JP2005094314A - Transmission line - Google Patents

Transmission line Download PDF

Info

Publication number
JP2005094314A
JP2005094314A JP2003324492A JP2003324492A JP2005094314A JP 2005094314 A JP2005094314 A JP 2005094314A JP 2003324492 A JP2003324492 A JP 2003324492A JP 2003324492 A JP2003324492 A JP 2003324492A JP 2005094314 A JP2005094314 A JP 2005094314A
Authority
JP
Japan
Prior art keywords
signal line
conductor
transmission line
branched
line conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003324492A
Other languages
Japanese (ja)
Inventor
Hideaki Shimoda
秀昭 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003324492A priority Critical patent/JP2005094314A/en
Publication of JP2005094314A publication Critical patent/JP2005094314A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waveguides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve reflection loss in branching a signal line conductor in a transmission line. <P>SOLUTION: The transmission line is provided with a dielectric 11, a ground conductor 12 formed on the bottom surface of this dielectric 11, and a signal line conductor 13 formed on the top surface of the dielectric 11 so that one conductor is branched into two directions. The conductor 13 is branched into signal line conductors 13b, 13c after being branched, and these conductors 13b, 13c each have a bent portion so as to be guided into different directions. At least external end edges of the bent portion of both end edges in the widthwise directions of the branched conductors 13b, 13c are each formed into a curve. With this configuration, a current having high current density flowing along the end edge in the widthwise direction of the conductor before being branched can smoothly be guided to the conductor after being branched, and its discontinuity can be reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、1本の導体を2方向に分岐するように形成された信号線路導体を備える伝送線路に関する。   The present invention relates to a transmission line including a signal line conductor formed so as to branch one conductor in two directions.

近年、アンテナ素子をはじめとする高周波信号の授受をともなう部材を搭載した各種機器が広く普及している。かかる高周波信号を伝送する平面構造の高周波伝送線路としては、いわゆるマイクロストリップ線路が知られている。マイクロストリップ線路は、一般に、誘電体と、この誘電体の下面に形成されたグランド導体と、誘電体の上面に形成された信号線路導体とから構成されるものであり、信号線路導体を介して高周波信号を伝送する。また、高周波伝送線路としては、いわゆるトリプレート線路も知られている。トリプレート線路は、マイクロストリップ線路とは異なり、誘電体の内部に信号線路導体を有し、当該信号線路導体を介して高周波信号を伝送するものである。   2. Description of the Related Art In recent years, various devices equipped with members that transmit and receive high-frequency signals such as antenna elements have become widespread. A so-called microstrip line is known as a high-frequency transmission line having a planar structure for transmitting such a high-frequency signal. A microstrip line is generally composed of a dielectric, a ground conductor formed on the lower surface of the dielectric, and a signal line conductor formed on the upper surface of the dielectric. Transmits high frequency signals. A so-called triplate line is also known as a high-frequency transmission line. Unlike a microstrip line, a triplate line has a signal line conductor inside a dielectric and transmits a high-frequency signal through the signal line conductor.

ところで、このようなマイクロストリップ線路やトリプレート線路といった伝送線路においては、例えば実効的にアンテナ素子の面積を増やして感度の向上を図る平面アレイアンテナ等のように、信号線路導体を2方向に分岐して使用する形態を採用する場合も多い。この場合、伝送線路としては、図9に示すように、グランド導体101が下面に形成された誘電体102の上面に、信号線路導体103をT字状に形成したものを用いる。これにより、伝送線路においては、分岐前の信号線路導体103aから分岐後の信号線路導体103b,103cへと同図中矢印で示す方向に電流が流れることになる。   By the way, in such a transmission line such as a microstrip line or a triplate line, for example, a signal line conductor is branched in two directions, such as a planar array antenna that effectively increases the area of an antenna element to improve sensitivity. In many cases, the form used is used. In this case, as the transmission line, as shown in FIG. 9, a signal line conductor 103 formed in a T shape on the upper surface of a dielectric 102 having a ground conductor 101 formed on the lower surface is used. As a result, in the transmission line, a current flows in the direction indicated by the arrow in the figure from the signal line conductor 103a before branching to the signal line conductors 103b and 103c after branching.

ここで、伝送線路についての重要なパラメータとしては、特性インピーダンスが挙げられる。特に、伝送される信号の周波数が高い高周波伝送線路においては、信号の反射を防止するとともに、周囲のノイズの影響等を回避すべく、特性インピーダンスを安定に保つことが重要である。   Here, an important parameter for the transmission line is a characteristic impedance. In particular, in a high-frequency transmission line in which the frequency of a transmitted signal is high, it is important to keep the characteristic impedance stable in order to prevent signal reflection and avoid the influence of ambient noise and the like.

一般に、特性インピーダンスZ(Ω/m)は、信号線路導体の単位当たりの抵抗をR(Ω/m)、インダクタンスをL(H/m)、コンダクタンスをG(S/m)、キャパシタンスをC(F/m)とすると、次式(1)で表される。なお、特性インピーダンスZは、誘電体の誘電率や信号線路導体の物理的な寸法等の関数で表すことができ、多数の実験式が提案されている。   In general, the characteristic impedance Z (Ω / m) is such that the resistance per unit of the signal line conductor is R (Ω / m), the inductance is L (H / m), the conductance is G (S / m), and the capacitance is C ( F / m), it is expressed by the following formula (1). The characteristic impedance Z can be expressed by a function such as a dielectric constant of a dielectric or a physical dimension of a signal line conductor, and many empirical formulas have been proposed.

