JP2005095896A - Apparatus for producing electrolytic water - Google Patents

Apparatus for producing electrolytic water Download PDF

Info

Publication number
JP2005095896A
JP2005095896A JP2004367984A JP2004367984A JP2005095896A JP 2005095896 A JP2005095896 A JP 2005095896A JP 2004367984 A JP2004367984 A JP 2004367984A JP 2004367984 A JP2004367984 A JP 2004367984A JP 2005095896 A JP2005095896 A JP 2005095896A
Authority
JP
Japan
Prior art keywords
chamber
salt water
water
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004367984A
Other languages
Japanese (ja)
Other versions
JP3694311B2 (en
Inventor
Nobuo Achinami
信夫 阿知波
Kazuyoshi Okada
和義 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2004367984A priority Critical patent/JP3694311B2/en
Publication of JP2005095896A publication Critical patent/JP2005095896A/en
Application granted granted Critical
Publication of JP3694311B2 publication Critical patent/JP3694311B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for producing electrolytic water having no consumption of a salt solution before electrolysis, and low electrical power consumption for the electrolysis. <P>SOLUTION: The inside of a casing 10 is separated into a central salt solution chamber B, and an anode chamber A and a cathode chamber C on both sides thereof by 2 barriers 11 and 13, and an anode 15 and a cathode 16 formed of a metal lathe, or the like, through which a liquid is freely passed are brought closer to respective corresponding barriers, and provided in the anode chamber and the cathode chamber, respectively. A circulating salt solution tank 20 accommodating the salt solution of a predetermined concentration and the salt solution chamber are communicated by a salt solution introduction pipe 21 and a salt solution delivery pipe 22, and the salt solution is circulated by a circulation pump 23. The anode chamber A is provided with a raw water introduction pipe 25a and an acid water removal pipe 26, and the cathode chamber C is provided with a raw water introduction pipe 25b and an alkaline water removal pipe 27. A voltage from a DC power source 17 is applied to the anode and the cathode, the salt solution in the salt solution chamber B is electrolyzed, and acid water and alkaline water to be generated are removed from removal pipes 26 and 27, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、生鮮食品の洗浄及び殺菌、冷凍魚肉の解凍などの食品処理や、お絞り用、手洗い用などに使用する電解水の製造装置に関する。   The present invention relates to an apparatus for producing electrolyzed water used for food processing such as cleaning and sterilization of fresh food, thawing of frozen fish meat, drawing, and hand washing.

この種の電解水の製造装置においては、例えば図3に示すように、中間部に隔膜2を挟んで張設したスペーサ2aの両側に、板状の陽極3、陰極4及びケーシング1a,1bを当接固定して本体を形成し、この本体内に隔膜2により仕切られて形成した陽極室及び陰極室内に希釈食塩水タンク5内の食塩水を供給管7を介してポンプ6により送り込み、電気分解により陽極室及び陰極室内に生成された各電解水を酸性水取出し管8a及びアルカリ性水取出し管8bにより取り出して用途に応じて使用している。   In this type of electrolyzed water production apparatus, for example, as shown in FIG. 3, plate-like anode 3, cathode 4 and casings 1a and 1b are provided on both sides of a spacer 2a stretched with a diaphragm 2 sandwiched between them. A main body is formed by abutting and fixing, and the saline in the diluted saline tank 5 is fed into the anode chamber and the cathode chamber formed by partitioning the diaphragm 2 in the main body by the pump 6 through the supply pipe 7, The electrolyzed water generated in the anode chamber and the cathode chamber by the decomposition is taken out by the acidic water take-out pipe 8a and the alkaline water take-out pipe 8b and used according to the intended use.

上述のような従来の電解水製造装置では、供給された食塩水は電解されたものと未電解のものが分離されることなく全てそのまま取り出されていたので大半の食塩が無駄に消費されるという問題があった。このような無駄な消費をなるべく少なくするために、通常は 0.1パーセント程度の希薄な食塩水を使用しているので食塩水の伝導度が低く、このため所定の電解を行うための消費電力が増大するという問題もあった。   In the conventional electrolyzed water production apparatus as described above, since the supplied saline solution is taken out as it is without being separated from the electrolyzed and unelectrolyzed ones, most of the salt is wasted. There was a problem. In order to reduce such wasteful consumption as much as possible, normally, about 0.1 percent of diluted saline solution is used, so the conductivity of the salt solution is low, which increases the power consumption for performing the predetermined electrolysis. There was also a problem of doing.

