JP2005097370A - Functional polyamide fine particle and its manufacturing method - Google Patents

Functional polyamide fine particle and its manufacturing method Download PDF

Info

Publication number
JP2005097370A
JP2005097370A JP2003330576A JP2003330576A JP2005097370A JP 2005097370 A JP2005097370 A JP 2005097370A JP 2003330576 A JP2003330576 A JP 2003330576A JP 2003330576 A JP2003330576 A JP 2003330576A JP 2005097370 A JP2005097370 A JP 2005097370A
Authority
JP
Japan
Prior art keywords
solution
fine particles
polyamide fine
polyamide
functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003330576A
Other languages
Japanese (ja)
Other versions
JP4419013B2 (en
Inventor
Yayoi Yoshioka
弥生 吉岡
Katsuya Asao
勝哉 浅尾
Kazuhiko Yamamoto
和彦 山元
Hideki Tate
秀樹 舘
Wataru Okada
亘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture
Sumitomo Bakelite Co Ltd
Original Assignee
Osaka Prefecture
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture, Sumitomo Bakelite Co Ltd filed Critical Osaka Prefecture
Priority to JP2003330576A priority Critical patent/JP4419013B2/en
Publication of JP2005097370A publication Critical patent/JP2005097370A/en
Application granted granted Critical
Publication of JP4419013B2 publication Critical patent/JP4419013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyamides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a functional polyamide fine particle capable of easily controlling its particle shape and particle size distribution, and the functional polyamide fine particle superior in monodispersibility. <P>SOLUTION: This manufacturing method of the functional polyamide particle relates to a synthesis method of a polyamide using an acid chloride and a diamine compound. The method comprises (a) a first step wherein at least one of the acid chloride and the diamine compound has a functional group, and preparing a first solution containing the acid chloride and a second solution containing the diamine compound, respectively, and (b) a second step mixing the first and second solutions under existence of a solvent soluble in both the first and second solvents, and depositing the polyamide fine particle from the mixed solution. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、機能性ポリアミド微粒子及びその製造方法に関する。   The present invention relates to functional polyamide fine particles and a method for producing the same.

ポリアミドは、耐熱性、耐薬品性、機械的特性等に優れた材料であり、電子・電気部品、自動車、衣料等の用途のほか、金属又はセラミックスの代替材料として幅広く利用されている。   Polyamide is a material excellent in heat resistance, chemical resistance, mechanical properties, and the like, and is widely used as an alternative material for metals or ceramics in addition to applications such as electronic / electrical parts, automobiles, and clothing.

ポリアミド微粒子の製造方法としては、a)予め重合されたナイロン6、66、12等(ポリマー)を蟻酸等に溶かし、その後貧溶媒である蒸留水、メタノール、アセトン等に曇点まで滴下するという方法、b)ポリマー重合後の溶液を、温度を上昇させてナイロンを完全に溶解させて、厳密に温度制御しながら微粒子(約2〜10μm)を沈殿させるという方法等が提案されている。   As a method for producing polyamide fine particles, a) a method in which prepolymerized nylon 6, 66, 12 or the like (polymer) is dissolved in formic acid or the like and then dropped into a poor solvent such as distilled water, methanol or acetone to the cloud point. B) A method in which the temperature of the polymer-polymerized solution is raised to completely dissolve nylon, and fine particles (about 2 to 10 μm) are precipitated while strictly controlling the temperature.

しかしながら、これら方法では、ポリマーを重合する過程と、そのポリマーから微粒子を調製する過程の2段階が必要となり、特に後者の過程においては温度等の調製条件を厳密に制御する必要もあることから、その工程が煩雑であるという欠点がある。また、これら方法ではナイロン(ポリマー)を溶解させる必要があるが、ナイロンは耐薬品性が高く、蟻酸、硫酸等のごく一部の有機溶媒にしか溶けず、取り扱いが困難である。さらに、上記方法によっては、比較的大きな粒径(約2〜10μm程度)のポリアミド粒子しか得られないという問題もある。   However, these methods require two steps, a process of polymerizing a polymer and a process of preparing fine particles from the polymer, and particularly in the latter process, it is necessary to strictly control the preparation conditions such as temperature. There is a drawback that the process is complicated. Further, in these methods, it is necessary to dissolve nylon (polymer), but nylon has high chemical resistance, is soluble only in a small part of organic solvents such as formic acid and sulfuric acid, and is difficult to handle. Furthermore, depending on the above method, there is a problem that only polyamide particles having a relatively large particle size (about 2 to 10 μm) can be obtained.

ポリアミド微粒子の他の製造方法としては、ポリアミドを凍結乾燥後粉砕し、微粒子(数十〜数百μm)にするという方法が提案されている。   As another method for producing polyamide fine particles, there has been proposed a method in which polyamide is freeze-dried and then pulverized to form fine particles (tens to hundreds of μm).

しかしながら、かかる方法では粒形のコントロールが非常に困難である。また、上記方法で得られるポリアミド微粒子は、粒径も大きく、その分布幅も広いという問題がある。   However, it is very difficult to control the particle shape by such a method. Further, the polyamide fine particles obtained by the above method have a problem that the particle size is large and the distribution range is wide.

しかも、上記方法では、ポリアミド微粒子に機能性を付与する方法については言及されない。粒子形状、粒度分布等が制御されたポリアミド微粒子に種々の機能を付与することができれば、さらなる用途の拡大が期待される。   Moreover, the above method does not mention a method for imparting functionality to the polyamide fine particles. If various functions can be imparted to the polyamide fine particles whose particle shape, particle size distribution and the like are controlled, further expansion of applications is expected.

本発明は、粒子形状、粒度分布等を容易に制御できる機能性ポリアミド微粒子の製造方法を提供することを主な目的とする。さらに、本発明は、単分散性に優れた機能性ポリアミド微粒子を提供することをも目的とする。   The main object of the present invention is to provide a method for producing functional polyamide fine particles capable of easily controlling the particle shape, particle size distribution and the like. Another object of the present invention is to provide functional polyamide fine particles having excellent monodispersibility.

本発明者は、従来技術の問題点に鑑み、鋭意研究を重ねた結果、特定の工程を有する製造方法によって上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the problems of the prior art, the present inventor has found that the above object can be achieved by a production method having a specific process, and has completed the present invention.

すなわち、本発明は、下記の機能性ポリアミド微粒子及びその製造方法に係るものである。   That is, the present invention relates to the following functional polyamide fine particles and a method for producing the same.

1. 酸クロライド及びジアミン化合物からポリアミドを合成する方法において、
(a)酸クロライド及びジアミン化合物の少なくとも一方が機能性基を有し、かつ、当該酸クロライドを含む第一溶液と、当該ジアミン化合物を含む第二溶液とをそれぞれ調製する第一工程、及び
(b)第一溶液及び第二溶液の溶媒のいずれにも可溶である溶媒の存在下に、第一溶液と第二溶液とを混合し、混合溶液からポリアミド微粒子を析出させる第二工程、
を含むことを特徴とする機能性ポリアミド微粒子の製造方法。
1. In a method of synthesizing a polyamide from an acid chloride and a diamine compound,
(A) a first step in which at least one of an acid chloride and a diamine compound has a functional group and a first solution containing the acid chloride and a second solution containing the diamine compound are prepared; and b) a second step of mixing the first solution and the second solution in the presence of a solvent that is soluble in both the solvent of the first solution and the second solution and precipitating polyamide fine particles from the mixed solution;
A process for producing functional polyamide fine particles, comprising:

2. 第二溶液が、さらに機能性基を有しないジアミン化合物を含む前記項1記載の製造方法。   2. Item 2. The method according to Item 1, wherein the second solution further contains a diamine compound having no functional group.

3. 第二溶液が、機能性基を有するジアミン化合物を含む溶液と、機能性基を有しないジアミン化合物を含む溶液とを混合して得られる前記項2記載の製造方法。   3. Item 3. The method according to Item 2, wherein the second solution is obtained by mixing a solution containing a diamine compound having a functional group and a solution containing a diamine compound not having a functional group.

4. 第一溶液及び第二溶液の溶媒のいずれにも可溶である溶媒が、水及び水酸基を有する溶媒の少なくとも1種である前記項1〜3のいずれかに記載の製造方法。   4). Item 4. The production method according to any one of Items 1 to 3, wherein the solvent that is soluble in both the solvent of the first solution and the second solution is at least one of water and a solvent having a hydroxyl group.

5. 水酸基を有する溶媒が、炭素数1〜10のアルコールの少なくとも1種を含む前記項4記載の製造方法。   5). Item 5. The production method according to Item 4, wherein the solvent having a hydroxyl group contains at least one kind of alcohol having 1 to 10 carbon atoms.

6. 第二工程を超音波による撹拌下で行う前記項1〜4のいずれかに記載の方法。   6). Item 5. The method according to any one of Items 1 to 4, wherein the second step is performed under stirring by ultrasonic waves.

7. 第一溶液における溶媒が、アセトン及びジオキサンの少なくとも1種を含む前記項1〜6のいずれかに記載の方法。   7). Item 7. The method according to any one of Items 1 to 6, wherein the solvent in the first solution contains at least one of acetone and dioxane.

8. 第二溶液における溶媒が、アセトン及びジオキサンの少なくとも1種を含む前記項1〜6のいずれかに記載の方法。   8). Item 7. The method according to any one of Items 1 to 6, wherein the solvent in the second solution contains at least one of acetone and dioxane.

9. 前記項1〜8のいずれかに記載の方法により得ることができる機能性ポリアミド微粒子。   9. Functional polyamide fine particles obtainable by the method according to any one of Items 1 to 8.

10.前記項1〜8のいずれかに記載の方法において得られるポリアミド微粒子であって、平均粒径が0.01〜5μmである機能性ポリアミド微粒子。   10. 9. A functional polyamide fine particle obtained by the method according to any one of Items 1 to 8 and having an average particle size of 0.01 to 5 μm.

11.前記項9又は10に記載の機能性ポリアミド微粒子であって、ガラス転移温度を示すことを特徴とする機能性ポリアミド微粒子。   11. 11. The functional polyamide fine particles according to item 9 or 10, which exhibit a glass transition temperature.

12.前記項9又は10に記載の機能性ポリアミド微粒子であって、ガラス転移温度を示さないことを特徴とする機能性ポリアミド微粒子。   12 11. The functional polyamide fine particles according to item 9 or 10, which do not exhibit a glass transition temperature.

13.ポリアミド微粒子の表面に存在する機能性基の存在を赤外分光分析法及び/又はエネルギー分散型X線分光法により確認する方法であって、当該分析方法に先立って当該機能性基と反応可能なシランカップリング剤でポリアミド微粒子表面を予め処理することを特徴とするポリアミド微粒子の粒子表面の分析方法。   13. A method for confirming the presence of a functional group present on the surface of a polyamide fine particle by infrared spectroscopy and / or energy dispersive X-ray spectroscopy, which can react with the functional group prior to the analysis method A method for analyzing the surface of polyamide fine particles, wherein the surface of the polyamide fine particles is pretreated with a silane coupling agent.

本発明の製造方法によれば、従来のように厳密な温度制御等を必要とせず、微細で且つ粒径の均一な機能性ポリアミド微粒子を比較的容易に得ることができる。また、本発明の方法では、従来の方法と比べて蟻酸や硫酸等取り扱い困難な溶媒を用いる必要がないので、工業的な方法として適している。さらに、本発明の方法では、その条件を適宜変更することによって所望の粒径、粒子形状、粒度分布等に制御することも比較的容易である。   According to the production method of the present invention, functional polyamide fine particles having a fine and uniform particle diameter can be obtained relatively easily without requiring strict temperature control or the like as in the prior art. In addition, the method of the present invention is suitable as an industrial method because it is not necessary to use a difficult solvent such as formic acid or sulfuric acid as compared with the conventional method. Furthermore, in the method of the present invention, it is relatively easy to control the desired particle size, particle shape, particle size distribution, etc. by appropriately changing the conditions.

このようにして得られた本発明の機能性ポリアミド微粒子は、特にその粒子表面に機能性基を有していることから、接着剤、塗料、印刷インク中の分散剤、医療用担体、磁気記録媒体、化粧品の基材、プラスチックの改質材、クロマトグラフィー担体、層間絶縁膜用材料等の用途に幅広く用いることができる。   The functional polyamide fine particles of the present invention thus obtained have a functional group on the particle surface in particular, so that adhesives, paints, dispersants in printing inks, medical carriers, magnetic recording It can be widely used for media, cosmetic base materials, plastic modifiers, chromatographic carriers, interlayer insulating film materials, and the like.