Figure 2005094314
Figure 2005094314

上述した信号線路導体をT字状に形成した伝送線路においては、図10に示すように、分岐前の信号線路導体における特性インピーダンスをZC1とし、分岐後の信号線路導体における特性インピーダンスを、それぞれ、ZC2,ZC3とすると、これら特性インピーダンスZC1,ZC2,ZC3の間には、次式(2)に示す関係が成立する。また、伝送線路においては、ZC2=ZC3の場合には、次式(3)が成立し、ZC2=αZC3の場合には、次式(4)が成立する。なお、同図に示す信号線路導体を備えた伝送線路は、図11に示すように、所定の電源に接続された実効抵抗ZC1と、並列に接続された2つの実効抵抗ZC2,ZC3とを接続した回路と等価である。 In the transmission line in which the signal line conductor described above is formed in a T shape, the characteristic impedance in the signal line conductor before branching is Z C1 and the characteristic impedance in the signal line conductor after branching is respectively shown in FIG. , Z C2 and Z C3 , the relationship shown in the following equation (2) is established between these characteristic impedances Z C1 , Z C2 and Z C3 . Further, in the transmission line in the case of Z C2 = Z C3, the following equation (3) is satisfied, in the case of Z C2 = αZ C3, the following equation (4) is satisfied. As shown in FIG. 11, the transmission line including the signal line conductor shown in FIG. 11 has an effective resistance Z C1 connected to a predetermined power source and two effective resistances Z C2 and Z C3 connected in parallel. Is equivalent to a circuit connecting the two.

Figure 2005094314
Figure 2005094314

Figure 2005094314
Figure 2005094314

Figure 2005094314
Figure 2005094314

したがって、信号線路導体をT字状に形成した伝送線路を設計するにあたっては、所望の特性インピーダンスZC1,ZC2,ZC3が得られるように、分岐前及び分岐後の信号線路導体の物理的な寸法を決定する必要がある。 Therefore, in designing a transmission line in which the signal line conductor is formed in a T shape, the physical properties of the signal line conductor before and after branching are obtained so that desired characteristic impedances Z C1 , Z C2 and Z C3 can be obtained. It is necessary to determine the correct dimensions.

この種の伝送線路において、外部回路とのインピーダンスマッチングをとりやすくするとともに、反射損失や挿入損失の影響の緩和を図った技術としては、例えば特許文献1に記載されるようなストリップ線路が提案されている。   In this type of transmission line, as a technique for facilitating impedance matching with an external circuit and mitigating the effects of reflection loss and insertion loss, for example, a strip line as described in Patent Document 1 has been proposed. ing.

特開平7−122901号公報JP-A-7-122901

ところで、上述した信号線路導体をT字状に分岐形成した伝送線路においては、分岐前の信号線路導体と分岐後の信号線路導体との間で必ず電流の不連続が生じることが知られており、この電流の不連続に起因して反射損失が大きくなってしまうという問題がある。特に、かかる伝送線路を複数用いることによって多数のアンテナ素子を配設した平面アレイアンテナ等においては、信号線路導体の分岐毎に反射損失が累積し、極めて効率が悪化する事態を招来している。   By the way, it is known that in the transmission line in which the signal line conductor described above is branched in a T shape, current discontinuity always occurs between the signal line conductor before branching and the signal line conductor after branching. There is a problem that reflection loss increases due to the discontinuity of the current. In particular, in a planar array antenna or the like in which a large number of antenna elements are arranged by using a plurality of such transmission lines, a reflection loss accumulates for each branch of the signal line conductor, resulting in a situation where the efficiency is extremely deteriorated.

本発明は、このような従来の実情に鑑みてなされたものであり、信号線路導体を分岐する際の反射損失を著しく改善することができ、効率の良い伝送線路を提供することを目的とする。   The present invention has been made in view of such a conventional situation, and an object of the present invention is to provide an efficient transmission line that can remarkably improve reflection loss when branching a signal line conductor. .

上述した目的を達成するために、本発明にかかる伝送線路は、誘電体を挟んでグランド導体と信号線路導体とが形成され、前記信号線路導体が2方向に分岐されてなる伝送線路であって、前記分岐された分岐信号線路導体は、分岐直後に屈曲部を有するとともに、当該屈曲部における少なくとも外側端縁が曲線状に形成されていることを特徴とする。   In order to achieve the above-described object, a transmission line according to the present invention is a transmission line in which a ground conductor and a signal line conductor are formed across a dielectric, and the signal line conductor is branched in two directions. The branched branched signal line conductor has a bent portion immediately after branching, and at least an outer edge of the bent portion is formed in a curved shape.