また隔膜2は陽極室及び陰極室内の流れや水圧変動等による力を直接受けるので破損のおそれがあり、これを防止するために隔膜2を横切る複数の補強リブを設けているので、この補強リブの分だけ隔膜2の有効面積が低下して電解水製造能力が低下するという問題があった。   Further, since the diaphragm 2 is directly subjected to a force due to the flow in the anode chamber and the cathode chamber, fluctuations in water pressure, etc., there is a risk of breakage. In order to prevent this, a plurality of reinforcing ribs crossing the diaphragm 2 are provided. Therefore, there is a problem that the effective area of the diaphragm 2 is reduced by that amount and the electrolyzed water production capacity is reduced.

本発明は、電解されない塩水を循環させることにより再使用できるようにして、上記の問題を解決することを目的とする。   An object of the present invention is to solve the above-mentioned problem by enabling reuse by circulating salt water that is not electrolyzed.

この目的を達成するため、本発明は、ケーシングの内部に離間して設けた一対の隔膜の間に塩水室を形成し同塩水室の両側に陽極室と陰極室を分離形成して、これら陽極室と陰極室内に陽極と陰極をそれぞれ配設した電解槽と、前記陽極と陰極に直流電流を供給する直流電源と、電解される塩水を貯える循環塩水タンクと、前記電解槽の塩水室に前記循環塩水タンクに貯えた塩水を導入する塩水導入管と、前記塩水室から未電解の塩水を前記循環塩水タンクに還流させる塩水導出管と、前記塩水導入管又は塩水導出管に介在して塩水を循環させる循環ポンプと、前記陽極室と前記陰極室内に原水をそれぞれ導入する原水導入管と、前記陽極室から同陽極室内にて電気分解によって生成された酸性水を継続的に導出する酸性水取出し管と、前記陰極室から同陰極室内にて電気分解によって生成されたアルカリ性水を継続的に導出するアルカリ性水取出し管を備えた流水式電解水生成装置において、
前記循環塩水タンクに同タンク内の食塩水の濃度を均一化する攪拌ポンプを設けたことを特徴とする流水式電解水生成装置を提供するものである。
In order to achieve this object, the present invention forms a salt water chamber between a pair of diaphragms provided apart from each other inside a casing, and separates and forms an anode chamber and a cathode chamber on both sides of the salt water chamber. An electrolytic cell in which an anode and a cathode are respectively disposed in a chamber and a cathode chamber, a direct current power source for supplying a direct current to the anode and the cathode, a circulating salt water tank for storing salt water to be electrolyzed, and a salt water chamber of the electrolytic cell in the salt water chamber A salt water introduction pipe for introducing salt water stored in the circulation salt water tank, a salt water outlet pipe for returning unelectrolyzed salt water from the salt water chamber to the circulation salt water tank, and salt water interposed between the salt water introduction pipe or the salt water outlet pipe Circulation pump for circulation, raw water introduction pipe for introducing raw water into the anode chamber and the cathode chamber, respectively, and acidic water extraction for continuously deriving acidic water generated by electrolysis from the anode chamber in the anode chamber Tube and said In flow-through electrolytic water generator with alkaline water takeout tube to continuously derive the alkaline water produced by electrolysis at the same cathode chamber from electrode chamber,
The present invention provides a flowing water type electrolyzed water generating apparatus characterized in that the circulating salt water tank is provided with a stirring pump for uniformizing the concentration of the saline in the tank.

