JP2005097045A - Method for manufacturing group iii nitride wafer - Google Patents

Method for manufacturing group iii nitride wafer Download PDF

Info

Publication number
JP2005097045A
JP2005097045A JP2003333479A JP2003333479A JP2005097045A JP 2005097045 A JP2005097045 A JP 2005097045A JP 2003333479 A JP2003333479 A JP 2003333479A JP 2003333479 A JP2003333479 A JP 2003333479A JP 2005097045 A JP2005097045 A JP 2005097045A
Authority
JP
Japan
Prior art keywords
layer
group iii
iii nitride
wafer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003333479A
Other languages
Japanese (ja)
Inventor
Koji Uematsu
康二 上松
Keiji Ishibashi
恵二 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003333479A priority Critical patent/JP2005097045A/en
Publication of JP2005097045A publication Critical patent/JP2005097045A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Weting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a group III nitride wafer by which a substrate part and the group III nitride wafer can be uniformly separated. <P>SOLUTION: The method for manufacturing the group III nitride wafer 20 comprises separating the wafer 1000 having the substrate part 10 in which an electroconductive group III nitride layer 30 is formed between the substrate part 10 and the group III nitride wafer 20 comprising at least one group III nitride layer, into the substrate part 10 and the group III nitride wafer 20 by decomposing the electroconductive group III nitride layer 30 by passing an electric current through the electroconductive group III nitride layer 30 in an electrolytic solution. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、III族窒化物ウエハの製造方法に関し、詳しくは、基板部からIII族窒化物ウエハを分離するIII族窒化物の製造方法に関する。   The present invention relates to a method for manufacturing a group III nitride wafer, and more particularly to a method for manufacturing a group III nitride that separates a group III nitride wafer from a substrate portion.

基板の付いていないIII族窒化物ウエハ単体を得るために、HVPE(Hydride Vapor Epitaxy;ハイドライド気相成長)法を用いて、サファイア基板またはGaN基板上にエピタキシャル成長させた厚さ10μm〜150μmの厚みを持つGaN層をレーザリフトオフ技術により、前記基板から剥離することが提案されている(非特許文献1参照。)。   In order to obtain a group III nitride wafer without a substrate, a thickness of 10 μm to 150 μm is formed by epitaxial growth on a sapphire substrate or a GaN substrate using a HVPE (Hydride Vapor Epitaxy) method. It has been proposed to peel off the GaN layer from the substrate by a laser lift-off technique (see Non-Patent Document 1).

しかし、上記レーザリフトオフにおいては、GaNが吸収する波長である355nmのハイパワーレーザを使用するため、レーザリフトオフの際の熱衝撃などにより、GaN層に欠陥が生じる。また、上記レーザリフトオフにおいては、GaNウエハの通常の大きさである直径5.08cm(2インチ)の円盤前面を均一にレーザを照射する方法がなく、GaNウエハの均一な剥離が困難である。
T.Paskova、他4名,“Growth and separation related properties of HVPE-GaN free-standing film”,J.Crystal.Growth,Netherlands,Elsevier Science,246,Dec. 2002,p.207-214
However, in the laser lift-off, since a high-power laser having a wavelength of 355 nm, which is absorbed by GaN, is used, a defect occurs in the GaN layer due to thermal shock at the time of laser lift-off. Further, in the laser lift-off, there is no method for uniformly irradiating the front surface of a disk having a diameter of 5.08 cm (2 inches), which is a normal size of the GaN wafer, and it is difficult to uniformly peel off the GaN wafer.
T. Paskova and 4 others, “Growth and separation related properties of HVPE-GaN free-standing film”, J. Crystal. Growth, Netherlands, Elsevier Science, 246, Dec. 2002, p.207-214

本発明は、大面積基板部付きIII族窒化物ウエハにおいても、基板部とIII族窒化物ウエハとを均一に分離することができるIII族窒化物ウエハの製造方法を提供することを目的とする。   It is an object of the present invention to provide a method for producing a group III nitride wafer capable of uniformly separating a substrate part and a group III nitride wafer even in a group III nitride wafer with a large area substrate part. .

本発明にかかるIII族窒化物ウエハの製造方法は、基板部と1以上のIII族窒化物層からなるIII族窒化物ウエハとの間に導電性III族窒化物層が形成されている基板部付きウエハを、電解液中で、導電性III族窒化物層に電流を流し、この導電性III族窒化物層を分解することにより、基板部とIII族窒化物ウエハとに分離することを特徴とする。   The method for producing a group III nitride wafer according to the present invention includes a substrate part in which a conductive group III nitride layer is formed between the substrate part and a group III nitride wafer comprising one or more group III nitride layers. The attached wafer is separated into a substrate part and a group III nitride wafer by flowing a current through the group III nitride layer in an electrolytic solution and decomposing the group III nitride layer. And

本発明にかかるIII族窒化物ウエハの製造方法において、導電性III族窒化物層の比抵抗を10-1Ω・cm以下とすること、導電性III族窒化物層に隣接するウエハ側隣接層および基板部側隣接層の比抵抗を導電性III族窒化物層の比抵抗の100倍以上とすることができる。また、電解液を解離する塩基性化合物を含む水溶液とし、その塩基性化合物の濃度を0.01N〜10Nとすることができる。さらに、基板部付きウエハの導電性III族窒化物層に電極を形成することができる。 In the method for producing a group III nitride wafer according to the present invention, the conductive group III nitride layer has a specific resistance of 10 −1 Ω · cm or less, and the wafer side adjacent layer adjacent to the conductive group III nitride layer In addition, the specific resistance of the substrate portion side adjacent layer can be 100 times or more the specific resistance of the conductive group III nitride layer. Moreover, it can be set as the aqueous solution containing the basic compound which dissociates electrolyte solution, and the density | concentration of the basic compound can be 0.01N-10N. Furthermore, an electrode can be formed on the conductive group III nitride layer of the wafer with the substrate portion.

本発明によれば、電解液中で導電性III族窒化物層に電流を流すことによって、導電性III族窒化物層が分解するため、大面積の基板部付きIII族窒化物ウエハにおいても、基板部とIII族窒化物ウエハとを均一に分離することができる。   According to the present invention, since the conductive group III nitride layer is decomposed by passing a current through the conductive group III nitride layer in the electrolytic solution, even in the group III nitride wafer with a large area substrate, The substrate portion and the group III nitride wafer can be separated uniformly.