本発明の伝送線路においては、分岐信号線路導体の屈曲部における少なくとも外側端縁が曲線状とされているので、信号線路導体を構成する分岐前の導体の幅方向における端縁を流れる電流密度が高い電流が、この曲線状の部分を通って分岐後の分岐信号線路導体へ滑らかに導かれる。したがって、分岐前の信号線路導体の幅方向における端縁を流れる電流の不連続が小さく抑えられ、この不連続に起因する反射損失が抑制される。   In the transmission line of the present invention, since at least the outer edge of the bent portion of the branched signal line conductor is curved, the current density flowing through the edge in the width direction of the pre-branch conductor constituting the signal line conductor is A high current is smoothly guided through the curved portion to the branched signal line conductor after branching. Therefore, the discontinuity of the current flowing through the edge in the width direction of the signal line conductor before branching is suppressed, and reflection loss due to this discontinuity is suppressed.

特に、分岐後の分岐信号線路導体の幅方向における両端縁のうち、屈曲部の外側端縁のみならず、内側端縁についても曲線状に形成することで、分岐信号線路導体全体の形状が屈曲部において曲線形状となり、前記電流の不連続が確実に解消される。   In particular, not only the outer edge of the bent part but also the inner edge of the both ends in the width direction of the branched signal line conductor after branching are curved so that the shape of the entire branched signal line conductor is bent. A curved shape is formed at the portion, and the current discontinuity is reliably eliminated.

なお、前記曲線の形状としては、形成の容易さ、及び信号線路導体の幅方向における端縁を流れる電流の不連続をより小さくする観点から、所定の曲率半径からなる円弧の一部とするのが望ましい。また、分岐後の導体は、分岐部分における特性インピーダンスが不連続となるのを防止するために、一定の導体幅で分岐前の導体に接続されるのが望ましい。   In addition, the shape of the curve is a part of an arc having a predetermined radius of curvature from the viewpoint of ease of formation and the discontinuity of the current flowing through the edge in the width direction of the signal line conductor. Is desirable. Further, it is desirable that the conductor after branching is connected to the conductor before branching with a constant conductor width in order to prevent the characteristic impedance at the branching portion from becoming discontinuous.

本発明にかかる伝送線路が適用される伝送線路の構造としては、マイクロストリップ線路、またはトリプレート線路である。   The structure of the transmission line to which the transmission line according to the present invention is applied is a microstrip line or a triplate line.

本発明にかかる伝送線路によれば、信号線路導体の幅方向における端縁を流れる電流の不連続を小さくすることができることから、反射損失を著しく軽減することができ、効率の良い分岐伝送線路を実現することができる。   According to the transmission line according to the present invention, since the discontinuity of the current flowing through the edge in the width direction of the signal line conductor can be reduced, reflection loss can be remarkably reduced, and an efficient branch transmission line can be obtained. Can be realized.

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.

本実施形態の伝送線路は、いわゆるマイクロストリップ線路やトリプレート線路としての平面構造の伝送線路である。この伝送線路は、例えば平面アレイアンテナ等に使用することを想定し、1本の信号線路導体を2方向に分岐するように形成したものである。   The transmission line of this embodiment is a transmission line having a planar structure as a so-called microstrip line or triplate line. This transmission line is formed so as to branch one signal line conductor in two directions on the assumption that it is used for a planar array antenna, for example.

先ず、具体的な伝送線路の説明に先だって、反射損失が大きくなる原因について考察する。   First, before explaining a specific transmission line, the cause of the reflection loss will be considered.

図1に示すように、誘電体1の下面にグランド導体2が形成されるとともに、誘電体1の上面に信号線路導体3が形成されたマイクロストリップ型の伝送線路を考える。このような伝送線路において、信号線路導体3における高周波電流の電流密度分布Dを求めたところ、高周波電流は、同図中斜線部で示すように、信号線路導体3の中央部ではさほど流れず、信号線路導体3の幅方向における端縁に集中するという傾向が確認された。この傾向は、信号の周波数が高くなるほど顕著となることも確認された。なお、トリプレート型の伝送線路においても同様に、高周波電流が信号線路導体の幅方向における端縁に集中することが確認された。   Consider a microstrip transmission line in which a ground conductor 2 is formed on the lower surface of a dielectric 1 and a signal line conductor 3 is formed on the upper surface of the dielectric 1 as shown in FIG. In such a transmission line, when the current density distribution D of the high-frequency current in the signal line conductor 3 was obtained, the high-frequency current did not flow so much in the central portion of the signal line conductor 3, as indicated by the hatched portion in FIG. The tendency to concentrate on the edge in the width direction of the signal line conductor 3 was confirmed. It was also confirmed that this tendency becomes more prominent as the signal frequency increases. Similarly, in the triplate type transmission line, it was confirmed that the high-frequency current was concentrated on the edge in the width direction of the signal line conductor.

したがって、信号線路導体を分岐する際に生じる電流の不連続は、当該信号線路導体の幅方向における端縁に沿って流れる電流の影響が極めて大きいものと考えられる。したがって、伝送線路において反射損失を軽減するためには、分岐前の信号線路導体の幅方向における端縁に沿って流れる電流の不連続を小さくすればよい、と言える。   Therefore, it is considered that the current discontinuity generated when the signal line conductor is branched is greatly influenced by the current flowing along the edge in the width direction of the signal line conductor. Therefore, in order to reduce the reflection loss in the transmission line, it can be said that the discontinuity of the current flowing along the edge in the width direction of the signal line conductor before branching may be reduced.

