JP2005086392A - Optical space communication device - Google Patents

Optical space communication device Download PDF

Info

Publication number
JP2005086392A
JP2005086392A JP2003314994A JP2003314994A JP2005086392A JP 2005086392 A JP2005086392 A JP 2005086392A JP 2003314994 A JP2003314994 A JP 2003314994A JP 2003314994 A JP2003314994 A JP 2003314994A JP 2005086392 A JP2005086392 A JP 2005086392A
Authority
JP
Japan
Prior art keywords
optical
optical system
light beam
light
counterpart device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003314994A
Other languages
Japanese (ja)
Inventor
Tetsuo Sakanaka
徹雄 坂中
Takashi Omuro
隆司 大室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003314994A priority Critical patent/JP2005086392A/en
Publication of JP2005086392A publication Critical patent/JP2005086392A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize an optical space communication device which is low in cost, small in size and light in weight, and can correct the deviation of an optical axis at high speed. <P>SOLUTION: An optical system is separated to a collimate optical system and a separation optical system 11, which is movable independently from the collimate optical system. Peripheral circuits of a light emitting element such as LD and a light receiving element such as an APD are placed at a different place, and connected with the separation optical system through an optical fiber or a minimum cord or cable to drive the separation optical system at high speed with small force. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、離れた二地点間に対向設置されて、自由空間中を伝搬する光ビームにより光信号を送り通信を行う光空間通信装置で、特に装置の角度ずれによる光ビームの光軸補正機能を持つ装置に関するものである。   The present invention is an optical space communication device that communicates by transmitting an optical signal by a light beam propagating in free space, which is installed oppositely between two distant points, and in particular, an optical axis correction function of a light beam due to an angle deviation of the device It relates to a device having

一般的に自由空間中に光ビームを伝搬させて通信を行う光空間通信装置は、光のパワーを効率よく伝送するために、光ビームの拡がり角を極力小さくした狭い光ビームで伝送する必要がある。しかし光ビームを狭くすると、建物あるいは設置架台の風圧や振動による揺れ、温度変動による歪みなどによる角度変動のため、光ビームが相手方装置から外れやすくなり、安定した通信が難しい。そのために図4のように、装置の角度が変わっても角度変化を補正して常に光ビームが相手側装置を向くような追尾制御を行なう光軸ずれ補正機能を持つ装置が考案されている(例えば、特開2001−111491参照)。   In general, an optical space communication device that performs communication by propagating a light beam in free space needs to transmit with a narrow light beam with a light beam divergence angle as small as possible in order to transmit light power efficiently. is there. However, if the light beam is narrowed, the light beam is likely to be detached from the counterpart device due to the fluctuation of the angle of the building or installation base due to wind pressure or vibration, distortion due to temperature fluctuation, etc., and stable communication is difficult. Therefore, as shown in FIG. 4, an apparatus having an optical axis deviation correction function is devised that performs tracking control so that the light beam always faces the other apparatus by correcting the angle change even if the angle of the apparatus changes ( For example, refer to JP2001-111491).

図4は対向する1対の装置の片側を示す。図4において、20は光ビームの送信/受信のための光学系である。相手側装置への送信光信号は半導体レーザ等の発光素子21より放出される。半導体レーザの光は偏光しており、偏光方向は紙面に水平になるように設定されている。この方向の偏光は偏光ビームスプリッタ22で送受光レンズ23の方向に反射され、送受光レンズ23で、僅かに拡がりを持つほぼ平行光束の光ビーム24となって相手側装置の方向に送信される。発光素子21は通常高速の信号で変調されるため、ノイズ発生を防止するため、変調回路と一緒にシールドされたケースに実装され、モジュール化されている。   FIG. 4 shows one side of a pair of opposing devices. In FIG. 4, 20 is an optical system for transmitting / receiving a light beam. An optical signal transmitted to the counterpart device is emitted from a light emitting element 21 such as a semiconductor laser. The light of the semiconductor laser is polarized, and the polarization direction is set to be horizontal to the paper surface. The polarized light in this direction is reflected by the polarization beam splitter 22 in the direction of the light transmitting / receiving lens 23, and the light transmitting / receiving lens 23 transmits a light beam 24 of a substantially parallel light beam having a slight spread to the direction of the counterpart device. . Since the light emitting element 21 is normally modulated with a high-speed signal, the light emitting element 21 is mounted in a shielded case together with a modulation circuit and modularized in order to prevent noise generation.

他方相手側装置から送られて来た光は、自装置よりの送信光信号と同じ光軸上で逆の進路をたどり、送受光レンズ23から偏光ビームスプリッタ22に入るが、相手方装置からの受信光は偏光方向が送信光と直交するように(偏光方向は紙面に垂直)設定されているために、偏光ビームスプリッタ22をそのまま透過し、ビームスプリッタ25に入る。受信光の大部分はビームスプリッタ25で反射し、光信号検出用の受光素子26に入射して、通信用の信号が検出される。受光素子26は通常微弱で高速の受信信号を扱うため、外部ノイズによる影響を防止するため、信号の増幅回路と一緒にシールドされたケースに実装され、モジュール化されている。   On the other hand, the light transmitted from the counterpart device follows the reverse path on the same optical axis as the transmission optical signal from the own device and enters the polarization beam splitter 22 from the transmission / reception lens 23, but is received from the counterpart device. Since the light is set so that the polarization direction is orthogonal to the transmission light (the polarization direction is perpendicular to the paper surface), the light passes through the polarization beam splitter 22 as it is and enters the beam splitter 25. Most of the received light is reflected by the beam splitter 25 and enters the light receiving element 26 for detecting an optical signal, and a communication signal is detected. Since the light receiving element 26 normally handles weak and high-speed received signals, the light receiving element 26 is mounted in a shielded case together with a signal amplification circuit and modularized in order to prevent the influence of external noise.