本発明にかかるIII族窒化物ウエハの製造方法は、図1を参照して、基板部10と1以上のIII族窒化物層からなるIII族窒化物ウエハ20との間に導電性III族窒化物層30が形成されている基板部付きウエハ1000を、電解液1中で、導電性III族窒化物層30に電流を流し、この導電性III族窒化物層30を分解することにより、基板部10とIII族窒化物ウエハ20とに分離することを特徴とする。かかる製造方法により、基板部10から均一に分離されたIII族窒化物ウエハ20が得られる。   Referring to FIG. 1, a method for producing a group III nitride wafer according to the present invention includes a conductive group III nitride between a substrate portion 10 and a group III nitride wafer 20 composed of one or more group III nitride layers. The substrate portion-provided wafer 1000 on which the physical layer 30 is formed is passed through the conductive group III nitride layer 30 in the electrolytic solution 1 to decompose the conductive group III nitride layer 30, thereby It is characterized by being separated into a part 10 and a group III nitride wafer 20. With this manufacturing method, the group III nitride wafer 20 uniformly separated from the substrate portion 10 is obtained.

ここで、基板部とは、目的とするIII族窒化物層を成長させるための基板部となるものをいい、具体的には、サファイア基板などの異種基板の他、同種基板であるIII族窒化物基板が含まれる。また、基板部は、1層の基板層から構成されていても、2層以上の基板層から構成されていてもよい。   Here, the substrate portion refers to a substrate portion for growing a target group III nitride layer. Specifically, in addition to a heterogeneous substrate such as a sapphire substrate, a group III nitride that is the same type substrate is used. A physical substrate is included. Further, the substrate portion may be composed of a single substrate layer or may be composed of two or more substrate layers.

III族窒化物ウエハとは、1層以上のIII族窒化物層から形成されているウエハをいい、III族窒化物光デバイス、III族窒化物電子デバイスなどの一定の機能を有するIII族窒化物層の積層体も含まれる。   The group III nitride wafer refers to a wafer formed of one or more group III nitride layers, and a group III nitride having a certain function such as a group III nitride optical device or a group III nitride electronic device. Layer stacks are also included.

導電性III族窒化物層とは、Siなどの不純物を添加することにより導電性を高めたIII族窒化物層をいう。電解液中における導電性III族窒化物の分解を容易にするためには、導電性III族窒化物層の比抵抗は、10-1Ω・cm以下が好ましく、より好ましくは10-2Ω・cm以下、さらに好ましくは10-3Ω・cm以下である。 The conductive group III nitride layer refers to a group III nitride layer whose conductivity is improved by adding an impurity such as Si. In order to facilitate the decomposition of the conductive group III nitride in the electrolytic solution, the specific resistance of the conductive group III nitride layer is preferably 10 −1 Ω · cm or less, more preferably 10 −2 Ω · cm. cm or less, more preferably 10 −3 Ω · cm or less.

電解液とは、解離する塩基性化合物または酸性化合物を含む水溶液である。塩基性化合物としては、KOH、NaOHなどが挙げられ、酸性化合物としては、H2SO4、HNO3、H3PO4などが挙げられる。腐食性が小さい観点からは、塩基性化合物が好ましい。電解液として、塩基性化合物を含む水溶液を用いる場合は、塩基性化合物の濃度が0.01N〜10Nであることが好ましい。塩基性化合物の濃度が0.01N未満であると導電性III族窒化物層の分解に時間がかかり、10Nを超えると導電性III族窒化物層分解の選択性が低下し、分解反応の制御が困難となるからである。 The electrolytic solution is an aqueous solution containing a dissociating basic compound or acidic compound. Examples of basic compounds include KOH and NaOH, and examples of acidic compounds include H 2 SO 4 , HNO 3 , and H 3 PO 4 . From the viewpoint of low corrosivity, a basic compound is preferable. When an aqueous solution containing a basic compound is used as the electrolytic solution, the concentration of the basic compound is preferably 0.01N to 10N. If the concentration of the basic compound is less than 0.01N, it takes time to decompose the conductive group III nitride layer, and if it exceeds 10N, the selectivity of the decomposition of the conductive group III nitride layer decreases, and the decomposition reaction is controlled. This is because it becomes difficult.

本発明にかかるIII族窒化物ウエハの製造方法においては、図1を参照して、導電性III族窒化物層30に隣接するウエハ側隣接層21および基板部側隣接層11の比抵抗が、導電性III族窒化物層30の比抵抗の100倍以上とすることが好ましい。ウエハ側隣接層および基板部側隣接層の比抵抗が導電性III族窒化物層の比抵抗の100倍未満であると、導電性III族窒化物層分解の選択性が低下し、分解反応の制御が困難となるからである。   In the method for producing a group III nitride wafer according to the present invention, referring to FIG. 1, the specific resistance of the wafer side adjacent layer 21 adjacent to the conductive group III nitride layer 30 and the substrate portion side adjacent layer 11 is The specific resistance of the conductive group III nitride layer 30 is preferably 100 times or more. If the specific resistance of the wafer side adjacent layer and the substrate portion side adjacent layer is less than 100 times the specific resistance of the conductive group III nitride layer, the selectivity of the conductive group III nitride layer decomposition is reduced, and the decomposition reaction of This is because control becomes difficult.

また、本発明にかかるIII族窒化物ウエハの製造方法においては、図1〜図4を参照して、基板部付きウエハ100の導電性III族窒化物層30に電極2が形成されていることが好ましい。導電性III族窒化物層30に電流を流しやすくすることができる。ここで、電極2の材質としては、特に制限はないが、Ti−Al合金、In金属などが好ましく用いられる。   Moreover, in the manufacturing method of the group III nitride wafer concerning this invention, the electrode 2 is formed in the electroconductive group III nitride layer 30 of the wafer 100 with a substrate part with reference to FIGS. Is preferred. It is possible to easily pass a current through the conductive group III nitride layer 30. Here, the material of the electrode 2 is not particularly limited, but Ti—Al alloy, In metal, and the like are preferably used.

本発明について、実施例に基づいて、さらに具体的に説明する。   The present invention will be described more specifically based on examples.

(実施例1)
図2を参照して、HVPE法により、厚さ420μmのサファイア基板110上に、低温バッファ層として厚さ20nmのGaNアモルファス層109、導電層としてSiを添加した厚さ10μmの導電性GaN層300、III族窒化物ウエハとして厚さ300μmのGaN層200を順次形成した。このとき、GaNアモルファス層109の成長条件は、雰囲気温度500℃、原料ガスとして500sccmのNH3ガス、5sccmのHClガスを850℃で金属Gaに接触させて得られるGaClガスを用い、さらにキャリアガスとしてN2ガスを加えてガスの総流量は5000sccmとした。導電性GaN層300およびGaN層200の成長条件は、雰囲気温度1050℃、原料ガスとして500sccmのNH3ガス、50sccmのHClガスを850℃で金属Gaに接触させて得られるGaClガスを用い、さらにキャリアガスとしてN2ガスを加えてガスの総流量は5000sccmとした。また、導電性GaN層300におけるSiの添加濃度は1×1018cm-3とした。ここで、sccmとはガス流量の単位で、ガスの標準状態(0℃、1013hPa)におけるcm3/minのガス流量を意味する。
(Example 1)
Referring to FIG. 2, a GaN amorphous layer 109 having a thickness of 20 nm as a low-temperature buffer layer and a conductive GaN layer 300 having a thickness of 10 μm to which Si is added as a conductive layer are formed on a sapphire substrate 110 having a thickness of 420 μm by HVPE. Then, a GaN layer 200 having a thickness of 300 μm was sequentially formed as a group III nitride wafer. At this time, the growth conditions of the GaN amorphous layer 109 are an atmosphere temperature of 500 ° C., a source gas of 500 sccm of NH 3 gas, 5 sccm of HCl gas at 850 ° C., GaCl gas obtained by contacting metal Ga, and a carrier gas. N 2 gas was added and the total flow rate of the gas was set to 5000 sccm. The growth conditions of the conductive GaN layer 300 and the GaN layer 200 are as follows: the atmospheric temperature is 1050 ° C., the source gas is 500 sccm NH 3 gas, and 50 sccm HCl gas is contacted with metal Ga at 850 ° C. N 2 gas was added as a carrier gas, and the total flow rate of the gas was set to 5000 sccm. Further, the addition concentration of Si in the conductive GaN layer 300 was set to 1 × 10 18 cm −3 . Here, sccm is a unit of gas flow rate and means a gas flow rate of cm 3 / min in the standard state of gas (0 ° C., 1013 hPa).

