JP2005086878A - Charging control system - Google Patents

Charging control system Download PDF

Info

Publication number
JP2005086878A
JP2005086878A JP2003314603A JP2003314603A JP2005086878A JP 2005086878 A JP2005086878 A JP 2005086878A JP 2003314603 A JP2003314603 A JP 2003314603A JP 2003314603 A JP2003314603 A JP 2003314603A JP 2005086878 A JP2005086878 A JP 2005086878A
Authority
JP
Japan
Prior art keywords
charging
voltage
current
shunt regulator
overcharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003314603A
Other languages
Japanese (ja)
Inventor
Akihiko Kudo
彰彦 工藤
Masaki Nagaoka
正樹 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2003314603A priority Critical patent/JP2005086878A/en
Publication of JP2005086878A publication Critical patent/JP2005086878A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging control system which can stop safely and surely charging at overcharging time by taking a cell balance, without using a high accuracy voltage-measuring circuit. <P>SOLUTION: The charging control system includes each single cell 1, which has shunt regulators 7 set to 4.2V of the charging voltage of the single cell 1 at the operating voltage, and an overcharge voltage detector 8 for detecting the overcharging voltage 4.25V of the single cell 1 connected in parallel. A charger 11 starts constant-current charging into a battery 2 at a charging current of 1A for the maximum energizing current value or more of the shunt regulators 7, continues the constant-current charging at the current value of the charging current as one half, when the energizing current value of any of the shunt regulators 7 becomes 0.1A or larger, and finishes charging, by cutting off the charging current when any overcharging voltage detector 8 detects overcharged voltage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は二次電池の充電制御システムに係り、特に、複数個の二次電池を直列に接続した組電池を充電用電源で充電するための充電制御システムに関する。   The present invention relates to a charging control system for a secondary battery, and more particularly to a charging control system for charging an assembled battery in which a plurality of secondary batteries are connected in series with a charging power source.

従来、複数個の二次電池(単電池)が直列接続された組電池を充電するには、組電池の+端子と−端子とに充電用電源を接続して所定の充電電圧及び充電電流で各単電池を同時に充電する充電制御システムが用いられてきた。また、最近実用化されているリチウムイオン電池を用いた組電池には、各単電池の電圧を測定しかつセルバランスをとって充電する充電制御システムが用いられている。セルバランス機能が必要な理由は、各単電池間の充電状態が異なってくると、組電池として充放電可能な容量が少なくなり、かつ寿命も短くなるためである。ニッケル水素電池であれば、過充電によりセルバランスをとることが可能であるが、非水系の有機溶媒を電解液としているリチウムイオン電池では過充電状態とすることができないため、各単電池間の充電状態を揃えるセルバランス機能が不可欠である。   Conventionally, in order to charge an assembled battery in which a plurality of secondary batteries (single cells) are connected in series, a charging power source is connected to the + terminal and the − terminal of the assembled battery, and a predetermined charging voltage and charging current are used. A charge control system that charges each unit cell simultaneously has been used. In addition, a charge control system that measures the voltage of each unit cell and charges the battery in an assembled battery using a lithium ion battery that has been put into practical use recently is used. The reason why the cell balance function is necessary is that, if the state of charge between the individual cells is different, the capacity that can be charged and discharged as an assembled battery is reduced and the life is also shortened. If it is a nickel metal hydride battery, it is possible to achieve cell balance by overcharging, but a lithium ion battery using a non-aqueous organic solvent as an electrolyte cannot be overcharged. A cell balance function that aligns the state of charge is essential.

このため、リチウムイオン電池の充電では、各単電池と並列にバイパス抵抗を接続してバイパス放電を行って充電状態を揃える、つまりセルバランス動作を行う技術が知られている(例えば、特許文献1参照)。この技術では、例えば、図4に示すように、単電池1にバイパス抵抗2及びスイッチング素子3が接続されており、4直列の単電池1毎にバイパス放電を行って充電を行う構成となっている。また、単電池1の電圧は差動増幅器4を用いて組電池の−端子をグランドとする電圧に変換され、変換出力はマルチプレクサ5を通じてマイコン6のA/Dコンバータ入力に接続される。マイコン6のポート出力はマルチプレクサの入力チャンネルすなわち単電池を選択すると共に、スイッチング素子3の制御出力にもなっている。マイコン6は、システム起動時に単電池1の開放電圧をマルチプレクサを制御しながら切り替えてA/Dコンバータで測定し、単電池1の開放電圧から計算される残存容量を計算し、4個の単電池の最少の残存容量との差分の容量のみスイッチング素子3を制御してバイパス放電動作を行う。   For this reason, in the charging of a lithium ion battery, a technique is known in which a bypass resistor is connected in parallel with each unit cell to perform a bypass discharge to align the state of charge, that is, a cell balance operation is performed (for example, Patent Document 1). reference). In this technique, for example, as shown in FIG. 4, a bypass resistor 2 and a switching element 3 are connected to the unit cell 1, and charging is performed by performing bypass discharge for each unit cell 1 in series. Yes. The voltage of the unit cell 1 is converted into a voltage having the negative terminal of the assembled battery as the ground using the differential amplifier 4, and the converted output is connected to the A / D converter input of the microcomputer 6 through the multiplexer 5. The port output of the microcomputer 6 selects an input channel of the multiplexer, that is, a single cell, and also serves as a control output of the switching element 3. The microcomputer 6 switches the open voltage of the single cell 1 while controlling the multiplexer at the time of system start-up, measures it with an A / D converter, calculates the remaining capacity calculated from the open voltage of the single cell 1, and calculates four single cells. The switching element 3 is controlled only for the capacity that is the difference from the minimum remaining capacity, and the bypass discharge operation is performed.