上記のように構成した本発明による流水式電解水生成装置においては、未電解の塩水が陽極室または陰極室内に入ることなく、塩水室と循環塩水タンクの間を循環して繰り返し使用されるので、塩が無駄に消費されることがない。またこのような無駄な消費がないので濃度の高い塩水を使用することができ、これにより塩水の伝導度が高まるので、必要な量の電解を行うための消費電力が減少する。 特に、前記攪拌ポンプを設けたことにより、循環塩水タンク内に貯留する塩水の濃度が均一になるため、同循環塩水タンクに設けた濃度計により塩水室に循環供給される食塩水の濃度が的確に検出され、常に所定濃度の食塩水を塩水室に供給して陽極室と陰極室にてそれぞれ生成される酸性水とアルカリ性水の特性を所望の特性に維持することができる。   In the flowing water type electrolyzed water generating device according to the present invention configured as described above, unelectrolyzed salt water is repeatedly used by circulating between the salt water chamber and the circulating salt water tank without entering the anode chamber or the cathode chamber. , Salt is not wasted. Moreover, since there is no such wasteful consumption, salt water with a high concentration can be used, thereby increasing the conductivity of the salt water, so that power consumption for performing a necessary amount of electrolysis is reduced. In particular, since the concentration of the salt water stored in the circulating salt water tank becomes uniform due to the provision of the agitation pump, the concentration of the saline solution circulated and supplied to the salt water chamber by the concentration meter provided in the circulating salt water tank is accurately determined. It is possible to maintain the desired characteristics of the acidic water and the alkaline water respectively generated in the anode chamber and the cathode chamber by always supplying a salt solution of a predetermined concentration to the salt water chamber.

以下に図1及び図2に示す実施例により、本発明の説明をする。   The present invention will be described below with reference to the embodiments shown in FIGS.

図1及び図2に示すように、主要部が絶縁材よりなるケーシング10の内部は、互いに平行に設けられた2枚の隔膜11,13により仕切られて、両隔膜11,13の間の塩水室Bと、隔膜11とケーシング10の間の陽極室Aと、隔膜13とケーシング10の間の陰極室Cに分離される。実質的に同一構造の各隔膜11,13は例えばポリエチレン不織布を骨材とするポリフッカビニリデン酸化チタンよりなる半透膜で、その外周全縁は塩化ビニールよりなる枠状の隔膜保持体12,14が一体的に形成されて補強されている。隔膜11の陽極室A側には殆ど隙間なく隣接して陽極15が設けられ、隔膜13の陰極室C側には殆ど隙間なく隣接して陰極16が設けられている。各電極15,16は剛性のある平板状のメタルラスよりなり、ケーシング10に固定支持され、電解用の直流電源17に接続されている。各電極15,16はメタルラスに限らず液体の通過が自由なものであれば金網またはパンチドメタルあるいは棒状の素材を格子状に多数並べたものでもよく、その材質は例えばチタンあるいはチタンに白金コーティングを施したものである。   As shown in FIGS. 1 and 2, the inside of the casing 10 whose main part is made of an insulating material is partitioned by two diaphragms 11 and 13 provided in parallel to each other, and salt water between the diaphragms 11 and 13. The chamber B, the anode chamber A between the diaphragm 11 and the casing 10, and the cathode chamber C between the diaphragm 13 and the casing 10 are separated. Each of the diaphragms 11 and 13 having substantially the same structure is a semipermeable membrane made of, for example, polyfucavinylidene titanium oxide using a polyethylene non-woven fabric as an aggregate, and its outer peripheral edge is a frame-like diaphragm holding body 12, 14 made of vinyl chloride. Are integrally formed and reinforced. An anode 15 is provided adjacent to the anode chamber A side of the diaphragm 11 with almost no gap, and a cathode 16 is provided adjacent to the cathode chamber C side of the diaphragm 13 with almost no gap. Each of the electrodes 15 and 16 is made of a rigid plate-shaped metal lath, is fixedly supported by the casing 10, and is connected to a DC power supply 17 for electrolysis. The electrodes 15 and 16 are not limited to metal laths, and may be a metal mesh, punched metal, or a large number of rod-shaped materials arranged in a lattice shape, as long as the liquid can pass freely. Is given.