その後、導電性GaN層300の側面に、Ti−Al合金からなる電極2を形成し、600℃で1分間の熱処理によりオーミック接触させて、基板部付きウエハ2000を得た。基板部付きウエハ2000においては、導電性GaN層の層厚が小さいため、電極2が、サファイア基板およびGaN層にまたがって形成される場合もあるが、ファサイア基板およびGaN層は、導電性GaN層に比べて比抵抗が大きいため、導電性GaNにほぼすべての電流が流れる。   Thereafter, an electrode 2 made of a Ti—Al alloy was formed on the side surface of the conductive GaN layer 300 and subjected to ohmic contact at 600 ° C. for 1 minute to obtain a wafer 2000 with a substrate part. In wafer 2000 with a substrate portion, since the layer thickness of the conductive GaN layer is small, electrode 2 may be formed across the sapphire substrate and the GaN layer. Since the specific resistance is larger than that, almost all current flows through the conductive GaN.

このようにして得られた上記の基板部付きウエハ2000のサファイア基板110、導電性GaN層300、GaN層200の比抵抗を四端子法で測定したところ、それぞれ1×1016Ω・cm、1×10-2Ω・cm、1×103Ω・cmであった。また、GaNアモルファス層109はきわめて薄いため、その比抵抗の測定は困難であった。 When the specific resistance of the sapphire substrate 110, the conductive GaN layer 300, and the GaN layer 200 of the wafer 2000 with the substrate portion obtained as described above was measured by a four-terminal method, it was 1 × 10 16 Ω · cm, × 10 −2 Ω · cm and 1 × 10 3 Ω · cm. Further, since the GaN amorphous layer 109 is extremely thin, it is difficult to measure its specific resistance.

ここで、図2と図1を対比すると、導電性GaN層300は導電性III族窒化物層30に、サファイア基板110は基板部10における基板部側隣接層11に、GaN層200はIII族窒化物ウエハ20におけるウエハ側隣接層21に該当する。ここで、基板部側において導電性GaN層300に隣接しているのは、GaNアモルファス層109とも考えられるが、このGaNアモルファス層109は厚みがきわめて薄く、電気抵抗の観点からは導電性III族窒化物層分解の選択性を高めるという基板部側隣接層11としての機能に乏しいため、GaNアモルファス層109を無視して、上記のようにサファイア基板110を基板部側隣接層11と考えることができる。そうすると、本実施例においては、導電性III族窒化物層の比抵抗に対して、基板部側隣接層11の比抵抗は1018倍、ウエハ側隣接層21の比抵抗は105倍となる。なお、本実施例における基板部付きウエハ各層の組成、層厚さ、電気特性などを表1にまとめる。 2 and 1 are compared, the conductive GaN layer 300 is the conductive group III nitride layer 30, the sapphire substrate 110 is the substrate portion side adjacent layer 11 in the substrate portion 10, and the GaN layer 200 is the group III. This corresponds to the wafer-side adjacent layer 21 in the nitride wafer 20. Here, it is considered that the GaN amorphous layer 109 is adjacent to the conductive GaN layer 300 on the substrate side, but this GaN amorphous layer 109 is extremely thin, and from the viewpoint of electrical resistance, the conductive group III Since the function as the substrate portion side adjacent layer 11 for enhancing the selectivity of the nitride layer decomposition is poor, the sapphire substrate 110 may be considered as the substrate portion side adjacent layer 11 as described above, ignoring the GaN amorphous layer 109. it can. Then, in this example, the specific resistance of the substrate-side adjacent layer 11 is 10 18 times and the specific resistance of the wafer-side adjacent layer 21 is 10 5 times the specific resistance of the conductive group III nitride layer. . Table 1 summarizes the composition, layer thickness, electrical characteristics, and the like of each layer of the wafer with the substrate portion in this example.

Figure 2005097045
Figure 2005097045

次に、図1および図2を参照して、電解液1としての1NのKOH水溶液中に基板部付きウエハ2000を浸漬して、基板部付きウエハの導電性III族窒化物層30に相当する導電性GaN層300に形成された電極2であるTi−Al電極が陽極、電解液1中の他の電極3であるPt電極が陰極となるようにして、導電性GaN層300に1mAの電流を約2時間流した。そうすると、導電性III族窒化物層30である導電性GaN層300が分解して、サファイア基板110とGaN層200が分離して、III族窒化物ウエハ20として均一な分離面を有するGaN層200が得られた。   Next, with reference to FIG. 1 and FIG. 2, the wafer with substrate portion 2000 is immersed in a 1N KOH aqueous solution as the electrolytic solution 1 to correspond to the conductive group III nitride layer 30 of the wafer with substrate portion. The Ti—Al electrode, which is the electrode 2 formed on the conductive GaN layer 300, serves as the anode, and the Pt electrode, which is the other electrode 3 in the electrolytic solution 1, serves as the cathode. For about 2 hours. Then, the conductive GaN layer 300 which is the conductive group III nitride layer 30 is decomposed, and the sapphire substrate 110 and the GaN layer 200 are separated, and the GaN layer 200 having a uniform separation surface as the group III nitride wafer 20 is separated. was gotten.

(実施例2)
図3(a)を参照して、HVPE法により、厚さ420μmのサファイア基板110上に、実施例1と同様にして、低温バッファ層として厚さ20nmのGaNアモルファス層109、導電性III族窒化物層としてSiを添加した厚さ50μmの導電性GaN層300(Si添加濃度1×1018cm-3)を形成した。その後、導電性GaN層300の端部にマスク40としてSiO2層を形成した。
(Example 2)
Referring to FIG. 3A, a GaN amorphous layer 109 having a thickness of 20 nm as a low-temperature buffer layer is formed on a sapphire substrate 110 having a thickness of 420 μm by a HVPE method in the same manner as in the first embodiment. A conductive GaN layer 300 (Si addition concentration 1 × 10 18 cm −3 ) having a thickness of 50 μm to which Si was added was formed as a physical layer. Thereafter, an SiO 2 layer was formed as a mask 40 at the end of the conductive GaN layer 300.

