、蒸着流を被処理基板に被着させて成膜することを特徴とする真空蒸着装置である。
The vacuum deposition apparatus of the present invention is
at least,
A vacuum chamber capable of maintaining a high vacuum inside;
A vacuum pump that evacuates the vacuum chamber to a high vacuum;
A substrate holder disposed in a vacuum chamber and holding a substrate to be processed;
A plurality of vapor deposition boats arranged opposite to the substrate holder and containing the same kind of vapor deposition raw materials,
Heating means for generating a vapor deposition flow by heating vapor deposition raw materials in a plurality of vapor deposition boats;
A shutter that is disposed between the substrate to be processed and the deposition raw material, and that releases and blocks the deposition flow;
Separately from the shutter, a collimator plate is disposed between the substrate to be processed and the vapor deposition raw material, and allows only the vapor deposition flow that is incident on the substrate to be processed at a constant small incident angle to pass through the vapor deposition flow. A vacuum vapor deposition apparatus characterized in that a film is deposited on a substrate to be processed.

本発明の真空蒸着装置によれば、同種の蒸着原料を収容した蒸着ボートを被処理基板に対向させて複数個配置したので、ひとつの蒸着原料から蒸着流を放出する場合に比べて、被処理基板に対して複数の略垂直な蒸着流を放出でき、さらに、被処理基板に対して一定の小さい入射角の蒸着流のみを通過させるコリメータ板を配置するため、真空チャンバを大型化させることなく、被処理基板の中心部と外周部における蒸着流の入射角の差を小さくできる。   According to the vacuum vapor deposition apparatus of the present invention, a plurality of vapor deposition boats containing the same type of vapor deposition raw material are arranged facing the substrate to be processed, so that compared to the case where the vapor deposition flow is discharged from one vapor deposition raw material, A plurality of substantially vertical vapor deposition flows can be discharged with respect to the substrate, and further, a collimator plate that allows only the vapor deposition flow having a constant small incident angle to pass through the substrate to be processed is disposed, so that the vacuum chamber is not enlarged. The difference in the incident angle of the vapor deposition flow between the central portion and the outer peripheral portion of the substrate to be processed can be reduced.

真空チャンバを大型化させることなく、被処理基板の中心部と外周部における蒸着流の入射角の差を小さくできる機能を備えた真空蒸着装置を提供するという目的を、同種の蒸着原料を収容した蒸着ボートを被処理基板に対向させて複数個配置し、さらに、一定の小さい入射角の蒸着流のみを通過させるコリメータ板を配置することで実現した。   For the purpose of providing a vacuum deposition apparatus having a function capable of reducing the difference in the incident angle of the deposition flow between the central portion and the outer peripheral portion of the substrate to be processed without increasing the size of the vacuum chamber, the same kind of deposition raw materials are accommodated. This was realized by arranging a plurality of vapor deposition boats facing the substrate to be processed, and further arranging a collimator plate that allows only a vapor deposition flow having a small incident angle to pass.

本発明の真空蒸着装置の一例を図1および図2に示す。図1は縦断面図であり、図2は図1のX−X線における断面であり、コリメータ板に対する蒸着ボートの配置を示す模式図である。尚、図4と同一部分には同一符号を付す。   An example of the vacuum deposition apparatus of the present invention is shown in FIGS. FIG. 1 is a vertical cross-sectional view, and FIG. 2 is a cross-sectional view taken along the line XX of FIG. 1 and is a schematic diagram showing the arrangement of the evaporation boat with respect to the collimator plate. The same parts as those in FIG. 4 are denoted by the same reference numerals.