主として図1に示すように、塩水室Bの底部と循環塩水タンク20の底部は循環ポンプ23を設けた塩水導入管21により連通され、塩水室Bの上部と循環塩水タンク20の上部は絞り24を設けた塩水導出管22により連通されている。循環塩水タンク20の上部には開閉弁32を備えた連通管31を介して飽和食塩水を収容する濃塩水タンク30が接続され、また開閉弁を備えた給水管(図示省略)が接続され、循環塩水タンク20内に設けた濃度計35により検出された食塩水濃度が所定範囲(例えば10〜20%)を外れれば開閉弁32または給水管の開閉弁を開いて、循環塩水タンク20内の食塩水濃度を所定範囲に維持するようになっている。循環塩水タンク20にはその内部の濃度を均一化するための撹拌ポンプ34が設けられている。また濃塩水タンク30の上側には濃塩水タンク30に食塩を供給する食塩タンク33が設けられている。   As shown mainly in FIG. 1, the bottom of the salt water chamber B and the bottom of the circulating salt water tank 20 are communicated with each other by a salt water introducing pipe 21 provided with a circulation pump 23, and the top of the salt water chamber B and the top of the circulating salt water tank 20 are throttled 24. Are communicated by a salt water outlet pipe 22. A concentrated salt water tank 30 for storing saturated saline is connected to the upper part of the circulating salt water tank 20 via a communication pipe 31 provided with an on-off valve 32, and a water supply pipe (not shown) provided with an on-off valve is connected. If the saline concentration detected by the densitometer 35 provided in the circulating salt water tank 20 is out of a predetermined range (for example, 10 to 20%), the opening / closing valve 32 or the opening / closing valve of the water supply pipe is opened and the inside of the circulating salt water tank 20 is opened. The saline concentration is maintained within a predetermined range. The circulating salt water tank 20 is provided with a stirring pump 34 for making the concentration inside the circulating salt water tank 20 uniform. A salt tank 33 for supplying salt to the concentrated salt water tank 30 is provided above the concentrated salt water tank 30.

図1に示すように、水道管に接続されて制御弁28が設けられた原水供給管25は2つの原水導入管25a,25bに分岐され、各原水導入管25a,25bはそれぞれ陽極室A及び陰極室Cの底部に連通されている。陽極室A及び陰極室Cの上部にはそれぞれ酸性水取出し管26及びアルカリ性水取出し管27が連通されている。なお図1の説明図の寸法関係は図示の都合上現実のものとは異なっており、ケーシング10は循環塩水タンク20、濃塩水タンク30、食塩タンク33などに比して実際より大きく表示されている。   As shown in FIG. 1, the raw water supply pipe 25 connected to the water pipe and provided with the control valve 28 is branched into two raw water introduction pipes 25a and 25b. The raw water introduction pipes 25a and 25b are respectively connected to the anode chamber A and the raw water introduction pipe 25a and 25b. It communicates with the bottom of the cathode chamber C. An acidic water extraction pipe 26 and an alkaline water extraction pipe 27 are communicated with the upper part of the anode chamber A and the cathode chamber C, respectively. The dimensional relationship in the explanatory diagram of FIG. 1 is different from the actual one for the sake of illustration, and the casing 10 is displayed larger than the actual compared to the circulating salt water tank 20, the concentrated salt water tank 30, the salt tank 33, and the like. Yes.

次に上記実施例の作動の説明をする。   Next, the operation of the above embodiment will be described.

この電解水製造装置の使用開始時には、先ず開閉弁32を及び給水管の開閉弁を開いて循環塩水タンク20に飽和食塩水及び水道水を供給すると同時に撹拌ポンプ34を作動させて循環塩水タンク20内部の濃度を均一にし、濃度計35により検出した食塩水濃度に基づき両開閉弁を制御して所定濃度範囲内とし、循環塩水タンク20内の水位が所定のレベルに達すれば両開閉弁を閉じる。次いで循環ポンプ23を作動させ循環塩水タンク20内の食塩水を塩水導入管21を介して塩水室B内に送り込み、塩水導出管22を介して循環塩水タンク20内に戻して食塩水を循環させる。続いて原水供給管25の制御弁28を開き、水道管からの原水を陽極室A及び陰極室C内に送り込み、酸性水取出し管26及びアルカリ性水取出し管27から排出させる。   At the start of use of the electrolyzed water production apparatus, first, the on-off valve 32 and the on-off valve of the water supply pipe are opened to supply saturated saline and tap water to the circulating salt water tank 20 and at the same time, the stirring pump 34 is operated to operate the circulating salt water tank 20. The internal concentration is made uniform, both open / close valves are controlled within a predetermined concentration range based on the saline concentration detected by the concentration meter 35, and both open / close valves are closed when the water level in the circulating salt water tank 20 reaches a predetermined level. . Next, the circulation pump 23 is operated to feed the saline in the circulating salt water tank 20 into the salt water chamber B through the salt water introducing pipe 21 and return to the circulating salt water tank 20 through the salt water outlet pipe 22 to circulate the saline. . Subsequently, the control valve 28 of the raw water supply pipe 25 is opened, and the raw water from the water pipe is sent into the anode chamber A and the cathode chamber C, and is discharged from the acidic water take-out pipe 26 and the alkaline water take-out pipe 27.

