JP2005087468A - Image pickup device provided with distance image measurement function and endoscopic apparatus - Google Patents
Image pickup device provided with distance image measurement function and endoscopic apparatus Download PDFInfo
- Publication number
- JP2005087468A JP2005087468A JP2003324579A JP2003324579A JP2005087468A JP 2005087468 A JP2005087468 A JP 2005087468A JP 2003324579 A JP2003324579 A JP 2003324579A JP 2003324579 A JP2003324579 A JP 2003324579A JP 2005087468 A JP2005087468 A JP 2005087468A
- Authority
- JP
- Japan
- Prior art keywords
- distance
- image
- sensor
- lens
- imaging surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/2476—Non-optical details, e.g. housings, mountings, supports
- G02B23/2484—Arrangements in relation to a camera or imaging device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00193—Optical arrangements adapted for stereoscopic vision
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/107—Measuring physical dimensions, e.g. size of the entire body or parts thereof
- A61B5/1076—Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/107—Measuring physical dimensions, e.g. size of the entire body or parts thereof
- A61B5/1079—Measuring physical dimensions, e.g. size of the entire body or parts thereof using optical or photographic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
- G01S17/894—3D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/28—Systems for automatic generation of focusing signals
- G02B7/30—Systems for automatic generation of focusing signals using parallactic triangle with a base line
- G02B7/32—Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Astronomy & Astrophysics (AREA)
- Radar, Positioning & Navigation (AREA)
- Multimedia (AREA)
- Dentistry (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Remote Sensing (AREA)
- Endoscopes (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Automatic Focus Adjustment (AREA)
Abstract
Description
本発明は、通常の明暗画像を得るイメージアレイと、対象物までの距離を計測する距離画像センサを一体化することで、取得した明暗画像に対象物の大きさを表すスケールを重ね合わせることで、対象物の大きさを表示する形状計測機能を有するイメージセンサとこれを用いた撮像装置に関するものである。 The present invention integrates an image array that obtains a normal light and dark image and a distance image sensor that measures the distance to the object, thereby superimposing a scale representing the size of the object on the obtained light and dark image. The present invention relates to an image sensor having a shape measurement function for displaying the size of an object, and an imaging apparatus using the image sensor.
内視鏡において、撮像側から光スポットの列を放射状に被写体に照射し、各スポットの位置情報から三角測量の原理を用いて、撮像レンズから対象物までの距離を算出する技術が、特許文献1に示されている。かかる従来技術においては、照射される各スポットの対象物の位置における間隔は、絶対的な大きさを表すものではないので、対象物の大きさを表すスケールとして用いることはできなかった。
撮像装置において、レンズのF値(焦点距離/レンズの口径)を大きくすることで、被写界深度が深くなり、被写体に対してピント調節を行うことなく撮像を行うことが可能である。この技術は内視鏡などのように機構上ピント調節を行うのが容易でない場合などに用いられる。しかしこれによって広範囲でピントが合うために遠近感が失われ、被写体の絶対的な大きさがわからなくなる。撮像対象物の絶対的な大きさを知りたいという要求は、例えば内視鏡により病巣の大きさ、その成長または縮小の度合いを知りたい場合など多くあると考えられる。本発明は被写体の実寸を計測できるスケールを画像上に表示することで対象物の絶対的な大きさを知り得るものである。 In the imaging apparatus, by increasing the F value (focal length / lens aperture) of the lens, the depth of field can be deepened, and imaging can be performed without adjusting the focus on the subject. This technique is used when it is not easy to perform focus adjustment mechanically, such as in an endoscope. However, since the focus is adjusted over a wide range, the sense of perspective is lost and the absolute size of the subject cannot be known. There may be many requests for knowing the absolute size of an imaging target, for example, when it is desired to know the size of a lesion and the degree of growth or reduction by an endoscope. In the present invention, the absolute size of an object can be known by displaying a scale capable of measuring the actual size of an object on an image.