また、本発明の機能性ポリアミド微粒子は、耐熱性も高く、特に酸クロライド及び/又はジアミン化合物として芳香族化合物を用いると、ガラス転移温度を示さないような非常に耐熱性の高い粒子が得られることから、ポリイミド粒子の代用も可能となる。   In addition, the functional polyamide fine particles of the present invention have high heat resistance, and particularly when an aromatic compound is used as the acid chloride and / or diamine compound, extremely high heat-resistant particles that do not exhibit a glass transition temperature can be obtained. Therefore, substitution of polyimide particles is also possible.

1.機能性ポリアミド微粒子の製造方法
本発明は、ポリアミド微粒子及びその製造方法に関するものであるが、本明細書において、「ポリアミド」には、「ポリアミドイミド」が含まれる。
1. TECHNICAL FIELD The present invention relates to a polyamide fine particle and a method for producing the same. In this specification, “polyamide” includes “polyamideimide”.

以下、本発明の製造方法を、各工程ごとに詳細に説明する。   Hereafter, the manufacturing method of this invention is demonstrated in detail for every process.

(1)第一工程
本発明では、酸クロライド及びジアミン化合物を原料として用い、ポリアミド微粒子を調製する。まず第一工程として、酸クロライド化合物を含む第一溶液と、ジアミン化合物を含む第二溶液とをそれぞれ調製する。この場合、酸クロライド及びジアミン化合物の少なくとも一方が機能性基を有するものを用いる。
(1) First Step In the present invention, polyamide fine particles are prepared using an acid chloride and a diamine compound as raw materials. First, as a first step, a first solution containing an acid chloride compound and a second solution containing a diamine compound are prepared. In this case, one having at least one of an acid chloride and a diamine compound having a functional group is used.

機能性基としては、得られる微粒子表面上に所望の機能を付与できる限り特に限定されない。例えば、水酸基(−OH)、カルボキシル基(−COOH)、アミノ基(−NH2)、アルケン類(−CH=CH−)、アルキン類(−C≡C−)、ビニルエーテル類(−CH=CH−O−)、アミド基(−CONH2)、ニトリル基(−C≡N)、イソシアネート基(−N=C=O)、ニトロ基(−NO2)、スルホン基(−SO3H)、チオール基(−SH)、クラウンエーテル基等の官能基のほか、−CF3基、−CCl3基、−CBr3等を挙げることができる。なお、原料として使用されるジアミン化合物及び酸クロライドにあっては、それぞれ基−NH2及び基−COClを有しているが、最終的に得られる微粒子表面上にそれらの基が存在する場合には、本発明の機能性基に包含される。 The functional group is not particularly limited as long as a desired function can be imparted on the surface of the obtained fine particles. For example, hydroxyl group (—OH), carboxyl group (—COOH), amino group (—NH 2 ), alkenes (—CH═CH—), alkynes (—C≡C—), vinyl ethers (—CH═CH) -O-), amido (-CONH 2), a nitrile group (-C≡N), isocyanate group (-N = C = O), nitro group (-NO 2), sulfone group (-SO 3 H), thiol group (-SH), other functional groups such as crown ether group, -CF 3 group, -CCl 3 group, can be exemplified -CBr 3, and the like. In addition, in the diamine compound and acid chloride used as raw materials, each has a group —NH 2 and a group —COCl, but when these groups are present on the surface of the finally obtained fine particles. Are included in the functional group of the present invention.

本発明では、これらの機能性基を1種又は2種以上有する化合物の1種又は2種以上を用いることができる。また、一つの化合物に2種以上の機能性基を有する場合は、これらの機能性基は同一でも良いし、あるいは互いに異なっていても良い。本発明では、得られるポリアミド微粒子の所望の物性、最終製品の用途等に応じて、これら機能性基を微粒子表面に適宜付与することができる。   In the present invention, one or more compounds having one or more of these functional groups can be used. Further, when one compound has two or more functional groups, these functional groups may be the same or different from each other. In the present invention, these functional groups can be appropriately imparted to the surface of the fine particles depending on the desired physical properties of the obtained polyamide fine particles, the use of the final product, and the like.

これらの原料を用いた上で、第一工程として、酸クロライドを含む第一溶液と、ジアミン化合物を含む第二溶液とをそれぞれ調製する。すなわち、本発明では、酸クロライドとジアミン化合物とは、それぞれ別個の溶液として調製しておくことを必須とする。   After using these raw materials, a first solution containing an acid chloride and a second solution containing a diamine compound are prepared as the first step. That is, in the present invention, it is essential to prepare the acid chloride and the diamine compound as separate solutions.

(イ)第一溶液
第一溶液で用いる酸クロライドは、特に制限されず、例えば従来のポリアミド合成で用いられているものと同様のものが使用できる。
(A) First solution The acid chloride used in the first solution is not particularly limited, and for example, the same one as used in conventional polyamide synthesis can be used.

酸クロライドとしては、ジクロライドのほか、トリクロライド、テトラクロライド等が挙げられるが、一般的にはジクロライドを好適に用いることができる。例えば、シュウ酸ジクロライド、マロン酸ジクロライド、コハク酸ジクロライド、フマル酸ジクロライド、グルタル酸ジクロライド、アジピン酸ジクロライド、ムコン酸ジクロライド、セバシン酸ジクロライド、ノナン酸ジクロライド、ウンデカン酸ジクロライド等の脂肪族ジカルボン酸ジクロライド;1,2−シクロプロパンジカルボン酸ジクロライド、1,3−シクロブタンジカルボン酸ジクロライド、1,3−シクロペンタンジカルボン酸ジクロライド、1,3−シクロヘキサンジカルボン酸ジクロライド、1,4−シクロヘキサンジカルボン酸ジクロライド等の脂環族ジカルボン酸ジクロライド;フタル酸ジクロライド、イソフタル酸ジクロライド、テレフタル酸ジクロライド、1,4−ナフタレンジカルボン酸ジクロライド、1,5−(9−オキソフルオレン)ジカルボン酸ジクロライド、1,4−アントラセンジカルボン酸ジクロライド、1,4−アントラキノンジカルボン酸ジクロライド、2,5−ビフェニルジカルボン酸ジクロライド、1,5−ビフェニレンジカルボン酸ジクロライド、4,4’−ビフェニルジカルボニルクロライド、4,4'−メチレン二安息香酸ジクロライド、4,4’−イソプロピリデン二安息香酸ジクロライド、4,4'−ビベンジルジカルボン酸ジクロライド、4,4’−スチルベンジカルボン酸ジクロライド、4,4’−トランジカルボン酸ジクロライド、4,4’−カルボニル二安息香酸ジクロライド、4,4’−オキシ二安息香酸ジクロライド、4,4’−スルホニル二安息香酸ジクロライド、4,4’−ジチオ二安息香酸ジクロライド、p−フェニレン二酢酸ジクロライド、3,3’−p−フェニレンジプロピオン酸ジクロライド等の芳香族ジカルボン酸ジクロライドを挙げることができる。これら酸クロライドは、1種又は2種以上を用いることができる。   Examples of the acid chloride include trichloride, tetrachloride and the like in addition to dichloride, but dichloride can be preferably used in general. For example, aliphatic dicarboxylic acid dichlorides such as oxalic acid dichloride, malonic acid dichloride, succinic acid dichloride, fumaric acid dichloride, glutaric acid dichloride, adipic acid dichloride, muconic acid dichloride, sebacic acid dichloride, nonanoic acid dichloride, undecanoic acid dichloride; 1 , 2-cyclopropanedicarboxylic acid dichloride, 1,3-cyclobutanedicarboxylic acid dichloride, 1,3-cyclopentanedicarboxylic acid dichloride, 1,3-cyclohexanedicarboxylic acid dichloride, 1,4-cyclohexanedicarboxylic acid dichloride, etc. Dicarboxylic acid dichloride; phthalic acid dichloride, isophthalic acid dichloride, terephthalic acid dichloride, 1,4-naphthalenedicarboxylic acid dichloride, 1,5 -(9-oxofluorene) dicarboxylic acid dichloride, 1,4-anthracene dicarboxylic acid dichloride, 1,4-anthraquinone dicarboxylic acid dichloride, 2,5-biphenyldicarboxylic acid dichloride, 1,5-biphenylenedicarboxylic acid dichloride, 4,4 '-Biphenyldicarbonyl chloride, 4,4'-methylene dibenzoic acid dichloride, 4,4'-isopropylidene dibenzoic acid dichloride, 4,4'-bibenzyldicarboxylic acid dichloride, 4,4'-stilbene dicarboxylic acid dichloride 4,4′-transidicarboxylic acid dichloride, 4,4′-carbonyldibenzoic acid dichloride, 4,4′-oxydibenzoic acid dichloride, 4,4′-sulfonyldibenzoic acid dichloride, 4,4′-dithio Dichlori dibenzoate , P- phenylene diacetic acid dichloride, and aromatic dicarboxylic acid dichloride such as 3,3'-p-phenylene acid dichloride. These acid chlorides can be used alone or in combination of two or more.

機能性基を有する酸クロライドを用いる場合には、上記酸クロライドであって、かつ、前記に掲げた機能性基を有するものを使用することができる。例えば、4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸ジクロライド)、4−ニトロフタル酸ジクロライド、3−ニトロフタル酸ジクロライド、4―メチルフタル酸ジクロライド、テトラクロロフタル酸ジクロライド等を挙げることができる。また、後記のポリアミドイミドに使用できる酸クロライドのジクロライド、トリクロライド等で前記の機能性基を有するものも、本発明の酸クロライド(原料)として使用することができる。   In the case of using an acid chloride having a functional group, the acid chloride having the functional group listed above can be used. For example, 4,4 ′-(2,2-hexafluoroisopropylidene) diphthalic acid dichloride), 4-nitrophthalic acid dichloride, 3-nitrophthalic acid dichloride, 4-methylphthalic acid dichloride, tetrachlorophthalic acid dichloride, and the like. it can. Moreover, what has the said functional group in the dichloride of an acid chloride which can be used for the polyamideimide of a postscript, a trichloride, etc. can be used as an acid chloride (raw material) of this invention.

本発明では、機能性基を有する酸クロライドと、機能性基を有しない酸クロライドとを併用することも可能である。これにより、得られるポリアミド微粒子の特性を任意に制御することができる。この場合の両者の割合は、機能性基の種類、機能性基の所望の付与量等に応じて適宜設定することができる。   In the present invention, an acid chloride having a functional group and an acid chloride having no functional group can be used in combination. Thereby, the characteristic of the polyamide fine particle obtained can be controlled arbitrarily. The ratio of both in this case can be appropriately set according to the type of functional group, the desired amount of functional group, and the like.

また、酸クロライドは、得られるポリアミド微粒子の所望の特性等に応じて適宜選択することができる。例えば、酸クロライドとして芳香族ジカルボン酸ジクロライド(特にテレフタル酸ジクロライド、4,4’−ビフェニルジカルボニルクロライド及びイソフタル酸ジクロライドの少なくとも1種)を用いると、得られるポリアミド微粒子の耐熱性及び単分散性を向上させることができる。   The acid chloride can be appropriately selected according to the desired characteristics of the obtained polyamide fine particles. For example, when an aromatic dicarboxylic acid dichloride (especially at least one of terephthalic acid dichloride, 4,4′-biphenyldicarbonyl chloride and isophthalic acid dichloride) is used as the acid chloride, the heat resistance and monodispersity of the resulting polyamide fine particles can be improved. Can be improved.

本発明のポリアミドには、ポリアミドイミドも含まれる。従って、酸クロライドとして、従来のポリアミドイミド合成で用いられているものを使用できる。例えば、トリメリット酸クロライド、ピロメリット酸クロライド、オキシジフタル酸クロライド、ビフェニル−3,4,3’,4’−テトラカルボン酸クロライド、ベンゾフェノン−3,4,3’,4’−テトラカルボン酸クロライド、ジエチルピロメリテイトジアシルクロライド、ジフェニルスルホン−3,4,3’,4’−テトラカルボン酸クロライド、4,4’−(2,2−ヘキサフルオロイソプロピリデン)フタル酸クロライド、m(p)−フェニル−3,4,3’,4’−テトラカルボン酸クロライド、シクロブタン−1,2,3,4−テトラカルボン酸クロライド、1−カルボキシメチル−2,3−5シクロペンタントリカルボン酸クロライド、等の酸クロライドを用いることができる。これら酸クロライドとしては、ジクロライド、トリクロライド又はテトラクロライドのいずれであっても良い。   The polyamide of the present invention includes polyamideimide. Therefore, the acid chloride used in the conventional polyamideimide synthesis can be used. For example, trimellitic acid chloride, pyromellitic acid chloride, oxydiphthalic acid chloride, biphenyl-3,4,3 ′, 4′-tetracarboxylic acid chloride, benzophenone-3,4,3 ′, 4′-tetracarboxylic acid chloride, Diethylpyromellitate diacyl chloride, diphenylsulfone-3,4,3 ′, 4′-tetracarboxylic acid chloride, 4,4 ′-(2,2-hexafluoroisopropylidene) phthalic acid chloride, m (p) -phenyl -3,4,3 ', 4'-tetracarboxylic acid chloride, cyclobutane-1,2,3,4-tetracarboxylic acid chloride, 1-carboxymethyl-2,3-5 cyclopentanetricarboxylic acid chloride, etc. Chloride can be used. These acid chlorides may be any of dichloride, trichloride or tetrachloride.