本発明の実施の形態として示す伝送線路は、このような本件出願人が独自に得た知見に基づいて、分岐前の信号線路導体の幅方向における端縁を流れる電流を、分岐後の信号線路導体へと滑らかに導くような形状に、分岐信号線路導体を形成したものである。   The transmission line shown as the embodiment of the present invention is based on such knowledge obtained by the applicant of the present application, and the current flowing through the edge in the width direction of the signal line conductor before branching is changed to the signal line after branching. A branched signal line conductor is formed in a shape that smoothly leads to a conductor.

具体的には、伝送線路は、図2に斜視図、並びに図3に平面図及び側面図を示すように、誘電体11と、この誘電体11の下面に形成されたグランド導体12と、誘電体11の上面に形成された信号線路導体13とから構成される。なお、同図においては、マイクロストリップ型の伝送線路を示しているが、伝送線路としては、同図中鎖線で示すように、上面にグランド導体が形成された誘電体で信号線路導体13の上面を覆うことによりトリプレート型の伝送線路とすることもできる。以下では、マイクロストリップ型又はトリプレート型の区別を問わず説明を行うものとする。   Specifically, the transmission line includes a dielectric 11, a ground conductor 12 formed on the lower surface of the dielectric 11, and a dielectric as shown in a perspective view in FIG. 2 and a plan view and a side view in FIG. 3. The signal line conductor 13 is formed on the upper surface of the body 11. In the figure, a microstrip type transmission line is shown, but as the transmission line, as shown by a chain line in the figure, the upper surface of the signal line conductor 13 is a dielectric having a ground conductor formed on the upper surface. A triplate type transmission line can also be obtained by covering. Hereinafter, description will be made regardless of whether the microstrip type or the triplate type is distinguished.

また、以下では、分岐前の1本の信号線路導体と、分岐後の2本の信号線路導体とを明確化すべく、前者を分岐前信号線路導体13aと称し、後者のうち一方を分岐後信号線路導体13bと称し、後者のうち他方を分岐後信号線路導体13cと称するものとする。分岐後信号線路導体13bと分岐後信号線路導体13cは、いずれも分岐前信号線路導体13aから分岐された直後に互いに反対方向に90°屈曲され、屈曲部を有している。   In the following, in order to clarify one signal line conductor before branching and two signal line conductors after branching, the former is referred to as pre-branch signal line conductor 13a, and one of the latter is a signal after branching. The other one of the latter is called a post-branch signal line conductor 13c. The branched signal line conductor 13b and the branched signal line conductor 13c are both bent 90 ° in opposite directions immediately after being branched from the unbranched signal line conductor 13a, and have bent portions.

このような伝送線路において、本実施形態においては、信号線路導体13は、従来のT字状ではなく、分岐部分において、分岐後信号線路導体13b,13cの幅方向における両端縁を曲線状に形成し、分岐前信号線路導体13aと当該分岐後信号線路導体13b,13cとを連続的に接続したパターンとされている。より具体的には、信号線路導体13は、分岐後信号線路導体13b,13cの幅方向における端縁を所定の曲率半径からなる円弧状に形成し、分岐前信号線路導体13aと当該分岐後信号線路導体13b,13cとを連続的に接続して構成されている。このとき、分岐後信号線路導体13b,13cは、分岐部分における特性インピーダンスが不連続となるのを防止するために、一定の導体幅で分岐前信号線路導体13aに接続される。   In such a transmission line, in the present embodiment, the signal line conductor 13 is not a conventional T-shape, and both end edges in the width direction of the post-branch signal line conductors 13b and 13c are formed in a curved shape at the branch portion. The signal line conductor 13a before branching and the signal line conductors 13b and 13c after branching are continuously connected. More specifically, the signal line conductor 13 is formed by forming the edges in the width direction of the post-branch signal line conductors 13b and 13c in an arc shape having a predetermined radius of curvature, and the pre-branch signal line conductor 13a and the post-branch signal The line conductors 13b and 13c are continuously connected. At this time, the post-branch signal line conductors 13b and 13c are connected to the pre-branch signal line conductor 13a with a constant conductor width in order to prevent the characteristic impedance at the branch portion from becoming discontinuous.

伝送線路においては、このように信号線路導体13を形成することにより、分岐前信号線路導体13aの幅方向における端縁を流れる電流を、分岐後信号線路導体13b,13cへと滑らかに導くことができ、電流の不連続を解消して反射損失を軽減することができる。   In the transmission line, by forming the signal line conductor 13 in this way, the current flowing through the edge in the width direction of the signal line conductor 13a before branching can be smoothly guided to the signal line conductors 13b and 13c after branching. It is possible to eliminate the current discontinuity and reduce the reflection loss.

実際に、分岐後信号線路導体13b,13cを曲線形状とすることの有意性を検証することを目的として、所定の周波数の信号を伝送した際における反射損失を求めるシミュレーションを行った。   Actually, for the purpose of verifying the significance of making the signal line conductors 13b and 13c after branching into a curved shape, a simulation was performed to obtain a reflection loss when a signal of a predetermined frequency was transmitted.

