JP2005097005A - Cement production method - Google Patents

Cement production method Download PDF

Info

Publication number
JP2005097005A
JP2005097005A JP2003314996A JP2003314996A JP2005097005A JP 2005097005 A JP2005097005 A JP 2005097005A JP 2003314996 A JP2003314996 A JP 2003314996A JP 2003314996 A JP2003314996 A JP 2003314996A JP 2005097005 A JP2005097005 A JP 2005097005A
Authority
JP
Japan
Prior art keywords
cement
raw material
mercury
exhaust gas
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003314996A
Other languages
Japanese (ja)
Other versions
JP4398206B2 (en
Inventor
Genji Taga
玄治 多賀
Yasuichi Jo
安市 城
Takashi Takemoto
隆志 武本
Akinori Nakamura
明則 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2003314996A priority Critical patent/JP4398206B2/en
Publication of JP2005097005A publication Critical patent/JP2005097005A/en
Application granted granted Critical
Publication of JP4398206B2 publication Critical patent/JP4398206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cement production method capable of producing cement while preventing toxic substances such as mercury or dioxins from accumulating in a cement production facility. <P>SOLUTION: In the cement production method wherein the combustion exhaust gas produced in a rotary kiln 1 for firing a cement raw material A is discharged from a chimney 5 after it is passed through a preheater 2 for preheating the cement raw material A, a drier 3 for drying the cement raw material A and a dust collector 4, part of the exhaust gas passing through a pipe or an apparatus present between the exit of the preheater 2 and the chimney 5 and having a temperature of 350°C or higher is extracted, and toxic substances such as mercury or dioxins contained in the gas are condensed and removed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、セメントの新規な製造方法に関する。詳しくは、セメント原料のドライヤー、プレヒーター及び焼成用ロータリーキルンを備えたセメント製造設備によってセメントを製造する際、該設備内に蓄積する水銀、ダイオキシン等の有害物質が蓄積するのを効果的に防止することを可能としたセメントの製造方法を提供するものである。   The present invention relates to a novel method for producing cement. Specifically, when cement is produced by a cement production facility equipped with a cement raw material dryer, preheater and firing rotary kiln, it effectively prevents the accumulation of harmful substances such as mercury and dioxin accumulated in the facility. The present invention provides a method for producing cement that makes it possible.

近年、セメント製造設備において廃棄物をセメント原料或いは燃料の一部として使用することにより、資源の有効利用を図る試みが成されつつある。   In recent years, attempts have been made to effectively use resources by using waste as part of cement raw material or fuel in cement manufacturing facilities.

このような環境下にあって、廃プラスチック等の燃料系、石炭灰、ダスト等の原料系から、有害物質の持ち込み量も増加し、セメント製造設備中に蓄積することが懸念される。そのうち、水銀、ダイオキシン等の有害物質は、セメント製造設備中に蓄積し易く、飽和量を超えると系外に排ガスと共に排出され、大気汚染の原因となる可能性がある。   Under such circumstances, there is a concern that the amount of harmful substances brought in from the fuel system such as waste plastics and the raw material system such as coal ash and dust will increase and accumulate in the cement manufacturing facility. Among them, harmful substances such as mercury and dioxin are likely to accumulate in the cement production facility, and if they exceed the saturation amount, they may be discharged together with exhaust gas and cause air pollution.

上記問題は、特に、排ガスを大気に放出する前のガス処理設備である集塵機のダストをセメント原料に循環使用する場合に顕著となる。   The above problem is particularly noticeable when the dust of the dust collector, which is a gas processing facility before the exhaust gas is released into the atmosphere, is recycled to the cement raw material.

従来、セメント製造設備の系内に水銀等の揮発性金属が蓄積するのを防止するため、上記集塵機のダストを、セメント焼成後のクリンカ粉砕工程にてクリンカに添加する方法が提案されている(特許文献1)。また、該ダストを加熱処理して揮発性成分を蒸発除去せしめた後、セメント原料に循環使用する方法も提案されている(特許文献2)。   Conventionally, in order to prevent the accumulation of volatile metals such as mercury in the system of cement manufacturing equipment, a method has been proposed in which dust from the dust collector is added to the clinker in the clinker crushing step after cement firing ( Patent Document 1). In addition, a method has also been proposed in which the dust is heat treated to evaporate and remove volatile components and then recycled to the cement raw material (Patent Document 2).

特開2002−284550号公報JP 2002-284550 A 特開2002−355531号公報Japanese Patent Laid-Open No. 2002-355531

しかしながら、集塵機のダストをセメント焼成後のクリンカーに添加する方法は、セメント製品に問題の無い量で使用するための管理が必要であり、また、ダストを加熱処理する方法は、大量に発生するダストを処理するための大掛かりな設備が必要となる。   However, the method of adding dust from the dust collector to the clinker after cement firing requires management for use in a problem-free amount for cement products, and the method of heat treating the dust is a large amount of dust generated. A large-scale facility is needed to handle the process.