また、ポリアミドイミドを製造する際には、酸クロライドに加えて、カルボン酸の無水物として、トリメリット酸二無水物、ピロメリット酸二無水物、オキシジフタル酸二無水物、ビフェニル−3,4,3’,4’−テトラカルボン酸二無水物、ベンゾフェノン−3,4,3’,4’−テトラカルボン酸二無水物、ジエチルピロメリテイトジアシル酸二無水物、ジフェニルスルホン−3,4,3’,4’−テトラカルボン酸二無水物、4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、m(p)−フェニル−3,4,3’,4’−テトラカルボン酸二無水物、シクロブタン−1,2,3,4−テトラカルボン酸二無水物、1−カルボキシメチル−2,3−5シクロペンタントリカルボン酸二無水物を用いることができる。   In addition, when producing polyamideimide, in addition to acid chloride, as carboxylic acid anhydride, trimellitic dianhydride, pyromellitic dianhydride, oxydiphthalic dianhydride, biphenyl-3,4, 3 ′, 4′-tetracarboxylic dianhydride, benzophenone-3,4,3 ′, 4′-tetracarboxylic dianhydride, diethyl pyromellitic diacyl dianhydride, diphenylsulfone-3,4,3 ', 4'-tetracarboxylic dianhydride, 4,4'-(2,2-hexafluoroisopropylidene) diphthalic dianhydride, m (p) -phenyl-3,4,3 ', 4'- It is possible to use tetracarboxylic dianhydride, cyclobutane-1,2,3,4-tetracarboxylic dianhydride, 1-carboxymethyl-2,3-5 cyclopentanetricarboxylic dianhydride Kill.

第一溶液で用いる溶媒は、実質的に酸クロライドが溶解し、かつ、生成するポリアミドが溶解しないものであれば特に制限されない。例えば、アセトン、ジオキサン、アセチルアセトン、メチルエチルケトン、酢酸メチル等の、水又は水酸基を有するような溶媒に可溶な溶媒が挙げられ、これらの少なくとも1種を含む溶媒を使用することができる。第一溶液においては、これらの中でも、アセトン、及びジオキサンの少なくとも1種を含む溶媒が好ましい。なお、用いる酸クロライドの種類によって、アセトン等の溶媒にすぐ溶解しない場合があるが、このような場合には水又は水酸基を有するような溶媒に予め溶解させた後にアセトン等に溶解させれば良い。   The solvent used in the first solution is not particularly limited as long as the acid chloride is substantially dissolved and the produced polyamide is not dissolved. Examples thereof include solvents soluble in a solvent having water or a hydroxyl group, such as acetone, dioxane, acetylacetone, methyl ethyl ketone, and methyl acetate, and a solvent containing at least one of these can be used. Among these, in the first solution, a solvent containing at least one of acetone and dioxane is preferable. Depending on the type of acid chloride used, it may not be immediately dissolved in a solvent such as acetone. In such a case, it may be dissolved in water or a solvent having a hydroxyl group in advance and then dissolved in acetone or the like. .

第一溶液における酸クロライドの濃度は、用いる酸クロライドの種類、第二溶液の濃度等に応じて適宜設定すれば良いが、通常は0.005〜1モル/リットル程度、好ましくは0.01〜0.5モル/リットル程度とする。第一溶液における酸クロライドの濃度がかかる範囲内であると、粒子間の凝集及び合一が抑制でき、単分散のものが得られやすいので好ましい。   The concentration of acid chloride in the first solution may be appropriately set according to the type of acid chloride used, the concentration of the second solution, etc., but is usually about 0.005 to 1 mol / liter, preferably 0.01 to About 0.5 mol / liter. It is preferable that the acid chloride concentration in the first solution be within such a range because aggregation and coalescence between particles can be suppressed and a monodispersed one can be easily obtained.

(ロ) 第二溶液
第二溶液で用いるジアミン化合物は、特に限定されず、公知のポリアミド合成で使用されているものを挙げることができる。例えば、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、1,4’−ビス(4−アミノフェノキシ)ベンゼン、1,3’−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルフォン、3,4−ジアミノジフェニルスルフォン、3,3'−ジアミノジフェニルスルフォン、4,4’−メチレン−ビス(2−クロロアニリン)、3,3’−ジメチル−4,4’−ジアミノビフェニル、4,4’−ジアミノジフェニルスルフィド、2,6’−ジアミノトルエン、2,4−ジアミノクロロベンゼン、1,2−ジアミノアントラキノン、1,4−ジアミノアントラキノン、3,3’−ジアミノベンゾフェノン、3,4−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノビベンジル、R(+)−2,2’−ジアミノ−1,1’−ビナフタレン、S(+)−2,2’−ジアミノ−1,1’−ビナフタレン、1,3−ビス(4−アミノフェノキシ)アルカン、1,4−ビス(4−アミノフェノキシ)アルカン、1,5−ビス(4−アミノフェノキシ)アルカン等の1,n−ビス(4−アミノフェノキシ)アルカン(nは、3〜10)、1,2−ビス[2−(4−アミノフェノキシ)エトキシ]エタン、9,9−ビス(4−アミノフェニル)フルオレン、4,4’−ジアミノベンズアニリド等の芳香族ジアミン;1,2−ジアミノメタン、1,4−ジアミノブタン、テトラメチレンジアミン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、1,8−ジアミノオクタン、1,10−ジアミノドデカン、1,11−ジアミノウンデカン等の脂肪族ジアミン;1,4−ジアミノシクロヘキサン、1,2−ジアミノシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、4,4’−ジアミノジシクロヘキシルメタン等の脂環族ジアミンのほか、3,4−ジアミノピリジン、1,4−ジアミノ−2−ブタノン等を使用することができる。これらは、1種又は2種以上を用いることができる。特に、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン等を用いると、耐熱性・単分散性が向上するので好ましい。
(B) Second solution The diamine compound used in the second solution is not particularly limited, and examples thereof include those used in known polyamide synthesis. For example, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 1,4 ′ -Bis (4-aminophenoxy) benzene, 1,3'-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, o-phenylenediamine, m-phenylenediamine, p-phenylene Diamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-methylene-bis (2-chloroaniline) 3,3′-dimethyl-4,4′-diaminobiphenyl, 4,4′-diaminodiphenylsulfur 2,6′-diaminotoluene, 2,4-diaminochlorobenzene, 1,2-diaminoanthraquinone, 1,4-diaminoanthraquinone, 3,3′-diaminobenzophenone, 3,4-diaminobenzophenone, 4,4 '-Diaminobenzophenone, 4,4'-diaminobibenzyl, R (+)-2,2'-diamino-1,1'-binaphthalene, S (+)-2,2'-diamino-1,1'- 1, n-bis (4- (4-aminophenoxy) alkane, 1,4-bis (4-aminophenoxy) alkane, 1,4-bis (4-aminophenoxy) alkane, 1,5-bis (4-aminophenoxy) alkane, etc. Aminophenoxy) alkane (n is 3 to 10), 1,2-bis [2- (4-aminophenoxy) ethoxy] ethane, 9,9-bis (4-aminophenyl) fluorene Aromatic diamines such as 4,4′-diaminobenzanilide; 1,2-diaminomethane, 1,4-diaminobutane, tetramethylenediamine, 1,5-diaminopentane, 1,6-diaminohexane, 1,8- Aliphatic diamines such as diaminooctane, 1,10-diaminododecane, 1,11-diaminoundecane; 1,4-diaminocyclohexane, 1,2-diaminocyclohexane, bis (4-aminocyclohexyl) methane, 4,4′- In addition to alicyclic diamines such as diaminodicyclohexylmethane, 3,4-diaminopyridine, 1,4-diamino-2-butanone, and the like can be used. These can use 1 type (s) or 2 or more types. In particular, it is preferable to use 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, etc., because the heat resistance and monodispersibility are improved.

また、本発明では、ジアミン化合物のほかに、他のアミン系化合物(モノアミン化合物、多価アミン化合物等)も用いることができる。これらにより、得られるポリアミドの特性を変えることができる。   In the present invention, in addition to the diamine compound, other amine compounds (monoamine compounds, polyamine compounds, etc.) can also be used. By these, the characteristic of the polyamide obtained can be changed.

機能性基を有するジアミン化合物を用いる場合には、上記ジアミン化合物であって、前記で挙げた機能性基を有するものを使用することができる。例えば、1,3−ジアミノ−2−プロピルアルコール、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、3,5−ジアミノ安息香酸、3,4−ジアミノ安息香酸、2,4,6−トリアミノピリミジン、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、2,4−ジアミノ−6−ヒドロキシピリミジン等を用いることができる。   When using the diamine compound which has a functional group, it is the said diamine compound, Comprising: What has the functional group quoted above can be used. For example, 1,3-diamino-2-propyl alcohol, 2,2-bis (4-aminophenyl) hexafluoropropane, 3,5-diaminobenzoic acid, 3,4-diaminobenzoic acid, 2,4,6- Triaminopyrimidine, 4,4′-diamino-3,3′-dihydroxybiphenyl, 2,4-diamino-6-hydroxypyrimidine and the like can be used.

本発明では、機能性基を有するジアミン化合物と、機能性基を有しないジアミン化合物とを併用することもできる。これより、得られるポリアミド微粒子の特性等を変えることができる。この場合の両者の割合は、機能性基の種類、機能性基の所望の付与量等に応じて適宜設定することができる。   In this invention, the diamine compound which has a functional group, and the diamine compound which does not have a functional group can also be used together. As a result, the characteristics and the like of the obtained polyamide fine particles can be changed. The ratio of both in this case can be appropriately set according to the type of functional group, the desired amount of functional group, and the like.

第二溶液で用いる溶媒は、実質的に前記ジアミン化合物が溶解し、かつ、生成するポリアミドが溶解しないものであれば特に制限されない。例えば、アセトン、メチルエチルケトン(MEK)、ジオキサン、アセチルアセトン、酢酸メチル等の、水あるいは水酸基を有する溶媒に可溶な溶媒が挙げられ、これらの少なくとも1種を含む溶媒を使用できる。第二溶液においては、これらの中でも、アセトン及びジオキサンの少なくとも1種を含む溶媒が好ましい。なお、用いるジアミン化合物の種類によって、アセトン等の溶媒にすぐ溶解しない場合があるが、このような場合には水又は水酸基を有するような溶媒に予め溶解させた後にアセトン等に溶解させれば良い。   The solvent used in the second solution is not particularly limited as long as it substantially dissolves the diamine compound and does not dissolve the produced polyamide. Examples thereof include solvents that are soluble in water or a solvent having a hydroxyl group, such as acetone, methyl ethyl ketone (MEK), dioxane, acetylacetone, and methyl acetate. A solvent containing at least one of these can be used. Among these, in the second solution, a solvent containing at least one of acetone and dioxane is preferable. Depending on the type of diamine compound used, it may not be dissolved immediately in a solvent such as acetone. In such a case, it may be dissolved in water or a solvent having a hydroxyl group in advance and then dissolved in acetone or the like. .

また、機能性基を有しないジアミン化合物を併用する場合には、機能性基を有するジアミン化合物の溶液(以下「溶液A」ともいう。)と、機能性基を有しないジアミン化合物の溶液(以下「溶液B」ともいう。)とを予め別々に調製した後、両者を混合することにより第二溶液を好適に調製することもできる。この場合、機能性基を有するジアミン化合物の溶液の溶媒と、機能性基を有しないジアミン化合物の溶液の溶媒とは、同じであっても良いし、互いに相溶性があれば異なっていても良い。   Moreover, when using together the diamine compound which does not have a functional group, the solution (henceforth "the solution A") of the diamine compound which has a functional group, and the solution (henceforth a diamine compound which does not have a functional group) The second solution can also be suitably prepared by separately preparing “solution B”) in advance and then mixing them together. In this case, the solvent of the solution of the diamine compound having a functional group and the solvent of the solution of the diamine compound having no functional group may be the same, or may be different as long as they are compatible with each other. .