一方ビームスプリッタ25で反射されない一部の光はビームスプリッタ25を透過して、光位置検出素子27に入射する。   On the other hand, part of the light that is not reflected by the beam splitter 25 passes through the beam splitter 25 and enters the optical position detection element 27.

光位置検出素子27は、例えば図5に示すような4分割されたフォトダイオードである。図5は27aから27dまでの4つに分割されたフォトダイオードに光スポット42が当たっている様子を示す。4つのフォトダイオード27aから27dの出力を比較することにより、光スポット42の位置を知ることができる。光位置検出素子27よりの信号は、角度補正情報として制御回路28で演算処理され、光学系10の駆動回路29に駆動信号が出力される。そして駆動回路29により、垂直方向の駆動機構30および水平方向の駆動機構31を動かして、光スポット42の位置が光位置検出素子27の中心に来て、4つのフォトダイオード27aから27dの出力が全て等しくなるような方向に、光学系10の角度が駆動・制御される。   The optical position detection element 27 is a photodiode divided into four as shown in FIG. 5, for example. FIG. 5 shows a state in which the light spot 42 hits the photodiode divided into four parts 27a to 27d. The position of the light spot 42 can be known by comparing the outputs of the four photodiodes 27a to 27d. The signal from the optical position detection element 27 is processed by the control circuit 28 as angle correction information, and a drive signal is output to the drive circuit 29 of the optical system 10. Then, the drive circuit 29 moves the vertical drive mechanism 30 and the horizontal drive mechanism 31 so that the position of the light spot 42 comes to the center of the light position detecting element 27, and the outputs of the four photodiodes 27a to 27d are output. The angle of the optical system 10 is driven and controlled in such a direction that they are all equal.

光学系10の内部では光位置検出素子27と発光素子21、光信号検出用の受光素子26は全て光学軸が一致するように位置調整がなされており、光位置検出素子27の中心に光スポット32が当たった状態では、光信号検出用の受光素子26の中心にも光が入射しており、かつ発光素子21よりの光の中心は相手側装置の方向に放射される。   In the optical system 10, the optical position detection element 27, the light emitting element 21, and the optical signal detection light receiving element 26 are all adjusted in position so that the optical axes coincide with each other, and a light spot is formed at the center of the optical position detection element 27. In the state of being hit, light is also incident on the center of the light receiving element 26 for detecting an optical signal, and the center of the light from the light emitting element 21 is radiated in the direction of the counterpart device.

このようにして常に送信光が受信光の方向、即ち相手側装置の方向になるような追尾制御により光軸ずれ補正が行われる。   In this way, optical axis deviation correction is performed by tracking control so that the transmitted light always becomes the direction of the received light, that is, the direction of the counterpart device.

また別の従来の実施例として、光学系自体を駆動することにより光軸ずれ補正を行う代わりに、光学系20の内部に光を偏向させる機構を持つものがある。例えば図6に示すように駆動回路29により水平方向偏向ミラー32と垂直方向偏向ミラー33の角度を駆動して、鏡筒内で光を偏向させることにより光軸ずれ補正を行う。   As another conventional embodiment, there is one having a mechanism for deflecting light inside the optical system 20 instead of performing optical axis deviation correction by driving the optical system itself. For example, as shown in FIG. 6, the drive circuit 29 drives the angles of the horizontal deflection mirror 32 and the vertical deflection mirror 33 to deflect the light within the lens barrel, thereby correcting the optical axis deviation.

さらに別の従来の実施例として、図7は光軸ずれ補正を行う手段として、レンズが光軸と垂直方向にシフト移動するいわゆるレンズシフト光学系38を用いたものである。図7では紙面に水平方向の移動を描いてあるが、実際は紙面に水平方向と垂直方向の2次元でレンズが自由にシフトし、レンズのシフト量に応じて光ビーム24が偏向する。レンズシフトのための駆動手段としては、ボイスコイルを用いたアクチュエータや、リニアモータなどが使える。
特開2001−111491
As another conventional embodiment, FIG. 7 uses a so-called lens shift optical system 38 in which the lens shifts in a direction perpendicular to the optical axis as means for correcting the optical axis deviation. In FIG. 7, the movement in the horizontal direction is depicted on the paper surface, but in actuality, the lens is freely shifted in two dimensions in the horizontal direction and the vertical direction on the paper surface, and the light beam 24 is deflected in accordance with the shift amount of the lens. As a driving means for lens shift, an actuator using a voice coil, a linear motor, or the like can be used.
JP 2001-111491 A

上記2つの従来例では、ともに装置の角度が変わっても光軸ずれ補正を行うことにより、光ビームの拡がり角を小さくした場合も安定した通信を行うことができるが、それぞれ次のような問題がある。   In the above two conventional examples, even if the angle of the apparatus is changed, stable communication can be performed even when the light beam divergence angle is reduced by correcting the optical axis deviation. There is.

図4の例のような光学系の外部に駆動機構を持ち、光学系全体の角度を変える方式は、角度の可変範囲を自由に広く取ることができ、大きな角度変動に対応できるが、重量の大きなものを駆動することになるので、高速で角度を動かすことは難しく、速度の速い角度変動には応答できない。   The method of having a drive mechanism outside the optical system as in the example of FIG. 4 and changing the angle of the entire optical system can freely take a wide variable range of angles, and can cope with large angular fluctuations. Since a large object is driven, it is difficult to move the angle at a high speed, and it is impossible to respond to a fast angular fluctuation.