この状態で陽極15及び陰極16に直流電源17からの電解用電力を供給すれば、塩水室B内の食塩水中の塩素イオン(陰イオン)は隔膜11を通って陽極室A内に入り陽極15に接触して電価を失って塩素となる。この塩素の一部はそのまま陽極15付近の水中に溶解し、一部は水と反応して次亜塩素酸あるいは次亜塩素酸イオンを生じ、これらにより殺菌作用のある有効塩素濃度が与えられる。残る塩素の一部は塩酸となりあるいは塩素ガスとなって遊離される。これにより陽極15付近の水は酸性となり、これらの成分よりなる酸性水は液体の通過が自由な陽極15を通り抜けて陽極室A内に広がる。また塩水室B内の塩水中のナトリウムイオン(陽イオン)は隔膜13を通って陰極室C内に入り陰極16に接触して電価を失い、陰極16付近の水と反応して苛性ソーダ及び遊離水素を生じて陰極16付近の水をアルカリ性とする。アルカリ性となった水は液体の通過が自由な陰極16を通り抜けて陰極室C内に広がる。このようにして陽極室A及び陰極室C内にそれぞれ生成された酸性水及びアルカリ性水は、酸性水取出し管26及びアルカリ性水取出し管27から送り出され、それぞれの用途に使用される。   If power for electrolysis from the DC power source 17 is supplied to the anode 15 and the cathode 16 in this state, chlorine ions (anions) in the saline solution in the salt water chamber B pass through the diaphragm 11 and enter the anode chamber A, where the anode 15 When it comes into contact with it, it loses its electric power and becomes chlorine. Part of this chlorine is dissolved in the water near the anode 15 as it is, and part of it reacts with water to produce hypochlorous acid or hypochlorite ions, which give an effective chlorine concentration with a bactericidal action. Part of the remaining chlorine is liberated as hydrochloric acid or chlorine gas. As a result, the water in the vicinity of the anode 15 becomes acidic, and the acidic water composed of these components passes through the anode 15 through which liquid can freely pass and spreads in the anode chamber A. Sodium ions (cations) in the salt water in the salt water chamber B pass through the diaphragm 13 and enter the cathode chamber C to contact the cathode 16 to lose their valence, react with the water in the vicinity of the cathode 16 and react with caustic soda and liberation. Hydrogen is generated to make the water near the cathode 16 alkaline. The water that has become alkaline passes through the cathode 16 through which liquid can freely pass and spreads in the cathode chamber C. The acidic water and alkaline water generated in the anode chamber A and the cathode chamber C in this way are sent out from the acidic water take-out pipe 26 and the alkaline water take-out pipe 27 and used for their respective purposes.

塩水室B内の電解されなかった食塩水は隔膜11,13に遮られて陽極室Aまたは陰極室C内に入ることはほとんどなく、大部分は塩水導出管22より循環塩水タンク20内に戻され、循環ポンプ23により塩水導入管21より再び塩水室B内に送り込まれて繰り返し循環して使用される。従って未電解の食塩水が酸性水取出し管26及びアルカリ性水取出し管27から排出されることがほとんどないので食塩が無駄に消費されることがない。またこのように食塩の無駄な消費がないので濃度の高い食塩水を使用することができ、これにより食塩水の伝導度が高まるので、必要な量の電解を行うための消費電力が減少する。   The salt water that has not been electrolyzed in the salt water chamber B is hardly blocked by the diaphragms 11 and 13 and enters the anode chamber A or the cathode chamber C, and most of the salt water returns to the circulating salt water tank 20 from the salt water outlet pipe 22. Then, the water is again fed into the salt water chamber B from the salt water introduction pipe 21 by the circulation pump 23 and repeatedly circulated for use. Accordingly, the unelectrolyzed saline is hardly discharged from the acidic water take-out pipe 26 and the alkaline water take-out pipe 27, so that the salt is not wasted. Further, since there is no wasteful consumption of salt, a saline solution having a high concentration can be used. As a result, the conductivity of the salt solution is increased, so that power consumption for performing a necessary amount of electrolysis is reduced.