上述したように、単電池の電圧測定はA/Dコンバータを用いて測定するが、単電池毎にA/Dコンバータを設けることはコストの点で難しく、1個のA/Dコンバータで各単電池の電圧を測定することになる。また、組電池では単電池が直列に接続されているので、A/Dコンバータの電源を絶縁して測定入力を切り替えない限り、A/Dコンバータで単電池の電圧を直接高精度に測定することができないため、A/Dコンバータのグランド端子を組電池の最下位単電池の−端子と接続し、単電池の電圧をグランド端子レベルに変換する電圧検出回路が用いられてきた(例えば、特許文献2参照)。このような電圧検出回路は、分圧回路と差動増幅回路との組み合わせで構成されている。セルバランスをとるためには、単電池の電圧をデジタル値として精度良く測定する必要があるが、例えば、実用化されている自動車用のリチウムイオン電池のモジュールでは、±50mV程度の精度で測定している。   As described above, the voltage of a single cell is measured using an A / D converter. However, it is difficult in terms of cost to provide an A / D converter for each single cell. The battery voltage will be measured. In addition, since the cells are connected in series in the assembled battery, the voltage of the cell can be directly measured with high accuracy by the A / D converter unless the power supply of the A / D converter is isolated and the measurement input is switched. Therefore, a voltage detection circuit that connects the ground terminal of the A / D converter to the negative terminal of the lowest unit cell of the assembled battery and converts the voltage of the unit cell to the ground terminal level has been used (for example, Patent Documents). 2). Such a voltage detection circuit is composed of a combination of a voltage dividing circuit and a differential amplifier circuit. In order to achieve cell balance, it is necessary to accurately measure the voltage of a single cell as a digital value. For example, in the case of a lithium ion battery module for automobiles that has been put into practical use, the voltage is measured with an accuracy of about ± 50 mV. ing.

特開2000−92732号公報JP 2000-92732 A 特開2001−231177号公報JP 2001-231177 A

しかしながら、上記従来技術では、±50mV程度の電圧検出精度を確保するためには高精度の抵抗や低オフセット電圧のオペアンプが必要なため、回路構成が複雑になると共にコスト高の要因となっていた。また、例えば、エネルギー密度が高く過充電に留意すべきリチウムイオン電池を用いた自動車用組電池等の充電制御を行うには、安全性の観点から過充電を確実に防止する必要がある。   However, in the above prior art, in order to ensure a voltage detection accuracy of about ± 50 mV, a high-precision resistor and a low-offset voltage operational amplifier are required, resulting in a complicated circuit configuration and high cost. . In addition, for example, in order to perform charging control of an assembled battery for automobiles or the like using a lithium ion battery having a high energy density and attention should be paid to overcharging, it is necessary to reliably prevent overcharging from the viewpoint of safety.

本発明は上記事案に鑑み、高精度の電圧測定回路を用いずにセルバランスをとり、過充電のときに安全確実に充電を停止できる充電制御システムを提供することを課題とする。   An object of the present invention is to provide a charge control system that can balance a cell without using a high-accuracy voltage measurement circuit and can safely stop charging when overcharged.

上記課題を解決するために、本発明の第1の態様は、動作電圧が単電池の充電電圧に設定されたシャントレギュレータと単電池の過充電電圧を検出する過充電検出回路とが全単電池に並列接続された組電池を、前記シャントレギュレータの最大通電電流値以下の充電電流で定電流充電し、何れかの前記過充電検出回路が過充電電圧を検出したときに前記充電電流を遮断することを特徴とする。   In order to solve the above-mentioned problem, a first aspect of the present invention is that a shunt regulator whose operating voltage is set to a charging voltage of a unit cell and an overcharge detection circuit for detecting the overcharging voltage of the unit cell are all unit cells. The battery packs connected in parallel are charged with a constant current with a charging current equal to or less than the maximum energization current value of the shunt regulator, and the charge current is cut off when any of the overcharge detection circuits detects an overcharge voltage. It is characterized by that.