また図6、図7の例のような光学系の内部に光を偏向させる機構を持つ方式では、高速で光の角度を変えることが比較的容易であるため、速度の速い角度変動には応答することができるが、図6の例ではミラーで折り返す部分の空間が必要となり、光学系全体が大型化し、装置も大型の物となり、取り扱いにも不便であるし、コストも増える。またミラーも表面精度の高いものが要求されるので、この点でもコストが増える。また図7の例では、光路途中のレンズを駆動して光束の方向を変えるという特殊な光学系となるため、ある程度の角度可変範囲を得ようとすると、レンズの収差補正や光束の角度変化を大きくするための特別な設計が必要となり、レンズ構成枚数が増加して(図7は原理的な説明図なのでレンズ枚数は実際よりも少なく描かれている)コストが増える。   Further, in the system having a mechanism for deflecting light inside the optical system as in the examples of FIGS. 6 and 7, it is relatively easy to change the angle of the light at high speed, so that it responds to a fast speed angle change. However, in the example of FIG. 6, a space for the part to be folded back by the mirror is required, the entire optical system becomes large, the apparatus becomes large, the handling is inconvenient, and the cost increases. Also, since the mirror is required to have high surface accuracy, the cost also increases in this respect. In the example of FIG. 7, a special optical system that changes the direction of the light beam by driving a lens in the middle of the optical path is used. Therefore, when trying to obtain a certain angle variable range, aberration correction of the lens and change in the angle of the light beam are performed. A special design for increasing the size is required, and the number of lenses is increased (the number of lenses is illustrated as being smaller than the actual number because FIG. 7 is a principle explanatory diagram), and the cost increases.

上記問題点を解決し、低コストでありながら高速で光軸ずれ補正を行ない、かつ小型軽量な光空間通信装置を実現するために、
本出願にかかわる第一の発明は、離れた地点間で対向設置されて光ビームにより通信を行う光空間通信装置において、発散光束をほぼ平行光束である光ビームに変換して相手側装置に送出し、また相手側装置からのほぼ平行光束である光ビームを受信して収束光束に変換するための第一の光学系(コリメート光学系)と、
それぞれ同一光軸上にあって方向が逆である、相手側装置に送出する光束と相手側装置から受信した光束を分離するための第二の光学系(分離光学系)と、
前記第一の光学系に対して前記第二の光学系の相対位置を変化させる(平行移動だけでなく角度変化も含む)手段を持つことを特徴とする。
In order to solve the above problems, to achieve a compact and lightweight optical space communication device that performs optical axis misalignment correction at high speed at a low cost,
A first invention according to the present application is an optical space communication device that is installed facing each other and communicates by a light beam, and converts a divergent light beam into a light beam that is a substantially parallel light beam and transmits the light beam to a counterpart device. And a first optical system (collimating optical system) for receiving a light beam that is a substantially parallel light beam from the counterpart device and converting it into a convergent light beam,
A second optical system (separation optical system) for separating the light beam sent to the counterpart device and the light beam received from the counterpart device, each on the same optical axis and in opposite directions;
It is characterized by having means for changing the relative position of the second optical system with respect to the first optical system (including not only translation but also angle change).

また本出願にかかわる第二の発明は、離れた地点間で対向設置されて光ビームにより通信を行う光空間通信装置でにおいて、
発散光束をほぼ平行光束である光ビームに変換して相手側装置に送出し、また相手側装置からのほぼ平行光束である光ビームを受信して収束光束に変換するための第一の光学系と、
それぞれ同一光軸上にあって方向が逆である、相手側装置に送出する光束と相手側装置から受信した光束を分離するための第二の光学系と、
前記第一の光学系に対して前記第二の光学系の相対位置を変化させる(平行移動だけでなく角度変化も含む)駆動手段と、
前記第二の光学系に附属し、相手側装置から受信した光束の角度を検出する角度検出手段と、
前記角度検出手段からの情報に基づいて、相手側装置から受信した光束の角度が所定の値になるように前記駆動手段を制御することにより相手側装置に送出する光ビームが常に相手側装置の方向に向かうように追尾制御する制御手段を持つことを特徴とする。
In addition, a second invention related to the present application is an optical space communication device that is opposedly installed between distant points and performs communication using a light beam.
A first optical system for converting a divergent light beam into a light beam that is a substantially parallel light beam and sending it to a counterpart device, and for receiving a light beam that is a substantially parallel light beam from the counterpart device and converting it into a convergent light beam When,
A second optical system for separating the luminous flux sent to the counterpart device and the luminous flux received from the counterpart device, each on the same optical axis and in opposite directions;
Drive means for changing the relative position of the second optical system with respect to the first optical system (including not only translation but also angular change);
Angle detection means attached to the second optical system for detecting the angle of the light beam received from the counterpart device;
Based on the information from the angle detection means, the light beam transmitted to the counterpart apparatus is always controlled by controlling the drive means so that the angle of the light beam received from the counterpart apparatus becomes a predetermined value. It is characterized by having control means for tracking control so as to go in the direction.

また本出願にかかわる第三の発明は、前記第二の光学系とは別の場所にあって、相手側装置に送出する光信号を発生するための発光素子を持ち、この発光素子と前記第二の光学系の間は光導波路(光ファイバ、ライトガイド等)で結ばれて、発光素子よりの送信光を光導波路により前記第二の光学系に導くことを特徴とする。   A third invention according to the present application has a light emitting element for generating an optical signal to be sent to a counterpart device, which is in a place different from the second optical system. The two optical systems are connected by an optical waveguide (optical fiber, light guide, etc.), and the transmission light from the light emitting element is guided to the second optical system by the optical waveguide.