真空蒸着装置101は、内部を高真空状態に維持することのできる真空チャンバ2と、真空チャンバ2内を高真空に排気する真空ポンプ3と、真空チャンバ2内に配置され、被処理基板としての例えば半導体基板4を保持する基板ホルダ5と、基板ホルダ5を軸中心に回転させる本発明の特徴である基板ホルダ回転機構102としての回転軸102a及び回転モータ102bと、基板ホルダ5と対向して配置され、同種の蒸着原料6を収容した本発明の特徴である例えば4個の蒸着ボート103a,103b,103c,103dと、各蒸着ボート103a〜103d内の蒸着原料6をそれぞれ加熱する加熱手段としての電子ビーム8(図中破線矢印)を発射する4個の電子銃104a,104b,104c,104dと、各電子ビーム8を集束及び偏向するための磁力を与える集束コイル(図示せず)及び偏向コイル(図示せず)と、4個の蒸着原料6からの蒸着流10(図中実線矢印)を放出したり遮断したりするシャッタ11と、シャッタ11とは別に、半導体基板4と蒸着原料6との間に配置され、蒸着流10の内、半導体基板4に対して一定の小さい入射角θの蒸着流10のみを通過させる本発明の特徴であるコリメータ板105とを備えている。   The vacuum deposition apparatus 101 is disposed in the vacuum chamber 2 capable of maintaining the inside thereof in a high vacuum state, the vacuum pump 3 that exhausts the inside of the vacuum chamber 2 to a high vacuum, and the vacuum chamber 2 as a substrate to be processed. For example, the substrate holder 5 that holds the semiconductor substrate 4, the rotation shaft 102 a and the rotation motor 102 b as the substrate holder rotation mechanism 102 that rotates the substrate holder 5 about the axis, and the substrate holder 5 are opposed to each other. For example, four vapor deposition boats 103a, 103b, 103c, and 103d that are arranged and contain the same kind of vapor deposition raw materials 6 and heating means for heating the vapor deposition raw materials 6 in the respective vapor deposition boats 103a to 103d are provided. 4 electron guns 104a, 104b, 104c, 104d for emitting electron beams 8 (broken arrows in the figure), and each electron beam 8 A focusing coil (not shown) and a deflection coil (not shown) for applying a magnetic force for bundling and deflecting, and a deposition flow 10 (solid arrows in the figure) from the four deposition raw materials 6 are released or blocked. Separately from the shutter 11 and the shutter 11, the shutter 11 is disposed between the semiconductor substrate 4 and the vapor deposition material 6, and passes only the vapor deposition flow 10 having a certain small incident angle θ with respect to the semiconductor substrate 4. And a collimator plate 105 which is a feature of the present invention.

ここで、4個の蒸着ボート103a〜103dは、半導体基板4の直径方向に均等配置されている。   Here, the four vapor deposition boats 103 a to 103 d are equally arranged in the diameter direction of the semiconductor substrate 4.

また、図2に示すように、コリメータ板105には、多数の円形の開口部105aが所定の配列パターンで設けられており、4個の蒸着原料6からの各蒸着流10(図中実線矢印)の内、半導体基板4に対して一定の小さい入射角θの蒸着流10のみが通過可能となっている。   As shown in FIG. 2, the collimator plate 105 is provided with a large number of circular openings 105a in a predetermined arrangement pattern, and each of the vapor deposition flows 10 from the four vapor deposition raw materials 6 (solid arrows in the figure). ), Only the vapor deposition flow 10 having a certain small incident angle θ can pass through the semiconductor substrate 4.

また、コリメータ板105の半導体基板4表面からの距離Lは、コリメータ板高さ調整機構106としての支持軸106a及び駆動モータ106bで可変でき、半導体基板4に対する蒸着流10の入射角θの大きさを制御可能となっている。   Further, the distance L of the collimator plate 105 from the surface of the semiconductor substrate 4 can be varied by a support shaft 106a as the collimator plate height adjusting mechanism 106 and a drive motor 106b, and the magnitude of the incident angle θ of the vapor deposition flow 10 with respect to the semiconductor substrate 4. Can be controlled.

また、シャッタ11は蒸着原料6の上方に回転移動してきて蒸着流10を遮断し、蒸着原料6の上方から所定の待機位置に退避することで蒸着流10を放出するようになっている。図1では、シャッタ11が退避し、蒸着流10が放出されている状態を示す。   Further, the shutter 11 rotates and moves above the vapor deposition material 6 so as to block the vapor deposition flow 10 and retreats from the vapor deposition material 6 to a predetermined standby position to discharge the vapor deposition flow 10. FIG. 1 shows a state where the shutter 11 is retracted and the vapor deposition flow 10 is released.

次に、真空蒸着装置101の動作を説明する。先ず、基板ホルダ5に半導体基板4を保持させ、真空ポンプ3を作動し、真空チャンバ2内を減圧し所望の真空度にする。   Next, operation | movement of the vacuum evaporation system 101 is demonstrated. First, the semiconductor substrate 4 is held on the substrate holder 5 and the vacuum pump 3 is operated to reduce the pressure in the vacuum chamber 2 to a desired degree of vacuum.