第1の態様では、動作電圧が単電池の充電電圧に設定されたシャントレギュレータを単電池に並列接続し、シャントレギュレータの最大通電電流値以下の充電電流で定電流充電する構成としたので、充電が進んで単電池の充電電圧に達するとシャントレギュレータに電流が流れ、単電池は全てシャントレギュレータの動作電圧に揃うため、全単電池のセルバランスをとることができると共に、過充電電圧を検出する過充電検出回路を単電池に並列接続し、何れかの過充電検出回路が過充電電圧を検出したときに充電電流を遮断する構成としたので、シャントレギュレータが故障して単電池の電圧が上昇しても、充電電流の遮断により充電を終了させ単電池の過充電を防止することができるため、安全性を確保することができる。   In the first aspect, the shunt regulator whose operating voltage is set to the charging voltage of the unit cell is connected in parallel to the unit cell, and the constant current charging is performed with the charging current equal to or less than the maximum energization current value of the shunt regulator. When the battery voltage reaches the charging voltage of the single cell, current flows through the shunt regulator, and all the single cells are aligned with the operating voltage of the shunt regulator, so that the cell balance of all the single cells can be achieved and overcharge voltage is detected. Since the overcharge detection circuit is connected in parallel to the cells and any of the overcharge detection circuits detects the overcharge voltage, the charging current is cut off, so the shunt regulator breaks down and the cell voltage rises. Even so, the charging can be stopped by cutting off the charging current to prevent the unit cell from being overcharged, so that safety can be ensured.

また、上記課題を解決するために、本発明の第2の態様は、動作電圧が単電池の充電電圧に設定されたシャントレギュレータと単電池の過充電電圧を検出する過充電検出回路とが全単電池に並列接続された組電池を、前記シャントレギュレータの最大通電電流値以上の充電電流で定電流充電を開始し、何れかの前記シャントレギュレータの通電電流値が設定値以上になったときに充電電流の電流値を下げて定電流充電を継続し、何れかの前記過充電検出回路が過充電電圧を検出したときに前記充電電流を遮断することを特徴とする。   In order to solve the above problems, the second aspect of the present invention includes a shunt regulator whose operating voltage is set to the charging voltage of the unit cell and an overcharge detection circuit for detecting the overcharging voltage of the unit cell. When a battery pack connected in parallel to a single battery starts constant-current charging with a charging current equal to or greater than the maximum energization current value of the shunt regulator, and when the energization current value of any of the shunt regulators exceeds a set value The constant current charging is continued by lowering the current value of the charging current, and the charging current is cut off when any of the overcharge detection circuits detects an overcharge voltage.

第2の態様では、シャントレギュレータの最大通電電流値以上の充電電流で定電流充電を開始し、何れかのシャントレギュレータの通電電流値が設定値以上になったときに充電電流の電流値を下げて定電流充電を継続する構成としたので、シャントレギュレータの最大通電電流値が小さくてもシャントレギュレータの動作電圧となるまでは充電電流を大きくできるため、短時間で全単電池の充電ができ、かつ、単電池は全てシャントレギュレータの動作電圧に揃うため、全単電池のセルバランスをとることができると共に、過充電電圧を検出する過充電検出回路を単電池に接続し、何れかの過充電検出回路が過充電電圧を検出したときに充電電流を遮断する構成としたので、シャントレギュレータが故障して単電池の電圧が上昇しても、充電電流の遮断により充電を終了させ単電池の過充電を防止することができるため、安全性を確保することができる。   In the second aspect, constant current charging is started with a charging current equal to or greater than the maximum energization current value of the shunt regulator, and when the energization current value of any of the shunt regulators exceeds the set value, the current value of the charging current is decreased. Therefore, even if the maximum current value of the shunt regulator is small, the charging current can be increased until it reaches the operating voltage of the shunt regulator. In addition, since all the cells are aligned with the operating voltage of the shunt regulator, it is possible to balance the cells of all the cells, and connect an overcharge detection circuit that detects the overcharge voltage to the cell and either overcharge. Since the detection circuit detects the overcharge voltage, the charging current is cut off, so even if the shunt regulator breaks down and the cell voltage rises, It is possible to prevent overcharging of the cell to terminate charging by blocking the flow, it is possible to ensure safety.

本発明の第1の態様によれば、動作電圧が単電池の充電電圧に設定されたシャントレギュレータを単電池に並列接続し、シャントレギュレータの最大通電電流値以下の充電電流で定電流充電する構成としたので、充電が進んで単電池の充電電圧に達するとシャントレギュレータに電流が流れ、単電池は全てシャントレギュレータの動作電圧に揃うため、全単電池のセルバランスをとることができると共に、過充電電圧を検出する過充電検出回路を単電池に並列接続し、何れかの過充電検出回路が過充電電圧を検出したときに充電電流を遮断する構成としたので、シャントレギュレータが故障して単電池の電圧が上昇しても、充電電流の遮断により充電を終了させ単電池の過充電を防止することができるため、安全性を確保することができる、という効果を得ることができる。   According to the first aspect of the present invention, the shunt regulator whose operating voltage is set to the charging voltage of the unit cell is connected in parallel to the unit cell, and constant current charging is performed with a charging current equal to or less than the maximum energization current value of the shunt regulator. Therefore, when charging progresses and reaches the charging voltage of the single cell, current flows to the shunt regulator, and all the single cells are aligned with the operating voltage of the shunt regulator. Since an overcharge detection circuit that detects the charging voltage is connected in parallel to the single battery and any of the overcharge detection circuits detects the overcharge voltage, the charging current is cut off. Even if the voltage of the battery rises, it is possible to stop charging by cutting off the charging current and prevent overcharging of the unit cell, so safety can be ensured. It is possible to obtain the effect say.