また、集塵機のダストは定期的に除去されるものであり、排ガス中の水銀濃度を一定して低く維持することが困難であり、周期的にガス中の水銀濃度が変化することが懸念される。   In addition, dust in the dust collector is periodically removed, it is difficult to keep the mercury concentration in the exhaust gas constant and low, and there is a concern that the mercury concentration in the gas changes periodically. .

従って、本発明の目的は、集塵機のダストをそのままセメント原料に循環した場合でも、水銀等の揮発金属のセメント設備系内における蓄積を安定性良く、且つ効率的に防止することのできるセメントの製造方法を提案することにある。   Accordingly, an object of the present invention is to produce a cement that can stably and efficiently prevent accumulation of volatile metals such as mercury in a cement equipment system even when dust from a dust collector is directly circulated to a cement raw material. To propose a method.

本発明者らは、上記課題を解決すべく研究を重ねた結果、プレヒーターより排出された後、煙突に至るまでの間の配管又は装置内を流通するガス中の水銀の濃度が特定の温度領域において高くなるという知見を得た。即ち、セメント原料焼成用のロータリーキルンで発生する燃焼排ガスは1000℃程度の温度を有しているが、セメント原料を予熱するためのプレヒーター出口では400℃、集塵機出口では100℃以下となる温度分布がある。本発明者らは、上記排ガスの温度分布に着目し、種々の温度の排ガスについて水銀濃度を測定した結果、特定の温度範囲において、その濃度が著しく高くなるという知見を得た。かかる知見に基づき、該特定の温度領域において流通する排ガスの一部を抽気することにより、セメント製造設備系内における水銀の蓄積を極めて効果的に防止し得ることができ、また、前記集塵機のダストを系外に取り出す方法に比べ、連続的に処理が可能であり、また、ガスからの凝縮により水銀を回収可能なので、大掛かりな処理設備を必要としないことを見出した。   As a result of repeated researches to solve the above problems, the present inventors have found that the concentration of mercury in the gas flowing through the pipe or the apparatus from the preheater to the chimney is a specific temperature. The knowledge that it becomes high in an area was acquired. That is, the combustion exhaust gas generated in the rotary kiln for cement raw material firing has a temperature of about 1000 ° C., but the temperature distribution is 400 ° C. at the preheater outlet for preheating the cement raw material and 100 ° C. or lower at the dust collector outlet. There is. The present inventors paid attention to the temperature distribution of the exhaust gas and measured the mercury concentration of the exhaust gas at various temperatures, and as a result, obtained the knowledge that the concentration becomes remarkably high in a specific temperature range. Based on such knowledge, by extracting a part of the exhaust gas flowing in the specific temperature range, it is possible to extremely effectively prevent the accumulation of mercury in the cement production facility system, and the dust collector dust can be prevented. As compared with the method of taking out of the system from the system, it was possible to process continuously, and it was found that mercury can be recovered by condensation from gas, so that a large-scale processing facility is not required.

しかも、かかる温度領域のガスを抽気することによって、ガス中に含有されるダイオキシンも効果的に除去できることを見出し、本発明を完成するに至った。   Moreover, it has been found that dioxins contained in the gas can be effectively removed by extracting the gas in such a temperature range, and the present invention has been completed.

即ち、本発明は、セメント原料焼成用のロータリーキルンで発生する燃焼排ガスを、該セメント原料を予熱するためのプレヒーター、該セメント原料を乾燥せしめるためのドライヤーおよび集塵機を経て煙突より排出するようにしたセメントの製造方法において、プレヒーターより排出された後、煙突に至るまでの間の配管又は装置内を流通する温度350℃以上の排ガスの一部を抽気することを特徴とするセメントの製造方法である。   That is, in the present invention, combustion exhaust gas generated in a rotary kiln for cement raw material firing is discharged from a chimney through a preheater for preheating the cement raw material, a dryer and a dust collector for drying the cement raw material. In the cement manufacturing method, a part of exhaust gas having a temperature of 350 ° C. or higher that circulates in a pipe or apparatus between the exhaust and the chimney after being discharged from the preheater is extracted. is there.

本発明によれば、セメント製造設備によってセメントを製造する際、該設備内に蓄積する水銀、ダイオキシン等の有害物質が蓄積するのを効果的に防止することを可能であり、しかも、集塵機のダストを回収する方法に対して、簡便に、しかも、安定して実施することが可能であるため、その工業的な価値は極めて高いといえる。   According to the present invention, when cement is produced by a cement production facility, it is possible to effectively prevent accumulation of harmful substances such as mercury and dioxin accumulated in the facility, and the dust of the dust collector It can be said that the industrial value is extremely high because it can be carried out simply and stably with respect to the method for recovering the sucrose.