本発明は、通常の明暗画像を得るイメージアレイと、対象物までの距離を計測する距離画像センサを一体化することで、取得した明暗画像に対象物の大きさを表すスケールを重ね合わせることで、対象物の大きさを表示する形状計測機能を有するものである。 The present invention integrates an image array that obtains a normal light and dark image and a distance image sensor that measures the distance to the object, thereby superimposing a scale representing the size of the object on the obtained light and dark image. And a shape measuring function for displaying the size of the object.
撮像対象物の絶対的な大きさを知りたいという要求は、例えば内視鏡により病巣の大きさ、その成長または縮小の度合いを知りたい場合など多くあり、本発明はこれらの要求を満たすことができる。 There are many requests for knowing the absolute size of an object to be imaged, for example, when it is desired to know the size of a lesion, the degree of growth or reduction by an endoscope, and the present invention can satisfy these requirements. it can.
本発明は、通常の明暗画像を得るイメージアレイと、対象物までの距離を計測する距離画像センサを一体化し、取得した明暗画像に対象物の大きさを表すスケールを重ね合わせることで、対象物の大きさを表示する形状計測機能を有する撮像装置に関するものである。これは、内視鏡などに有用である。レンズのF値(焦点距離/レンズの口径)を大きくすることで、被写界深度が深くなり、被写体に対してピント調節を行うことなく撮像を行うことが可能である。しかし、図1に示すように、これによって、被写体の絶対的な大きさがわからなくなる。レンズのしぼりを絞り、F値を大きくすると、3つの距離のいずれに対してもピントのあった画像が得られる。 The present invention integrates an image array that obtains a normal light and dark image and a distance image sensor that measures the distance to the object, and superimposes a scale that represents the size of the object on the obtained light and dark image. The present invention relates to an imaging apparatus having a shape measuring function for displaying the size of the image. This is useful for endoscopes and the like. By increasing the F value (focal length / lens aperture) of the lens, the depth of field becomes deep, and it is possible to take an image without adjusting the focus on the subject. However, as shown in FIG. 1, this makes it impossible to know the absolute size of the subject. When the aperture of the lens is reduced and the F value is increased, an image that is in focus at any of the three distances can be obtained.
そこで、明暗画像を取得するイメージセンサと距離画像を取得するイメージセンサを一体化するか、あるいは、明暗画像と距離画像がともに得られる距離イメージセンサを用いて、対象物の各部までの距離画像を得、その奥行き方向の距離を用いて幾何学的関係により、対象物を2次元画像に投影した面内の距離分布を網目状のスケールを重ねがきすることにより、対象物の大きさを測れるようにする。
距離を測るイメージセンサとして、本発明者が特願2003−132945号で提案したCMOSイメージセンサが有用である。このCMOSセンサは光飛行時間法(Time of flight)による距離測定を行うものであり、対象物の明暗画像を距離情報と同時に得ることができる。
Therefore, by integrating the image sensor that acquires the light and dark image and the image sensor that acquires the distance image, or by using the distance image sensor that can obtain both the light and dark image and the distance image, the distance image to each part of the object is obtained. By using the distance in the depth direction, the size of the object can be measured by overlaying a mesh-like scale on the in-plane distance distribution obtained by projecting the object on a two-dimensional image. To.
A CMOS image sensor proposed by the present inventor in Japanese Patent Application No. 2003-132945 is useful as an image sensor for measuring the distance. This CMOS sensor measures distance by the time of flight method, and can obtain a bright and dark image of an object simultaneously with distance information.
奥行き距離から、面内距離を求める原理図を図2に示す。対象物のある点とレンズ間の距離L1が、レンズと撮像面までの距離dに比べて十分大きければ、明らかに次式がなりたつ。
このようにして求めた面内の等距離線を網目状に、明暗画像上に重ね書きする。その原理を説明する図を図3と図4に示す。
説明の便宜上、1次元の場合について説明するが、容易に2次元に拡張可能である。
図3に示すように、釣り鐘状の対象物を撮像しているとし、撮像面上に一定間隔で配置された画素と、レンズを結ぶ光線を対象物側に延長し、これが、対象物と交わる点を図3では、黒丸で表している。これより明らかなように、対象物までの距離が短い場合には、対象物は大きく写るため、1画素のピッチに対して、対象物と光線の交点のピッチは、距離が遠い場合に比べて狭くなる。そのため、距離画像センサの画素毎に、対象物までの距離を求めて、その線間の距離が一定になるように網目状の面内等距離分布を求めると、図3の釣り鐘状の対象物の場合には、図4のようになる。
The in-plane equidistant lines thus obtained are overwritten on the light and dark image in a mesh pattern. 3 and 4 are diagrams for explaining the principle.