また本出願にかかわる第四の発明は、前記第二の光学系は、相手側装置より受信した光束に含まれる光信号を検出するための光信号検出素子を持ち、光信号検出素子により検出された電気信号を増幅する回路は、前記第二の光学系とは別の場所に置かれていることを特徴とする。   According to a fourth aspect of the present invention, the second optical system has an optical signal detection element for detecting an optical signal included in the light beam received from the counterpart device, and is detected by the optical signal detection element. The circuit for amplifying the electrical signal is placed at a location different from the second optical system.

また本出願にかかわる第五の発明は、前記第二の光学系とは別の場所にあって、相手側装置より受信した光信号を検出するための光信号検出素子を持ち持ち、この光信号検出素子と前記第二の光学系の間は光導波路(光ファイバ、ライトガイド等)で結ばれて、前記第二の光学系よりの受信光を光導波路により光信号検出素子に導くことを特徴とする。   Further, a fifth invention according to the present application has an optical signal detection element for detecting an optical signal received from a counterpart device, which is in a place different from the second optical system, and this optical signal. The detection element and the second optical system are connected by an optical waveguide (optical fiber, light guide, etc.), and the received light from the second optical system is guided to the optical signal detection element by the optical waveguide. And

また本出願にかかわる第六の発明は、前記第二の光学系は、相手側装置に送出する光信号を含む光束を発生するための発光素子を持ち、この発光素子の発光強度を制御する回路と、光信号を発生するためにこの発光素子を送信する信号で変調する回路は、前記第二の光学系とは別の場所に置かれていることを特徴とする。   According to a sixth aspect of the present invention, the second optical system includes a light emitting element for generating a light beam including an optical signal transmitted to the counterpart device, and a circuit for controlling the light emission intensity of the light emitting element. And a circuit that modulates the light-emitting element in order to generate an optical signal is placed at a location different from the second optical system.

以上説明したように、本発明によれば、離れた地点間で対向設置されて光ビームにより通信を行う光空間通信装置において、
コリメート光学系10から、小型軽量にまとめた分離光学系11を分離し、またLDなど発光素子やAPDなど受光素子の周辺回路も別の場所に置いて、分離光学系11との間を光ファイバまたは最小限のコードやケーブルで接続することで、分離光学系11を軽い力で高速度で駆動することが出来るようにした。その結果、低コストでありながら高速で光軸ずれ補正を行ない、かつ小型軽量な光空間伝送装置を実現することができる。
As described above, according to the present invention, in an optical space communication device that is installed oppositely between remote points and performs communication using a light beam,
A separation optical system 11 that is compact and lightweight is separated from the collimating optical system 10, and a peripheral circuit of a light emitting element such as an LD or a light receiving element such as an APD is also placed in another location, and an optical fiber is formed between the optical system and the separation optical system 11. Alternatively, the separation optical system 11 can be driven at a high speed with a light force by connecting with a minimum of cords and cables. As a result, it is possible to realize a small and light optical space transmission apparatus that performs optical axis misalignment correction at high speed while being low in cost.

(第一の実施例)
図1に本願発明による光軸ずれ補正機能を持つ光空間伝送装置を示す。図1上の各番号は図4から図7の番号と同じ機能の構成要素を示すものとする。図1の実施例において、光の送受信を行なう光学系は、第一の光学系であるコリメート光学系10と第二の光学系である分離光学系11とに分離されており、分離光学系11はコリメート光学系10に対して独立して移動可能なようになっている。また分離光学系11は小型にまとめられて、軽い力で動くようになっている。
(First embodiment)
FIG. 1 shows an optical space transmission device having an optical axis deviation correction function according to the present invention. Each number on FIG. 1 indicates a component having the same function as the number in FIGS. In the embodiment of FIG. 1, the optical system that transmits and receives light is separated into a collimating optical system 10 that is a first optical system and a separating optical system 11 that is a second optical system. Are movable independently of the collimating optical system 10. Further, the separation optical system 11 is gathered in a small size and moves with a light force.

レーザーダイオード(LD)などの発光素子21は分離光学系11とは別の場所のプリント基板等に、発光制御回路や変調回路の近くに置かれている。発光素子21よりの光信号を含む光は、送信用光ファイバ(またはライトガイド)14によって分離光学系11に伝送され、分離光学系11に固定された光ファイバ端面より偏光ビームスプリッタ22の方向に出射される。   A light emitting element 21 such as a laser diode (LD) is placed near a light emission control circuit or a modulation circuit on a printed circuit board or the like at a location different from the separation optical system 11. Light including an optical signal from the light emitting element 21 is transmitted to the separation optical system 11 by the transmission optical fiber (or light guide) 14 and is directed to the polarization beam splitter 22 from the end face of the optical fiber fixed to the separation optical system 11. Emitted.

そして図4から図7の従来の実施例と同様に偏光ビームスプリッタ22で反射され、分離光学系11を出てコリメート光学系10の方向に進む。そしてコリメート光学系10により、僅かに拡がりを持つほぼ平行の光ビーム24となって相手側装置の方向に送信される。   4 to 7, the light is reflected by the polarization beam splitter 22, exits the separation optical system 11, and proceeds in the direction of the collimating optical system 10. Then, the collimating optical system 10 transmits an almost parallel light beam 24 having a slight spread in the direction of the counterpart device.