本発明において、セメント焼成設備は、本発明の方法を実施するための代表的なセメント製造設備の概略図である図1に示すように、ロータリーキルン1で発生する燃焼排ガスを、該セメント原料を予熱するためのプレヒーター2、該セメント原料を乾燥せしめるためのドライヤー3、該ドライヤーからの排ガス中の除塵を行う集塵機4及び清浄化された排ガスを大気に放出する煙突5より基本的に成る。   In the present invention, as shown in FIG. 1, which is a schematic diagram of a typical cement production facility for carrying out the method of the present invention, the cement firing facility preheats the cement raw material from the combustion exhaust gas generated in the rotary kiln 1. It basically comprises a preheater 2 for drying, a dryer 3 for drying the cement material, a dust collector 4 for removing dust from the exhaust gas from the dryer, and a chimney 5 for releasing the cleaned exhaust gas to the atmosphere.

図1に従って、更に詳細に説明すれば、上記セメント製造設備においては、セメント原料Aは、ドライヤー3に供給されて乾燥された後、原料ミル12に供給されて所定の大きさに粉砕され、原料粉サイロ13に貯蔵される。   In more detail, referring to FIG. 1, in the above cement production facility, the cement raw material A is supplied to the dryer 3 and dried, then supplied to the raw material mill 12 and pulverized to a predetermined size. It is stored in the powder silo 13.

次いで、上記セメント原料等は、原料粉サイロ13から配管17を経てプレヒーターの最上部サイクロンに供給され、該プレヒーター2内で前記燃焼排ガスによって予熱されながら下方に移動し、ロータリーキルン1に至る。   Next, the cement raw material and the like are supplied from the raw material powder silo 13 to the uppermost cyclone of the preheater via the pipe 17, move downward while being preheated by the combustion exhaust gas in the preheater 2, and reach the rotary kiln 1.

また、上記ロータリーキルン1内で焼成されて生成するクリンカーは、ロータリーキルンの窯前より、クーラー6に排出されて冷却されるのが一般的である。   Moreover, it is common that the clinker produced | generated by baking in the said rotary kiln 1 is discharged | emitted by the cooler 6 from the kiln of a rotary kiln, and is cooled.

一方、プレヒーター2の上部より排出される排ガスは、ファン15によって引かれて、更に、減温装置14を経て前記ドライヤー3に供給され、セメント原料と熱交換される。また、ドライヤー3を経たガスは、サイクロン11で比較的大きい浮遊粒子が除去された後、ファン16によって集塵機4に供給され、除塵された後、煙突5より大気に排出される。また、集塵機4で収集されたダストは、原料粉サイロに13に送られる。   On the other hand, the exhaust gas discharged from the upper part of the pre-heater 2 is drawn by the fan 15 and further supplied to the dryer 3 through the temperature reducing device 14 to exchange heat with the cement raw material. Further, the gas passing through the dryer 3 is supplied to the dust collector 4 by the fan 16 after the relatively large suspended particles are removed by the cyclone 11, and is discharged from the chimney 5 to the atmosphere after being removed. Further, the dust collected by the dust collector 4 is sent to the raw material powder silo 13.

上記セメント焼成設備によるセメントクリンカーの製造過程において、水銀は、セメント原料に微量成分として含有されて持ち込まれ、集塵機4のダストを回収することによって設備内に蓄積する。また、近年、廃棄物をセメント原料或いはセメント製造用燃料として使用する機会の増大により、セメント製造設備内での水銀やダイオキシン(以下、水銀等ともいう。)が増大する可能性が高まってきた。   In the manufacturing process of the cement clinker by the cement burning facility, mercury is brought into the cement raw material as a trace component and is accumulated in the facility by collecting the dust of the dust collector 4. In recent years, the possibility of increasing mercury and dioxin (hereinafter also referred to as mercury) in cement production facilities has increased due to an increase in the opportunity to use waste as a cement raw material or a cement production fuel.

特に、前記大量に収集される集塵機4のダストをセメント原料に添加して循環使用する場合、上記水銀等の蓄積が徐々に増加し、ひいては煙突から排出される排ガス中の水銀濃度を上昇させることが懸念される。   In particular, when the dust collected from the dust collector 4 is added to the cement raw material and recycled, the accumulation of mercury and the like gradually increases, and the mercury concentration in the exhaust gas discharged from the chimney is increased. Is concerned.

本発明は、セメント製造設備内への上記水銀等の蓄積を防止することを目的とするもので、かかる目的を達成するため、プレヒーターより排出された後、煙突に至るまでの間の配管又は装置内を流通する温度350℃以上の排ガスの一部を抽気することが重要である。   The purpose of the present invention is to prevent the accumulation of mercury and the like in the cement production facility. In order to achieve this object, the pipe or exhaust pipe from the preheater to the chimney It is important to extract a part of the exhaust gas having a temperature of 350 ° C. or higher flowing through the apparatus.