次に、真空チャンバ2内が所望の真空度に達したら、電子銃104a〜104dより電子ビーム8を発射し、この電子ビーム8を集束コイル(図示せず)及び偏向コイル(図示せず)で集束及び偏向し、各蒸着ボート103a〜103d内の蒸着原料6の表面に略垂直に照射させ、蒸着原料6を加熱溶解させる。   Next, when the inside of the vacuum chamber 2 reaches a desired degree of vacuum, an electron beam 8 is emitted from the electron guns 104a to 104d, and this electron beam 8 is emitted by a focusing coil (not shown) and a deflection coil (not shown). Focusing and deflecting are performed, and the surface of the vapor deposition raw material 6 in each of the vapor deposition boats 103a to 103d is irradiated substantially perpendicularly to melt the vapor deposition raw material 6 by heating.

そして、最初に、蒸着原料6表面の不純物を蒸発させたり、表面状態を均一にしたりすることを目的に、所謂、ガス出し作業を行う。このガス出し作業は、シャッタ11を遮断状態にして行う。   First, a so-called gas out operation is performed for the purpose of evaporating impurities on the surface of the deposition material 6 and making the surface state uniform. This gas discharge operation is performed with the shutter 11 in the shut-off state.

その後、ガス出し作業が終了したら、基板ホルダ回転機構102を作動し、基板ホルダ5を軸中心に回転させる。この回転運動により、コリメータ板105を通過して来た蒸着流10をより均一に半導体基板4表面に被着させることができる。   Thereafter, when the gas discharge operation is completed, the substrate holder rotating mechanism 102 is operated to rotate the substrate holder 5 about the axis. By this rotational movement, the vapor deposition flow 10 that has passed through the collimator plate 105 can be more uniformly deposited on the surface of the semiconductor substrate 4.

そして、シャッタ11を放出状態にして半導体基板4表面に向けて蒸着流10を放出し所定の成膜を施す。尚、コリメータ板105の位置(距離L)は、コリメータ板高さ調整機構106により、予め、所望の蒸着流10の入射角θが得られる位置に調整しておく。   Then, the shutter 11 is released, and the vapor deposition flow 10 is emitted toward the surface of the semiconductor substrate 4 to perform a predetermined film formation. In addition, the position (distance L) of the collimator plate 105 is adjusted in advance to a position where the desired incident angle θ of the vapor deposition flow 10 can be obtained by the collimator plate height adjustment mechanism 106.

尚、上記では、蒸着原料6の加熱方法として、電子ビーム8による加熱方法で説明したが、抵抗加熱や高周波加熱などによる加熱方法であってもよい。   In the above description, the heating method using the electron beam 8 has been described as the heating method for the vapor deposition material 6, but a heating method using resistance heating, high-frequency heating, or the like may be used.

また、上記では、4個の蒸着ボート103a〜103dを直径方向に均等配置する構成で説明したが、蒸着ボートの個数および配列はこれに限定するものではなく、変形例として、例えば、図3(a)に示すように3個の蒸着ボート103a〜103cを直径方向に均等配置する構成であってもよく、図3(b)に示すように4個の蒸着ボート103a〜103dをそれぞれ、半導体基板4の中心部にひとつと、残り3個をその同心円上に均等配置する構成であってもよく、所望の成膜厚さの分布が得られるように適宜、変更することが可能である。また、コリメータ板105の開口部105aの形状及び寸法や配列パターンも同様に特に限定するものではなく、所望の成膜厚さの分布が得られるように適宜、変更することが可能である。   In the above description, the four vapor deposition boats 103a to 103d are described as being arranged in the diameter direction, but the number and arrangement of the vapor deposition boats are not limited to this, and as a modification, for example, FIG. As shown in a), the three vapor deposition boats 103a to 103c may be arranged in the diametrical direction, and as shown in FIG. 3B, the four vapor deposition boats 103a to 103d are respectively disposed on the semiconductor substrate. A configuration in which one at the center of 4 and the remaining three are evenly arranged on the concentric circles may be employed, and can be appropriately changed so as to obtain a desired film thickness distribution. Similarly, the shape, dimensions, and arrangement pattern of the openings 105a of the collimator plate 105 are not particularly limited, and can be appropriately changed so as to obtain a desired film thickness distribution.