溶液Aと溶液Bとを用いて第二溶液を調製する場合、溶液Aと溶液Bとの混合割合は、用いるジアミン化合物の種類、機能性基の種類、所望の特性等に応じて適宜設定すれば良い。   When preparing the second solution using the solution A and the solution B, the mixing ratio of the solution A and the solution B should be appropriately set according to the type of the diamine compound used, the type of the functional group, the desired characteristics, and the like. It ’s fine.

また、第二溶液の溶媒は、第一溶液の溶媒と同一であっても良いし、互いに相溶性を有していれば異なっていても良い。   The solvent of the second solution may be the same as the solvent of the first solution, or may be different as long as they are compatible with each other.

第二溶液におけるジアミン化合物の濃度は、用いるジアミン化合物の種類、第一溶液の濃度等に応じて適宜設定すれば良いが、通常は0.005〜1モル/リットル程度、好ましくは0.01〜0.5モル/リットルとする。第二溶液におけるジアミン化合物の濃度がかかる範囲内であると、粒子間の凝集及び合一が抑制でき、単分散のものが得られやすいので好ましい。上記の溶液A及び溶液Bも、同様の濃度に設定すれば良い。   The concentration of the diamine compound in the second solution may be appropriately set according to the type of diamine compound to be used, the concentration of the first solution, etc., but is usually about 0.005 to 1 mol / liter, preferably 0.01 to 0.5 mol / liter. It is preferable that the concentration of the diamine compound in the second solution be within this range because aggregation and coalescence between particles can be suppressed and a monodispersed one can be easily obtained. The solution A and the solution B may be set to the same concentration.

(2)第二工程
第二工程では、第一溶液と第二溶液とを混合し、両溶液の溶媒のいずれにも可溶である溶媒(以下、「可溶性溶媒」という場合がある)の存在下に反応を行い、混合溶液からポリアミド微粒子を析出させる。第一溶液と第二溶液との混合比率は、酸クロライド、ジアミン化合物の種類、各溶液の濃度等によって適宜変更できるが、通常は酸クロライド:ジアミン化合物=1:0.5〜1.5程度(モル比)、好ましくは1:0.9〜1.1となるような比率で混合すれば良い。
(2) Second step In the second step, the first solution and the second solution are mixed, and the presence of a solvent that is soluble in any of the solvents of the two solutions (hereinafter sometimes referred to as “soluble solvent”). Reaction is performed below to precipitate polyamide fine particles from the mixed solution. The mixing ratio of the first solution and the second solution can be appropriately changed depending on the acid chloride, the type of the diamine compound, the concentration of each solution, etc., but usually the acid chloride: diamine compound = 1: about 0.5 to 1.5. (Molar ratio), preferably in a ratio of 1: 0.9 to 1.1.

可溶性溶媒としては、第一溶液と第二溶液の溶媒のいずれにも可溶である溶媒であれば特に制限されるものではないが、水及び水酸基を有する溶媒が好ましい。具体的には、水;炭素数1〜10程度のアルコール類、例えば、メタノール、エタノール、プロパノール等の炭素数1〜10程度の1価アルコール、エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,5−ペンタンジオール等の炭素数2〜5程度の2価アルコール、1,2,3−プロパントリオール等の炭素数3〜6程度の3〜6価アルコール等が挙げられる。これらの中でも、可溶性溶媒としては、単分散性及び粒子径状の点から水を用いるのが好ましい。なお、可溶性溶媒として水や水酸基を有する溶媒を用いる場合は、第一溶液と第二溶液の溶媒は、当然、これらに可溶な溶媒である。例えば、水を用いる場合は、第一溶液と第二溶液の溶媒として水と相溶性の高いアセトン及びジオキサンを用いるのが好ましい。   The soluble solvent is not particularly limited as long as it is soluble in both the first solution and the second solution, but a solvent having water and a hydroxyl group is preferable. Specifically, water; alcohols having about 1 to 10 carbon atoms, for example, monohydric alcohols having about 1 to 10 carbon atoms such as methanol, ethanol, and propanol, ethylene glycol, 1,2-propanediol, 1,3 -C2-C5 dihydric alcohols, such as propanediol and 1,5-pentanediol, C3-C6 trivalent alcohols, such as 1,2,3-propanetriol, etc. are mentioned. Among these, as the soluble solvent, it is preferable to use water from the viewpoint of monodispersibility and particle size. In addition, when using the solvent which has water and a hydroxyl group as a soluble solvent, the solvent of a 1st solution and a 2nd solution is naturally a solvent soluble in these. For example, when water is used, it is preferable to use acetone and dioxane having high compatibility with water as the solvent for the first solution and the second solution.

可溶性溶媒は、第一溶液と第二溶液の混合直前に、第一溶液及び/又は第二溶液に加えれば良いが、第二溶液へ加えておくのが好ましい。   The soluble solvent may be added to the first solution and / or the second solution immediately before mixing the first solution and the second solution, but is preferably added to the second solution.

可溶性溶媒の添加量は、用いる酸クロライド及びジアミン化合物の種類、第一溶液及び第二溶液の濃度、得られるポリアミド微粒子の所望の(平均)粒径等に応じて適宜設定すれば良いが、通常は、第一溶液又は第二溶液100mlに対して1〜200ml程度、好ましくは1〜100ml程度である。   The addition amount of the soluble solvent may be appropriately set according to the type of acid chloride and diamine compound to be used, the concentration of the first solution and the second solution, the desired (average) particle size of the obtained polyamide fine particles, etc. Is about 1 to 200 ml, preferably about 1 to 100 ml, with respect to 100 ml of the first solution or the second solution.

可溶性溶媒を添加することによって、単分散性が高い球状微粒子を得ることが可能となる。   By adding a soluble solvent, it is possible to obtain spherical fine particles with high monodispersibility.

第二工程では、特に撹拌しながらポリアミドを析出させることが好ましい。撹拌は、公知の撹拌方法(撹拌装置)によって実施することができる。本発明では、特に超音波によって撹拌することがより好ましい。超音波による撹拌によって、通常の撹拌法に比べて平均粒径で約50%程度の微細化も可能となる。また、超音波撹拌により、粒径がより整った粒子が得られる。超音波による撹拌は、公知の超音波装置(例えば超音波洗浄器)及び操作条件をそのまま採用できる。超音波の周波数は、所望の(平均)粒径等に応じて適宜設定すれば良く、通常は28〜1000kHz程度、好ましくは28〜100kHz程度、より好ましくは28〜45kHz程度とすれば良い。   In the second step, it is particularly preferable to deposit the polyamide while stirring. Stirring can be carried out by a known stirring method (stirring device). In the present invention, it is particularly preferable to stir by ultrasonic waves. By stirring with ultrasonic waves, it is possible to reduce the average particle size by about 50% as compared with a normal stirring method. Moreover, particles with a more uniform particle size can be obtained by ultrasonic stirring. For stirring by ultrasonic waves, a known ultrasonic device (for example, an ultrasonic cleaner) and operating conditions can be employed as they are. The frequency of the ultrasonic wave may be appropriately set according to a desired (average) particle size and the like, and is usually about 28 to 1000 kHz, preferably about 28 to 100 kHz, and more preferably about 28 to 45 kHz.

第二工程における温度は、特に制限されず、通常0〜100℃程度、好ましくは0〜40℃程度とすれば良い。混合溶液を冷却し、反応速度を小さくした方が、粒径が整ったより球状に近い微粒子が得られるので、第二工程の温度は、室温(25℃)以下程度、特に0〜15℃程度がさらに好ましい。なお、撹拌はポリアミドの析出が実質的に完了するまで行えば良く、撹拌時間は、通常30秒〜30分間程度であるが、かかる範囲外となっても差し支えない。   The temperature in the second step is not particularly limited, and is usually about 0 to 100 ° C., preferably about 0 to 40 ° C. When the mixed solution is cooled and the reaction rate is reduced, fine particles having a more spherical shape than the particle diameter are obtained. Therefore, the temperature of the second step is about room temperature (25 ° C.) or less, particularly about 0 to 15 ° C. Further preferred. The stirring may be performed until the precipitation of the polyamide is substantially completed, and the stirring time is usually about 30 seconds to 30 minutes, but may be out of this range.

第二工程で沈殿生成したポリアミド微粒子は、遠心分離法等の公知の方法に従って固液分離して回収すれば良い。   The polyamide fine particles precipitated in the second step may be recovered by solid-liquid separation according to a known method such as a centrifugal separation method.

ポリアミドとしてポリアミドイミドを得ようとする場合、酸クロライドとしてトリメリット酸クロライドや無水カルボン酸として無水トリメリット酸等のポリアミドイミド合成で用いられているものを用い、第二工程で得られた微粒子に存在するカルボキシル基とアミド基を縮合してイミド化すれば良い。イミド化する方法は特に制限されないが、本発明では特に(i)有機溶媒中に分散させ、加熱(通常130℃以上、好ましくは130〜250℃程度の温度で加熱すれば良い)してイミド化する方法(熱閉環)、又は(ii)有機溶媒中における化学反応によりイミド化する方法(化学閉環)を採用することが望ましい。
2.機能性ポリアミド微粒子
本発明の機能性ポリアミド微粒子(粉末)は、球状として生成される場合は、一般には、平均粒径0.01〜5μm程度(特に0.03〜3μm程度、好ましくは0.1〜2μm、さらに好ましくは0.2〜1.8μm、さらには0.2μm以上1μm未満、最も好ましくは0.2〜0.9μm)である。
When trying to obtain polyamideimide as polyamide, use the ones used in the synthesis of polyamideimide such as trimellitic acid chloride as acid chloride and trimellitic anhydride as carboxylic anhydride, and fine particles obtained in the second step What is necessary is just to imidize by condensing the carboxyl group and amide group which exist. The method for imidization is not particularly limited. In the present invention, in particular, (i) it is dispersed in an organic solvent and heated (usually 130 ° C. or higher, preferably heated at a temperature of about 130 to 250 ° C.) for imidization. It is desirable to adopt a method (thermal ring closure) to perform (i) a method of imidization by a chemical reaction in an organic solvent (chemical ring closure).
2. Functional polyamide fine particles When the functional polyamide fine particles (powder) of the present invention are produced as a sphere, the average particle size is generally about 0.01 to 5 μm (particularly about 0.03 to 3 μm, preferably 0.1). To 2 μm, more preferably 0.2 to 1.8 μm, more preferably 0.2 μm to less than 1 μm, and most preferably 0.2 to 0.9 μm.

また、本発明の方法によれば、球状として生成されたポリアミド微粒子は、単分散に近い多孔性の球状粒子として得られ、標準偏差0.02〜0.25程度(好ましくは0.02〜0.18程度)、変動係数3〜25%程度(好ましくは3〜15%程度)の範囲にある単分散状のものである。一方、偏平状として生成されたポリアミド微粒子も、単分散に近い多孔性の粒子として得られ、標準偏差0.02〜0.25程度(好ましくは0.02〜0.18程度)、変動係数3〜25%程度(好ましくは3〜15%程度)の範囲にある単分散状のものである。   In addition, according to the method of the present invention, the polyamide fine particles produced as spheres are obtained as porous spherical particles close to monodisperse, with a standard deviation of about 0.02 to 0.25 (preferably 0.02 to 0). .18) and a coefficient of variation of about 3 to 25% (preferably about 3 to 15%). On the other hand, the polyamide fine particles produced in a flat shape are also obtained as porous particles close to monodisperse, with a standard deviation of about 0.02 to 0.25 (preferably about 0.02 to 0.18) and a coefficient of variation of 3. It is monodispersed in a range of about -25% (preferably about 3-15%).

また、本発明方法によるポリアミド微粒子(粉末)は、一般には比表面積が20m2/gを超える程度(例えば30〜300m2/g程度、特に40〜300m2/g程度、さらには50〜300m2/g程度、好ましくは60〜300m2/g程度、さらには好ましくは70〜300m2/g程度、より好ましくは80m2/gを超え300m2/g以下、最も好ましくは90〜200m2/g程度)である。 Moreover, fine polyamide particles according to the present invention a method (powder) is generally the extent that the specific surface area exceeds 20 m 2 / g (e.g. 30~300m 2 / g approximately, in particular 40 to 300 m 2 / g approximately, and even more 50 to 300 m 2 / g, preferably about 60~300M 2 / g approximately, more preferably 70~300M 2 / g, more preferably about 80 m 2 / g, greater 300 meters 2 / g or less, and most preferably 90~200M 2 / g Degree).