また、本発明の第2の態様によれば、シャントレギュレータの最大通電電流値以上の充電電流で定電流充電を開始し、何れかのシャントレギュレータの通電電流値が設定値以上になったときに充電電流の電流値を下げて定電流充電を継続する構成としたので、シャントレギュレータの最大通電電流値が小さくてもシャントレギュレータの動作電圧となるまでは充電電流を大きくできるため、短時間で全単電池の充電ができ、かつ、単電池は全てシャントレギュレータの動作電圧に揃うため、全単電池のセルバランスをとることができると共に、過充電電圧を検出する過充電検出回路を単電池に接続し、何れかの過充電検出回路が過充電電圧を検出したときに充電電流を遮断する構成としたので、シャントレギュレータが故障して単電池の電圧が上昇しても、充電電流の遮断により充電を終了させ単電池の過充電を防止することができるため、安全性を確保することができる、という効果を得ることができる。   Further, according to the second aspect of the present invention, when constant current charging is started with a charging current equal to or greater than the maximum energization current value of the shunt regulator, and when the energization current value of any of the shunt regulators exceeds the set value, Since the constant current charging is continued by reducing the current value of the charging current, the charging current can be increased until the shunt regulator operating voltage is reached even if the maximum energization current value of the shunt regulator is small. A single cell can be charged and all the single cells are aligned with the operating voltage of the shunt regulator, so that the cell balance of all single cells can be achieved, and an overcharge detection circuit that detects overcharge voltage is connected to the single cell. However, when any overcharge detection circuit detects an overcharge voltage, the charge current is cut off. Be increased, it is possible to prevent overcharging of the cell to terminate charging the interruption of the charging current, it is possible to ensure safety, it is possible to obtain an effect that.

以下、図面を参照して、本発明に係る充電制御システムの実施の形態について説明する。   Hereinafter, an embodiment of a charge control system according to the present invention will be described with reference to the drawings.

図1に示すように、本実施形態の充電制御システム20は、4個の単電池1−1〜1−4(以下、これらをまとめて単電池1という。)が直列接続された組電池2の充電を制御するシステムであり、バンドギャップ型の基準電源を内蔵し単電池1の充電電圧に設定されたシャントレギュレータ7、単電池1の過充電電圧を検出する過充電電圧検出回路8及びOR回路9、10を有する充電状態検出部と、組電池2を充電するための充電器11とで構成されている。   As shown in FIG. 1, the charge control system 20 of the present embodiment includes an assembled battery 2 in which four unit cells 1-1 to 1-4 (hereinafter collectively referred to as a unit cell 1) are connected in series. A shunt regulator 7 having a built-in bandgap reference power source and set to the charging voltage of the cell 1, an overcharge voltage detection circuit 8 for detecting the overcharge voltage of the cell 1, and OR The charging state detection part which has the circuits 9 and 10 and the charger 11 for charging the assembled battery 2 are comprised.

各単電池1には、シャントレギュレータ7及び過充電電圧検出回路8がそれぞれ並列に接続されている。シャントレギュレータ7は、動作時の通電電流が設定値以上になるとハイレベル信号を出力する端子を有しており、この端子がOR回路9の入力側に接続されている。また、過充電電圧検出回路8は、単電池1の充電電圧より大きい過充電電圧を検出したときにハイレベル信号を出力する端子を有しており、この端子がOR回路10の入力側に接続されている。   Each cell 1 is connected in parallel with a shunt regulator 7 and an overcharge voltage detection circuit 8. The shunt regulator 7 has a terminal for outputting a high level signal when the energization current during operation becomes equal to or higher than a set value, and this terminal is connected to the input side of the OR circuit 9. The overcharge voltage detection circuit 8 has a terminal for outputting a high level signal when an overcharge voltage larger than the charge voltage of the unit cell 1 is detected, and this terminal is connected to the input side of the OR circuit 10. Has been.

図2に示すように、充電器11は、充電用電源12、充電用電源12から供給される電源を定電圧定電流に変換するD/Dコンバータ等の定電圧回路13、逆流防止用ダイオード14、FET等のスイッチ15及びマイクロコンピュータ(以下、マイコンという。)16を有して構成されている。マイコン16は、演算処理を行うCPU、制御プログラムを格納したROM、CPUのワークエリアとして働くRAM、2つの入力ポート(後述する過充電検出入力ポート及びシャントレギュレータ動作検出入力ポート、図1参照)、信号ラインを介してスイッチ15に接続されハイレベル信号を出力することでスイッチ15をオフ状態とするためのスイッチ制御ポート、信号ラインを介して定電圧回路13に接続されハイレベル信号を出力することで定電圧回路15の充電電流を低減させる定電圧回路制御ポートを有している。   As shown in FIG. 2, the charger 11 includes a charging power source 12, a constant voltage circuit 13 such as a D / D converter that converts the power supplied from the charging power source 12 into a constant voltage and a constant current, and a backflow prevention diode 14. And a switch 15 such as an FET and a microcomputer (hereinafter referred to as a microcomputer) 16. The microcomputer 16 includes a CPU that performs arithmetic processing, a ROM that stores a control program, a RAM that serves as a work area for the CPU, two input ports (an overcharge detection input port and a shunt regulator operation detection input port described later, see FIG. 1), A switch control port for turning off the switch 15 by being connected to the switch 15 via the signal line and outputting a high level signal, and a high level signal being connected to the constant voltage circuit 13 via the signal line The constant voltage circuit control port for reducing the charging current of the constant voltage circuit 15 is provided.