被処理基板の中心部と外周部における蒸着流の入射角の差を極力小さくできる機能を備えた真空蒸着装置に適用できる。   The present invention can be applied to a vacuum deposition apparatus having a function capable of minimizing the difference in the incident angle of the deposition flow between the central portion and the outer peripheral portion of the substrate to be processed.

本発明の真空蒸着装置の一例の縦断面図The longitudinal cross-sectional view of an example of the vacuum evaporation system of this invention コリメータ板に対する蒸着ボートの配置を示す模式図Schematic diagram showing the arrangement of the evaporation boat with respect to the collimator plate コリメータ板に対する蒸着ボートの配置の変形例の模式図Schematic diagram of a variation of the arrangement of the evaporation boat relative to the collimator plate 従来の真空蒸着装置の一例の縦断面図A longitudinal sectional view of an example of a conventional vacuum evaporation system

符号の説明Explanation of symbols

1 従来の真空蒸着装置
2 真空チャンバ
3 真空ポンプ
4 半導体基板
5 基板ホルダ
6 蒸着原料
7 蒸着ボート
8 電子ビーム
9 電子銃
10 蒸着流
11 シャッタ
101 本発明の真空蒸着装置
102 基板ホルダ回転機構
102a 回転軸
102b 回転モータ
103a〜103d 4個の蒸着ボート
104a〜104d 4個の電子銃
105 コリメータ板
105a 開口部
106 コリメータ板高さ調整機構
106a 支持軸
106b 駆動モータ
θ 入射角
L コリメータ板の半導体基板表面からの距離
1 Conventional vacuum evaporation system 2 Vacuum chamber
DESCRIPTION OF SYMBOLS 3 Vacuum pump 4 Semiconductor substrate 5 Substrate holder 6 Deposition raw material 7 Deposition boat 8 Electron beam 9 Electron gun 10 Deposition flow 11 Shutter 101 Vacuum deposition apparatus 102 of the present invention 102 Substrate holder rotating mechanism 102a Rotating shaft 102b Rotating motor 103a-103d Four pieces Deposition boats 104a to 104d Four electron guns 105 Collimator plate 105a Opening 106 Collimator plate height adjustment mechanism 106a Support shaft
106b Drive motor θ Incident angle L Distance of collimator plate from semiconductor substrate surface

Claims (5)

少なくとも、
内部を高真空状態に維持することのできる真空チャンバと、
前記真空チャンバ内を高真空に排気する真空ポンプと、
前記真空チャンバ内に配置され、被処理基板を保持する基板ホルダと、
前記基板ホルダと対向して配置され、同種の蒸着原料を収容した複数個の蒸着ボートと、
前記複数個の蒸着ボート内の蒸着原料を加熱して蒸着流を発生させる加熱手段と、
前記被処理基板と前記蒸着原料との間に配置され、前記蒸着流を放出したり遮断したりするシャッタと、
前記シャッタとは別に、前記被処理基板と前記蒸着原料との間に配置され、前記蒸着流の内、前記被処理基板に対して一定の小さい入射角で入射する蒸着流のみを通過させるコリメータ板とを備え、前記蒸着流を前記被処理基板に被着させて成膜することを特徴とする真空蒸着装置。
at least,
A vacuum chamber capable of maintaining a high vacuum inside;
A vacuum pump for evacuating the vacuum chamber to a high vacuum;
A substrate holder disposed in the vacuum chamber and holding a substrate to be processed;
A plurality of vapor deposition boats arranged facing the substrate holder and containing the same kind of vapor deposition raw materials,
Heating means for generating a vapor deposition flow by heating vapor deposition materials in the plurality of vapor deposition boats;
A shutter that is disposed between the substrate to be processed and the vapor deposition material, and releases or blocks the vapor deposition flow;
Separately from the shutter, the collimator plate is disposed between the substrate to be processed and the vapor deposition raw material, and allows only the vapor deposition flow incident on the substrate to be processed at a constant small incident angle to pass through the vapor deposition flow. And depositing the vapor deposition flow on the substrate to be processed to form a film.
前記被処理基板に対する前記コリメータ板の相対位置を可変なコリメータ板高さ調整機構を備えていることを特徴とする請求項1に記載の真空蒸着装置。   The vacuum deposition apparatus according to claim 1, further comprising a collimator plate height adjustment mechanism that can change a relative position of the collimator plate with respect to the substrate to be processed. 前記基板ホルダを軸中心に回転させる基板ホルダ回転機構を、さらに配置したことを特徴とする請求項1、または、請求項2に記載の真空蒸着装置。   The vacuum deposition apparatus according to claim 1, further comprising a substrate holder rotating mechanism that rotates the substrate holder about an axis. 前記複数個の蒸着ボートは前記被処理基板の直径方向に均等配置されたことを特徴とする請求項1から3のいずれかに記載の真空蒸着装置。   The vacuum deposition apparatus according to any one of claims 1 to 3, wherein the plurality of deposition boats are arranged uniformly in a diameter direction of the substrate to be processed. 前記複数個の蒸着ボートは前記被処理基板の中心部にひとつと、その同心円上に均等配置されたことを特徴とする請求項1から3のいずれかに記載の真空蒸着装置。   The vacuum deposition apparatus according to any one of claims 1 to 3, wherein the plurality of deposition boats are uniformly arranged on a concentric circle with one at a center of the substrate to be processed.
JP2003329518A 2003-09-22 2003-09-22 Vacuum deposition system Pending JP2005097640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003329518A JP2005097640A (en) 2003-09-22 2003-09-22 Vacuum deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003329518A JP2005097640A (en) 2003-09-22 2003-09-22 Vacuum deposition system