循環ポンプ23により循環塩水タンク20内の食塩水を塩水室Bを通して循環させた状態では、塩水導出管22に設けた絞り24の程度により塩水室B内の水圧が上昇し、この絞り24を適当に設定することにより塩水室B内の水圧が陽極室A及び陰極室C内の水圧よりも高くなるように設定する。この水圧の差により各隔膜11,13はそのほゞ全面積にわたり隣接して設けた陽極15及び陰極16に押し付け保持され、各隔膜11,13に加わる力は陽極15及び陰極16により受け止められる。従って各隔膜11,13はそれに加わる力を受け止める必要がないので、各隔膜11,13を横切って補強リブを設ける必要がなくなり、隔膜の有効面積の低下による電解水製造能力の低下がなくなる。   In the state in which the saline in the circulating salt water tank 20 is circulated through the salt water chamber B by the circulation pump 23, the water pressure in the salt water chamber B is increased by the degree of the throttle 24 provided in the salt water outlet pipe 22, and this throttle 24 is appropriately set. To set the water pressure in the salt water chamber B higher than the water pressure in the anode chamber A and the cathode chamber C. Due to the difference in water pressure, the diaphragms 11 and 13 are pressed and held against the anode 15 and the cathode 16 provided adjacent to each other over the entire area, and the force applied to the diaphragms 11 and 13 is received by the anode 15 and the cathode 16. Accordingly, since it is not necessary for each diaphragm 11 and 13 to receive the force applied thereto, it is not necessary to provide reinforcing ribs across each diaphragm 11 and 13, and there is no decrease in electrolyzed water production capacity due to a decrease in the effective area of the diaphragm.

電解水の製造により塩水室B及び循環塩水タンク20内の食塩が消費されて食塩水の濃度が低下すれば、濃度計35はこれを検知して開閉弁32を開き、食塩水の濃度を所定範囲内に保持する。これにより循環塩水タンク20内の水位は上昇し、所定の水位を越えた分はオーバフローパイプ(図示省略)より排出される。また、浸透圧の差により陽極室A及び陰極室C内の水は隔膜11,13を通って塩水室B内に流入し、これによっても循環塩水タンク20内の水位は上昇するが、この場合も所定の水位を越えた分はオーバフローパイプより排出される。なお、浸透圧の差による陽極室A及び陰極室Cから塩水室B内への流入は、前述のように塩水室B側の水圧を高めることにより抑制される。   If the salt in the salt water chamber B and the circulating salt water tank 20 is consumed due to the production of the electrolyzed water and the concentration of the saline decreases, the concentration meter 35 detects this and opens the on-off valve 32 to set the concentration of the saline to a predetermined value. Keep within range. As a result, the water level in the circulating salt water tank 20 rises, and the amount exceeding the predetermined water level is discharged from an overflow pipe (not shown). Further, the water in the anode chamber A and the cathode chamber C flows into the salt water chamber B through the diaphragms 11 and 13 due to the difference in osmotic pressure, and this also raises the water level in the circulating salt water tank 20. The portion exceeding the predetermined water level is discharged from the overflow pipe. Inflow from the anode chamber A and the cathode chamber C into the salt water chamber B due to the difference in osmotic pressure is suppressed by increasing the water pressure on the salt water chamber B side as described above.

上述のようにして製造される食品処理に使用する酸性水のpH、有効塩素濃度、酸化還元電位(ORP)などの値は、制御弁28により陽極室A内を通る水の流量を調節することにより制御することができる。これらの値は、陽極15の組成、直流電源17による印加電圧、食塩水の濃度及び温度などによっても制御することができる。   The pH, effective chlorine concentration, redox potential (ORP), etc. of acidic water used for food processing manufactured as described above are adjusted by the control valve 28 to adjust the flow rate of water passing through the anode chamber A. Can be controlled. These values can also be controlled by the composition of the anode 15, the voltage applied by the DC power source 17, the concentration and temperature of the saline solution, and the like.