即ち、本発明者らは、セメント製造設備における種々のポイントにおけるガス組成を測定の結果、上記温度以上の領域に、水銀がガス組成として極めて高い濃度で存在する領域が存在するという知見を得た。また、更に調査を進めた結果、ダイオキシンについても、同様の傾向が現れることを見出した。   That is, as a result of measuring the gas composition at various points in the cement production facility, the present inventors have found that there is a region where mercury is present at a very high concentration as a gas composition in the region above the temperature. . As a result of further investigation, it was found that the same tendency appears for dioxins.

従って、上記抽気する場所のガス温度が350℃より低い場合、ガス中に存在する水銀等の濃度が低く、そのようなガスを抽気した場合、水銀等の除去率が著しく低下する。そのため、水銀等の除去のために大量の排ガスを抽気して処理する必要があり、処理コストの増大のみならず、水銀等の十分な除去が困難となる。   Therefore, when the gas temperature at the extraction site is lower than 350 ° C., the concentration of mercury or the like present in the gas is low, and when such a gas is extracted, the removal rate of mercury or the like is significantly reduced. Therefore, it is necessary to extract and process a large amount of exhaust gas in order to remove mercury and the like, which not only increases the processing cost but also makes it difficult to sufficiently remove mercury and the like.

前記減温装置14を設ける場合は、一般に、排ガスは減温装置によって350℃より低い温度に減温されるため、該減温装置に供給される前の排ガスを抽気することが好ましい。   When the temperature reducing device 14 is provided, since the exhaust gas is generally cooled to a temperature lower than 350 ° C. by the temperature reducing device, it is preferable to extract the exhaust gas before being supplied to the temperature reducing device.

また、排ガス中の水銀等の濃度を測定した結果、ガス温度500℃までは水銀等の高い含有率を示し、かかる範囲は、プレヒーター内の上部に存在するガス温度に相当する。   Further, as a result of measuring the concentration of mercury or the like in the exhaust gas, a high content of mercury or the like is shown up to a gas temperature of 500 ° C., and this range corresponds to the gas temperature existing in the upper part of the preheater.

しかし、プレヒーター内のガス相は原料粉を多量に含有しており、かかる原料粉を回収するための装置が大掛かりとなるばかりでなく、該粉原料粉に水銀等が吸着し易くなるため、後記の排ガスを凝縮することによる水銀等の回収効率が低下する。   However, since the gas phase in the preheater contains a large amount of raw material powder, not only does the apparatus for recovering such raw material powder become large, but mercury and the like are easily adsorbed to the powder raw material powder, The recovery efficiency of mercury and the like by condensing exhaust gas described later is reduced.

従って、排ガスの抽気は、プレヒーターより排出された後に行うことが好ましい。   Therefore, it is preferable that the exhaust gas is extracted after being discharged from the preheater.

また、上記方法によって抽気する排ガス量は、抽気される排ガスの温度によって多少異なるが、一般に、プレヒーター2の上部より排出される全ガス量の0.5〜50容量%、好ましくは、5〜15容量%とすることが好ましい。この場合、抽気は、断続的に行うことも可能であるが、連続的に実施することが、抽気量が安定し、後の工程に及ぼす影響が小さいため好ましい。勿論、連続的に行う場合でも多少の変動は十分許容される。   The amount of exhaust gas extracted by the above method varies somewhat depending on the temperature of the exhaust gas extracted, but is generally 0.5 to 50% by volume of the total amount of gas discharged from the top of the preheater 2, preferably 5 to 5%. It is preferable to set it as 15 volume%. In this case, extraction can be performed intermittently, but it is preferable to perform extraction continuously because the amount of extraction is stable and the influence on subsequent processes is small. Of course, some fluctuations are sufficiently allowed even when performed continuously.

好適な抽気方法として、煙突からの排ガス中の水銀等の濃度を検出し、その検出量と、目的とする許容量とを対比し、その差に基づいて抽気量を制御する方法が推奨される。   As a preferable extraction method, a method is recommended in which the concentration of mercury or the like in the exhaust gas from the chimney is detected, the detected amount is compared with the target allowable amount, and the extraction amount is controlled based on the difference. .

上記排ガスの抽気によって、原料より持ち込まれる水銀量、或いは、これに加えて廃棄物によって持ち込まれる水銀量、さらには、廃棄物の燃焼によって生成するダイオキシンの量が増加した場合であっても、煙突より排出される排ガス中の水銀濃度、ダイオキシン濃度を簡易に、且つ、確実に低レベルに抑えることが可能である。   Even if the amount of mercury brought in from the raw materials, or the amount of mercury brought in by waste in addition to this, and the amount of dioxin produced by combustion of waste increased due to the extraction of the exhaust gas, the chimney It is possible to easily and surely suppress the mercury concentration and dioxin concentration in the exhaust gas discharged to a low level.