Publications (1)

Publication Number Publication Date
JP2005097640A true JP2005097640A (en) 2005-04-14

Family

ID=34458740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329518A Pending JP2005097640A (en) 2003-09-22 2003-09-22 Vacuum deposition system

Country Status (1)

Country Link
JP (1) JP2005097640A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402569A (en) * 2018-11-09 2019-03-01 上海利方达真空技术有限公司 A kind of indium layer film-coating mechanism of silicon integrated circuit
CN114525474A (en) * 2022-03-10 2022-05-24 武汉华星光电半导体显示技术有限公司 Evaporation crucible and evaporation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402569A (en) * 2018-11-09 2019-03-01 上海利方达真空技术有限公司 A kind of indium layer film-coating mechanism of silicon integrated circuit
CN114525474A (en) * 2022-03-10 2022-05-24 武汉华星光电半导体显示技术有限公司 Evaporation crucible and evaporation device

Similar Documents

Publication Publication Date Title
JP6963551B2 (en) Vacuum processing equipment and methods for processing substrates
JP5415979B2 (en) Sputtering apparatus, double rotary shutter unit, and sputtering method
JP2010539674A (en) Surface treatment method and apparatus for substrate using energetic particle beam
WO2011135810A1 (en) Film deposition system
JP2006052461A (en) Magnetron sputtering device, cylindrical cathode, and method of coating thin multicomponent film on substrate
JP2008174777A (en) Thin film deposition system
WO2019208035A1 (en) Film formation device and film formation method
JP2009041040A (en) Vacuum vapor deposition method and vacuum vapor deposition apparatus
US20050252767A1 (en) Sputtering device
KR101471269B1 (en) Arc evaporation source having fast film-forming speed, film formation device and manufacturing method for coating film using the arc evaporation source
WO2012033198A1 (en) Sputtering apparatus
JP2005187830A (en) Sputtering apparatus
JP5731085B2 (en) Deposition equipment
JP2005097640A (en) Vacuum deposition system
JPH02251143A (en) Ion beam type sputtering device
JPWO2021075385A1 (en) Film formation method and film deposition equipment
JP2004256843A (en) Vacuum vapor deposition apparatus
JP6842457B2 (en) Systems and methods for selectively processing workpieces
JPH03264667A (en) Carrousel-type sputtering device
JP3470715B2 (en) Plasma deposition method and apparatus
JP2526182B2 (en) Method and apparatus for forming compound thin film
JP2009114502A (en) Vacuum deposition system
JP2007302912A (en) Film deposition system
JP4457809B2 (en) Vacuum deposition system
JP2009001889A (en) Film deposition method for neutral density filter, neutral density filter using the same, and image pick-up light quantity diaphragm device