なお上記実施例では塩水導出管22に絞り24を設けて塩水室B内の水圧を高めているが、循環塩水タンク20をケーシング10よりも高い位置として塩水室B内の水圧を高めてもよい。また上記実施例では完全に分離した2枚の隔膜11,13を使用したが、筒状とした1枚の隔膜の互いに向かい合う部分をある幅にわたりケーシング10の対向する内面に取り付け、ケーシング10内に張り渡される隔膜の2部分によりケーシング10の内部を中央の塩水室Bとその両側の陽極室A及び陰極室Cに分離するようにしてもよい。また、上記実施例は被電解溶液として食塩水を使用した場合につき説明したが、本発明はその他の塩の溶液を被電解溶液として使用する場合にも適用することができる。   In the above-described embodiment, the salt water outlet pipe 22 is provided with the throttle 24 to increase the water pressure in the salt water chamber B. However, the water pressure in the salt water chamber B may be increased by setting the circulating salt water tank 20 higher than the casing 10. . Further, in the above embodiment, two completely separated diaphragms 11 and 13 are used, but the mutually facing portions of one tubular diaphragm are attached to the inner surfaces facing the casing 10 over a certain width, You may make it isolate | separate the inside of the casing 10 into the center salt water chamber B and the anode chamber A and the cathode chamber C of the both sides by the two parts of the stretched membrane. Moreover, although the said Example demonstrated about the case where salt solution was used as an electrolysis solution, this invention is applicable also when using the solution of another salt as an electrolysis solution.

本発明による電解水製造装置の一実施例の全体説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is whole explanatory drawing of one Example of the electrolyzed water manufacturing apparatus by this invention. 図1に示す実施例のケーシング及びその内部構造を主として示す横断面図である。It is a cross-sectional view which mainly shows the casing of the Example shown in FIG. 1, and its internal structure. 従来技術による電解水製造装置の一例の説明図である。It is explanatory drawing of an example of the electrolyzed water manufacturing apparatus by a prior art.

符号の説明Explanation of symbols

10…ケーシング、11,13…隔膜、15…陽極、16…陰極、17…直流電源、20…循環塩水タンク、21…塩水導入管、22…塩水導出管、23…循環ポンプ、25a,25b…原水導入管、26…酸性水取出し管、27…アルカリ性水取出し管、A…陽極室、B…塩水室、C…陰極室。
DESCRIPTION OF SYMBOLS 10 ... Casing, 11, 13 ... Diaphragm, 15 ... Anode, 16 ... Cathode, 17 ... DC power supply, 20 ... Circulating salt water tank, 21 ... Salt water introduction pipe, 22 ... Salt water outlet pipe, 23 ... Circulation pump, 25a, 25b ... Raw water introduction pipe, 26 ... acid water take-out pipe, 27 ... alkaline water take-out pipe, A ... anode chamber, B ... salt water chamber, C ... cathode chamber.

Claims (1)

ケーシングの内部に離間して設けた一対の隔膜の間に塩水室を形成し同塩水室の両側に陽極室と陰極室を分離形成して、これら陽極室と陰極室内に陽極と陰極をそれぞれ配設した電解槽と、前記陽極と陰極に直流電流を供給する直流電源と、電解される塩水を貯える循環塩水タンクと、前記電解槽の塩水室に前記循環塩水タンクに貯7えた塩水を導入する塩水導入管と、前記塩水室から未電解の塩水を前記循環塩水タンクに還流させる塩水導出管と、前記塩水導入管又は塩水導出管に介在して塩水を循環させる循環ポンプと、前記陽極室と前記陰極室内に原水をそれぞれ導入する原水導入管と、前記陽極室から同陽極室内にて電気分解によって生成された酸性水を継続的に導出する酸性水取出し管と、前記陰極室から同陰極室内にて電気分解によって生成されたアルカリ性水を継続的に導出するアルカリ性水取出し管を備えた流水式電解水生成装置において、
前記循環塩水タンクに同タンク内の食塩水の濃度を均一化する攪拌ポンプを設けたことを特徴とする流水式電解水生成装置。
A salt water chamber is formed between a pair of diaphragms provided apart from each other inside the casing, and an anode chamber and a cathode chamber are separately formed on both sides of the salt water chamber, and an anode and a cathode are respectively arranged in the anode chamber and the cathode chamber. An installed electrolytic cell, a direct current power source for supplying a direct current to the anode and the cathode, a circulating salt water tank for storing the salt water to be electrolyzed, and the salt water stored in the circulating salt water tank into the salt water chamber of the electrolytic cell. A salt water introduction pipe, a salt water outlet pipe for refluxing unelectrolyzed salt water from the salt water chamber to the circulating salt water tank, a circulation pump for circulating salt water through the salt water inlet pipe or the salt water outlet pipe, and the anode chamber; A raw water introduction tube for introducing raw water into the cathode chamber, an acidic water extraction tube for continuously deriving acidic water generated by electrolysis from the anode chamber in the anode chamber, and a cathode chamber from the cathode chamber Electrolysis at Therefore, in flow-electrolyzed water generator with alkaline water takeout tube for continuously deriving the generated alkaline water,
A flowing water type electrolyzed water generating apparatus, wherein the circulating salt water tank is provided with a stirring pump for equalizing the concentration of the saline solution in the tank.
JP2004367984A 2004-12-20 2004-12-20 Electrolyzed water production equipment Expired - Lifetime JP3694311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004367984A JP3694311B2 (en) 2004-12-20 2004-12-20 Electrolyzed water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004367984A JP3694311B2 (en) 2004-12-20 2004-12-20 Electrolyzed water production equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003354386A Division JP3689417B2 (en) 2003-10-14 2003-10-14 Electrolyzed water production equipment