本発明において、上記の温度で抽気された排ガスは、かかる温度を実質的に維持した状態、好ましくは、350℃以上の温度のガスの状態で抽気され、サイクロン7によって含有されるダストを分離した後、凝縮装置10において、含有される水銀等を凝縮させ、排ガス中の水銀等を回収することが好ましい。   In the present invention, the exhaust gas extracted at the above temperature is extracted in a state where the temperature is substantially maintained, preferably in a state of gas having a temperature of 350 ° C. or higher, and the dust contained by the cyclone 7 is separated. Then, it is preferable to condense mercury etc. contained in the condensing device 10 and collect mercury etc. in exhaust gas.

かかる凝縮温度は、100℃以下、好ましくは、5〜50℃である。また、上記抽気は、図1に示すように、配管をクーラー6に接続することによって、クーラー内の負圧を利用して行ってもよいし、別途抽気用のファンを設けて行ってもよい。   Such a condensation temperature is 100 ° C. or lower, preferably 5 to 50 ° C. In addition, as shown in FIG. 1, the extraction may be performed by using a negative pressure in the cooler by connecting a pipe to the cooler 6 or by separately providing a fan for extraction. .

前記水銀等を回収したガスは、必要に応じて、活性炭処理を施した後、クーラー6の冷却ガスの一部として使用することができる。また、前記サイクロンによって回収されたダストは少量であるため、原料粉に直接混合してもよいが、微量ではあるが、吸着されている水銀等を回収するため、加熱して吸着物を脱着することが好ましい。かかる水銀等を脱着後のダストは、上記のようにセメント原料に添加することができるが、350℃以上に加熱されたものであり、且つ少量であるため、セメントクリンカーに直接添加しても、得られるセメントの品質に全く影響を及ぼすことが無いため、セメントクリンカーに好適に添加できる。   The gas from which the mercury or the like has been recovered can be used as part of the cooling gas of the cooler 6 after being subjected to activated carbon treatment, if necessary. In addition, since the amount of dust collected by the cyclone is small, it may be mixed directly with the raw material powder. However, in order to recover the adsorbed mercury, etc., it is heated to desorb the adsorbate. It is preferable. The dust after desorption of mercury and the like can be added to the cement raw material as described above, but is heated to 350 ° C. or higher, and since it is a small amount, it can be added directly to the cement clinker, Since it does not affect the quality of the resulting cement at all, it can be suitably added to the cement clinker.

本発明のセメントの製造方法において、他の条件は、公知のセメントの製造方法における条件が特に制限なく採用される。例えば、ロータリーキルン内のガス温度は、900〜2000℃に制御されることが好ましく、また、プレヒーターの排ガス温度は、下部で800〜1200℃、上部で350〜500℃に制御されることが好ましい。   In the method for producing cement according to the present invention, as other conditions, conditions in known cement producing methods are employed without any particular limitation. For example, the gas temperature in the rotary kiln is preferably controlled at 900 to 2000 ° C., and the exhaust gas temperature of the preheater is preferably controlled at 800 to 1200 ° C. at the lower part and 350 to 500 ° C. at the upper part. .

また、本発明の方法の効果が特に顕著に発揮されるケースは、廃棄物として、ごみ焼却灰、水銀等による汚染土壌、低品位石炭灰等を原料或いは燃料として使用するケースである。   Moreover, the case where the effect of the method of the present invention is particularly remarkably exhibited is a case where waste incineration ash, contaminated soil due to mercury, low-grade coal ash, or the like is used as a raw material or fuel.

以下、本発明を更に具体的に説明するため実施例を示すが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, examples will be shown to describe the present invention more specifically, but the present invention is not limited to these examples.

なお、実施例および参考例において、排ガス中の水銀濃度は、JIS K0102−1998によって、ダスト中の水銀濃度は、加熱気化−金アマルガム−冷原子吸光法によって測定した。また、排ガス中のダイオキシン類濃度は、JIS K 0311排ガス中のダイオキシン類及びコプラナPCBの測定法によって測定した。ダスト中のダイオキシン類濃度の測定は、特別管理一般廃棄物及び特別管理産業廃棄物に係る基準の検定法によって行った。   In Examples and Reference Examples, the mercury concentration in exhaust gas was measured by JIS K0102-1998, and the mercury concentration in dust was measured by heat vaporization-gold amalgam-cold atomic absorption method. Moreover, the dioxin density | concentration in waste gas was measured with the measuring method of the dioxins and coplanar PCB in JISK0311 waste gas. The concentration of dioxins in dust was measured by the standard test method for specially managed municipal waste and specially controlled industrial waste.