For convenience of explanation, a one-dimensional case will be described, but it can be easily extended to two dimensions.
As shown in FIG. 3, it is assumed that a bell-shaped object is being imaged, and light beams connecting the pixels arranged at regular intervals on the imaging surface and the lens are extended to the object side, and this intersects the object. The dots are represented by black circles in FIG. As is clear from this, when the distance to the object is short, the object appears large, and therefore, the pitch of the intersection of the object and the light beam is larger than that when the distance is long with respect to the pitch of one pixel. Narrow. Therefore, when the distance to the object is obtained for each pixel of the distance image sensor, and the in-plane equidistant distribution is obtained so that the distance between the lines is constant, the bell-shaped object of FIG. In the case of FIG.
これを求める方法を説明する。図3に示すように、撮像面の画素からの光線と対象物との交点の位置に番号をつける。これをiとすると、図3の例ではiは0から10までをとる。いま撮像面と平行な対象物の基準面を考えると、この基準面と光線との交点は、常に一定間隔になる。そのピッチをpとする。
距離画像センサにより、各画素における面内の距離が式(1)により求められる。これは、図3では、光線と対象物との交点を、基準面に投影した点を求めていることに相当する。例えば、i=1の点では1p、i=2の点では、2.2pである。従ってi=2の画素に対する等距離線の位置としては、i=1側にすこし寄った点を取る必要があることが分かる。
A method for obtaining this will be described. As shown in FIG. 3, a number is assigned to the position of the intersection between the light beam from the pixel on the imaging surface and the object. If this is i, i takes a value from 0 to 10 in the example of FIG. Considering the reference plane of the object parallel to the imaging plane, the intersection between the reference plane and the light beam is always a constant interval. Let the pitch be p.
The distance image sensor determines the in-plane distance at each pixel by equation (1). In FIG. 3, this corresponds to obtaining a point obtained by projecting the intersection of the light beam and the object onto the reference plane. For example, it is 1p at the point i = 1, and 2.2p at the point i = 2. Accordingly, it can be seen that the equidistant line for the pixel of i = 2 needs to take a point slightly closer to the i = 1 side.
これを求めるため、対象物と光線との交点の隣接した2点間で、対象物がほぼ直線的に変化すると考え、近似式を求める。i番目の点の基準面内距離をXiとする。i番目の等距離点(2次元の場合は、等距離面)の座標をYiとすると、これは、隣接した2点の面内距離の値を用いて次式により求めることができる。
次に、このような機能を実現するためのイメージセンサについて説明する。これには、繰り返しパルス光を対象物に照射し、光源から放たれた光が対象物で反射して戻ってくるまでの時間を計測することで、距離分布を求めることができる光飛行時間法(Time of flight)による距離画像センサが有用である。
この距離画像センサは、CMOSイメージセンサの技術により、CMOS集積回路として構成することができる。CMOSイメージセンサの技術を用いた距離画像センサは、1つのセンサアレイで、距離情報と明暗情報をともに得ることができるため、その場合には、求めた距離情報と、これにより計算された面内距離分布を、明暗画像上に重ね書きするのは容易である。
なお、これまで面内距離のスケールを網目すなわち変形した格子状のものとして説明したが、これに代えて網目の交点のみをドット表示するもの、面状ではなく直線として1次元のスケールとするものなどの変形が考えられる。また、網目状の変形として正6角形や正3角形を結合した網目状のスケールも考えられる。
1次元のスケールとした場合には、直線の起点・終点を任意に設定できるようにすることが好ましい。
Next, an image sensor for realizing such a function will be described. This is an optical time-of-flight method in which distance distribution can be obtained by repeatedly irradiating an object with pulsed light and measuring the time until the light emitted from the light source is reflected by the object and returns. A distance image sensor based on (Time of flight) is useful.