図1に示すように、充電時に、組電池2の+端子と−端子は、充電器11の+充電端子と−充電端子とにそれぞれ接続される。また、OR回路9、10の出力側は、充電器11(マイコン16)の過充電検出入力ポート及びシャントレギュレータ動作検出入力ポートに接続される。   As shown in FIG. 1, during charging, the + terminal and the − terminal of the assembled battery 2 are connected to the + charging terminal and the − charging terminal of the charger 11, respectively. The output sides of the OR circuits 9 and 10 are connected to the overcharge detection input port and the shunt regulator operation detection input port of the charger 11 (microcomputer 16).

なお、本例では、単電池1に電池容量が1Ahのリチウムイオン電池を用い、シャントレギュレータ7には設定電圧が単電池1の充電電圧の4.2V、設定電流が0.1Aのものを用いた。また、過充電電圧検出回路8の設定電圧を4.25Vとし、充電器11には最大充電電流が1A、マイコン16からハイレベル信号を受信する度に、充電電流を半分に下げるものを用いた。   In this example, a lithium ion battery having a battery capacity of 1 Ah is used for the unit cell 1, and a shunt regulator 7 having a set voltage of 4.2 V that is the charge voltage of the unit cell 1 and a set current of 0.1 A is used. It was. In addition, the setting voltage of the overcharge voltage detection circuit 8 is 4.25 V, the charger 11 has a maximum charging current of 1 A, and every time a high level signal is received from the microcomputer 16, the charging current is reduced by half. .

次に、本実施形態の充電制御システム20の動作についてマイコン16のCPUを主体として説明する。なお、マイコン16に電源が投入されると、CPUは初期設定処理においてスイッチ15がオン状態となるように信号ラインへの出力をローレベルとし、充電状態検出部が接続されるとオン状態となる図示を省略したスイッチからの信号により充電ルーチンを実行する。   Next, the operation of the charging control system 20 of the present embodiment will be described with the CPU of the microcomputer 16 as a main component. When the microcomputer 16 is turned on, the CPU sets the output to the signal line to a low level so that the switch 15 is turned on in the initial setting process, and turns on when the charge state detection unit is connected. A charging routine is executed by a signal from a switch (not shown).

充電状態検出部に充電器11が接続されると、組電池2はシャントレギュレータ7の最大通電電流より大きな充電電流(1A)で定電流充電が開始される。各単電池1の充電が進み、何れかの単電池1の電圧が4.2Vに到達すると、当該単電池1に並列接続されたシャントレギュレータ7に通電電流が流れ始め、シャントレギュレータ7の通電電流が設定電流の0.1Aとなると、シャントレギュレータ7はOR回路9の入力側にハイレベル信号を出力する。従って、OR回路9の出力は、何れかのシャントレギュレータ7の通電電流が設定電流(0.1A)以上となったときに、ハイレベルとなる。CPUはシャントレギュレータ動作検出入力ポートを介してこの信号を受け、定電圧回路13の充電電流を半分(0.5A)に下げる。   When the charger 11 is connected to the charging state detection unit, the battery pack 2 starts constant current charging with a charging current (1A) larger than the maximum energization current of the shunt regulator 7. When the charging of each unit cell 1 proceeds and the voltage of any unit cell 1 reaches 4.2 V, an energization current starts to flow through the shunt regulator 7 connected in parallel to the unit cell 1, and the energization current of the shunt regulator 7 Becomes 0.1 A of the set current, the shunt regulator 7 outputs a high level signal to the input side of the OR circuit 9. Accordingly, the output of the OR circuit 9 becomes a high level when the energization current of any shunt regulator 7 becomes equal to or higher than the set current (0.1 A). The CPU receives this signal via the shunt regulator operation detection input port, and lowers the charging current of the constant voltage circuit 13 by half (0.5 A).