参考例
前記図1に示すセメント製造工程において、サイクロン7への抽気を行なわない以外は、上記工程に従ってセメントの製造を実施した。その際、セメント原料には水銀およびダイオキシンを含むごみ焼却飛灰を添加し、設備内の水銀量およびダイオキシン量を増加させた。また、集塵機4のダストは全量原料粉サイロに戻しながら運転を行なった。
Reference Example In the cement manufacturing process shown in FIG. 1, cement was manufactured according to the above process, except that the cyclone 7 was not extracted. At that time, waste incineration fly ash containing mercury and dioxin was added to the raw material of cement to increase the amount of mercury and dioxin in the facility. The dust collector 4 was operated while returning all the dust to the raw material powder silo.

このとき、プレヒーター下部の固体中およびガス中の水銀濃度は、それぞれ、0.01μg/g未満および1μg/mN未満であり、水銀は原料系内で循環していることが確認された。また、プレヒーター下部の固体中のダイオキシン濃度は0.0000012ng−TEQ/g−dryであった。水銀同様、プレヒーター下部のダイオキシン濃度は非常に低いレベルであり、プレヒーター下部では、ダイオキシンは、分解されているか、原料系内で循環しているものと思われる。 At this time, mercury concentrations in the solid under the preheater and in the gas were less than 0.01 μg / g and less than 1 μg / m 3 N, respectively, and it was confirmed that mercury was circulating in the raw material system. . Moreover, the dioxin density | concentration in the solid of the preheater lower part was 0.0000012ng-TEQ / g-dry. Like mercury, the dioxin concentration in the lower part of the preheater is very low, and in the lower part of the preheater, the dioxin seems to be decomposed or circulated in the raw material system.

さらに、プレヒーター出口排ガスおよび煙道排ガス中の水銀分析をおこなった。同時に、減温装置ダスト、原料ドライヤダストおよび電気集塵機ダストを採取して、固体中の水銀濃度を測定した。結果を表1に示す。また、同時に測定した排ガス中のダイオキシン濃度の測定結果を表2に示した。なお、採取箇所の温度を同時に示した。   In addition, mercury in the preheater outlet exhaust gas and flue exhaust gas was analyzed. At the same time, temperature reduction device dust, raw material dryer dust, and electrostatic precipitator dust were collected, and the mercury concentration in the solid was measured. The results are shown in Table 1. Table 2 shows the measurement results of the dioxin concentration in the exhaust gas measured simultaneously. In addition, the temperature of the sampling location was shown simultaneously.

Figure 2005097005
Figure 2005097005

Figure 2005097005
実施例1
参考例において、プレヒーター2の出口排ガス(400℃)を抽気率10%と成るように抽気した。この抽気ガスは、ダストを含むため、サイクロン7でダストを分離した後、凝縮装置10で20℃まで冷却して水銀を除去した。連続して水銀除去を行った際の、プレヒーター出口排ガスおよび煙道排ガス中の水銀濃度およびダイオキシン濃度の分析を参考例と同様におこなった。また、参考例と同様に、減温装置ダスト、原料ドライヤダストおよび電気集塵機ダストを採取して、固体中の水銀濃度を測定した。水銀分析およびダイオキシン分析の結果をそれぞれ表3および表4に示す。なお、採取箇所の温度を同時に示した。
Figure 2005097005
Example 1
In the reference example, the exhaust gas (400 ° C.) at the outlet of the preheater 2 was extracted so that the extraction rate was 10%. Since this extracted gas contains dust, the dust was separated by the cyclone 7, and then cooled to 20 ° C. by the condenser 10 to remove mercury. The mercury concentration and dioxin concentration in the preheater outlet exhaust gas and flue exhaust gas when mercury was continuously removed were analyzed in the same manner as in the reference example. Similarly to the reference example, temperature reduction device dust, raw material dryer dust, and electrostatic precipitator dust were collected, and the mercury concentration in the solid was measured. The results of mercury analysis and dioxin analysis are shown in Table 3 and Table 4, respectively. In addition, the temperature of the sampling location was shown simultaneously.