シミュレーションは、図4に示すように、下面にグランド導体12が形成された誘電体11として、比誘電率εr=2.6、誘電体厚d=0.56mmのものを用い、当該誘電体11の上面に形成される信号線路導体13として、導体厚t=35μmのものを用いて行った。また、信号線路導体13は、図5に示すように、分岐前信号線路導体13aとして、導体幅W1=1.6mm、特性インピーダンスZC1=50Ωに形成するとともに、分岐後信号線路導体13b,13cとして、それぞれ、導体幅W2=W3=0.4mm、特性インピーダンスZC2=ZC3=100Ωに形成した。 In the simulation, as shown in FIG. 4, a dielectric 11 having a ground conductor 12 formed on the lower surface thereof having a relative dielectric constant ε r = 2.6 and a dielectric thickness d = 0.56 mm is used. As the signal line conductor 13 formed on the upper surface of No. 11, a conductor having a conductor thickness t = 35 μm was used. As shown in FIG. 5, the signal line conductor 13 is formed as a pre-branch signal line conductor 13a with a conductor width W 1 = 1.6 mm and a characteristic impedance Z C1 = 50Ω, and the post-branch signal line conductor 13b, 13c, conductor width W 2 = W 3 = 0.4 mm and characteristic impedance Z C2 = Z C3 = 100Ω, respectively.

そして、シミュレーションは、分岐後信号線路導体13b,13cの幅方向における端縁の曲率半径をR=0,0.4(=W2=W3),0.8(=2W2=2W3),1.2(=3W2=3W3)の4種類に変化させて行った。なお、ここでの曲率半径Rとは、図5中鎖線で示すように、分岐後信号線路導体13b,13cのそれぞれの幅方向における端縁を形成する2つの円弧のうち、分岐前信号線路導体13aに対して近位側である屈曲部の内側の円弧の曲率半径として定義している。したがって、分岐後信号線路導体13b,13cのそれぞれの幅方向における端縁を形成する2つの円弧のうち、分岐前信号線路導体13aに対して遠位側である外側の円弧の曲率半径は、上述したように、当該分岐後信号線路導体13b,13cが一定の導体幅で形成されることから、それぞれ、R+W2(=R+W3)として定義される。 In the simulation, the curvature radii of the edges in the width direction of the branched signal line conductors 13b and 13c are R = 0, 0.4 (= W 2 = W 3 ), 0.8 (= 2W 2 = 2W 3 ). , 1.2 (= 3W 2 = 3W 3 ). Here, the radius of curvature R is, as indicated by a chain line in FIG. 5, a signal line conductor before branching of two arcs that form edges in the width direction of the signal line conductors 13b and 13c after branching. It is defined as the radius of curvature of the arc inside the bent portion that is proximal to 13a. Accordingly, the curvature radius of the outer arc that is distal to the pre-branch signal line conductor 13a among the two arcs that form the edge in the width direction of each of the post-branch signal line conductors 13b and 13c is described above. As described above, since the branched signal line conductors 13b and 13c are formed with a constant conductor width, they are defined as R + W 2 (= R + W 3 ), respectively.

なお、曲率半径R=0である場合とは、図6に示すように、分岐前信号線路導体13aの幅方向における端縁と、分岐後信号線路導体13b,13cの幅方向における内側の端縁とが、直角をなす場合である。この場合においても、分岐後信号線路導体13b,13cの幅方向における外側の端縁は、曲線状に形成される。   Note that the case where the radius of curvature R = 0 is, as shown in FIG. 6, the edge in the width direction of the signal line conductor 13a before branching and the inner edge in the width direction of the signal line conductors 13b and 13c after branching. Are perpendicular to each other. Also in this case, the outer edges in the width direction of the branched signal line conductors 13b and 13c are formed in a curved shape.

また、比較のため、図7に示すように、信号線路導体をT字状に形成した従来の伝送線路についても反射損失を求めた。   For comparison, the reflection loss was also obtained for a conventional transmission line in which the signal line conductor was formed in a T shape as shown in FIG.

この結果を図8に示す。なお、同図には、縦軸に反射損失[dB]を示し、横軸に信号線路導体を介して伝送した高周波信号の周波数[GHz]を示している。また、同図において、曲線C0は、信号線路導体をT字状に形成した従来の伝送線路における結果であり、曲線C1は、曲率半径R=0の場合における結果であり、曲線C2は、曲率半径R=0.4の場合における結果であり、曲線C3は、曲率半径R=0.8の場合における結果であり、曲線C4は、曲率半径R=1.2の場合における結果である。 The result is shown in FIG. In the figure, the vertical axis represents the reflection loss [dB], and the horizontal axis represents the frequency [GHz] of the high-frequency signal transmitted through the signal line conductor. Further, in the figure, a curve C 0 is a result in a conventional transmission line in which a signal line conductor is formed in a T shape, and a curve C 1 is a result in a case where the curvature radius R = 0, and a curve C 2 Is the result when the radius of curvature R = 0.4, the curve C 3 is the result when the radius of curvature R = 0.8, and the curve C 4 is when the radius of curvature R = 1.2. It is a result.