次に、図3(b)を参照して、マスク40が形成されていない導電性GaN層300上に、実施例1と同様にして、III族窒化物ウエハとして厚さ300μmのGaN層200を形成した。このとき、SiO2層には、窒化物層は成長しないため、SiO2層は露出したままである。その後、フッ酸でマスク40であるSiO2層をエッチングにより除去し、露出した導電性GaN層表面にTi−Al合金からなる電極2を形成し、600℃で1分間の熱処理によりオーミック接触させて、基板部付きウエハ3000を得た。本実施例では電極2を導電性GaN層300の表面に形成するため、電極2を導電性GaN層300の側面に形成した実施例1に比べて、導電性GaN層に電流を流すことがより容易になる。 Next, referring to FIG. 3B, a GaN layer 200 having a thickness of 300 μm is formed as a group III nitride wafer on the conductive GaN layer 300 on which the mask 40 is not formed in the same manner as in the first embodiment. Formed. At this time, the SiO 2 layer, since the nitride layer does not grow, the SiO 2 layer is left exposed. Thereafter, the SiO 2 layer, which is the mask 40, is removed by etching with hydrofluoric acid, and the electrode 2 made of a Ti—Al alloy is formed on the exposed surface of the conductive GaN layer, which is subjected to ohmic contact at 600 ° C. for 1 minute. A wafer 3000 with a substrate portion was obtained. In this embodiment, since the electrode 2 is formed on the surface of the conductive GaN layer 300, it is more possible to pass a current through the conductive GaN layer than in the first embodiment in which the electrode 2 is formed on the side surface of the conductive GaN layer 300. It becomes easy.

このようにして得られた上記の基板部付きウエハ3000のサファイア基板110、導電性GaN層300、GaN層200の比抵抗を四端子法で測定したところ、それぞれ1×1016Ω・cm、1×10-2Ω・cm、1×103Ω・cmであった。また、GaNアモルファス層109はきわめて薄いため、その比抵抗の測定は困難であった。 When the specific resistances of the sapphire substrate 110, the conductive GaN layer 300, and the GaN layer 200 of the wafer 3000 with the substrate portion obtained as described above were measured by a four-terminal method, 1 × 10 16 Ω · cm, × 10 −2 Ω · cm and 1 × 10 3 Ω · cm. Further, since the GaN amorphous layer 109 is extremely thin, it is difficult to measure its specific resistance.

ここで、図3と図1を対比すると、導電性GaN層300は導電性III族窒化物層30に、サファイア基板110は基板部10における基板部側隣接層11に、GaN層200はIII族窒化物ウエハ20におけるウエハ側隣接層21に該当する。ここで、実施例1で説明したのと同様に、GaNアモルファス層109は、その厚みがきわめて薄く、電気抵抗の観点からは導電性III族窒化物層分解の選択性を高めるという基板部側隣接層11としての機能に乏しいため、除外した。したがって、本実施例においては、導電性III族窒化物層の比抵抗に対して、基板部側隣接層11の比抵抗は1018倍、ウエハ側隣接層21の比抵抗は105倍となる。なお、本実施例における基板部付きウエハ各層の組成、層厚さ、電気特性などを表2にまとめる。 3 and 1 are compared, the conductive GaN layer 300 is the conductive group III nitride layer 30, the sapphire substrate 110 is the substrate portion side adjacent layer 11 in the substrate portion 10, and the GaN layer 200 is the group III. This corresponds to the wafer-side adjacent layer 21 in the nitride wafer 20. Here, as described in the first embodiment, the GaN amorphous layer 109 is extremely thin, and is adjacent to the substrate portion so as to enhance the selectivity of the conductive group III nitride layer decomposition from the viewpoint of electrical resistance. Since the function as the layer 11 was poor, it was excluded. Therefore, in this embodiment, the specific resistance of the substrate-side adjacent layer 11 is 10 18 times and the specific resistance of the wafer-side adjacent layer 21 is 10 5 times the specific resistance of the conductive group III nitride layer. . Table 2 summarizes the composition, layer thickness, electrical characteristics, and the like of each layer of the wafer with the substrate portion in this example.

Figure 2005097045
Figure 2005097045

次に、図1および図3を参照して、実施例1と同様に、基板部付きウエハ3000を1NのKOH水溶液中に浸漬して、導電性GaN層300に1mAの電流を約2時間流すと、導電性GaN層300が分解して、サファイア基板110とGaN層200とが分離して、III族窒化物ウエハ20として均一な分離面を有するGaN層200が得られた。   Next, referring to FIG. 1 and FIG. 3, similarly to Example 1, the wafer with substrate 3000 is immersed in a 1N KOH aqueous solution, and a current of 1 mA is passed through the conductive GaN layer 300 for about 2 hours. Then, the conductive GaN layer 300 was decomposed, and the sapphire substrate 110 and the GaN layer 200 were separated, and the GaN layer 200 having a uniform separation surface as the group III nitride wafer 20 was obtained.

(実施例3)
図4(a)を参照して、HVPE法により、厚さ420μmのGaN基板101上に、導電性III族窒化物層としてSiを添加した厚さ50μmの導電性GaN層300を形成した。このときの導電性GaN層の成長条件は、雰囲気温度1050℃、原料ガスとして500sccmのNH3ガス、50sccmのHClガスを850℃で金属Gaに接触させて得られるGaClガスを用い、さらにキャリアガスとしてN2ガスを加えてガスの総流量は5000sccmとした。また、導電性GaN層300におけるSiの添加濃度は1×1018cm-3とした。その後、導電性GaN層300の端部にマスク40としてSiO2層を形成した。
(Example 3)
Referring to FIG. 4A, a conductive GaN layer 300 having a thickness of 50 μm to which Si was added as a conductive group III nitride layer was formed on a GaN substrate 101 having a thickness of 420 μm by HVPE. The growth condition of the conductive GaN layer at this time is an atmosphere temperature of 1050 ° C., a source gas of 500 sccm of NH 3 gas, a gas of 50 sccm of HCl gas brought into contact with metal Ga at 850 ° C., and a carrier gas. N 2 gas was added and the total flow rate of the gas was set to 5000 sccm. Further, the addition concentration of Si in the conductive GaN layer 300 was set to 1 × 10 18 cm −3 . Thereafter, an SiO 2 layer was formed as a mask 40 at the end of the conductive GaN layer 300.