Figure 2005097005
Figure 2005097005

Figure 2005097005
Figure 2005097005

本発明の方法を実施するために好適に使用されるセメント製造設備の概略図Schematic diagram of a cement production facility preferably used for carrying out the method of the invention

符号の説明Explanation of symbols

1 ロータリーキルン
2 プレヒーター
3 ドライヤー
4 集塵機
5 煙突
6 クーラー
7 サイクロン
10 凝縮機
11 サイクロン
12 原料ミル
13 原料粉サイロ
14 減温装置
DESCRIPTION OF SYMBOLS 1 Rotary kiln 2 Preheater 3 Dryer 4 Dust collector 5 Chimney 6 Cooler 7 Cyclone 10 Condenser 11 Cyclone 12 Raw material mill 13 Raw material powder silo 14 Temperature reduction device

Claims (3)

セメント原料焼成用のロータリーキルンで発生する燃焼排ガスを、該セメント原料を予熱するためのプレヒーター、該セメント原料を乾燥せしめるためのドライヤーおよび集塵機を経て煙突より排出するようにしたセメントの製造方法において、プレヒーターより排出された後、煙突に至るまでの間の配管又は装置内を流通する温度350℃以上の排ガスの一部を抽気することを特徴とするセメントの製造方法。   In a method for producing cement, exhaust gas generated in a rotary kiln for firing cement raw material is discharged from a chimney through a preheater for preheating the cement raw material, a dryer for drying the cement raw material, and a dust collector. A method for producing cement, comprising extracting a part of an exhaust gas having a temperature of 350 ° C. or higher that circulates in a pipe or an apparatus from before a chimney after being discharged from a preheater. 抽気した排ガスよりダストを分離後、ガスを温度100℃以下に冷却して含有する気化物を凝縮せしめる請求項1記載のセメントの製造方法。   The method for producing cement according to claim 1, wherein after separating the dust from the extracted exhaust gas, the vaporized material is condensed by cooling the gas to a temperature of 100 ° C or lower. 抽気した排ガスより分離されたダストを加熱して吸着物を脱着した後、セメント原料に添加する請求項2記載のセメントの製造方法。   The method for producing cement according to claim 2, wherein the dust separated from the extracted exhaust gas is heated to desorb the adsorbate, and then added to the cement raw material.
JP2003314996A 2003-08-26 2003-09-08 Cement manufacturing method Expired - Lifetime JP4398206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003314996A JP4398206B2 (en) 2003-08-26 2003-09-08 Cement manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003208754 2003-08-26
JP2003314996A JP4398206B2 (en) 2003-08-26 2003-09-08 Cement manufacturing method

Publications (2)

Publication Number Publication Date
JP2005097005A true JP2005097005A (en) 2005-04-14
JP4398206B2 JP4398206B2 (en) 2010-01-13

Family

ID=34466712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003314996A Expired - Lifetime JP4398206B2 (en) 2003-08-26 2003-09-08 Cement manufacturing method

Country Status (1)