同図から、測定した全ての周波数にわたって、従来の伝送線路に比べ、新たに提案する伝送線路の方が、反射損失が著しく改善されることがわかる。特に、曲率半径Rが大きくなるほど、反射損失が軽減するという結果が得られた。また、曲率半径R=0の場合にも、反射係数の減少がみられることから、分岐後信号線路導体13b,13cのそれぞれの幅方向における両端縁のうち、少なくとも外側の端縁を曲線状に形成し、分岐前信号線路導体13aと当該分岐後信号線路導体13b,13cとを連続的に接続すればよいことがわかる。   From the figure, it can be seen that the reflection loss is remarkably improved in the newly proposed transmission line compared to the conventional transmission line over all measured frequencies. In particular, the result was obtained that the reflection loss was reduced as the curvature radius R was increased. In addition, since the reflection coefficient is reduced even when the radius of curvature R = 0, at least the outer edge of each end in the width direction of the branched signal line conductors 13b and 13c is curved. It can be seen that the signal line conductor 13a before branching and the signal line conductors 13b and 13c after branching may be continuously connected.

なお、この伝送線路においては、上述したように、曲率半径Rが大きくなるほど、反射損失が軽減する傾向にあるが、曲率半径Rを大きくするということは、信号線路導体13を形成するために必要となる面積が大きくなることを意味する。したがって、この伝送線路においては、所望する反射損失と面積との兼ね合いによって曲率半径Rを適宜決定すればよい。現実的には、曲率半径R=0.4(=W2=W3)〜0.8(=2W2=2W3)程度であれば、十分な特性を得ることができる。換言すれば、伝送線路においては、分岐後信号線路導体13b,13cの幅方向における外側の端縁を、当該分岐後信号線路導体13b,13cの導体幅W2,W3の1倍〜3倍の曲率半径からなる円弧状に形成し、これに対応するように、分岐後信号線路導体13b,13cの幅方向における内側の端縁を、当該分岐後信号線路導体13b,13cの導体幅W2,W3の0倍〜2倍の曲率半径からなる円弧状に形成するのが望ましい。 In this transmission line, as described above, the reflection loss tends to decrease as the radius of curvature R increases. However, increasing the radius of curvature R is necessary to form the signal line conductor 13. This means that the area becomes larger. Therefore, in this transmission line, the radius of curvature R may be appropriately determined depending on the desired reflection loss and area. Actually, sufficient characteristics can be obtained if the radius of curvature is about R = 0.4 (= W 2 = W 3 ) to 0.8 (= 2W 2 = 2W 3 ). In other words, in the transmission line, the outer edge in the width direction of the post-branch signal line conductors 13b and 13c is 1 to 3 times the conductor widths W 2 and W 3 of the post-branch signal line conductors 13b and 13c. In order to correspond to this, the inner edge in the width direction of the branched signal line conductors 13b and 13c is set to the conductor width W 2 of the branched signal line conductors 13b and 13c. , W 3 is preferably formed in an arc shape having a radius of curvature of 0 to 2 times W 3 .

以上説明したように、本発明の実施の形態として新たに提案した伝送線路においては、1本の信号線路導体13を2方向に分岐する際に、その分岐部分において、分岐後信号線路導体13b,13cの幅方向における両端縁のうち、少なくとも分岐前信号線路導体13aに対して外側の端縁を曲線状に形成し、当該分岐前信号線路導体13aと当該分岐後信号線路導体13b,13cとを連続的に接続したパターンとすることにより、分岐前信号線路導体13aと分岐後信号線路導体13b,13cとの間における電流の不連続を解消し、反射損失を著しく改善することができる。   As described above, in the transmission line newly proposed as an embodiment of the present invention, when one signal line conductor 13 is branched in two directions, the branched signal line conductor 13b, Of the both end edges in the width direction of 13c, at least the outer edge with respect to the signal line conductor 13a before branching is formed in a curved shape, and the signal line conductor 13a before branching and the signal line conductors 13b and 13c after branching are connected to each other. By making the pattern connected continuously, the current discontinuity between the signal line conductor 13a before branching and the signal line conductors 13b and 13c after branching can be eliminated, and the reflection loss can be remarkably improved.

特に、この伝送線路においては、信号の周波数が高い場合には有効であり、感度を向上させるためにペンシルビームを使用する用途等に適用して好適である。具体的には、本発明の伝送線路は、例えば10GHz以上の信号を伝送するBS(Broadcasting Satellite)アンテナや平面アレイアンテナを搭載する車載レーダといった各種機器に適用することにより、反射損失による影響が少なく高効率の信号の授受を行うことが可能となる。   In particular, this transmission line is effective when the signal frequency is high, and is suitable for application to use a pencil beam in order to improve sensitivity. Specifically, the transmission line of the present invention is less affected by reflection loss by being applied to various devices such as a BS (Broadcasting Satellite) antenna that transmits a signal of 10 GHz or more and a vehicle-mounted radar equipped with a planar array antenna. High-efficiency signals can be exchanged.