さらに、本発明方法によるポリアミド微粒子は、ガラス転移温度(Tg)を示すもの及びそれを示さないものの双方を包含する。一般的に、ガラス転移温度(通常250〜260℃程度)を示すポリアミド微粒子は、それを示さないポリアミド微粒子に比べ、粒子表面の凹凸が少なく、より球状に近い粒子である。   Furthermore, the polyamide fine particles by the method of the present invention include both those showing a glass transition temperature (Tg) and those showing no glass transition temperature (Tg). In general, polyamide fine particles exhibiting a glass transition temperature (usually about 250 to 260 ° C.) are particles having less irregularities on the particle surface and closer to a spherical shape than polyamide fine particles not exhibiting the same.

ポリアミド微粒子のガラス転移点の有無は、製造条件(特に、用いる酸クロライド及び/又はジアミン化合物の種類)を変更することによって適宜制御することができる。   The presence or absence of the glass transition point of the polyamide fine particles can be appropriately controlled by changing the production conditions (particularly, the type of acid chloride and / or diamine compound used).

本発明には、上記したような範囲の平均粒径、標準偏差、変動係数、比表面積等の特徴を有するポリアミドイミド微粒子も含まれる。
3.機能性ポリアミド微粒子の分析方法
本発明は、機能性ポリアミド微粒子の表面に存在する機能性基(官能基)の存在を確認する方法も包含する。具体的には、ポリアミド微粒子の表面に存在する機能性基の存在を赤外分光分析法及び/又はエネルギー分散型X線分光法による分析方法で確認する方法であって、当該分析方法に先立って当該機能性基と反応可能なシランカップリング剤でポリアミド微粒子表面を予め処理することを特徴とするポリアミド微粒子の粒子表面の分析方法に係る。
The present invention also includes polyamideimide fine particles having characteristics such as the average particle size, standard deviation, coefficient of variation, specific surface area and the like in the above-described ranges.
3. Method for Analyzing Functional Polyamide Fine Particles The present invention also includes a method for confirming the presence of a functional group (functional group) present on the surface of functional polyamide fine particles. Specifically, it is a method for confirming the presence of a functional group present on the surface of a polyamide fine particle by an infrared spectroscopic analysis method and / or an energy dispersive X-ray spectroscopic analysis method, prior to the analysis method. The present invention relates to a method for analyzing the surface of a polyamide fine particle, characterized in that the surface of the polyamide fine particle is previously treated with a silane coupling agent capable of reacting with the functional group.

シランカップリング剤としては、機能性基と反応可能なものであり、公知又は市販のシランカップリング剤から適宜選択することができる。例えば、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3―グリシドキシプロピルトリエトキシシラン、N―2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、N―2(アミノエチル)3−アミノプロピルトリメトキシシラン、N―2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−イソシアネートプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン等を挙げることができる。   The silane coupling agent can react with a functional group and can be appropriately selected from known or commercially available silane coupling agents. For example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, N- 2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-isocyanatopropyltriethoxy Examples thereof include silane, 3-mercaptopropylmethyldimethoxysilane, and 3-mercaptopropyltrimethoxysilane.

シランカップリング剤による処理方法は、ポリアミド微粒子表面にシランカップリング剤を付与できる方法であれば特に限定されない。例えば、シランカップリング剤又はその溶液にポリアミド微粒子を分散又は浸漬したり、あるいは混合又は混練すれば良い。これらの場合において、必要に応じて加熱しても良い。シランカップリング剤の濃度、ポリアミド微粒子の処理量等は、機能性基の種類、シランカップリング剤の種類等に応じて適宜定めることができる。上記処理後は、必要に応じて、遠心分離等の公知の方法により固液分離してポリアミド微粒子を回収し、必要に応じてエタノール、アセトン等の溶媒で洗浄して中性にすれば良い。   The treatment method using a silane coupling agent is not particularly limited as long as it is a method capable of applying a silane coupling agent to the surface of the polyamide fine particles. For example, polyamide fine particles may be dispersed or immersed in a silane coupling agent or a solution thereof, or mixed or kneaded. In these cases, heating may be performed as necessary. The concentration of the silane coupling agent, the treatment amount of the polyamide fine particles, and the like can be appropriately determined according to the type of functional group, the type of silane coupling agent, and the like. After the above treatment, if necessary, solid-liquid separation may be performed by a known method such as centrifugation to collect polyamide fine particles, and if necessary, neutralization may be performed by washing with a solvent such as ethanol or acetone.

本発明の分析方法としては、赤外分光分析法及び/又はエネルギー分散型X線分光法(EDX)による分析方法を用いる。これらの操作方法は、公知の操作方法に従えば良い。また、公知又は市販の装置を用いて実施することができる。   As an analysis method of the present invention, an analysis method using infrared spectroscopy and / or energy dispersive X-ray spectroscopy (EDX) is used. These operation methods may follow a known operation method. Moreover, it can implement using a well-known or commercially available apparatus.

本発明の分析方法では、例えば図10(a)に示すように、機能性基を有するジアミン化合物として3,5−ジアミノ安息香酸を用いて得られ機能性ポリアミド微粒子を用いる場合、シランカップリング剤として3―グリシドキシプロピルトリエトキシシランを付与することにより、カルボキシル基にシランカップリング剤が反応して結合した状態になる。これに対し、図10(b)のように、カルボキシル基を有しない場合は上記のような反応は起こらない。このように、機能性基にシランカップリング剤が結合した基の存在によって、ポリアミド微粒子表面上の機能性基を赤外分光分析法及び/又はエネルギー分散型X線分光法(EDX)により確認することが可能となる。確認する手順は、図11に示すような方法によって、1)機能性基を有しないポリアミド微粒子(対照)、2)機能性基を有するポリアミド微粒子(分析対象)について、両者をシランカップリング剤で処理する前の試料と処理後の試料とを用意し、これらを上記分析方法により分析し、その相違(赤外分析分光法による場合は差スペクトル、EDXによる場合はピーク差)の存在の有無により機能性基の有無を確認することができる。   In the analysis method of the present invention, for example, as shown in FIG. 10 (a), when functional polyamide fine particles obtained using 3,5-diaminobenzoic acid as a diamine compound having a functional group are used, a silane coupling agent is used. When 3-glycidoxypropyltriethoxysilane is added, the silane coupling agent reacts with and binds to the carboxyl group. On the other hand, as shown in FIG. 10 (b), when there is no carboxyl group, the above reaction does not occur. Thus, the functional group on the surface of the polyamide fine particle is confirmed by infrared spectroscopy and / or energy dispersive X-ray spectroscopy (EDX) due to the presence of the group in which the silane coupling agent is bonded to the functional group. It becomes possible. The procedure for confirmation is as follows: 1) Polyamide fine particles having no functional group (control), 2) Polyamide fine particles having a functional group (analysis target), both of which are treated with a silane coupling agent. Prepare the sample before processing and the sample after processing, and analyze them by the above analysis method. Depending on the presence or absence of the difference (difference spectrum when using infrared analysis spectroscopy, peak difference when using EDX) The presence or absence of a functional group can be confirmed.

本発明の分析方法では、シランカップリング剤と反応するものであればいずれの機能性基の定性分析を行うことができる。機能性基としては、前記のように、例えば水酸基(−OH)、カルボキシル基(−COOH)、アミノ基(−NH2)、アルケン類(−CH=CH−)、アルキン類(−C≡C−)、ビニルエーテル類(−CH=CH−O−)、アミド基(−CONH2)、ニトリル基(−C≡N)、イソシアネート基(−N=C=O)、ニトロ基(−NO2)、スルホン基(−SO3H)、チオール基(−SH)、クラウンエーテル基等の官能基のほか、−CF3基、−CCl3基、−CBr3等を挙げることができる。 In the analysis method of the present invention, any functional group can be qualitatively analyzed as long as it reacts with a silane coupling agent. As described above, examples of the functional group include a hydroxyl group (—OH), a carboxyl group (—COOH), an amino group (—NH 2 ), an alkene (—CH═CH—), and an alkyne (—C≡C). -), vinyl ethers (-CH = CH-O-), amido (-CONH 2), a nitrile group (-C≡N), isocyanate group (-N = C = O), nitro group (-NO 2) , sulfone group (-SO 3 H), thiol group (-SH), other functional groups such as crown ether group, -CF 3 group, -CCl 3 group, can be exemplified -CBr 3, and the like.

以下に実施例を示し、本発明の特徴をより一層明確にする。ただし、本発明の範囲は、実施例に限定されない。   Examples are given below to further clarify the features of the present invention. However, the scope of the present invention is not limited to the examples.

なお、実施例における超音波撹拌は超音波洗浄器「ULTRASONIC CLEANER VS-100 III SUNPAR 」を用いた。   In the examples, ultrasonic stirring was performed using an ultrasonic cleaner “ULTRASONIC CLEANER VS-100 III SUNPAR”.

本発明における各物性は次のようにしてそれぞれ測定した。   Each physical property in the present invention was measured as follows.

(1)ガラス転移温度等
ガラス転移温度(Tg)については、示差走査熱量測定法(DSC)により求めた。測定条件は、昇温速度10℃/min、窒素50ml/minとした。熱分解温度(Td)については、熱重量示差熱分析(TGDTA)により求めた。測定条件は、昇温速度10℃/min、窒素200ml/minとした。
(1) Glass transition temperature, etc. The glass transition temperature (Tg) was determined by differential scanning calorimetry (DSC). The measurement conditions were a heating rate of 10 ° C./min and nitrogen of 50 ml / min. The thermal decomposition temperature (Td) was determined by thermogravimetric differential thermal analysis (TGDTA). The measurement conditions were a temperature increase rate of 10 ° C./min and nitrogen of 200 ml / min.

(2)平均粒径等
平均粒径は、走査型電子顕微鏡(SEM)で観察し、そのSEM写真から任意の100個の微粒子を選び出し、これら微粒子の粒径の平均を下式(1)に従って求めた。
(2) Average particle size, etc. The average particle size is observed with a scanning electron microscope (SEM), 100 arbitrary fine particles are selected from the SEM photograph, and the average particle size of these fine particles is determined according to the following formula (1). Asked.

また、この平均粒径の値に基づいて下記の数式(2)及び(3)に従い標準偏差(S)、さらには数式(4)に従って変動係数(C)も求めた。変動係数が小さいほど粒径のバラツキが少ないことを示す。 Further, based on the value of the average particle diameter, the standard deviation (S) was obtained according to the following formulas (2) and (3), and the coefficient of variation (C) was also obtained according to the formula (4). The smaller the variation coefficient, the smaller the particle size variation.

(3)比表面積
比表面積は、不活性気体として窒素を用いたBET法により求めた。
(3) Specific surface area The specific surface area was determined by the BET method using nitrogen as an inert gas.

実施例1
粒子表面にアミノ基を有するポリアミド微粒子の調製
まず、第一溶液としてテレフタル酸ジクロライド0.0005 molをアセトンに溶解させた50 ml溶液(テレフタル酸ジクロライド / アセトン=0.0005 mol / 50 ml溶液という。以下同じ。)、B溶液として4,4’−ジアミノジフェニルエーテル / アセトン=0.0004 mol / 50 ml溶液、A溶液として2,4,6−トリアミノピリミジン / イオン交換水=0.0001 mol / 25 ml溶液をそれぞれ調製し、約4℃まで冷却した。
Example 1
Preparation of polyamide fine particles having amino groups on the particle surface First, as a first solution, a 50 ml solution in which 0.0005 mol of terephthalic acid dichloride is dissolved in acetone (referred to as a terephthalic acid dichloride / acetone = 0.0005 mol / 50 ml solution; the same applies hereinafter). 4,4′-diaminodiphenyl ether / acetone = 0.004 mol / 50 ml solution as solution B, and 2,4,6-triaminopyrimidine / ion exchange water = 0.0001 mol / 25 ml solution as solution A, respectively, Cooled to 4 ° C.