次に、図4(b)を参照して、マスク40が形成されていない導電性GaN層300上に、実施例1と同様にして、III族窒化物ウエハとして厚さ300μmのGaN層200を形成した。このとき、SiO2層には、窒化物層は成長しないため、SiO2層は露出したままである。その後、フッ酸でマスク40であるSiO2層をエッチングにより除去し、露出した導電性GaN層の表面にTi−Al合金からなる電極2を形成し、600℃で1分間の熱処理によりオーミック接触させて、基板部付きウエハ4000を得た。 Next, referring to FIG. 4B, a GaN layer 200 having a thickness of 300 μm is formed as a group III nitride wafer on the conductive GaN layer 300 on which the mask 40 is not formed in the same manner as in the first embodiment. Formed. At this time, the SiO 2 layer, since the nitride layer does not grow, the SiO 2 layer is left exposed. Thereafter, the SiO 2 layer that is the mask 40 is removed by etching with hydrofluoric acid, and the electrode 2 made of a Ti—Al alloy is formed on the exposed surface of the conductive GaN layer, which is subjected to ohmic contact at 600 ° C. for 1 minute. Thus, a wafer with a substrate 4000 was obtained.

ここで、本実施例においては、基板としてIII族窒化物であるGaN基板101を用いているため、サファイア基板を用いている実施例1および実施例2とは異なり、III族窒化物層を形成するための低温バッファ層であるGaNアモルファス層は不要であり、GaN基板101の上に直接導電性GaN層300が形成されている。   In this example, since the GaN substrate 101 which is a group III nitride is used as the substrate, the group III nitride layer is formed unlike the examples 1 and 2 using the sapphire substrate. Therefore, a GaN amorphous layer that is a low-temperature buffer layer is not necessary, and the conductive GaN layer 300 is formed directly on the GaN substrate 101.

このようにして得られた基板部付きウエハ4000のGaN基板101、導電性GaN層300、GaN層200の比抵抗を四端子法で測定したところ、それぞれ1×103Ω・cm、1×10-2Ω・cm、1×103Ω・cmであった。 When the specific resistances of the GaN substrate 101, the conductive GaN layer 300, and the GaN layer 200 of the wafer with substrate 4000 thus obtained were measured by the four-terminal method, they were 1 × 10 3 Ω · cm and 1 × 10 respectively. -2 Ω · cm, 1 × 10 3 Ω · cm.

ここで、図4と図1を対比すると、導電性GaN層300は導電性III族窒化物層30に、GaN基板101は基板部10における基板部側隣接層11に、GaN層200はIII族窒化物ウエハ20におけるウエハ側隣接層21に該当する。したがって、本実施例においては、導電性III族窒化物層の比抵抗に対して、基板部側隣接層11の比抵抗は105倍、ウエハ側隣接層21の比抵抗は105倍となる。なお、本実施例における基板部付きウエハ各層の組成、層厚さ、電気特性などを表3にまとめる。 4 and 1 are compared, the conductive GaN layer 300 is the conductive group III nitride layer 30, the GaN substrate 101 is the substrate portion side adjacent layer 11 in the substrate portion 10, and the GaN layer 200 is the group III. This corresponds to the wafer-side adjacent layer 21 in the nitride wafer 20. Therefore, in this embodiment, the specific resistance of the substrate-side adjacent layer 11 is 10 5 times and the specific resistance of the wafer-side adjacent layer 21 is 10 5 times the specific resistance of the conductive group III nitride layer. . Table 3 summarizes the composition, layer thickness, electrical characteristics, and the like of each layer of the wafer with the substrate portion in this example.

Figure 2005097045
Figure 2005097045

次に、図1および図4を参照して、実施例1と同様に、基板部付きウエハ4000を1NのKOH水溶液中に浸漬して、導電性GaN層300に1mAの電流を約2時間流すと、導電性GaN層300が分解して、GaN基板101とGaN層200とが分離して、III族窒化物ウエハ20として均一な分離面を有するGaN層200が得られた。   Next, referring to FIG. 1 and FIG. 4, similarly to Example 1, the wafer with a substrate 4000 is immersed in a 1N KOH aqueous solution, and a current of 1 mA is passed through the conductive GaN layer 300 for about 2 hours. Then, the conductive GaN layer 300 was decomposed, and the GaN substrate 101 and the GaN layer 200 were separated, and the GaN layer 200 having a uniform separation surface as the group III nitride wafer 20 was obtained.

(実施例4)
図5(a)を参照して、HVPE法により、厚さ420μmのサファイア基板110上に、実施例1と同様にして、低温バッファ層として厚さ20nmのGaNアモルファス層109、導電性III族窒化物層としてSiを添加した厚さ3.5μmの導電性GaN層300を形成した。ただし、本実施例においては、導電性GaN層300におけるSi添加濃度は5×1018cm-3とした。Siその後、導電性GaN層300の端部にマスク40としてSiO2層を形成した。
Example 4
Referring to FIG. 5A, a GaN amorphous layer 109 having a thickness of 20 nm as a low-temperature buffer layer is formed on a sapphire substrate 110 having a thickness of 420 μm by a HVPE method in the same manner as in Example 1. A conductive GaN layer 300 having a thickness of 3.5 μm to which Si was added was formed as a physical layer. However, in this example, the Si addition concentration in the conductive GaN layer 300 was 5 × 10 18 cm −3 . After that, a SiO 2 layer was formed as a mask 40 at the end of the conductive GaN layer 300.

次に、図5(b)を参照して、マスク40が形成されていない導電性GaN層300上に、実施例1と同様にして、HVPE法により厚さ1μmのGaN層201およびn型コンタクト層として厚さ2μmのSi添加GaN層202を形成した。ただし、本実施例においては、Si添加GaN層202におけるSi添加濃度は5×1018cm-3とした。 Next, referring to FIG. 5B, on the conductive GaN layer 300 where the mask 40 is not formed, the GaN layer 201 having a thickness of 1 μm and the n-type contact are formed by the HVPE method in the same manner as in the first embodiment. A Si-doped GaN layer 202 having a thickness of 2 μm was formed as a layer. However, in this example, the Si addition concentration in the Si-added GaN layer 202 was 5 × 10 18 cm −3 .