This distance image sensor can be configured as a CMOS integrated circuit by the technology of the CMOS image sensor. The distance image sensor using the CMOS image sensor technology can obtain both distance information and light / dark information with one sensor array. In this case, the distance information obtained and the in-plane calculated by the distance information are obtained. It is easy to overwrite the distance distribution on the light and dark image.
In the above, the scale of the in-plane distance has been described as a mesh, that is, a deformed grid, but instead, only the intersection of the mesh is displayed as a dot, or a one-dimensional scale as a straight line instead of a plane Variations such as are possible. Further, as a mesh-like deformation, a mesh-like scale in which regular hexagons and regular triangles are combined can be considered.
In the case of a one-dimensional scale, it is preferable that the start and end points of the straight line can be arbitrarily set.
しかし、この場合の明暗画像は、距離画像センサと同じ解像度になるため、距離画像センサの解像度が十分でない場合には、問題となる。
そこで、CMOSイメージセンサの技術を用いて図5に示すように、1つのシリコンチップ上に、明暗画像のイメージセンサと距離画像用のイメージセンサを形成する。それぞれにレンズを設け、同じ対象物の画像を、明暗画像と距離画像の両方に投影する。
シリコンチップ上に一体化することに代えて、セラミックなど他の基盤素材上に明暗画像センサと距離センサを近接して設ける形態での一体化であってもよい。
このとき、明暗画像用イメージセンサと距離画像用イメージセンサの撮像面の大きさを等しくすることもできるが、用途によっては、距離画像用センサの解像度はそれほど高くなくてよく、距離画像用センサの面積を小さくして、イメージセンサチップ全体の面積を小さく実現したい場合がある。
However, since the bright and dark image in this case has the same resolution as the distance image sensor, it becomes a problem when the resolution of the distance image sensor is not sufficient.
Therefore, as shown in FIG. 5, using a CMOS image sensor technique, an image sensor for bright and dark images and an image sensor for distance images are formed on one silicon chip. Each is provided with a lens, and an image of the same object is projected on both the light and dark image and the distance image.
Instead of integration on a silicon chip, integration in a form in which a light and dark image sensor and a distance sensor are provided close to each other on a substrate material such as ceramic may be used.
At this time, the size of the imaging surface of the image sensor for the light and dark image and the image sensor for the distance image can be made equal, but depending on the application, the resolution of the sensor for the distance image may not be so high. There are cases where it is desired to reduce the area of the image sensor chip to reduce the overall area.
このような場合には、距離画像センサと明暗画像センサに対し、図6のように異なる焦点距離のレンズを用いることで、サイズの異なるセンサに同じ対象物の画像を投影することができる。図6に示すように、明暗画像センサと距離画像センサの大きさが異なり、異なる焦点距離のレンズを用いる場合、対象物の位置によって、両者の倍率の比が変動する。
両者の倍率の比は、次式で与えられる。
The ratio between the two magnifications is given by the following equation.
次に、図5のように距離画像センサと、明暗画像センサの2つのセンサを持つ場合の両者の画像の位置ずれについて考える。説明を簡単にするために、図7に示すように、距離画像センサと、明暗画像センサは、同じ大きさの撮像面を持ち、レンズも同じ焦点距離のものを用いるものとする。
対象物の位置により、明暗画像センサ上の対象物の位置と、距離画像センサ上の対象物の位置にずれが生じる。両者に位置ずれが生じない距離が存在する。これを、D0とすると、対象物の基準面がこれからずれたときの撮像面上での位置ずれ量は、次式で与えられる。
Due to the position of the object, there is a difference between the position of the object on the light and dark image sensor and the position of the object on the distance image sensor. There is a distance where no positional deviation occurs between the two. When this is D0, the positional deviation amount on the imaging surface when the reference plane of the object deviates from this is given by the following equation.