その後、B溶液にA溶液を加え、攪拌した。次いで、氷浴中でさらに第一溶液を混合し、周波数28 kHzの超音波で20 分間攪拌し、反応させることにより、ポリアミドを析出した。得られたポリアミドを走査型電子顕微鏡(SEM)で観察し、ポリアミドが単分散に近い球状粒子から構成されていることを確認した。そのイメージ図を図1(a)及び図1(b)に示す。このポリアミド微粒子の平均粒径は0.791μm、標準偏差0.0721、変動係数7.701 %、比表面積97.31 m2/gであった。熱分解温度(Td(5 wt% loss))は408℃であり、ガラス転移温度(Tg)は示さなかった。 Thereafter, the A solution was added to the B solution and stirred. Next, the first solution was further mixed in an ice bath, and the mixture was stirred for 20 minutes with an ultrasonic wave having a frequency of 28 kHz for reaction to precipitate polyamide. The obtained polyamide was observed with a scanning electron microscope (SEM), and it was confirmed that the polyamide was composed of spherical particles close to monodisperse. The image is shown in FIGS. 1 (a) and 1 (b). The average particle size of the polyamide fine particles was 0.791 μm, standard deviation 0.0721, coefficient of variation 7.701%, specific surface area 97.31 m 2 / g. The thermal decomposition temperature (Td (5 wt% loss)) was 408 ° C., and the glass transition temperature (Tg) was not shown.

実施例2
粒子表面にアミノ基を有するポリアミド微粒子の調製
まず、第一溶液としてイソフタル酸ジクロライド0.0005 molをジオキサンに溶解させた50 ml溶液、B溶液として4,4’−ジアミノジフェニルエーテル / ジオキサン=0.000 4mol / 50 ml溶液、A溶液として2,4,6−トリアミノピリミジン / イオン交換水=0.0001mol / 25ml溶液をそれぞれ調製し、約4℃まで冷却した。
Example 2
Preparation of polyamide fine particles having amino groups on the particle surface First, 50 ml solution in which 0.0005 mol of isophthalic acid dichloride was dissolved in dioxane as the first solution, and 4,4′-diaminodiphenyl ether / dioxane = 0.000 4 mol / 50 ml as the B solution. 2,4,6-triaminopyrimidine / ion exchange water = 0.0001 mol / 25 ml solutions were prepared as solution and solution A, respectively, and cooled to about 4 ° C.

その後、B溶液にA溶液を加え、攪拌した。次いで、氷浴中でさらに第一溶液を混合し、周波数28 kHzの超音波で20 分間攪拌し、反応させることにより、ポリアミドを析出した。得られたポリアミドを走査型電子顕微鏡(SEM)で観察し、ポリアミドが単分散に近く、表面に凹凸のある球状粒子から構成されていることを確認した。そのイメージ図を図2(a)及び図2(b)に示す。このポリアミド微粒子の平均粒径は0.762μm、標準偏差0.121、変動係数12.5 %、比表面積70.90 m2/gであった。熱分解温度(Td(5 wt% loss))は392℃であり、ガラス転移温度(Tg)は示さなかった。 Thereafter, the solution A was added to the solution B and stirred. Next, the first solution was further mixed in an ice bath, and the mixture was stirred for 20 minutes with an ultrasonic wave having a frequency of 28 kHz for reaction to precipitate polyamide. The obtained polyamide was observed with a scanning electron microscope (SEM), and it was confirmed that the polyamide was composed of spherical particles that were close to monodisperse and had irregularities on the surface. The image is shown in FIGS. 2 (a) and 2 (b). The average particle size of the polyamide fine particles was 0.762 μm, standard deviation 0.121, coefficient of variation 12.5%, specific surface area 70.90 m 2 / g. The thermal decomposition temperature (Td (5 wt% loss)) was 392 ° C., and the glass transition temperature (Tg) was not shown.

実施例3
粒子表面にカルボキシル基を有するポリアミド微粒子の調製
まず、第一溶液としてテレフタル酸ジクロライド0.0005 molをアセトンに溶解させた50 ml溶液、B溶液として4,4’−ジアミノジフェニルメタン / アセトン=0.0004 mol / 50 ml溶液、A溶液として3,5−ジアミノ安息香酸 / イオン交換水=0.0001 mol / 25 ml溶液をそれぞれ調製し、約4℃まで冷却した。
Example 3
Preparation of polyamide fine particles having carboxyl groups on the particle surface First, 50 ml solution of 0.0005 mol of terephthalic acid dichloride dissolved in acetone as the first solution, and 4,4′-diaminodiphenylmethane / acetone = 0.004 mol / 50 ml as the B solution. As solutions and A solutions, 3,5-diaminobenzoic acid / ion exchange water = 0.0001 mol / 25 ml solutions were prepared, respectively, and cooled to about 4 ° C.

その後、B溶液にA溶液を加え、攪拌した。次いで、氷浴中でさらに第一溶液を混合し、周波数28 kHzの超音波で20 分間攪拌し、反応させることにより、ポリアミドを析出した。得られたポリアミドを走査型電子顕微鏡(SEM)で観察し、ポリアミドが単分散に近く、表面に凹凸のある球状粒子から構成されていることを確認した。そのイメージ図を図3(a)及び図3(b)に示す。このポリアミド微粒子の平均粒径は1.238μm、標準偏差0.0989、変動係数9.031 %、比表面積45.72 m2/gであった。熱分解温度(Td(5 wt% loss))は411℃であり、ガラス転移温度(Tg)は示さなかった。 Thereafter, the solution A was added to the solution B and stirred. Next, the first solution was further mixed in an ice bath, and the mixture was stirred for 20 minutes with an ultrasonic wave having a frequency of 28 kHz for reaction to precipitate polyamide. The obtained polyamide was observed with a scanning electron microscope (SEM), and it was confirmed that the polyamide was composed of spherical particles that were close to monodisperse and had irregularities on the surface. The image is shown in FIGS. 3 (a) and 3 (b). The average particle diameter of the polyamide fine particles was 1.238 μm, standard deviation 0.0989, coefficient of variation 9.031%, specific surface area 45.72 m 2 / g. The thermal decomposition temperature (Td (5 wt% loss)) was 411 ° C., and the glass transition temperature (Tg) was not shown.

実施例4
粒子表面にカルボキシル基を有するポリアミド微粒子の調製
まず、第一溶液としてテレフタル酸ジクロライド0.0005 molをアセトンに溶解させた50 ml溶液、第二溶液として3,5−ジアミノ安息香酸 / (アセトン+イオン交換水)=0.0001 mol / (50+5 ml)溶液をそれぞれ調製し、約4℃まで冷却した。
Example 4
Preparation of polyamide fine particles having carboxyl groups on the particle surface First, 50 ml solution of 0.0005 mol of terephthalic acid dichloride dissolved in acetone as the first solution and 3,5-diaminobenzoic acid / (acetone + ion exchange water as the second solution) ) = 0.0001 mol / (50 + 5 ml) solutions were prepared and cooled to about 4 ° C.

次いで、氷浴中で両溶液を混合し、周波数28 kHzの超音波で20 分間攪拌し、反応させることにより、ポリアミドを析出した。得られたポリアミドを走査型電子顕微鏡(SEM)で観察し、ポリアミドが単分散に近く、表面に凹凸のある球状粒子から構成されていることを確認した。そのイメージ図を図4(a)及び図4(b)に示す。このポリアミド微粒子の平均粒径は0.988μm、標準偏差0.0915、変動係数9.512 %、比表面積 73.21 m2/gであった。熱分解温度(Td(5 wt% loss))は382℃であり、ガラス転移温度(Tg)は示さなかった。 Next, both solutions were mixed in an ice bath, stirred for 20 minutes with an ultrasonic wave having a frequency of 28 kHz, and reacted to precipitate polyamide. The obtained polyamide was observed with a scanning electron microscope (SEM), and it was confirmed that the polyamide was composed of spherical particles that were close to monodisperse and had irregularities on the surface. The image is shown in FIGS. 4 (a) and 4 (b). The average particle size of the polyamide fine particles was 0.988 μm, standard deviation 0.0915, coefficient of variation 9.512%, specific surface area 73.21 m 2 / g. The thermal decomposition temperature (Td (5 wt% loss)) was 382 ° C., and the glass transition temperature (Tg) was not shown.

実施例5
粒子表面にカルボキシル基を有するポリアミド微粒子の調製
まず、第一溶液としてテレフタル酸ジクロライド0.0005 molをアセトンに溶解させた50 ml溶液、第二溶液として3,5−ジアミノ安息香酸 / (ジオキサン+イオン交換水)=0.0001 mol / (50+2 ml)溶液をそれぞれ調製し、約4℃まで冷却した。
Example 5
Preparation of polyamide fine particles having carboxyl groups on the particle surface First, 50 ml solution of 0.0005 mol of terephthalic acid dichloride dissolved in acetone as the first solution and 3,5-diaminobenzoic acid / (dioxane + ion exchange water as the second solution) ) = 0.0001 mol / (50 + 2 ml) solutions were prepared and cooled to about 4 ° C.

次いで、氷浴中で両溶液を混合し、周波数28 kHzの超音波で20 分間攪拌し、反応させることにより、ポリアミドを析出した。得られたポリアミドを走査型電子顕微鏡(SEM)で観察し、ポリアミドが単分散に近く、表面がフラットな球状粒子から構成されていることを確認した。そのイメージ図を図5(a)及び図5(b)に示す。このポリアミド微粒子の平均粒径は0.279μm、標準偏差0.0512、変動係数9.932 %、比表面積 22.78 m2/gであった。熱分解温度(Td(5 wt% loss))は366℃であり、ガラス転移温度(Tg)は示さなかった。 Next, both solutions were mixed in an ice bath, stirred for 20 minutes with an ultrasonic wave having a frequency of 28 kHz, and reacted to precipitate polyamide. The obtained polyamide was observed with a scanning electron microscope (SEM), and it was confirmed that the polyamide was composed of spherical particles having a monodisperse and flat surface. The image is shown in FIGS. 5 (a) and 5 (b). The average particle size of the polyamide fine particles was 0.279 μm, standard deviation 0.0512, coefficient of variation 9.932%, specific surface area 22.78 m 2 / g. The thermal decomposition temperature (Td (5 wt% loss)) was 366 ° C., and the glass transition temperature (Tg) was not shown.

実施例6
粒子表面にカルボキシル基を有するポリアミド微粒子の調製
まず、第一溶液としてテレフタル酸ジクロライド0.0005 molをアセトンに溶解させた50 ml溶液、B溶液として4,4’−ジアミノジフェニルメタン / アセトン=0.0004 mol / 50 ml溶液、A溶液として3,4−ジアミノ安息香酸 / イオン交換水=0.0001 mol / 25 ml溶液をそれぞれ調製し、約4℃まで冷却した。
Example 6
Preparation of polyamide fine particles having carboxyl groups on the particle surface First, 50 ml solution of 0.0005 mol of terephthalic acid dichloride dissolved in acetone as the first solution, and 4,4′-diaminodiphenylmethane / acetone = 0.004 mol / 50 ml as the B solution. As solutions and A solutions, 3,4-diaminobenzoic acid / ion-exchanged water = 0.0001 mol / 25 ml solutions were prepared and cooled to about 4 ° C.

その後、B溶液にA溶液を加え、攪拌した。次いで、氷浴中でさらに第一溶液を混合し、周波数28 kHzの超音波で20 分間攪拌し、反応させることにより、ポリアミドを析出した。得られたポリアミドを走査型電子顕微鏡(SEMM)で観察し、ポリアミドが単分散に近い扁平粒子から構成されていることを確認した。そのイメージ図を図6(a)及び図6(b)に示す。このポリアミド微粒子の平均粒径(長軸方向)は1.322μm、標準偏差0.0893、変動係数9.202 %、比表面積41.35 m2/gであった。熱分解温度(Td(5 wt% loss))は412℃であり、ガラス転移温度(Tg)は示さなかった。 Thereafter, the solution A was added to the solution B and stirred. Next, the first solution was further mixed in an ice bath, and the mixture was stirred for 20 minutes with an ultrasonic wave having a frequency of 28 kHz for reaction to precipitate polyamide. The obtained polyamide was observed with a scanning electron microscope (SEMM), and it was confirmed that the polyamide was composed of flat particles close to monodispersion. The image is shown in FIGS. 6 (a) and 6 (b). The average particle size (major axis direction) of the polyamide fine particles was 1.322 μm, standard deviation 0.0893, coefficient of variation 9.202%, specific surface area 41.35 m 2 / g. The thermal decomposition temperature (Td (5 wt% loss)) was 412 ° C., and the glass transition temperature (Tg) was not shown.