その後、MOCVD法を用いて、Si添加GaN層202上に、第1の障壁層として厚さ15nmの第1のIn0.01Ga0.99N層203、井戸層として厚さ2nmのIn0.15Ga0.85N層204、第2の障壁層として厚さ15nmの第2のIn0.01Ga0.99N層205、p型クラッド層として厚さ20nmのMg添加Al0.15Ga0.85N層206(Mg添加濃度は5×1017cm-3)、p型コンタクト層として厚さ50nmのMg添加GaN層207(Mg添加濃度1×1018cm-3)を順次形成した。このとき、第1のIn0.01Ga0.99N層203、In0.15Ga0.85N層204および第2のIn0.01Ga0.99N層205の成長に際しては、III族源としてTMG(トリメチルガリウム)およびTMI(トリメチルインジウム)を、N源としてNH3を、キャリアガスとしてN2ガスを用い、成長温度800℃、成長圧力100kPaとした。Mg添加Al0.15Ga0.85N層206の成長の際しては、III族源としてTMG、TMA(トリメチルアルミニウム)を、N源としてNH3を、Mg源としてCp2Mg(ビスサイクロペンタジエチルマグネシウム)を、キャリアガスとしてH2ガスを用い、成長温度1100℃、成長圧力100kPaとした。Mg添加GaN層207の成長に際しては、III族源としてTMGを、N源としてNH3を、Mg源としてCp2Mgを、キャリアガスとしてH2ガスを用い、成長温度1100℃、成長圧力100kPaとした。 Then, using MOCVD, on the Si-doped GaN layer 202, a first In 0.01 Ga 0.99 N layer 203 having a thickness of 15 nm as a first barrier layer and an In 0.15 Ga 0.85 N layer having a thickness of 2 nm as a well layer are formed. 204, a second In 0.01 Ga 0.99 N layer 205 having a thickness of 15 nm as a second barrier layer, and an Mg-added Al 0.15 Ga 0.85 N layer 206 having a thickness of 20 nm as a p-type cladding layer (Mg added concentration is 5 × 10 17). cm −3 ) and a Mg-doped GaN layer 207 (Mg addition concentration 1 × 10 18 cm −3 ) having a thickness of 50 nm were sequentially formed as a p-type contact layer. At this time, during the growth of the first In 0.01 Ga 0.99 N layer 203, the In 0.15 Ga 0.85 N layer 204 and the second In 0.01 Ga 0.99 N layer 205, TMG (trimethylgallium) and TMI (trimethyl) are used as group III sources. Indium), NH 3 as an N source, N 2 gas as a carrier gas, a growth temperature of 800 ° C., and a growth pressure of 100 kPa. In the growth of the Mg-added Al 0.15 Ga 0.85 N layer 206, TMG, TMA (trimethylaluminum) as a group III source, NH 3 as an N source, and Cp 2 Mg (biscyclopentadiethylmagnesium) as an Mg source The carrier gas was H 2 gas, the growth temperature was 1100 ° C., and the growth pressure was 100 kPa. In the growth of the Mg-added GaN layer 207, TMG is used as a group III source, NH 3 is used as an N source, Cp 2 Mg is used as an Mg source, H 2 gas is used as a carrier gas, a growth temperature is 1100 ° C., and a growth pressure is 100 kPa. did.

導電性GaN層上に上記窒化物層を形成する間、SiO2層には、窒化物層は成長しないため、SiO2層は露出したままである。その後、フッ酸でマスク40であるSiO2層をエッチングにより除去し、露出した導電性GaN層の表面にTi−Al合金からなる電極2を形成し、600℃で1分間の熱処理によりオーミック接触させて、基板部付きウエハ5000を得た。 During the formation of the nitride layer on the conductive GaN layer, the SiO 2 layer, since the nitride layer does not grow, the SiO 2 layer is left exposed. Thereafter, the SiO 2 layer that is the mask 40 is removed by etching with hydrofluoric acid, and the electrode 2 made of a Ti—Al alloy is formed on the exposed surface of the conductive GaN layer, which is subjected to ohmic contact at 600 ° C. for 1 minute. Thus, a wafer with a substrate part 5000 was obtained.

このようにして得られた上記の基板部付きウエハ5000のサファイア基板110、導電性GaN層300、GaN層201、Si添加GaN層202の比抵抗を四端子法で測定したところ、それぞれ1×1016Ω・cm、1.25×10-2Ω・cm、5×104Ω・cm、1.25×10-2Ω・cmであった。また、GaNアモルファス層109、第1のIn0.01Ga0.99N層203、In0.15Ga0.85N層204、第2のIn0.01Ga0.99N層205、Mg添加Al0.15Ga0.85N層206およびMg添加GaN層207はきわめて薄いため、その比抵抗の測定は困難であった。 When the specific resistances of the sapphire substrate 110, the conductive GaN layer 300, the GaN layer 201, and the Si-added GaN layer 202 of the wafer 5000 with the substrate portion thus obtained were measured by a four-terminal method, 1 × 10 4 respectively. They were 16 Ω · cm, 1.25 × 10 −2 Ω · cm, 5 × 10 4 Ω · cm, and 1.25 × 10 −2 Ω · cm. The GaN amorphous layer 109, the first In 0.01 Ga 0.99 N layer 203, the In 0.15 Ga 0.85 N layer 204, the second In 0.01 Ga 0.99 N layer 205, the Mg-added Al 0.15 Ga 0.85 N layer 206, and the Mg-added GaN Since the layer 207 is extremely thin, it has been difficult to measure its specific resistance.

ここで、図5と図1を対比すると、導電性GaN層300は導電性III族窒化物層30に、サファイア基板110は基板部10における基板部側隣接層11に、GaN層201はIII族窒化物ウエハ20におけるウエハ側隣接層21に該当する。ここで、実施例1で説明したのと同様に、GaNアモルファス層109は、その厚みがきわめて薄く、電気抵抗の観点からは導電性III族窒化物層分解の選択性を高めるという基板部側隣接層11としての機能に乏しいため、除外した。そうすると、本実施例においては、導電性III族窒化物層の比抵抗に対して、基板部側隣接層11の比抵抗は8×1017倍、ウエハ側隣接層21の比抵抗は4×106倍となる。なお、本実施例における基板部付きウエハ各層の組成、層厚さ、電気特性などを表4にまとめる。 5 and 1 are compared, the conductive GaN layer 300 is the conductive group III nitride layer 30, the sapphire substrate 110 is the substrate portion side adjacent layer 11 in the substrate portion 10, and the GaN layer 201 is the group III. This corresponds to the wafer-side adjacent layer 21 in the nitride wafer 20. Here, as described in the first embodiment, the GaN amorphous layer 109 is extremely thin, and is adjacent to the substrate portion so as to enhance the selectivity of the conductive group III nitride layer decomposition from the viewpoint of electrical resistance. Since the function as the layer 11 was poor, it was excluded. Then, in this embodiment, the specific resistance of the substrate-side adjacent layer 11 is 8 × 10 17 times the specific resistance of the conductive group III nitride layer, and the specific resistance of the wafer-side adjacent layer 21 is 4 × 10. 6 times. Table 4 summarizes the composition, layer thickness, electrical characteristics, and the like of each layer of the wafer with the substrate portion in this example.