これにより、4.2Vに到達した単電池1に並列接続されたシャントレギュレータの通電電流は0.1A未満となる。組電池2は、半分の充電電流で定電流充電が継続され、各単電池1が更に充電される。そして、何れかのシャントレギュレータ7の通電電流が0.1Aとなると、シャントレギュレータ7はOR回路9の入力側にハイレベル信号を出力する。CPUは定電圧回路13の充電電流を更に半分(0.25A)に下げて、定電流充電を継続する。以下、この動作が繰り返して実行されるが、充電電流がほぼ0となると、図示しないLEDを点灯させ充電の終了を報知して充電ルーチンを終了する。なお、充電電流がほぼ0となったかの判断は、例えば、定電圧回路13に出力したハイレベル信号の回数をカウントすることにより行うことができる。   As a result, the energization current of the shunt regulator connected in parallel to the unit cell 1 that has reached 4.2 V is less than 0.1 A. The assembled battery 2 is continuously charged with a half charge current, and each unit cell 1 is further charged. When the energizing current of any shunt regulator 7 becomes 0.1 A, the shunt regulator 7 outputs a high level signal to the input side of the OR circuit 9. The CPU further reduces the charging current of the constant voltage circuit 13 by half (0.25 A) and continues constant current charging. Hereinafter, this operation is repeatedly executed. When the charging current becomes almost zero, an LED (not shown) is turned on to notify the end of charging and the charging routine is ended. The determination of whether the charging current has become almost zero can be made by, for example, counting the number of high level signals output to the constant voltage circuit 13.

一方、OR回路10の入力側は過充電電圧検出回路8の出力に接続されている。このため、何れかの過充電電圧検出回路8が過充電電圧として設定された4.25Vを検出すると、過充電電圧検出回路8はOR回路10の入力側にハイレベル信号を出力する。CPUはシャントレギュレータ動作検出入力ポートを介してこの信号を受け、スイッチ15に接続された信号ラインにハイレベル信号を出力して充電ルーチンを終了する。これにより、スイッチ15はオフ状態となり、充電器11から組電池2へ供給されていた充電電流は遮断される。この場合、上述したLEDとは異なる色のLEDを点灯させ充電の強制停止を報知するようにしてもよい。   On the other hand, the input side of the OR circuit 10 is connected to the output of the overcharge voltage detection circuit 8. For this reason, when any of the overcharge voltage detection circuits 8 detects 4.25 V set as the overcharge voltage, the overcharge voltage detection circuit 8 outputs a high level signal to the input side of the OR circuit 10. The CPU receives this signal via the shunt regulator operation detection input port, outputs a high level signal to the signal line connected to the switch 15, and ends the charging routine. As a result, the switch 15 is turned off, and the charging current supplied from the charger 11 to the assembled battery 2 is interrupted. In this case, an LED having a different color from the LED described above may be lit to notify the forced stop of charging.

図3に、本実施形態の充電制御システム20で組電池2を充電した場合の単電池1の充電電圧特性と充電器11の電流の推移を示す。図3に示すように、単電池1の電圧が4.2Vに達してシャントレギュレータ7に通電電流が流れ始め、シャントレギュレータ7の通電電流が0.1Aとなったことを検出した後に、充電電流が半分となって定電流充電が継続される動作を繰り返している。最終的には、充電器11の充電電流値が0.1A未満となって全単電池1の電圧がほぼ4.2Vに揃えられている。   In FIG. 3, the transition of the charging voltage characteristic of the cell 1 and the electric current of the charger 11 when the assembled battery 2 is charged by the charge control system 20 of the present embodiment is shown. As shown in FIG. 3, after detecting that the voltage of the unit cell 1 has reached 4.2 V and the energizing current starts to flow through the shunt regulator 7 and the energizing current of the shunt regulator 7 becomes 0.1 A, the charging current The operation in which the constant current charging is continued is reduced by half. Eventually, the charging current value of the charger 11 is less than 0.1 A, and the voltages of all the unit cells 1 are almost equal to 4.2V.

本実施形態の充電制御システム20では、シャントレギュレータ7の最大通電電流値以上の充電電流(1A)で定電流充電を開始し、何れかのシャントレギュレータ7の通電電流値が設定値(0.1A)以上になったときに充電器11の充電電流の電流値を下げて定電流充電を継続するので、シャントレギュレータ7の最大通電電流値が小さくてもシャントレギュレータ7の動作電圧となるまでは充電電流を大きくできるため、短時間で全単電池1の充電ができ、かつ、単電池1は全てシャントレギュレータ7の動作電圧(4.2V)に揃うため、全単電池1のセルバランスをとることができる。   In the charging control system 20 of the present embodiment, constant current charging is started with a charging current (1A) that is equal to or greater than the maximum energizing current value of the shunt regulator 7, and the energizing current value of any shunt regulator 7 is set to a set value (0.1A). ) Since the current value of the charging current of the charger 11 is lowered and constant current charging is continued when the above is reached, charging is continued until the operating voltage of the shunt regulator 7 is reached even if the maximum energization current value of the shunt regulator 7 is small. Since the current can be increased, all the cells 1 can be charged in a short time, and all the cells 1 are equal to the operating voltage (4.2 V) of the shunt regulator 7, so that the cell balance of all the cells 1 is maintained. Can do.

また、本実施形態の充電制御システム20では、バンドギャップ型の基準電圧源を内蔵したシャントレギュレータ7を例示したが、このタイプのシャントレギュレータは比較的低コストで±1%の精度を有する。リチウムイオン電池の充電電圧は4.1〜4.2V程度であり、±1%の精度により±40mV程度の精度が得られ、高コストを投じて確保していた従来技術の±50mVの精度に遜色するものではない。   Further, in the charge control system 20 of the present embodiment, the shunt regulator 7 including the band gap type reference voltage source is exemplified, but this type of shunt regulator has a precision of ± 1% at a relatively low cost. The charging voltage of the lithium ion battery is about 4.1 to 4.2 V, and the accuracy of ± 40 mV is obtained with the accuracy of ± 1%, and the accuracy of ± 50 mV of the conventional technology that has been secured by investing high cost. It will not fade.