Publications (2)

Publication Number Publication Date
JP2005095896A true JP2005095896A (en) 2005-04-14
JP3694311B2 JP3694311B2 (en) 2005-09-14

Family

ID=34464537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004367984A Expired - Lifetime JP3694311B2 (en) 2004-12-20 2004-12-20 Electrolyzed water production equipment

Country Status (1)

Country Link
JP (1) JP3694311B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047121A1 (en) * 2015-09-15 2017-03-23 株式会社 東芝 Electrode and electrolysis apparatus
CN113789546A (en) * 2021-10-14 2021-12-14 中国华能集团清洁能源技术研究院有限公司 Diaphragm integrity testing system and using method
US11763825B2 (en) 2017-05-16 2023-09-19 Huawei Technologies Co., Ltd. Stereo signal processing method and apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047121A1 (en) * 2015-09-15 2017-03-23 株式会社 東芝 Electrode and electrolysis apparatus
CN107001078A (en) * 2015-09-15 2017-08-01 株式会社东芝 Electrode and electrolysis unit
JPWO2017047121A1 (en) * 2015-09-15 2018-02-08 株式会社東芝 Electrode and electrolyzer
US11763825B2 (en) 2017-05-16 2023-09-19 Huawei Technologies Co., Ltd. Stereo signal processing method and apparatus
CN113789546A (en) * 2021-10-14 2021-12-14 中国华能集团清洁能源技术研究院有限公司 Diaphragm integrity testing system and using method
CN113789546B (en) * 2021-10-14 2024-03-26 中国华能集团清洁能源技术研究院有限公司 Diaphragm integrity test system and use method

Also Published As

Publication number Publication date
JP3694311B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
JP4653708B2 (en) Electrolyzed water generating method and electrolyzed water generating apparatus used therefor
US8419926B2 (en) Electrolyzed water producing method and apparatus
JP4216892B1 (en) Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
JP3500173B2 (en) Electrolyzed water production equipment
KR101373389B1 (en) On-site sodium hypochlorite generator for high concentration product
JP2009072778A (en) Electrolytic water producing device and method, and electrolytic water
JP2021169084A (en) Electrolytic water generator and electrolytic water generating method
TW201730377A (en) Electrolyzed water generation device
EP3103770B1 (en) Brine tank, method to provide brine for regenerating an ion-exchange material and water softening method
EP1461291B1 (en) Electrolytic device and method for disinfecting water in a water supply system by means of the generation of active chlorine
KR102231413B1 (en) Sodium Hypochlorite generation device of undivided type including the cooling pipe of titanium material equipped in electrolyzer
CN106460206A (en) Electrolytic device and electrolyzed water generation method
JP4705190B1 (en) Electrolyzed water production apparatus and production method thereof
JP5891906B2 (en) Sterilization water generator
JP3689417B2 (en) Electrolyzed water production equipment
JP7180008B2 (en) Chlorinated water generator
WO2008032947A1 (en) Apparatus for replenishing water in salt water tank included in apparatus for producing sodium hypochlorite
JP3694311B2 (en) Electrolyzed water production equipment
KR102120149B1 (en) Sodium Hypochlorite generation device of undivided type with the cooling pipe of titanium material in electrolyzer
JP2004298832A (en) Method and apparatus for making electrolytic water, and method and apparatus for making electrolytic hypo-water
JPH07299457A (en) Electrolyzed water producing device
JP4685830B2 (en) Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
JP4685838B2 (en) Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
KR101367779B1 (en) Nacl supply structure of generation-system for antiseptic solution including chlorine
KR102031322B1 (en) 3-room type electrolyzed water producing apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 9

EXPY Cancellation because of completion of term