Figure 2005097045
Figure 2005097045

次に、図1および図5を参照して、実施例1と同様に基板部付きウエハ5000を1NのKOH水溶液中に浸漬して、導電性GaN層300に10mAの電流を約2時間流すと、導電性GaN層300が分解して、サファイア基板110とGaN層201とが分離して、均一な分離面を有するIII族窒化物ウエハ20としてGaN層201、Si添加GaN層202、第1のIn0.01Ga0.99N層203、In0.15Ga0.85N層204、第2のIn0.01Ga0.99N層205、Mg添加Al0.15Ga0.85N層206およびMg添加GaN層207からなるSQW(Single Quantum Well;単一量子井戸)構造を有するIII族窒化物光デバイスが得られた。 Next, referring to FIG. 1 and FIG. 5, when the wafer with a substrate 5000 is immersed in a 1N KOH aqueous solution and a current of 10 mA is passed through the conductive GaN layer 300 for about 2 hours as in the first embodiment. Then, the conductive GaN layer 300 is decomposed, and the sapphire substrate 110 and the GaN layer 201 are separated, and the GaN layer 201, the Si-added GaN layer 202, and the first group III nitride wafer 20 having a uniform separation surface are formed. SQW (Single Quantum Well) comprising In 0.01 Ga 0.99 N layer 203, In 0.15 Ga 0.85 N layer 204, second In 0.01 Ga 0.99 N layer 205, Mg-added Al 0.15 Ga 0.85 N layer 206 and Mg-added GaN layer 207; A group III nitride optical device having a (single quantum well) structure was obtained.

ここで、Si添加GaN層202は、その比抵抗が1.25×10-2Ω・cmと導電性GaN層と同等の導電性を有するが、電極2が形成されずまた直接電流を流してしないため、電解液である上記の1NのKOH水溶液に浸漬されていても、Si添加GaN層202が分解されることはほとんど認められなかった。すなわち、本発明においては、高い導電性を有する層が2層以上あっても、分離させようとする位置に形成された導電層のみに電流を流すことにより、その導電層のみを分解して、所望の位置において分離されたIII窒化物ウエハを得ることができる。 Here, the Si-added GaN layer 202 has a specific resistance of 1.25 × 10 −2 Ω · cm, which is equivalent to that of the conductive GaN layer, but the electrode 2 is not formed, and a direct current flows. Therefore, even when immersed in the 1N KOH aqueous solution as the electrolytic solution, it was hardly recognized that the Si-added GaN layer 202 was decomposed. That is, in the present invention, even if there are two or more layers having high conductivity, by flowing current only through the conductive layer formed at the position to be separated, only the conductive layer is decomposed, A III-nitride wafer separated at a desired position can be obtained.

なお、本実施例は、III族窒化物ウエハ20として、SQW(Single Quantum Well;単一量子井戸)構造を有するIII族窒化物光デバイスの例を挙げたが、本発明は、SQW構造のIII族窒化物光デバイスに限られず、MQW(Multiple Quantum Well;多重量子井戸)構造を有するIII族窒化物光デバイス、その他、III族窒化物電子デバイスの製造にも広く適用できる。   In this embodiment, an example of a group III nitride optical device having an SQW (Single Quantum Well) structure as the group III nitride wafer 20 has been described. The present invention is not limited to group nitride optical devices, and can be widely applied to the production of group III nitride optical devices having an MQW (Multiple Quantum Well) structure and other group III nitride electronic devices.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

上記のように、本発明は、大面積の基板部付きIII族窒化物ウエハにおいても基板部とIII族窒化物ウエハとを均一に分離することを可能とするため、基板部の付いていないIII族窒化物ウエハ単体の製造に広く利用することができる。   As described above, the present invention makes it possible to uniformly separate a substrate portion and a group III nitride wafer even in a group III nitride wafer with a substrate portion having a large area. The present invention can be widely used for manufacturing a group nitride wafer alone.

本発明にかかるIII族窒化物ウエハの製造方法におけるIII族窒化物ウエハと基板部との分離方法を説明する図である。It is a figure explaining the isolation | separation method of the group III nitride wafer and a board | substrate part in the manufacturing method of the group III nitride wafer concerning this invention. 本発明において用いられる一の基板部付きウエハを示す図である。It is a figure which shows one wafer with a board | substrate part used in this invention. 本発明において用いられる別の基板部付きウエハの製造工程を示す図である。It is a figure which shows the manufacturing process of another wafer with a board | substrate part used in this invention. 本発明において用いられるまた別の基板部付きウエハの製造工程を示す図である。It is a figure which shows the manufacturing process of another wafer with a board | substrate part used in this invention. 本発明において用いられるさらに別の基板部付きウエハの製造工程を示す図である。It is a figure which shows the manufacturing process of another wafer with a board | substrate part used in this invention.

符号の説明Explanation of symbols

1 電解液、2 電極、3 他の電極、10 基板部、11 基板部側隣接層、12 基板部側隣接層以外の基板部、20 III族窒化物ウエハ、21 ウエハ側隣接層、22 ウエハ側隣接層以外のIII族窒化物ウエハ、30 導電性III族窒化物層、101 GaN基板、109 GaNアモルファス層、110 サファイア基板、200,201 GaN層、202 Si添加GaN層、203 第1のIn0.01Ga0.99N層、204 In0.15Ga0.85N層、205 第2のIn0.01Ga0.99N層、206 Mg添加Al0.15Ga0.85N層、207 Mg添加GaN層、300 導電性GaN層、1000,2000,3000,4000,5000 基板部付きウエハ。 DESCRIPTION OF SYMBOLS 1 Electrolyte solution, 2 electrodes, 3 other electrodes, 10 board | substrate part, 11 board | substrate side adjacent layer, 12 board | substrate parts other than board | substrate side adjacent layer, 20 group III nitride wafer, 21 wafer side adjacent layer, 22 wafer side Group III nitride wafer other than adjacent layer, 30 conductive group III nitride layer, 101 GaN substrate, 109 GaN amorphous layer, 110 sapphire substrate, 200, 201 GaN layer, 202 Si-added GaN layer, 203 1st In 0.01 Ga 0.99 N layer, 204 In 0.15 Ga 0.85 N layer, 205 Second In 0.01 Ga 0.99 N layer, 206 Mg-added Al 0.15 Ga 0.85 N layer, 207 Mg-added GaN layer, 300 Conductive GaN layer, 1000, 2000, 3000, 4000, 5000 Wafer with substrate.

Claims (5)