更に、本実施形態の充電制御システム20では、単電池1に過充電電圧(4.25V)を検出する過充電電圧検出回路8が並列接続されており、何れかの過充電電圧検出回路8が過充電電圧(4.25V)を検出したときに充電電流を遮断するので、シャントレギュレータ7が故障して単電池1の電圧が上昇しても、充電電流の遮断により充電を終了させ単電池1の過充電を防止することができる。従って、過充電に留意すべきリチウムイオン電池を用いた自動車用組電池に充電制御システム20を用いても、安全性を確保することができる。   Furthermore, in the charge control system 20 of the present embodiment, an overcharge voltage detection circuit 8 that detects an overcharge voltage (4.25 V) is connected to the single cell 1 in parallel, and any one of the overcharge voltage detection circuits 8 is connected. Since the charging current is cut off when the overcharge voltage (4.25 V) is detected, even if the shunt regulator 7 breaks down and the voltage of the cell 1 rises, the charging is terminated by cutting off the charging current, and the cell 1 Can be prevented from overcharging. Therefore, safety can be ensured even when the charge control system 20 is used in an assembled battery for automobiles using a lithium ion battery that should be noted for overcharging.

なお、本実施形態では、シャントレギュレータ7の最大通電電流値以上の充電電流で定電流充電を開始する例を示したが、シャントレギュレータ7の最大電流値以下の充電電流で定電流充電するようにしてもよい。この構成では、充電が進んでシャントレギュレータ7の設定電圧に達するとシャントレギュレータ7に電流が流れて単電池1の電圧は所定の充電電圧(4.2V)に抑えられる。よって単電池1は過充電になることはなく、かつ、充電電圧はシャントレギュレータ7の動作電圧となるために、充分な充電時間が経過すれば充電電流はほとんどシャントレギュレータ7に流れて単電池1には流れなくなり、単電池1の電圧は全てシャントレギュレータ7の動作電圧に揃うことになる。従って、単電池1をシャントレギュレータ7の動作電圧の精度の電圧で充電することになる。このようにすれば、本実施形態と比較し、シャントレギュレータ7からの出力端子及びOR回路9が不要となると共に、マイコン16、定電圧回路13の構成を簡単にすることができるので、低コスト化、小型化を図ることができる。   In the present embodiment, an example is shown in which constant current charging is started with a charging current greater than or equal to the maximum energization current value of the shunt regulator 7. However, constant current charging is performed with a charging current that is less than or equal to the maximum current value of the shunt regulator 7. May be. In this configuration, when charging progresses and reaches the set voltage of the shunt regulator 7, a current flows through the shunt regulator 7, and the voltage of the single cell 1 is suppressed to a predetermined charging voltage (4.2V). Therefore, the unit cell 1 is not overcharged, and the charging voltage becomes the operating voltage of the shunt regulator 7, and therefore, when a sufficient charging time has elapsed, the charging current almost flows into the shunt regulator 7 and the unit cell 1. Thus, the voltage of the single cell 1 is all equal to the operating voltage of the shunt regulator 7. Therefore, the unit cell 1 is charged with a voltage having the accuracy of the operating voltage of the shunt regulator 7. In this way, compared with the present embodiment, the output terminal from the shunt regulator 7 and the OR circuit 9 are not necessary, and the configuration of the microcomputer 16 and the constant voltage circuit 13 can be simplified. And miniaturization can be achieved.

また、シャントレギュレータ7の最大通電電流はトランジスタを外付けするだけで大きくできるので、必要に応じてトランジスタを付加するようにしてもよい。   Further, since the maximum energization current of the shunt regulator 7 can be increased only by externally attaching a transistor, a transistor may be added as necessary.

本発明の充電制御システムは、高精度の電圧測定回路を用いずにセルバランスをとり、過充電のときに安全確実に充電を停止できるため、製造、販売等に寄与し、産業上利用可能である。   The charge control system of the present invention can balance the cell without using a high-accuracy voltage measurement circuit, and can safely and reliably stop charging in the event of overcharging. is there.

本発明が適用可能な実施形態の充電制御システムのブロック回路図である。It is a block circuit diagram of the charge control system of an embodiment to which the present invention is applicable. 実施形態の充電制御システムの充電器の概略ブロック回路図である。It is a schematic block circuit diagram of the charger of the charge control system of the embodiment. 実施形態の充電制御システムの単電池の充電電圧特性と充電器の電流の推移を示す特性線図である。It is a characteristic diagram which shows transition of the charging voltage characteristic of the cell of the charge control system of embodiment, and the electric current of a charger. 従来技術の充電制御システムのブロック回路図である。It is a block circuit diagram of the charge control system of a prior art.