なお光ファイバ端面から出射された光は偏光していないので、偏光素子09を偏光ビームスプリッタ22の手前に挿入して偏光にした後、偏光ビームスプリッタ22で反射させている。   Since the light emitted from the end face of the optical fiber is not polarized, the polarizing element 09 is inserted in front of the polarizing beam splitter 22 to be polarized, and then reflected by the polarizing beam splitter 22.

他方相手側装置から送られて来た光は、自装置よりの送信光信号と同じ光軸上で逆の進路をたどり、コリメート光学系10に入射して、収束され偏光ビームスプリッタ22に入る。その後の進路は図4から図7の従来の実施例と同様であって、相手方装置からの受信光は偏光方向が送信光と直交するように設定されているために、偏光ビームスプリッタ22をそのまま透過し、ビームスプリッタ25に入る。受信光の大部分はビームスプリッタ25で反射し、受信用光ファイバ(またはライトガイド)15の端面に入射する。一部の光はビームスプリッタ25を透過して、光位置検出素子27に入射する。   On the other hand, the light transmitted from the other apparatus follows a reverse path on the same optical axis as the transmission optical signal from the own apparatus, enters the collimating optical system 10, converges, and enters the polarization beam splitter 22. The subsequent path is the same as that of the conventional embodiment shown in FIGS. 4 to 7. The received light from the counterpart device is set so that the polarization direction is orthogonal to the transmitted light. The light passes through and enters the beam splitter 25. Most of the received light is reflected by the beam splitter 25 and enters the end face of the receiving optical fiber (or light guide) 15. Part of the light passes through the beam splitter 25 and enters the optical position detection element 27.

なおビームスプリッタ25は図4から図7の従来の実施例では、平板型の物を使っているが、本実施例では、コンパクト化のため、図1にあるような偏光ビームスプリッタ22と一体化されたプリズム型のものとした。   The beam splitter 25 is a flat plate in the conventional embodiments shown in FIGS. 4 to 7. In this embodiment, however, the beam splitter 25 is integrated with the polarizing beam splitter 22 as shown in FIG. Prism type.

受信用光ファイバ15の端面に入射した光は、分離光学系11とは別の場所のプリント基板等に置かれたアバランシェフォトダイオード(APD)等の光検出素子26に伝送され、光検出素子26により通信用の信号が受信される。受信信号を増幅する回路や、光検出素子26のバイアス制御回路なども近くに置かれている。   The light incident on the end face of the receiving optical fiber 15 is transmitted to a light detection element 26 such as an avalanche photodiode (APD) placed on a printed circuit board or the like at a location different from the separation optical system 11. Thus, a communication signal is received. A circuit for amplifying the received signal and a bias control circuit for the light detection element 26 are also located nearby.

一方光位置検出素子27よりの信号は、図4から図7の従来の実施例と同様に、角度補正情報として制御回路28で演算処理され、駆動回路29に駆動信号が出力される。   On the other hand, the signal from the optical position detection element 27 is processed by the control circuit 28 as angle correction information, and the drive signal is output to the drive circuit 29, as in the conventional embodiments of FIGS.

分離光学系11はステージ12に固定され、ステージ12の上で、アクチュエータ13により紙面に平行な方向と紙面に垂直な方向の2方向に駆動されるようになっている。(図1では2方向の駆動機構を図示するのが困難なため、紙面に平行な1方向のみを図示してある)。   The separation optical system 11 is fixed to a stage 12 and is driven on the stage 12 by an actuator 13 in two directions, a direction parallel to the paper surface and a direction perpendicular to the paper surface. (In FIG. 1, it is difficult to show a two-direction drive mechanism, so only one direction parallel to the paper surface is shown).

そして駆動回路29により、アクチュエータ13を駆動して、光スポット42の位置が光位置検出素子27の中心に来て、4つのフォトダイオード27aから27dの出力が全て等しくなるような方向に、分離光学系11の位置が駆動・制御される。この様子を図2(A)および(B)に示す。光学系11のコリメート光学系10に対する位置により、送信・受信の光束の方向が変わるのが分かる。   Then, the actuator 13 is driven by the drive circuit 29 so that the position of the light spot 42 comes to the center of the light position detecting element 27 and the output of the four photodiodes 27a to 27d is all equal to each other. The position of the system 11 is driven and controlled. This is shown in FIGS. 2 (A) and 2 (B). It can be seen that the direction of the light beam for transmission / reception changes depending on the position of the optical system 11 with respect to the collimating optical system 10.

分離光学系11の内部では光位置検出素子27と送信用光ファイバ14の端面、受信用光ファイバ15の端面は全て光学軸が一致するように位置調整がなされており、光位置検出素子27の中心に光スポット32が当たった状態では、受信用光ファイバ15の端面の中心にも光が入射しており、かつ送信用光ファイバ14の端面よりの光の中心は相手側装置の方向に放射される。   Inside the separation optical system 11, the position of the optical position detection element 27, the end face of the transmission optical fiber 14, and the end face of the reception optical fiber 15 are all adjusted so that the optical axes coincide with each other. In the state where the light spot 32 hits the center, light is also incident on the center of the end face of the receiving optical fiber 15, and the center of the light from the end face of the transmitting optical fiber 14 radiates in the direction of the counterpart device. Is done.

このようにして常に送信光が受信光の方向、即ち相手側装置の方向になるように光軸ずれ補正が行われる。   In this way, the optical axis deviation correction is performed so that the transmitted light is always in the direction of the received light, that is, the direction of the counterpart device.