なお、距離画像センサと、明暗画像センサの撮像面の大きさが異なり、レンズの焦点距離が異なる場合についても、計算はやや複雑となるが同様な計算により、位置ずれ量の計算を行うことができる。
距離画像センサでは、対象物までの距離分布が分かるので、図4の面内距離分布を表す網目を重ねがきする機能に加えて、図8に示すように、対象物までの距離を等高線表示し、これを、明暗画像上に重ねがきすることもできる。この等高線表示と、面内等距離線をともに重ねて書くこともできる。
It should be noted that even when the distance image sensor and the light and dark image sensor have different imaging surfaces and the focal lengths of the lenses are different, the calculation is slightly complicated, but the amount of misalignment can be calculated by the same calculation. it can.
Since the distance image sensor knows the distance distribution to the object, in addition to the function of overlaying the mesh representing the in-plane distance distribution of FIG. 4, the distance to the object is displayed as a contour line as shown in FIG. This can also be overlaid on the light and dark image. The contour line display and the in-plane equidistant line can be written together.
撮像対象物の絶対的な大きさを知りたいという要求は、例えば内視鏡により病巣の大きさ、その成長または縮小の度合いを知りたい場合など多くあり、本発明はこれらの要求を満たすことができる。 There are many requests for knowing the absolute size of an object to be imaged, for example, when it is desired to know the size of a lesion, the degree of growth or reduction by an endoscope, and the present invention can satisfy these requirements. it can.
D:レンズ−被写体間距離
d:レンズ−撮像面間距離
X:被写体の位置における距離スケール
x:撮像面の位置における距離スケール
L1:レンズ−対象物間距離
X1:対象物における基準線からの距離
x1:撮像面における基準線からの距離
p:格子のピッチ
h:対象物の撮像面における大きさ
s:レンズの中心線間距離
D: Lens-subject distance d: Lens-imaging distance X: Distance scale at the subject position x: Distance scale at the imaging surface position L1: Lens-object distance X1: Distance from the reference line on the object x1: Distance from the reference line on the imaging surface p: Pitch of the grating h: Size of the object on the imaging surface s: Distance between the center lines of the lenses
Claims (7)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003324579A JP2005087468A (en) | 2003-09-17 | 2003-09-17 | Image pickup device provided with distance image measurement function and endoscopic apparatus |
PCT/JP2004/013699 WO2005027739A1 (en) | 2003-09-17 | 2004-09-13 | Imaging device and endoscope having distance image measuring function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003324579A JP2005087468A (en) | 2003-09-17 | 2003-09-17 | Image pickup device provided with distance image measurement function and endoscopic apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005087468A true JP2005087468A (en) | 2005-04-07 |
Family
ID=34372749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003324579A Pending JP2005087468A (en) | 2003-09-17 | 2003-09-17 | Image pickup device provided with distance image measurement function and endoscopic apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2005087468A (en) |
WO (1) | WO2005027739A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008042580A (en) * | 2006-08-07 | 2008-02-21 | Chugoku Electric Power Co Inc:The | Imaging apparatus |
JP2009025225A (en) * | 2007-07-23 | 2009-02-05 | Fujifilm Corp | Three-dimensional imaging apparatus and control method for the same, and program |
EP2160974A1 (en) | 2008-09-04 | 2010-03-10 | Olympus Medical Systems Corporation | Imaging system |
JP2010102113A (en) * | 2008-10-23 | 2010-05-06 | Olympus Corp | Image processor, endoscope apparatus, endoscope system, and program |
US7889916B2 (en) | 2006-06-30 | 2011-02-15 | Brother Kogyo Kabushiki Kaisha | Image processor |
JP2011069965A (en) * | 2009-09-25 | 2011-04-07 | Japan Atomic Energy Agency | Image capturing apparatus, image display method, and recording medium with image display program recorded thereon |
JP2011151087A (en) * | 2010-01-19 | 2011-08-04 | Panasonic Corp | Component mounting device, component detecting apparatus, and component mounting method |
JP2017510409A (en) * | 2014-03-28 | 2017-04-13 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Surgical system using haptic feedback based on quantitative three-dimensional imaging |
JPWO2016181453A1 (en) * | 2015-05-11 | 2017-10-26 | オリンパス株式会社 | Endoscope device |