Country Link
JP (1) JP4398206B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015875A (en) * 2005-07-05 2007-01-25 Ube Ind Ltd Method for producing cement
JP2007070173A (en) * 2005-09-08 2007-03-22 Mitsubishi Materials Corp Method for lowering organochlorine compound in cement production equipment
JP2007130565A (en) * 2005-11-10 2007-05-31 Mitsubishi Materials Corp Method and system for recovery of valuable element in cement calcination plant
JP2007331967A (en) * 2006-06-14 2007-12-27 Ube Ind Ltd Method for manufacturing cement
JP2009030883A (en) * 2007-07-27 2009-02-12 Taiheiyo Cement Corp Heavy metal removing apparatus and cement production system
WO2009107620A1 (en) * 2008-02-28 2009-09-03 太平洋セメント株式会社 System and method for treating discharge gas from cement kiln
JP2009292691A (en) * 2008-06-06 2009-12-17 Taiheiyo Cement Corp Method for recovering thallium from cement manufacturing process
JP2010158670A (en) * 2008-12-08 2010-07-22 Taiheiyo Cement Corp Apparatus and method of treating cement kiln tail gas
JP2011207678A (en) * 2010-03-30 2011-10-20 Ube Industries Ltd Apparatus and method for producing cement
EP2389997A1 (en) * 2009-01-22 2011-11-30 Taiheiyo Cement Corporation Heavy metal removing apparatus and cement production system
AT511543A1 (en) * 2011-05-20 2012-12-15 Scheuch Gmbh METHOD AND DEVICE FOR MOLECULAR DEPOSITION IN CEMENTLINK MANUFACTURING
JP2013112579A (en) * 2011-11-30 2013-06-10 Taiheiyo Cement Corp Treatment system for cement kiln exhaust gas and operation method thereof
JP2021008674A (en) * 2020-10-20 2021-01-28 宇部興産株式会社 Mercury recovery device and mercury recovery method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710441B2 (en) * 2005-07-05 2011-06-29 宇部興産株式会社 Cement production method and method for removing mercury-containing substances contained in exhaust gas discharged from cement firing equipment
JP2007015875A (en) * 2005-07-05 2007-01-25 Ube Ind Ltd Method for producing cement
JP2007070173A (en) * 2005-09-08 2007-03-22 Mitsubishi Materials Corp Method for lowering organochlorine compound in cement production equipment
JP2007130565A (en) * 2005-11-10 2007-05-31 Mitsubishi Materials Corp Method and system for recovery of valuable element in cement calcination plant
JP2007331967A (en) * 2006-06-14 2007-12-27 Ube Ind Ltd Method for manufacturing cement
JP4527139B2 (en) * 2007-07-27 2010-08-18 太平洋セメント株式会社 Mercury removal device and cement production system
JP2009030883A (en) * 2007-07-27 2009-02-12 Taiheiyo Cement Corp Heavy metal removing apparatus and cement production system
WO2009107620A1 (en) * 2008-02-28 2009-09-03 太平洋セメント株式会社 System and method for treating discharge gas from cement kiln
JP2009292691A (en) * 2008-06-06 2009-12-17 Taiheiyo Cement Corp Method for recovering thallium from cement manufacturing process
JP2010158670A (en) * 2008-12-08 2010-07-22 Taiheiyo Cement Corp Apparatus and method of treating cement kiln tail gas
US8679234B2 (en) 2009-01-22 2014-03-25 Taiheiyo Cement Corporation Heavy metal removing apparatus and cement production system
EP2389997A1 (en) * 2009-01-22 2011-11-30 Taiheiyo Cement Corporation Heavy metal removing apparatus and cement production system
EP2389997A4 (en) * 2009-01-22 2012-10-31 Taiheiyo Cement Corp Heavy metal removing apparatus and cement production system
CN102292141B (en) * 2009-01-22 2014-10-29 太平洋水泥株式会社 Heavy metal removing apparatus and cement production system
JP2011207678A (en) * 2010-03-30 2011-10-20 Ube Industries Ltd Apparatus and method for producing cement
AT511543B1 (en) * 2011-05-20 2013-12-15 Scheuch Gmbh METHOD AND DEVICE FOR MOLECULAR DEPOSITION IN CEMENTLINK MANUFACTURING
AT511543A1 (en) * 2011-05-20 2012-12-15 Scheuch Gmbh METHOD AND DEVICE FOR MOLECULAR DEPOSITION IN CEMENTLINK MANUFACTURING
US9051215B2 (en) 2011-05-20 2015-06-09 Scheuch Gmbh Method and device for removing mercury during the production of cement clinker
JP2013112579A (en) * 2011-11-30 2013-06-10 Taiheiyo Cement Corp Treatment system for cement kiln exhaust gas and operation method thereof
JP2021008674A (en) * 2020-10-20 2021-01-28 宇部興産株式会社 Mercury recovery device and mercury recovery method
JP7062228B2 (en) 2020-10-20 2022-05-06 Ube株式会社 Mercury recovery device and mercury recovery method

Also Published As

Publication number Publication date
JP4398206B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
KR101721614B1 (en) Apparatus and method for treating gas discharged from cement kiln
JP4398206B2 (en) Cement manufacturing method
JP4872316B2 (en) Method and system for recovering valuable elements in cement firing plant
JP5637241B2 (en) Kiln exhaust gas treatment method and treatment equipment
JP6452484B2 (en) Mercury recovery system and mercury recovery method
JP2011088770A (en) Apparatus and method for treating exhaust gas of cement kiln
JP2013248548A (en) Exhaust gas treatment method and exhaust gas treatment device
JP5211757B2 (en) Kiln exhaust gas treatment method
JP2009234869A (en) Apparatus and method for processing exhaust gas of cement kiln
JP5239813B2 (en) Kiln exhaust gas treatment method and treatment equipment
JP2009298677A (en) System and method for treating cement kiln extraction gas
Lin et al. Polychlorinated dibenzo-p-dioxins/dibenzofurans distributions in ash from different units in a municipal solid waste incinerator
JP2010116283A (en) Apparatus and method for processing exhaust gas of cement kiln
JP6305196B2 (en) Cement kiln exhaust gas treatment equipment
JP4710441B2 (en) Cement production method and method for removing mercury-containing substances contained in exhaust gas discharged from cement firing equipment
JP2008237959A (en) Method and apparatus for treating combustion exhaust gas
JP2009203117A (en) Treatment device and method of cement kiln exhaust gas
JP2001096134A (en) Treatment method of combustion gas containing heavy metal
JP6066193B2 (en) Cement kiln exhaust gas treatment apparatus and treatment method
JP2006150176A (en) Heating purification equipment for contaminated soil
JP5570106B2 (en) Cement kiln exhaust gas treatment apparatus and treatment method
JP6127113B1 (en) Radioactive contaminant treatment method and radioactive contaminant treatment facility
US20130276835A1 (en) Method and Apparatus to Clean Ash from Ash Ponds or a Landfill
JP2007331967A (en) Method for manufacturing cement
JP4932807B2 (en) Method for removing mercury from flue gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4398206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151030

Year of fee payment: 6

EXPY Cancellation because of completion of term