本実施例では、分離光学系11は小型軽量にまとめることが出来、またLDなど発光素子やAPDなど受光素子の周辺回路も別の場所に置くことで重量増加を防ぐことが出来、さらに光ファイバで分離光学系11と接続することで、重量や曲げ応力の大きい電気コードやケーブルの接続を最小限にして、分離光学系11を軽い力で高速度で駆動することが出来る。その結果、振動や風圧等の外乱で装置全体の角度が高速で変動した場合でも光軸ずれ補正が応答することが可能となる。しかも図6の従来例のように装置が大型化したり、図7の従来例のように複雑なレンズ構成のためにコストが増すということもない。むしろ駆動部は小型軽量の物を駆動すればよいために、駆動部の要求仕様が緩くなり、コスト的には有利である。発光素子21、受光素子26およびそれらの周辺回路16、17も光ファイバの届く範囲内で任意に配置できるため、設計のレイアウトの自由度も高くなり装置全体の小型化にも有利である、また電気性能の点でも送受信信号間の干渉や電気的な外乱ノイズに対する対策も容易になる。   In this embodiment, the separation optical system 11 can be made compact and lightweight, and the peripheral circuit of the light-emitting element such as LD and the light-receiving element such as APD can be placed in another place to prevent an increase in weight. By connecting to the separation optical system 11, it is possible to drive the separation optical system 11 at a high speed with a light force while minimizing the connection of an electric cord or cable having a large weight or bending stress. As a result, even when the angle of the entire apparatus fluctuates at high speed due to disturbances such as vibration and wind pressure, the optical axis deviation correction can respond. Moreover, the size of the apparatus is not increased as in the conventional example of FIG. 6, and the cost is not increased due to the complicated lens configuration as in the conventional example of FIG. Rather, since the drive unit only needs to drive a small and light object, the required specifications of the drive unit are relaxed, which is advantageous in terms of cost. Since the light emitting element 21, the light receiving element 26 and their peripheral circuits 16, 17 can be arbitrarily arranged within the reach of the optical fiber, the degree of freedom in design layout is increased, which is advantageous for downsizing of the entire apparatus. In terms of electrical performance, measures against interference between transmitted and received signals and electrical disturbance noise can be easily achieved.

(光位置検出素子27および周辺回路のみは、光ファイバに光を入射して光位置検出を行うことが出来ないため、従来通り分離光学系11に取り付けて、電気コード配線となっている)。   (Only the optical position detecting element 27 and the peripheral circuit cannot detect the optical position by making light incident on the optical fiber, and thus are attached to the separation optical system 11 as usual and become electric cord wiring).

(第二の実施例)
本発明に係わる第二の実施例を図3に示す。図3の実施例において、光の送受信を行なう光学系は、コリメート光学系10と分離光学系11とに分離されており、分離光学系11は小型にまとめられて、軽い力で動くようになっており、コリメート光学系10に対して独立して移動可能なようになっている点は図1の実施例と同様である。
(Second embodiment)
A second embodiment according to the present invention is shown in FIG. In the embodiment of FIG. 3, the optical system that transmits and receives light is separated into a collimating optical system 10 and a separating optical system 11, and the separating optical system 11 is made compact and moves with a light force. 1 is the same as the embodiment of FIG. 1 in that it can be moved independently with respect to the collimating optical system 10.

図3の実施例ではレーザーダイオード(LD)などの発光素子21は分離光学系11に取り付けられており、送信光信号は発光素子21から直接を出力される。但し発光制御回路や変調回路等の周辺回路は、分離光学系11とは別の場所のプリント基板等に置かれており、発光素子11とこれら回路は必要最小限の数の電気コードまたはケーブル(例えば送信信号とLDの駆動電流が重畳された1本の同軸ケーブル)でつながれている。   In the embodiment of FIG. 3, a light emitting element 21 such as a laser diode (LD) is attached to the separation optical system 11, and a transmission optical signal is directly output from the light emitting element 21. However, peripheral circuits such as a light emission control circuit and a modulation circuit are placed on a printed circuit board or the like at a place different from the separation optical system 11, and the light emitting element 11 and these circuits are provided with a minimum number of electric cords or cables ( For example, the transmission signal and the LD driving current are connected by a single coaxial cable).

また図3の実施例ではアバランシェフォトダイオード(APD)等の光検出素子26も分離光学系11に取り付けられており、受信した光信号は光検出素子26の受光面に直接入射する。但し光検出素子26のバイアス制御回路や光検出素子26により電気信号に変換された受信信号を増幅する回路などの周辺回路は別の場所のプリント基板等に置かれており、光検出素子26とこれら回路は必要最小限の数の電気コードまたはケーブル(例えば受信信号と光検出素子のバイアス電圧が重畳された1本の同軸ケーブル)でつながれている。   In the embodiment of FIG. 3, the light detection element 26 such as an avalanche photodiode (APD) is also attached to the separation optical system 11, and the received optical signal is directly incident on the light receiving surface of the light detection element 26. However, peripheral circuits such as a bias control circuit for the light detection element 26 and a circuit for amplifying the reception signal converted into an electric signal by the light detection element 26 are placed on a printed circuit board or the like at another location. These circuits are connected by a minimum number of electric cords or cables (for example, one coaxial cable on which a received signal and a bias voltage of a photodetecting element are superimposed).