符号の説明Explanation of symbols

1 単電池
2 組電池
7 シャントレギュレータ
8 過充電電圧検出回路(過充電検出回路)
20 充電制御システム
1 cell 2 assembled battery 7 shunt regulator 8 overcharge voltage detection circuit (overcharge detection circuit)
20 Charge control system

Claims (2)

動作電圧が単電池の充電電圧に設定されたシャントレギュレータと単電池の過充電電圧を検出する過充電検出回路とが全単電池に並列接続された組電池を、前記シャントレギュレータの最大通電電流値以下の充電電流で定電流充電し、何れかの前記過充電検出回路が過充電電圧を検出したときに前記充電電流を遮断することを特徴とする二次電池の充電制御システム。   A shunt regulator whose operating voltage is set to the charging voltage of the unit cell and an overcharge detection circuit that detects the overcharging voltage of the unit cell are connected to all the unit cells in parallel. A charging control system for a secondary battery, wherein charging is performed at a constant current with the following charging current, and the charging current is cut off when any of the overcharge detection circuits detects an overcharge voltage. 動作電圧が単電池の充電電圧に設定されたシャントレギュレータと単電池の過充電電圧を検出する過充電検出回路とが全単電池に並列接続された組電池を、前記シャントレギュレータの最大通電電流値以上の充電電流で定電流充電を開始し、何れかの前記シャントレギュレータの通電電流値が設定値以上になったときに充電電流の電流値を下げて定電流充電を継続し、何れかの前記過充電検出回路が過充電電圧を検出したときに前記充電電流を遮断することを特徴とする二次電池の充電制御システム。   A shunt regulator whose operating voltage is set to the charging voltage of the unit cell and an overcharge detection circuit that detects the overcharging voltage of the unit cell are connected to all the unit cells in parallel. The constant current charging is started with the above charging current, and when the energization current value of any of the shunt regulators is equal to or higher than a set value, the current value of the charging current is decreased and the constant current charging is continued. A charge control system for a secondary battery, wherein the charge current is cut off when an overcharge detection circuit detects an overcharge voltage.
JP2003314603A 2003-09-05 2003-09-05 Charging control system Pending JP2005086878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003314603A JP2005086878A (en) 2003-09-05 2003-09-05 Charging control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003314603A JP2005086878A (en) 2003-09-05 2003-09-05 Charging control system

Publications (1)

Publication Number Publication Date
JP2005086878A true JP2005086878A (en) 2005-03-31

Family

ID=34415143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003314603A Pending JP2005086878A (en) 2003-09-05 2003-09-05 Charging control system

Country Status (1)

Country Link
JP (1) JP2005086878A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182479A (en) * 2010-02-26 2011-09-15 Ntt Facilities Inc System and method for charging lithium ion battery pack
US8970163B2 (en) 2010-12-01 2015-03-03 Samsung Sdi Co., Ltd. Charge control system of battery pack
CN106655377A (en) * 2016-12-23 2017-05-10 长园深瑞继保自动化有限公司 Direct current charging pile charging method based on module maximum current output and alternate rest

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182479A (en) * 2010-02-26 2011-09-15 Ntt Facilities Inc System and method for charging lithium ion battery pack
US8970163B2 (en) 2010-12-01 2015-03-03 Samsung Sdi Co., Ltd. Charge control system of battery pack
CN106655377A (en) * 2016-12-23 2017-05-10 长园深瑞继保自动化有限公司 Direct current charging pile charging method based on module maximum current output and alternate rest
CN106655377B (en) * 2016-12-23 2019-12-24 长园深瑞继保自动化有限公司 Direct current charging pile charging method based on module maximum current output and alternate rest

Similar Documents

Publication Publication Date Title
US8803481B2 (en) Battery pack and method of controlling the same
KR101149186B1 (en) Charging and discharging control circuit and charging type power supply device
JP4598815B2 (en) Secondary battery charging circuit
US6624614B2 (en) Charge and discharge controller
JP4667276B2 (en) A battery pack in which multiple secondary batteries are connected in series or in parallel
US7638976B2 (en) Lithium ion battery and method of power conservation for the same
JP3665574B2 (en) Charge / discharge control circuit and rechargeable power supply
KR20120078842A (en) Battery charging method, and battery pack being applied the method
CN101459267A (en) Battery pack
KR20110019085A (en) Secondary battery
JP5334531B2 (en) Pack battery
JP2007110820A (en) Battery pack
JP2008005693A (en) Battery device
JP2016019387A (en) Charge/discharge control circuit and battery device
JPH11307138A (en) Battery state monitoring circuit and battery device
KR100584233B1 (en) Charging and discharging control circuit and charging type power supply device
JP3581428B2 (en) Rechargeable power supply
EP3614522B1 (en) Charging control device and method
JPH07105986A (en) Battery pack
JP5489779B2 (en) Lithium-ion battery charging system and charging method
JP5219653B2 (en) Power supply
JP2005086878A (en) Charging control system
JP2010033773A (en) Battery pack and battery system
JPH11258280A (en) Voltage detector for secondary battery and secondary battery device
JP3806639B2 (en) Battery pack with protection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219