なお、本発明は、上述した実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更が可能であることはいうまでもない。   Note that the present invention is not limited to the above-described embodiment, and it is needless to say that modifications can be made as appropriate without departing from the spirit of the present invention.

マイクロストリップ型の伝送線路の断面図であって、信号線路導体を流れる高周波電流の電流密度分布について説明するための図である。It is sectional drawing of a microstrip type transmission line, Comprising: It is a figure for demonstrating the current density distribution of the high frequency current which flows through a signal line conductor. 本発明の実施の形態として示す伝送線路の構造を示す斜視図である。It is a perspective view which shows the structure of the transmission line shown as embodiment of this invention. 本発明の実施の形態として示す伝送線路の構造を示す平面図及び側面図である。It is the top view and side view which show the structure of the transmission line shown as embodiment of this invention. 伝送線路の断面図であって、所定の周波数の信号を伝送した際における反射損失を求めるシミュレーションに用いた誘電体及び信号線路導体のパラメータについて説明するための図である。It is sectional drawing of a transmission line, Comprising: It is a figure for demonstrating the parameter of the dielectric material used for the simulation which calculates | requires the reflection loss at the time of transmitting the signal of a predetermined frequency, and a signal line conductor. 信号線路導体の平面図であって、所定の周波数の信号を伝送した際における反射損失を求めるシミュレーションに用いた信号線路導体のパラメータについて説明するための図である。It is a top view of a signal line conductor, Comprising: It is a figure for demonstrating the parameter of the signal line conductor used for the simulation which calculates | requires the reflection loss at the time of transmitting the signal of a predetermined frequency. 信号線路導体の平面図であって、曲率半径が0である信号線路導体について説明するための図である。It is a top view of a signal line conductor, Comprising: It is a figure for demonstrating the signal line conductor whose curvature radius is 0. 信号線路導体の平面図であって、所定の周波数の信号を伝送した際における反射損失を求めるシミュレーションにおいて、比較例として用いた従来の信号線路導体について説明するための図である。It is a top view of a signal line conductor, Comprising: It is a figure for demonstrating the conventional signal line conductor used as a comparative example in the simulation which calculates | requires the reflection loss at the time of transmitting the signal of a predetermined frequency. シミュレーション結果として求めた信号線路導体を介して伝送した高周波信号の周波数に対する反射係数の関係を示す図である。It is a figure which shows the relationship of the reflection coefficient with respect to the frequency of the high frequency signal transmitted through the signal line conductor calculated | required as a simulation result. 従来の伝送線路の構造を示す斜視図である。It is a perspective view which shows the structure of the conventional transmission line. 従来の伝送線路における信号線路導体の平面図であって、特性インピーダンスについて説明するための図である。It is a top view of the signal line conductor in the conventional transmission line, Comprising: It is a figure for demonstrating characteristic impedance. 図10に示す信号線路導体を備えた伝送線路の等価回路図である。It is an equivalent circuit schematic of the transmission line provided with the signal line conductor shown in FIG.

符号の説明Explanation of symbols

1,11 誘電体
2,12 グランド導体
3,13 信号線路導体
13a 分岐前信号線路導体
13b,13c 分岐後信号線路導体
1,11 Dielectric 2,12 Ground conductor 3,13 Signal line conductor 13a Signal line conductor before branching 13b, 13c Signal line conductor after branching

Claims (7)

誘電体を挟んでグランド導体と信号線路導体とが形成され、前記信号線路導体が2方向に分岐されてなる伝送線路であって、
前記分岐された分岐信号線路導体は、分岐直後に屈曲部を有するとともに、当該屈曲部における少なくとも外側端縁が曲線状に形成されていることを特徴とする伝送線路。
A transmission line in which a ground conductor and a signal line conductor are formed across a dielectric, and the signal line conductor is branched in two directions,
The branched branched signal line conductor has a bent portion immediately after branching, and at least an outer edge of the bent portion is formed in a curved shape.
前記分岐された分岐信号線路導体は、前記屈曲部における内側端縁も曲線状に形成されていることを特徴とする請求項1記載の伝送線路。   2. The transmission line according to claim 1, wherein the branched branch signal line conductor has an inner edge at the bent portion formed in a curved shape. 前記曲線は、所定の曲率半径からなる円弧の一部であることを特徴とする請求項1又は2記載の伝送線路。   The transmission line according to claim 1, wherein the curve is a part of an arc having a predetermined radius of curvature. 前記屈曲部において、外側端縁と内側端縁は同心円状に形成されていることを特徴とする請求項2記載の伝送線路。   The transmission line according to claim 2, wherein the outer edge and the inner edge are formed concentrically in the bent portion. 上記分岐後の分岐信号線路導体は、略一定の導体幅で上記分岐前の導体に接続されていることを特徴とする請求項1又は2記載の伝送線路。   The transmission line according to claim 1 or 2, wherein the branched signal line conductor after branching is connected to the conductor before branching with a substantially constant conductor width. 信号線路導体の片側にグランド導体が形成されるマイクロストリップ線路であることを特徴とする請求項1乃至5のいずれか1項記載の伝送線路。   The transmission line according to any one of claims 1 to 5, wherein the transmission line is a microstrip line in which a ground conductor is formed on one side of the signal line conductor. 信号線路導体の両側にグランド導体が形成されるトリプレート線路であることを特徴とする請求項1乃至5のいずれか1項記載の伝送線路。   The transmission line according to claim 1, wherein the transmission line is a triplate line in which ground conductors are formed on both sides of the signal line conductor.
JP2003324492A 2003-09-17 2003-09-17 Transmission line Pending JP2005094314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003324492A JP2005094314A (en) 2003-09-17 2003-09-17 Transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003324492A JP2005094314A (en) 2003-09-17 2003-09-17 Transmission line