実施例7
粒子表面にカルボキシル基を有するポリアミド微粒子の調製
まず、第一溶液としてテレフタル酸ジクロライド0.0005 molをアセトンに溶解させた50 ml溶液、B溶液として4,4’−ジアミノジフェニルメタン / アセトン=0.0003 mol / 50 ml溶液、A溶液として、3,4−ジアミノ安息香酸 / イオン交換水=0.0002 mol / 25 ml溶液をそれぞれ調製し、約4℃まで冷却した。
Example 7
Preparation of polyamide fine particles having carboxyl groups on the particle surface First, 50 ml solution of 0.0005 mol of terephthalic acid dichloride dissolved in acetone as the first solution, and 4,4′-diaminodiphenylmethane / acetone = 0.003 mol / 50 ml as the B solution. As solutions and A solutions, 3,4-diaminobenzoic acid / ion-exchanged water = 0.0002 mol / 25 ml solutions were prepared and cooled to about 4 ° C.

その後、B溶液にA溶液を加え、攪拌した。次いで、氷浴中でさらに第一溶液を混合し、周波数28 kHzの超音波で20分間攪拌し、反応させることにより、ポリアミドを析出した。得られたポリアミドを走査型電子顕微鏡(SEM)で観察し、ポリアミドが単分散に近く、表面に凹凸のある粒子から構成されていることを確認した。そのイメージ図を図7(a)及び図7(b)に示す。このポリアミド微粒子の平均粒径(長軸方向)は0.924μm、標準偏差0.121、変動係数12.306%、比表面積52.27 m2/gであった。熱分解温度(Td(5 wt% loss))は333℃であり、ガラス転移温度(Tg)は示さなかった。 Thereafter, the solution A was added to the solution B and stirred. Next, the first solution was further mixed in an ice bath, stirred for 20 minutes with ultrasonic waves having a frequency of 28 kHz, and reacted to precipitate polyamide. The obtained polyamide was observed with a scanning electron microscope (SEM), and it was confirmed that the polyamide was composed of particles that were close to monodisperse and had irregularities on the surface. The image is shown in FIGS. 7 (a) and 7 (b). The average particle diameter (major axis direction) of the polyamide fine particles was 0.924 μm, standard deviation 0.121, coefficient of variation 12.306%, specific surface area 52.27 m 2 / g. The thermal decomposition temperature (Td (5 wt% loss)) was 333 ° C., and the glass transition temperature (Tg) was not shown.

実施例8
粒子表面に水酸基を有するポリアミド微粒子の調製
まず、第一溶液としてテレフタル酸ジクロライド0.0005 molをアセトンに溶解させた50 ml溶液、B溶液として4,4’−ジアミノジフェニルメタン / アセトン=0.0004 mol / 50 ml溶液、A溶液として4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル / メタノール=0.0001 mol / 10 ml溶液をそれぞれ調製し、約4℃まで冷却した。
Example 8
Preparation of polyamide fine particles having hydroxyl groups on the particle surface First, 50 ml solution in which 0.0005 mol of terephthalic acid dichloride was dissolved in acetone as the first solution, and 4,4′-diaminodiphenylmethane / acetone = 0.004 mol / 50 ml solution as the B solution. 4,4′-diamino-3,3′-dihydroxybiphenyl / methanol = 0.0001 mol / 10 ml solutions were prepared as solutions A, respectively, and cooled to about 4 ° C.

その後、B溶液にA溶液を加え、攪拌した。次いで、氷浴中でイオン交換水10 mlを加え攪拌後、さらに第一溶液を混合し、周波数28 kHzの超音波で20 分間攪拌し、反応させることにより、ポリアミドを析出した。得られたポリアミドを走査型電子顕微鏡(SEM)で観察し、ポリアミドが単分散に近い扁平粒子から構成されていることを確認した。そのイメージ図を図8(a)及び図8(b)に示す。このポリアミド微粒子の平均粒径(長軸方向)は1.143μm、標準偏差0.0947、変動係数8.52 %、比表面積49.15m2/gであった。熱分解温度(Td(5 wt% loss))は411℃であり、ガラス転移温度(Tg)は示さなかった。 Thereafter, the solution A was added to the solution B and stirred. Subsequently, 10 ml of ion-exchanged water was added and stirred in an ice bath, and the first solution was further mixed, stirred for 20 minutes with ultrasonic waves at a frequency of 28 kHz, and reacted to precipitate polyamide. The obtained polyamide was observed with a scanning electron microscope (SEM), and it was confirmed that the polyamide was composed of flat particles close to monodispersion. The image is shown in FIGS. 8 (a) and 8 (b). The average particle size (major axis direction) of the polyamide fine particles was 1.143 μm, standard deviation 0.0947, coefficient of variation 8.52%, specific surface area 49.15 m 2 / g. The thermal decomposition temperature (Td (5 wt% loss)) was 411 ° C., and the glass transition temperature (Tg) was not shown.

実施例9
粒子表面に水酸基を有するポリアミド微粒子の調製
まず、第一溶液として4,4’ −ビフェニルジカルボニルクロリド0.0005 molをジオキサンに溶解させた50 ml溶液、B溶液として4,4’−ジアミノジフェニルエーテル / ジオキサン=0.0004mol / 50ml溶液、A溶液として2,4−ジアミノ−6−ヒドロキシピリミジン / イオン交換水=0.0001mol / 10ml溶液をそれぞれ調製し、約4℃まで冷却した。
Example 9
Preparation of polyamide fine particles having hydroxyl groups on the particle surface First, as a first solution, 50 ml solution of 0.004 mol of 4,4′-biphenyldicarbonyl chloride dissolved in dioxane, and 4,4′-diaminodiphenyl ether / dioxane = B solution As a 0.0004 mol / 50 ml solution and a solution A, 2,4-diamino-6-hydroxypyrimidine / ion-exchanged water = 0.0001 mol / 10 ml solution were prepared and cooled to about 4 ° C.

その後、B溶液にA溶液を加え、攪拌した。次いで、第一溶液を混合し、周波数28 kHzの超音波で20 分間攪拌し、反応させることにより、ポリアミドを析出した。得られたポリアミドを走査型電子顕微鏡(SEM)で観察し、ポリアミドが単分散に近い球状粒子から構成されていることを確認した。そのイメージ図を図9(a)及び図9(b)に示す。このポリアミド微粒子の平均粒径は0.657μm、標準偏差0.0793、変動係数9.892 %、比表面積65.08 m2/gであった。熱分解温度(Td(5 wt% loss))は437℃であり、ガラス転移温度(Tg)は示さなかった。 Thereafter, the solution A was added to the solution B and stirred. Next, the first solution was mixed, stirred for 20 minutes with an ultrasonic wave having a frequency of 28 kHz, and reacted to precipitate polyamide. The obtained polyamide was observed with a scanning electron microscope (SEM), and it was confirmed that the polyamide was composed of spherical particles close to monodisperse. The image is shown in FIGS. 9 (a) and 9 (b). These polyamide fine particles had an average particle size of 0.657 μm, a standard deviation of 0.0793, a coefficient of variation of 9.892%, and a specific surface area of 65.08 m 2 / g. The thermal decomposition temperature (Td (5 wt% loss)) was 437 ° C., and the glass transition temperature (Tg) was not shown.

試験例1
実施例3で得られたポリアミド微粒子の表面の機能性基を分析した。
<分析用試料の調製>
上記ポリアミド微粒子20 mgをN―メチルピロリドン2.5 ml中に入れ、超音波で約30分攪拌した。この溶液に、シランカップリング剤0.7 ml及びジ―n―ブチルスズジラウリレート 0.2 gを加え、密閉容器中約80℃で5時間反応させた後、遠心分離により上記微粒子を回収し、メタノール及びアセトンで十分洗浄した。その後、アセトン中に分散させた状態で冷蔵庫に1日静置した。このようにシランカップリング剤で処理されたポリアミド微粒子について、赤外分光分析及びFE-SEMに付随したEDX分析を行うことよって、粒子表面上の機能性基の存在を確認した。赤外分光分析装置として「Spectrum One」(パーキンエルマー社製)を、走査型電子顕微鏡(SEM)として「S-4700」(日立製作所製) を、EDX分析装置として「EMAX-7000」(堀場製作所製)を用いた。
<赤外分光分析>
実施例3で得られたポリアミド微粒子をシランカップリング剤で処理した後及び処理する前の試料の赤外スペクトルを測定した。また、比較するため、実施例3に対応する機能性基(官能基)が存在しないポリアミド微粒子についても、シランカップリング剤による処理前後の試料の赤外スペクトルを測定した。これらについて、図11(1)〜(4)に示すような手順で差スペクトルをとり、機能性基の存在を確認した。上記手順に従い、スペクトルを比較すると、
上記(1)で得られた差スペクトルは、機能性基を導入するため加えた3,5−ジアミノ安息香酸の赤外スペクトルと類似していた。
Test example 1
The functional groups on the surface of the polyamide fine particles obtained in Example 3 were analyzed.
<Preparation of sample for analysis>
20 mg of the above-mentioned polyamide fine particles were placed in 2.5 ml of N-methylpyrrolidone, and stirred with an ultrasonic wave for about 30 minutes. To this solution, 0.7 ml of a silane coupling agent and 0.2 g of di-n-butyltin dilaurate are added and reacted in an airtight container at about 80 ° C. for 5 hours. Wash thoroughly. Then, it left still in the refrigerator for 1 day in the state disperse | distributed in acetone. The polyamide fine particles treated with the silane coupling agent were subjected to infrared spectroscopic analysis and EDX analysis associated with FE-SEM to confirm the presence of functional groups on the particle surface. "Spectrum One" (manufactured by PerkinElmer) as an infrared spectrometer, "S-4700" (manufactured by Hitachi, Ltd.) as a scanning electron microscope (SEM), and "EMAX-7000" (Horiba, Ltd.) as an EDX analyzer Made).
<Infrared spectroscopic analysis>
The infrared spectrum of the sample after the polyamide fine particles obtained in Example 3 were treated with the silane coupling agent and before the treatment was measured. For comparison, the infrared spectrum of the sample before and after the treatment with the silane coupling agent was also measured for polyamide fine particles having no functional group (functional group) corresponding to Example 3. About these, the difference spectrum was taken in the procedure as shown in Drawing 11 (1)-(4), and existence of a functional group was checked. According to the above procedure, comparing the spectra,
The difference spectrum obtained in the above (1) was similar to the infrared spectrum of 3,5-diaminobenzoic acid added to introduce a functional group.

上記(2)及び(3)で得られた差スペクトルでは、約1100 cm-1付近にSiに特徴的な大きなピークが観察され、シランカップリング剤が付着していることが分かった。 In the difference spectra obtained in (2) and (3) above, a large peak characteristic of Si was observed in the vicinity of about 1100 cm −1, indicating that a silane coupling agent was attached.

上記(4)で得られた差スペクトルでは、機能性基を導入するため加えた3,5−ジアミノ安息香酸の赤外スペクトル及びSiに特徴的なピークの両方が観察された。   In the difference spectrum obtained in (4) above, both the infrared spectrum of 3,5-diaminobenzoic acid added to introduce a functional group and a peak characteristic of Si were observed.

このようなSiに基づくピークの結果から、物理吸着も生じているものの、粒子表面に機能性基も存在することが確認できた。また、上記(1)の結果より、機能性基を有するジアミンが、分子鎖中に導入されていることが分かる。
<FE−SEMを用いたEDX分析>
実施例3で得られた機能性基を有するポリアミド微粒子及び機能性基が存在しないポリアミド微粒子の両者について、シランカップリング剤で処理後、FE-SEMを用いたEDX分析を行った。その結果を図12(a)及び(b)に示す。図12(b)より、Siに基づくピークが僅かに観察されることから、多少の物理吸着がおこっていることが分かる。一方、図12(a)と(b)とを比較すると、明らかに図12(a)、つまり機能性基が存在しているポリアミド微粒子の方が、Siが多く存在していることが分かる。また、この結果は、赤外スペクトルの結果とも一致している。
From the result of such a Si-based peak, it was confirmed that a functional group was also present on the particle surface although physical adsorption occurred. Moreover, it turns out that the diamine which has a functional group is introduce | transduced in the molecular chain from the result of said (1).
<EDX analysis using FE-SEM>
Both the polyamide fine particles having a functional group and the polyamide fine particles having no functional group obtained in Example 3 were treated with a silane coupling agent and then subjected to EDX analysis using FE-SEM. The results are shown in FIGS. 12 (a) and 12 (b). From FIG. 12 (b), it can be seen that some physical adsorption occurs because the Si-based peak is slightly observed. On the other hand, comparing FIGS. 12 (a) and 12 (b), it can be clearly seen that FIG. 12 (a), that is, the polyamide fine particles in which the functional group is present, contains more Si. This result also coincides with the result of the infrared spectrum.