本実施例では、小さくて重量が問題にならないLDなど発光素子やAPDなど受光素子のみを分離光学系11に置いて、比較的サイズが大きく重量のあるそれぞれの周辺回路を別の場所に置くことで、分離光学系11の重量増加を防いで小型軽量にまとめることが出来、重量や曲げ応力の大きい電気コードやケーブルの接続を最小限にして、分離光学系11を軽い力で高速度で駆動することが出来る。   In this embodiment, only a light emitting element such as LD and a light receiving element such as APD, which are small and do not cause weight, are placed in the separation optical system 11, and each relatively large and heavy peripheral circuit is placed in another place. Thus, the separation optical system 11 is prevented from increasing in weight and can be reduced in size and weight, and the separation optical system 11 is driven at a high speed with a light force by minimizing the connection of an electric cord or cable having a large weight or bending stress. I can do it.

電気コードやケーブルの重量や曲げ応力に関しては送受信信号を光ファイバで接続した図1の実施例に比べて多少大きくはなり、また分離光学系11部での送受信信号間の電気的な干渉に注意を要するが、光ファイバを介さない分だけ構成が簡略になり、コスト的には図1の実施例よりも低くすることが出来る。   The weight and bending stress of the electric cord and cable are slightly larger than those of the embodiment of FIG. 1 in which the transmission / reception signals are connected by optical fibers, and attention is paid to the electrical interference between the transmission / reception signals in the separation optical system 11 part. However, the configuration is simplified by the amount not passing through the optical fiber, and the cost can be made lower than that of the embodiment of FIG.

(第三の実施例)
第一および第二の実施例では、分離光学系11はコリメート光学系10に対して平行移動することで、図2に示すように送信・受信の光ビームの方向を変えているが、図8のように分離光学系をある支点を中心に回転させることによって送信・受信の光ビームの方向を変えることもできる。図8の例では●印で示した点を中心に回転させている。この場合回転の中心がコリメート光学系10の集光点近くだと光ビームの方向を変える効果が少なくなるので、図8で示すような少し離れた点を回転の中心とするのがよい。
(Third embodiment)
In the first and second embodiments, the separating optical system 11 is moved in parallel with the collimating optical system 10 to change the direction of the transmission / reception light beam as shown in FIG. In this way, the direction of the transmission / reception light beam can be changed by rotating the separation optical system around a fulcrum. In the example of FIG. 8, the rotation is made around the point indicated by the mark ●. In this case, if the center of rotation is near the condensing point of the collimating optical system 10, the effect of changing the direction of the light beam is reduced. Therefore, a point slightly apart as shown in FIG.

(第四の実施例)
第一から第三の実施例では、コリメート光学系10に対して分離光学系11を移動させるのは、送信・受信の光ビームの方向を変えて光軸ずれ補正を行うのが、目的であって、そのために分離光学系11の移動方向はコリメート光学系10の光軸に対して垂直方向であった。
(Fourth embodiment)
In the first to third embodiments, the purpose of moving the separation optical system 11 relative to the collimating optical system 10 is to correct the optical axis deviation by changing the direction of the light beam for transmission and reception. Therefore, the moving direction of the separation optical system 11 is perpendicular to the optical axis of the collimating optical system 10.

しかし光ビームを用いて通信を行う光空間通信装置では、光ビームの方向の制御だけでなく、光ビームの広がり角の制御も重要である。光のパワーを効率よく伝送するために、光軸ずれ補正機能を持たせて、光ビームの拡がり角を小さくするわけであるが、しかし光ビームを狭くする限度があり、光軸ずれ補正機能の補正精度や、振動など外乱に対する応答性能の範囲内に抑える必要がある。   However, in an optical space communication apparatus that performs communication using a light beam, not only control of the direction of the light beam but also control of the spread angle of the light beam is important. In order to transmit light power efficiently, an optical axis misalignment correction function is provided to reduce the divergence angle of the light beam, but there is a limit to narrowing the light beam, and the optical axis misalignment correction function It is necessary to keep it within the range of correction accuracy and response performance against disturbances such as vibration.

また設置距離に応じて光ビームの拡がり角を、例えば装置間の設置距離が短いときには広がり角を大き目にし、設置距離が長いときには広がり角を小さ目にするような制御を行うことにより、距離に応じて最適の光受信強度範囲で光信号の受信を行うような方法も有効である。   Depending on the distance, the divergence angle of the light beam is controlled according to the distance by controlling the divergence angle to be large when the installation distance between the devices is short, and to decrease the divergence angle when the installation distance is long. Thus, a method of receiving an optical signal within the optimum optical reception intensity range is also effective.

図9に示す実施例では、分離光学系11の移動方向を、コリメート光学系10の光軸に対して垂直方向のみでなく、光軸の方向にも移動可能とする事により、送信する光ビームの広がり角を可変する事が出来るようにしたものである。すなわち分離光学系11はアクチュエータ13を持つステージ12に加えて、光軸の方向に移動するアクチュエータ93を持つステージ92により、光軸に垂直な2方向だけでなく、第3の光軸の方向にも移動するようになっている(図9では紙面に垂直方向の駆動機構を図示するのが困難なため省略してある)。アクチュエータ93とステージ92により分離光学系11がコリメート光学系10に近付く方向に移動すると光ビームの拡がり角は大きくなり、逆に分離光学系11がコリメート光学系10から離れる方向に移動すると光ビームの拡がり角は小さくなる。   In the embodiment shown in FIG. 9, the moving direction of the separation optical system 11 can be moved not only in the direction perpendicular to the optical axis of the collimating optical system 10 but also in the direction of the optical axis. The spread angle can be changed. That is, the separation optical system 11 has a stage 92 having an actuator 93 that moves in the direction of the optical axis in addition to the stage 12 having the actuator 13, so that the separation optical system 11 not only in two directions perpendicular to the optical axis but also in the direction of the third optical axis. (In FIG. 9, it is difficult to show a drive mechanism in the direction perpendicular to the paper surface, so it is omitted). When the separation optical system 11 moves in the direction approaching the collimating optical system 10 by the actuator 93 and the stage 92, the divergence angle of the light beam increases. Conversely, when the separation optical system 11 moves away from the collimating optical system 10, the light beam The spread angle becomes smaller.