JPWO2016181454A1 (en) * | 2015-05-11 | 2017-10-26 | オリンパス株式会社 | Endoscope device |
JPWO2016181452A1 (en) * | 2015-05-11 | 2017-11-30 | オリンパス株式会社 | Endoscope device |
US10334227B2 (en) | 2014-03-28 | 2019-06-25 | Intuitive Surgical Operations, Inc. | Quantitative three-dimensional imaging of surgical scenes from multiport perspectives |
US10350009B2 (en) | 2014-03-28 | 2019-07-16 | Intuitive Surgical Operations, Inc. | Quantitative three-dimensional imaging and printing of surgical implants |
US10368054B2 (en) | 2014-03-28 | 2019-07-30 | Intuitive Surgical Operations, Inc. | Quantitative three-dimensional imaging of surgical scenes |
JP2019521778A (en) * | 2016-07-14 | 2019-08-08 | アエスキュラップ アーゲー | Endoscope apparatus and endoscopy method |
US11266465B2 (en) | 2014-03-28 | 2022-03-08 | Intuitive Surgical Operations, Inc. | Quantitative three-dimensional visualization of instruments in a field of view |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9545220B2 (en) | 2014-03-02 | 2017-01-17 | V.T.M (Virtual Tape Measure) Technologies Ltd. | Endoscopic measurement system and method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0541901A (en) * | 1991-08-09 | 1993-02-23 | Olympus Optical Co Ltd | Endoscope for three-dimensional measurement |
JP3041420B1 (en) * | 1999-01-27 | 2000-05-15 | 工業技術院長 | Endoscope system and recording medium storing control program for detecting depth information of endoscope image |
JP2002065581A (en) * | 2000-08-25 | 2002-03-05 | Fuji Photo Film Co Ltd | Endoscope device |
SE0003666D0 (en) * | 2000-10-11 | 2000-10-11 | Astrazeneca Ab | A delivery device |
-
2003
- 2003-09-17 JP JP2003324579A patent/JP2005087468A/en active Pending
-
2004
- 2004-09-13 WO PCT/JP2004/013699 patent/WO2005027739A1/en active Application Filing
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7889916B2 (en) | 2006-06-30 | 2011-02-15 | Brother Kogyo Kabushiki Kaisha | Image processor |
JP2008042580A (en) * | 2006-08-07 | 2008-02-21 | Chugoku Electric Power Co Inc:The | Imaging apparatus |
JP2009025225A (en) * | 2007-07-23 | 2009-02-05 | Fujifilm Corp | Three-dimensional imaging apparatus and control method for the same, and program |
US8278615B2 (en) | 2008-09-04 | 2012-10-02 | Olympus Medical Systems Corp. | Imaging system having a variable optical transmission timing |
EP2160974A1 (en) | 2008-09-04 | 2010-03-10 | Olympus Medical Systems Corporation | Imaging system |
JP2010057740A (en) * | 2008-09-04 | 2010-03-18 | Olympus Medical Systems Corp | Imaging system |
JP2010102113A (en) * | 2008-10-23 | 2010-05-06 | Olympus Corp | Image processor, endoscope apparatus, endoscope system, and program |
DE102010040518A1 (en) | 2009-09-25 | 2011-04-28 | Advanced Technology Co., Ltd. | Image recording device, image display method and recording medium, and image recording program recorded thereon |
JP2011069965A (en) * | 2009-09-25 | 2011-04-07 | Japan Atomic Energy Agency | Image capturing apparatus, image display method, and recording medium with image display program recorded thereon |
US8792000B2 (en) | 2009-09-25 | 2014-07-29 | Japan Atomic Energy Agency | Image capturing apparatus, image displaying method and recording medium, image displaying program being recorded thereon |
JP2011151087A (en) * | 2010-01-19 | 2011-08-04 | Panasonic Corp | Component mounting device, component detecting apparatus, and component mounting method |
JP2017510409A (en) * | 2014-03-28 | 2017-04-13 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Surgical system using haptic feedback based on quantitative three-dimensional imaging |
US10555788B2 (en) | 2014-03-28 | 2020-02-11 | Intuitive Surgical Operations, Inc. | Surgical system with haptic feedback based upon quantitative three-dimensional imaging |
US11304771B2 (en) | 2014-03-28 | 2022-04-19 | Intuitive Surgical Operations, Inc. | Surgical system with haptic feedback based upon quantitative three-dimensional imaging |
US11266465B2 (en) | 2014-03-28 | 2022-03-08 | Intuitive Surgical Operations, Inc. | Quantitative three-dimensional visualization of instruments in a field of view |