これらの分析結果より、実施例3では粒子表面にカルボキシル基が導入されていることがわかる。   From these analysis results, it can be seen that in Example 3, a carboxyl group was introduced on the particle surface.

図1(a)及び(b)は実施例1で得られたポリアミド微粒子の粒子形状を示す図である。1 (a) and 1 (b) are diagrams showing the particle shape of the polyamide fine particles obtained in Example 1. FIG. 図2(a)及び(b)は実施例2で得られたポリアミド微粒子の粒子形状を示す図である。FIGS. 2A and 2B are diagrams showing the particle shape of the polyamide fine particles obtained in Example 2. FIG. 図3(a)及び(b)は実施例3で得られたポリアミド微粒子の粒子形状を示す図である。3 (a) and 3 (b) are diagrams showing the particle shape of the polyamide fine particles obtained in Example 3. FIG. 図4(a)及び(b)は実施例4で得られたポリアミド微粒子の粒子形状を示す図である。4 (a) and 4 (b) are diagrams showing the particle shape of the polyamide fine particles obtained in Example 4. FIG. 図5(a)及び(b)は実施例5で得られたポリアミド微粒子の粒子形状を示す図である。FIGS. 5A and 5B are diagrams showing the particle shape of the polyamide fine particles obtained in Example 5. FIG. 図6(a)及び(b)は実施例6で得られたポリアミド微粒子の粒子形状を示す図である。6 (a) and 6 (b) are views showing the particle shape of the polyamide fine particles obtained in Example 6. FIG. 図7(a)及び(b)は実施例7で得られたポリアミド微粒子の粒子形状を示す図である。FIGS. 7A and 7B are diagrams showing the particle shape of the polyamide fine particles obtained in Example 7. FIG. 図8(a)及び(b)は実施例8で得られたポリアミド微粒子の粒子形状を示す図である。FIGS. 8A and 8B are views showing the particle shape of the polyamide fine particles obtained in Example 8. FIG. 図9(a)及び(b)は実施例9で得られたポリアミド微粒子の粒子形状を示す図である。9 (a) and 9 (b) are diagrams showing the particle shape of the polyamide fine particles obtained in Example 9. FIG. 図10(a)は機能性ポリアミド微粒子の機能性基とシランカップリング剤とが反応した状態を示す模式図である。図10(b)は機能性基を有しないポリアミド微粒子とシランカップリング剤とが反応しないことを示す模式図である。FIG. 10A is a schematic view showing a state in which the functional group of the functional polyamide fine particles reacts with the silane coupling agent. FIG. 10B is a schematic diagram showing that the polyamide fine particles having no functional group do not react with the silane coupling agent. 試験例1の分析方法の手順を示す図である。6 is a diagram illustrating a procedure of an analysis method of Test Example 1. FIG. 試験例1のEDX分析の結果を示す図である。図12(a)は、粒子表面に機能性基を有するポリアミド微粒子の分析結果を示す。図12(b)は、粒子表面に機能性基を有しないポリアミド微粒子の分析結果を示す。It is a figure which shows the result of the EDX analysis of Test Example 1. FIG. 12A shows the analysis result of the polyamide fine particles having a functional group on the particle surface. FIG. 12 (b) shows the analysis result of polyamide fine particles having no functional group on the particle surface.

Claims (13)

酸クロライド及びジアミン化合物からポリアミドを合成する方法において、
(a)酸クロライド及びジアミン化合物の少なくとも一方が機能性基を有し、かつ、当該酸クロライドを含む第一溶液と、当該ジアミン化合物を含む第二溶液とをそれぞれ調製する第一工程、及び
(b)第一溶液及び第二溶液の溶媒のいずれにも可溶である溶媒の存在下に、第一溶液と第二溶液とを混合し、混合溶液からポリアミド微粒子を析出させる第二工程、
を含むことを特徴とする機能性ポリアミド微粒子の製造方法。
In a method of synthesizing a polyamide from an acid chloride and a diamine compound,
(A) a first step in which at least one of an acid chloride and a diamine compound has a functional group and a first solution containing the acid chloride and a second solution containing the diamine compound are prepared; and b) a second step of mixing the first solution and the second solution in the presence of a solvent that is soluble in both the solvent of the first solution and the second solution and precipitating polyamide fine particles from the mixed solution;
A process for producing functional polyamide fine particles, comprising:
第二溶液が、さらに機能性基を有しないジアミン化合物を含む請求項1記載の製造方法。 The production method according to claim 1, wherein the second solution further contains a diamine compound having no functional group. 第二溶液が、機能性基を有するジアミン化合物を含む溶液と、機能性基を有しないジアミン化合物を含む溶液とを混合して得られる請求項2記載の製造方法。 The production method according to claim 2, wherein the second solution is obtained by mixing a solution containing a diamine compound having a functional group and a solution containing a diamine compound not having a functional group. 第一溶液及び第二溶液の溶媒のいずれにも可溶である溶媒が、水及び水酸基を有する溶媒の少なくとも1種である請求項1〜3のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the solvent that is soluble in both the solvent of the first solution and the second solution is at least one of water and a solvent having a hydroxyl group. 水酸基を有する溶媒が、炭素数1〜10のアルコールの少なくとも1種を含む請求項4記載の製造方法。 The manufacturing method of Claim 4 in which the solvent which has a hydroxyl group contains at least 1 sort (s) of C1-C10 alcohol. 第二工程を超音波による撹拌下で行う請求項1〜4のいずれかに記載の方法。 The method in any one of Claims 1-4 which perform a 2nd process under stirring by an ultrasonic wave. 第一溶液における溶媒が、アセトン及びジオキサンの少なくとも1種を含む請求項1〜6のいずれかに記載の方法。 The method in any one of Claims 1-6 in which the solvent in a 1st solution contains at least 1 sort (s) of acetone and a dioxane. 第二溶液における溶媒が、アセトン及びジオキサンの少なくとも1種を含む請求項1〜6のいずれかに記載の方法。 The method in any one of Claims 1-6 in which the solvent in a 2nd solution contains at least 1 sort (s) of acetone and a dioxane. 請求項1〜8のいずれかに記載の方法により得ることができる機能性ポリアミド微粒子。 Functional polyamide fine particles obtainable by the method according to claim 1. 請求項1〜8のいずれかに記載の方法において得られるポリアミド微粒子であって、平均粒径が0.01〜5μmである機能性ポリアミド微粒子。 Functional polyamide fine particles obtained by the method according to any one of claims 1 to 8 and having an average particle size of 0.01 to 5 µm. 請求項9又は10に記載の機能性ポリアミド微粒子であって、ガラス転移温度を示すことを特徴とする機能性ポリアミド微粒子。 The functional polyamide fine particles according to claim 9 or 10, wherein the functional polyamide fine particles exhibit a glass transition temperature. 請求項9又は10に記載の機能性ポリアミド微粒子であって、ガラス転移温度を示さないことを特徴とする機能性ポリアミド微粒子。 The functional polyamide fine particles according to claim 9 or 10, wherein the functional polyamide fine particles do not exhibit a glass transition temperature. ポリアミド微粒子の表面に存在する機能性基の存在を赤外分光分析法及び/又はエネルギー分散型X線分光法により確認する方法であって、当該分析方法に先立って当該機能性基と反応可能なシランカップリング剤でポリアミド微粒子表面を予め処理することを特徴とするポリアミド微粒子の粒子表面の分析方法。 A method for confirming the presence of a functional group present on the surface of a polyamide fine particle by infrared spectroscopy and / or energy dispersive X-ray spectroscopy, which can react with the functional group prior to the analysis method A method for analyzing the surface of polyamide fine particles, wherein the surface of the polyamide fine particles is pretreated with a silane coupling agent.
JP2003330576A 2003-09-22 2003-09-22 Functional polyamide fine particles and method for producing the same Expired - Lifetime JP4419013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330576A JP4419013B2 (en) 2003-09-22 2003-09-22 Functional polyamide fine particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330576A JP4419013B2 (en) 2003-09-22 2003-09-22 Functional polyamide fine particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005097370A true JP2005097370A (en) 2005-04-14
JP4419013B2 JP4419013B2 (en) 2010-02-24

Family

ID=34459498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330576A Expired - Lifetime JP4419013B2 (en) 2003-09-22 2003-09-22 Functional polyamide fine particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP4419013B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262214A (en) * 2006-03-28 2007-10-11 Osaka Prefecture Entangled polyamide and process for producing the same
JP2008127495A (en) * 2006-11-22 2008-06-05 Teijin Ltd Process for producing wholly aromatic polyamide particle
KR100991569B1 (en) 2008-08-29 2010-11-04 호서대학교 산학협력단 Method of Manufacturing Polyamide Fine Particles For Laser Sintering
WO2011062006A1 (en) 2009-11-19 2011-05-26 東レ株式会社 Process for production of polyamideimide resin microparticles, and polyamideimide resin microparticles
JP2020514457A (en) * 2016-12-22 2020-05-21 セットアップ パフォーマンス Powders of spherical, crosslinkable polyamide particles, a process for their production and their use in selective laser sintering techniques

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262214A (en) * 2006-03-28 2007-10-11 Osaka Prefecture Entangled polyamide and process for producing the same
JP2008127495A (en) * 2006-11-22 2008-06-05 Teijin Ltd Process for producing wholly aromatic polyamide particle
KR100991569B1 (en) 2008-08-29 2010-11-04 호서대학교 산학협력단 Method of Manufacturing Polyamide Fine Particles For Laser Sintering
WO2011062006A1 (en) 2009-11-19 2011-05-26 東レ株式会社 Process for production of polyamideimide resin microparticles, and polyamideimide resin microparticles
KR20120117738A (en) 2009-11-19 2012-10-24 도레이 카부시키가이샤 Process for production of polyamideimide resin microparticles, and polyamideimide resin microparticles
US9193836B2 (en) 2009-11-19 2015-11-24 Toray Industries, Inc. Process for production of polyamideimide resin microparticles, and polyamideimide resin microparticles
JP2020514457A (en) * 2016-12-22 2020-05-21 セットアップ パフォーマンス Powders of spherical, crosslinkable polyamide particles, a process for their production and their use in selective laser sintering techniques
JP7106233B2 (en) 2016-12-22 2022-07-26 セットアップ パフォーマンス エスエーエス Powder of spherical crosslinkable polyamide particles, method of production and use in selective laser sintering technology
US11891528B2 (en) 2016-12-22 2024-02-06 SETUP Performance SAS Powder of spherical crosslinkable polyamide particles, preparation process and use with the selective laser sintering technique

Also Published As

Publication number Publication date
JP4419013B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP4025943B2 (en) Functional polyamic acid fine particles, functional polyimide fine particles and methods for producing them
TWI486378B (en) Optical film, method for manufacturing optical film, transparent substrate, image display device, and solar cell
CN107443645B (en) The manufacturing method of the manufacturing method of transparent resin film and laminated body with transparent resin film
JP5530178B2 (en) Porous polyimide
JP3478977B2 (en) Polyamide acid fine particles and polyimide fine particles, and methods for producing them
Ghezelbash et al. Surface modified Al 2 O 3 in fluorinated polyimide/Al 2 O 3 nanocomposites: synthesis and characterization
CN109021233A (en) The high thermal stability composite polyimide material and preparation method thereof of the material of boron nitride nanometer containing amino functional
WO2005068556A1 (en) Carbon nanotube-dispersed polyimide composition
JP5263749B2 (en) Polyamide composite particles, polyamic acid composite particles, polyimide composite particles, and production methods thereof
JP4419013B2 (en) Functional polyamide fine particles and method for producing the same
JP4661282B2 (en) Method for producing polyamic acid fine particles and polyimide fine particles
JP4743687B2 (en) Method for producing functional polyamide fine particles
JP4304434B2 (en) Polyamide fine particles and method for producing the same
JP2950489B2 (en) Highly crystalline polyimide powder and method for producing the same
JP6322487B2 (en) Carbon catalyst and method for producing the same
JP2013007003A (en) Method for producing polyimide resin particle
JP2018505953A (en) Method for producing aromatic polyimide
JP2004010653A (en) Composite fine particle and method for producing the same
JP4999345B2 (en) Polyamide entangled body and method for producing the same
JP2004292682A (en) Polyimide particulate and its preparation process
JP5103598B2 (en) Method for producing functional polyimide fine particles
JP2008222958A (en) Manufacturing method of polyimide fine particles having metallic coating
JP2006307146A (en) Method for producing functional polyamic acid composite particle and functional polyimide composite particle
JP2004051672A (en) Polyimide fine particle and its use
JP2004083814A (en) New polyamic acid and polyimide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4419013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term