基板部と1以上のIII族窒化物層からなるIII族窒化物ウエハとの間に導電性III族窒化物層が形成されている基板部付きウエハを、電解液中で、前記導電性III族窒化物層に電流を流し、前記導電性III族窒化物層を分解することにより、前記基板部と前記III族窒化物ウエハとに分離することを特徴とするIII族窒化物ウエハの製造方法。   A wafer with a substrate part in which a conductive group III nitride layer is formed between a substrate part and a group III nitride wafer composed of one or more group III nitride layers is made of the conductive group III in an electrolytic solution. A method of manufacturing a group III nitride wafer, wherein an electric current is passed through the nitride layer to decompose the conductive group III nitride layer, thereby separating the substrate portion and the group III nitride wafer. 導電性III族窒化物層の比抵抗が10-1Ω・cm以下である請求項1に記載のIII族窒化物ウエハの製造方法。 The method for producing a group III nitride wafer according to claim 1, wherein the specific resistance of the conductive group III nitride layer is 10 -1 Ω · cm or less. 導電性III族窒化物層に隣接するウエハ側隣接層および基板部側隣接層の比抵抗が、導電性III族窒化物層の比抵抗の100倍以上である請求項1または請求項2に記載のIII族窒化物ウエハの製造方法。   The specific resistance of the wafer side adjacent layer and the substrate part side adjacent layer adjacent to the conductive group III nitride layer is 100 times or more the specific resistance of the conductive group III nitride layer. A method for producing a group III nitride wafer of 電解液が、解離する塩基性化合物を含む水溶液であって、塩基性化合物の濃度が0.01N〜10Nである請求項1〜請求項3のいずれかに記載のIII族窒化物ウエハの製造方法。   The method for producing a group III nitride wafer according to any one of claims 1 to 3, wherein the electrolytic solution is an aqueous solution containing a dissociating basic compound, and the concentration of the basic compound is 0.01N to 10N. . 基板部付きウエハの導電性III族窒化物層には電極が形成されている請求項1〜請求項4のいずれかに記載のIII族窒化物ウエハの製造方法。   The method for producing a group III nitride wafer according to any one of claims 1 to 4, wherein an electrode is formed on the conductive group III nitride layer of the wafer with a substrate portion.
JP2003333479A 2003-09-25 2003-09-25 Method for manufacturing group iii nitride wafer Withdrawn JP2005097045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003333479A JP2005097045A (en) 2003-09-25 2003-09-25 Method for manufacturing group iii nitride wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003333479A JP2005097045A (en) 2003-09-25 2003-09-25 Method for manufacturing group iii nitride wafer

Publications (1)

Publication Number Publication Date
JP2005097045A true JP2005097045A (en) 2005-04-14

Family

ID=34461479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333479A Withdrawn JP2005097045A (en) 2003-09-25 2003-09-25 Method for manufacturing group iii nitride wafer

Country Status (1)

Country Link
JP (1) JP2005097045A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315949A (en) * 2005-05-12 2006-11-24 Samsung Corning Co Ltd Single-crystal gallium nitride substrate
JP2009200337A (en) * 2008-02-22 2009-09-03 Sumitomo Electric Ind Ltd Group iii nitride light emitting element, and method of manufacturing group iii nitride-based semiconductor light emitting element
JP2010510166A (en) * 2006-11-22 2010-04-02 エス.オー.アイ.テック シリコン オン インシュレータ テクノロジーズ Gallium trichloride injection system
JP2010232423A (en) * 2009-03-27 2010-10-14 Fujitsu Ltd Method for manufacturing semiconductor device
JP2011009521A (en) * 2009-06-26 2011-01-13 Fujitsu Ltd Semiconductor device and method for manufacturing the same
JP2011079728A (en) * 2009-09-14 2011-04-21 Sumitomo Electric Ind Ltd Method for forming nitride semiconductor epitaxial layer, and method for manufacturing nitride semiconductor device
JP2012188342A (en) * 2011-03-08 2012-10-04 Jiaotong Univ Method of manufacturing semiconductor device
US20130104802A1 (en) * 2006-11-22 2013-05-02 Soitec Gallium trichloride injection scheme
US9481944B2 (en) 2006-11-22 2016-11-01 Soitec Gas injectors including a funnel- or wedge-shaped channel for chemical vapor deposition (CVD) systems and CVD systems with the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315949A (en) * 2005-05-12 2006-11-24 Samsung Corning Co Ltd Single-crystal gallium nitride substrate
JP4717712B2 (en) * 2005-05-12 2011-07-06 サムスンコーニング精密素材株式会社 Gallium nitride single crystal substrate and semiconductor device
JP2010510166A (en) * 2006-11-22 2010-04-02 エス.オー.アイ.テック シリコン オン インシュレータ テクノロジーズ Gallium trichloride injection system
US20130104802A1 (en) * 2006-11-22 2013-05-02 Soitec Gallium trichloride injection scheme
US9481944B2 (en) 2006-11-22 2016-11-01 Soitec Gas injectors including a funnel- or wedge-shaped channel for chemical vapor deposition (CVD) systems and CVD systems with the same
US9481943B2 (en) * 2006-11-22 2016-11-01 Soitec Gallium trichloride injection scheme
JP2009200337A (en) * 2008-02-22 2009-09-03 Sumitomo Electric Ind Ltd Group iii nitride light emitting element, and method of manufacturing group iii nitride-based semiconductor light emitting element
US7968864B2 (en) 2008-02-22 2011-06-28 Sumitomo Electric Industries, Ltd. Group-III nitride light-emitting device
JP2010232423A (en) * 2009-03-27 2010-10-14 Fujitsu Ltd Method for manufacturing semiconductor device
JP2011009521A (en) * 2009-06-26 2011-01-13 Fujitsu Ltd Semiconductor device and method for manufacturing the same
JP2011079728A (en) * 2009-09-14 2011-04-21 Sumitomo Electric Ind Ltd Method for forming nitride semiconductor epitaxial layer, and method for manufacturing nitride semiconductor device
JP2012188342A (en) * 2011-03-08 2012-10-04 Jiaotong Univ Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US8383493B2 (en) Production of semiconductor devices
US8329489B2 (en) Method for manufacturing semiconductor light emitting device
TWI323044B (en)
US8415180B2 (en) Method for fabricating wafer product and method for fabricating gallium nitride based semiconductor optical device
US9153648B2 (en) Semiconductor stacked body, method for manufacturing same, and semiconductor element
JP2006347863A (en) Manufacturing method of group 3-5 nitride semiconductor laminated substrate, and group 3-5 nitride semiconductor independence substrate, and semiconductor element
US8125001B2 (en) Method for manufacturing gallium oxide based substrate, light emitting device, and method for manufacturing the light emitting device
TW498562B (en) Semiconductor device and method of manufacturing the same
TWI463910B (en) A nitride semiconductor multilayer structure, and an optical semiconductor device and a method for manufacturing the same
JP2007115887A (en) Nitride semiconductor element and its manufacturing method
JP4444230B2 (en) Gallium nitride semiconductor device
JP2005097045A (en) Method for manufacturing group iii nitride wafer
KR20130086729A (en) Method for preparing high efficiency light emitting diode thereof
TW201010147A (en) Light emitting diode device and method for fabricating thereof
JP2001291703A (en) Method of manufacturing semiconductor device
JP2015525973A (en) Reduction or elimination of nanopipe defects in III-nitride structures
JP4416044B1 (en) Method for fabricating p-type gallium nitride based semiconductor, method for fabricating nitride based semiconductor element, and method for fabricating epitaxial wafer
CN101276864A (en) Luminous element
TW385493B (en) Method for manufacturing group III-V compound semiconductor
JP5131889B2 (en) Method of manufacturing nitride compound semiconductor device
US9859457B2 (en) Semiconductor and template for growing semiconductors
US20160056327A1 (en) Nitride light emitting element and method for manufacturing the same
JP2006066892A (en) Light emitting element and manufacturing method thereof
JP3566476B2 (en) Method for manufacturing semiconductor light emitting device
JP2006140530A (en) Method of manufacturing p-type nitride semiconductor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205