Publications (1)

Publication Number Publication Date
JP2005094314A true JP2005094314A (en) 2005-04-07

Family

ID=34455237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324492A Pending JP2005094314A (en) 2003-09-17 2003-09-17 Transmission line

Country Status (1)

Country Link
JP (1) JP2005094314A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175845A (en) * 2012-02-24 2013-09-05 Shimadzu Corp Signal transmission circuit
WO2014203672A1 (en) * 2013-06-18 2014-12-24 日本無線株式会社 Feed line
WO2016203673A1 (en) * 2015-06-16 2016-12-22 東京計器株式会社 Power combiner
JP2017147725A (en) * 2016-02-12 2017-08-24 日本電産エレシス株式会社 Waveguide device and antenna device including the same
US10003117B2 (en) 2013-06-18 2018-06-19 Japan Radio Co., Ltd. Two-port triplate-line/waveguide converter having two probes with tips extending in different directions
CN108767402A (en) * 2018-09-14 2018-11-06 成都天奥电子股份有限公司 A kind of microstrip probe printed board be inserted into waveguide and there is two-way broadband work(to divide
JP2019070672A (en) * 2011-02-11 2019-05-09 テラビュー リミテッド Test system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11169202B2 (en) 2011-02-11 2021-11-09 Teraview Limited Test system
US11726136B2 (en) 2011-02-11 2023-08-15 Teraview Limited Test system
JP2019070672A (en) * 2011-02-11 2019-05-09 テラビュー リミテッド Test system
JP2013175845A (en) * 2012-02-24 2013-09-05 Shimadzu Corp Signal transmission circuit
WO2014203672A1 (en) * 2013-06-18 2014-12-24 日本無線株式会社 Feed line
JP2015002490A (en) * 2013-06-18 2015-01-05 日本無線株式会社 Feed line
EP3012900A4 (en) * 2013-06-18 2017-02-22 Japan Radio Co., Ltd Feed line
US9979066B2 (en) 2013-06-18 2018-05-22 Japan Radio Co., Ltd. Feed line comprised of a triplate line coupled between a waveguide/triplate line converter and patch antennas for optimizing signals through the feed line
US10003117B2 (en) 2013-06-18 2018-06-19 Japan Radio Co., Ltd. Two-port triplate-line/waveguide converter having two probes with tips extending in different directions
WO2016203673A1 (en) * 2015-06-16 2016-12-22 東京計器株式会社 Power combiner
JP2017011344A (en) * 2015-06-16 2017-01-12 東京計器株式会社 Power synthesizer
JP2017147725A (en) * 2016-02-12 2017-08-24 日本電産エレシス株式会社 Waveguide device and antenna device including the same
CN108767402A (en) * 2018-09-14 2018-11-06 成都天奥电子股份有限公司 A kind of microstrip probe printed board be inserted into waveguide and there is two-way broadband work(to divide

Similar Documents

Publication Publication Date Title
US7429902B2 (en) Differential transmission line having a curved region with selected radius of curvature
EP2166613A1 (en) Transmission line converter
US20070040628A1 (en) Transmission line pair
JP5566169B2 (en) Antenna device
JP2006121643A (en) Planar antenna
JP2010004248A (en) Differential transmission line
CN112164869B (en) Antenna, low-frequency radiation unit and radiation arm
US20070159276A1 (en) Parallel coupled CPW line filter
JP2005094314A (en) Transmission line
US7378919B2 (en) Planar microwave line having microstrip conductors with a directional change region including a gap having periodic foldings
CN108321484B (en) 90-degree hybrid circuit
JP2005094445A (en) Transmission line
KR20050080453A (en) Non-radiative microstrip line
JP4392018B2 (en) Improved directional coupler
JP2000165116A (en) Directional coupler
US6885264B1 (en) Meandered-line bandpass filter
US20010033211A1 (en) Multilayered RF signal transmission circuit and connecting method therein
JP6237136B2 (en) Directional coupler
WO2022075254A1 (en) Differential transmission line and communication device using same
EP3811461B1 (en) An electromagnetic coupler
JP2005286459A (en) Array antenna
CN216389734U (en) Slot antenna and electronic terminal
JP2005278165A (en) Nonradioactive dielectric line and converter
JP2768411B2 (en) Dielectric waveguide directional coupler
US20080158067A1 (en) Printed antenna

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060210

A131 Notification of reasons for refusal

Effective date: 20060217

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

A02 Decision of refusal

Effective date: 20060622

Free format text: JAPANESE INTERMEDIATE CODE: A02