US10334227B2 (en) | 2014-03-28 | 2019-06-25 | Intuitive Surgical Operations, Inc. | Quantitative three-dimensional imaging of surgical scenes from multiport perspectives |
US10350009B2 (en) | 2014-03-28 | 2019-07-16 | Intuitive Surgical Operations, Inc. | Quantitative three-dimensional imaging and printing of surgical implants |
US10368054B2 (en) | 2014-03-28 | 2019-07-30 | Intuitive Surgical Operations, Inc. | Quantitative three-dimensional imaging of surgical scenes |
JPWO2016181453A1 (en) * | 2015-05-11 | 2017-10-26 | オリンパス株式会社 | Endoscope device |
JPWO2016181452A1 (en) * | 2015-05-11 | 2017-11-30 | オリンパス株式会社 | Endoscope device |
JPWO2016181454A1 (en) * | 2015-05-11 | 2017-10-26 | オリンパス株式会社 | Endoscope device |
JP2019521778A (en) * | 2016-07-14 | 2019-08-08 | アエスキュラップ アーゲー | Endoscope apparatus and endoscopy method |
US11213189B2 (en) | 2016-07-14 | 2022-01-04 | Aesculap Ag | Endoscopic device and method for endoscopic examination |
JP2022062231A (en) * | 2016-07-14 | 2022-04-19 | アエスキュラップ アーゲー | Endoscope device and method of endoscopic examination |
Also Published As
Publication number | Publication date |
---|---|
WO2005027739A1 (en) | 2005-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005087468A (en) | Image pickup device provided with distance image measurement function and endoscopic apparatus | |
US8900126B2 (en) | Optical scanning device | |
US9330324B2 (en) | Error compensation in three-dimensional mapping | |
EP1555507B1 (en) | Three-dimensional visual sensor | |
JP4885584B2 (en) | Rangefinder calibration method and apparatus | |
JP5140761B2 (en) | Method for calibrating a measurement system, computer program, electronic control unit, and measurement system | |
CN109938837B (en) | Optical tracking system and optical tracking method | |
US6377298B1 (en) | Method and device for geometric calibration of CCD cameras | |
TW200919271A (en) | System and method for performing optical navigation using scattered light | |
KR20130032368A (en) | Three-dimensional measurement apparatus, three-dimensional measurement method, and storage medium | |
JP5633058B1 (en) | 3D measuring apparatus and 3D measuring method | |
JP2011069965A (en) | Image capturing apparatus, image display method, and recording medium with image display program recorded thereon | |
JP2008241643A (en) | Three-dimensional shape measuring device | |
JPH11160021A (en) | Wide area three-dimensional position measuring method and equipment | |
JP2008249431A (en) | Three-dimensional image correction method and its device | |
JP2007093412A (en) | Three-dimensional shape measuring device | |
JP5487946B2 (en) | Camera image correction method, camera apparatus, and coordinate transformation parameter determination apparatus | |
JP2010048553A (en) | Inspecting method of compound-eye distance measuring device and chart used for same | |
JP2012013592A (en) | Calibration method for three-dimensional shape measuring machine, and three-dimensional shape measuring machine | |
JP6108383B2 (en) | Piping position measuring system and piping position measuring method | |
JPH0412724A (en) | Measuring endoscope | |
CN114383817B (en) | High-precision synchronous scanning optical system adjustment precision evaluation method | |
JP2006271503A (en) | Endoscopic apparatus with three-dimensional measuring function | |
JP3369235B2 (en) | Calibration method for measuring distortion in three-dimensional measurement | |
US20240078694A1 (en) | Image processing apparatus, image processing method, and recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050315 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050303 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050316 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060116 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20070223 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20070223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070724 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080205 |