(第五の実施例)
第一から第四の実施例では、光軸ずれ補正機能を持つ光空間通信装置のような、コリメート光学系10に対する分離光学系11の位置を自動的に動かすようなものであったが、コリメート光学系10に対する分離光学系11の位置を変化させて光ビームの方向や広がり角を調整するのは、自動で行う事に限定する必要はない。
(Fifth embodiment)
In the first to fourth embodiments, the position of the separation optical system 11 with respect to the collimating optical system 10 is automatically moved, such as an optical space communication device having an optical axis deviation correction function. Changing the position of the separation optical system 11 relative to the optical system 10 and adjusting the direction and divergence angle of the light beam need not be limited to being performed automatically.

例えば近距離用等の自動光軸ずれ補正機能のない安価な光空間通信装置についても、組立時や設置時の光軸調整の際など、アクチュエータ13、93などを手動のスイッチ操作で駆動させる方法が考えられる。さらにステージ12、92などはアクチュエータも無く、手動のネジ送り等の機構にしてもよい。このような場合でも光学系周辺の小型化や光軸方向の調整機構の簡素化による低コスト化の効果が大きい。   For example, even for an inexpensive optical space communication device that does not have an automatic optical axis deviation correction function for short distances, etc., a method of driving the actuators 13, 93, etc. by manual switch operation, such as when adjusting the optical axis during assembly or installation. Can be considered. Further, the stages 12, 92, etc. have no actuator and may be a mechanism such as manual screw feeding. Even in such a case, the cost reduction effect by reducing the size of the periphery of the optical system and simplifying the adjustment mechanism in the optical axis direction is great.

本発明の第一の実施例First embodiment of the present invention 分離光学系11の位置が駆動・制御される様子を示す。A state in which the position of the separation optical system 11 is driven and controlled is shown. 本発明の第二の実施例Second embodiment of the present invention 従来の実施例Conventional example スポット位置検出素子の例Example of spot position detection element 従来の実施例Conventional example 従来の実施例Conventional example 本発明の第三の実施例Third embodiment of the present invention 本発明の第四の実施例Fourth embodiment of the present invention

符号の説明Explanation of symbols

10 コリメート光学系
11 分離光学系
21 発光素子
12、92 可動ステージ
13、93 アクチュエータ
14、15 光ファイバ
16 発光素子周辺回路
17 受光素子周辺回路
18、19 同軸コード
22 偏光ビームスプリッタ
25 ビームスプリッタ
26 受光素子
27 スポット位置検出素子
28 制御回路
29 駆動回路
DESCRIPTION OF SYMBOLS 10 Collimating optical system 11 Separation optical system 21 Light emitting element 12, 92 Movable stage 13, 93 Actuator 14, 15 Optical fiber 16 Light emitting element peripheral circuit 17 Light receiving element peripheral circuit 18, 19 Coaxial code 22 Polarizing beam splitter 25 Beam splitter 26 Light receiving element 27 Spot Position Detection Element 28 Control Circuit 29 Drive Circuit

Claims (6)

離れた地点間で対向設置されて光ビームにより通信を行う光空間通信装置であって、
発散光束をほぼ平行光束である光ビームに変換して相手側装置に送出し、また相手側装置からのほぼ平行光束である光ビームを受信して収束光束に変換するための第一の光学系と、それぞれ同一光軸上にあって方向が逆である、相手側装置に送出する光束と相手側装置から受信した光束を分離するための第二の光学系と、
前記第一の光学系に対して前記第二の光学系の相対位置を変化させる(平行移動だけでなく角度変化も含む)手段を持つことを特徴とする光空間通信装置。
An optical space communication device that is installed oppositely between remote points and performs communication using a light beam,
A first optical system for converting a divergent light beam into a light beam that is a substantially parallel light beam and sending it to a counterpart device, and for receiving a light beam that is a substantially parallel light beam from the counterpart device and converting it into a convergent light beam And a second optical system for separating the luminous flux sent to the counterpart device and the luminous flux received from the counterpart device, each on the same optical axis and having the opposite direction,
An optical space communication device comprising means for changing the relative position of the second optical system with respect to the first optical system (including not only translation but also change in angle).
離れた地点間で対向設置されて光ビームにより通信を行う光空間通信装置であって、
発散光束をほぼ平行光束である光ビームに変換して相手側装置に送出し、また相手側装置からのほぼ平行光束である光ビームを受信して収束光束に変換するための第一の光学系と、それぞれ同一光軸上にあって方向が逆である、相手側装置に送出する光束と相手側装置から受信した光束を分離するための第二の光学系と、
前記第一の光学系に対して前記第二の光学系の相対位置を変化させる(平行移動だけでなく角度変化も含む)駆動手段と、
前記第二の光学系に附属し、相手側装置から受信した光束の角度を検出する角度検出手段と、
前記角度検出手段からの情報に基づいて、相手側装置から受信した光束の角度が所定の値になるように前記駆動手段を制御することにより相手側装置に送出する光ビームが常に相手側装置の方向に向かうように追尾制御する制御手段を持つことを特徴とする光空間通信装置。
An optical space communication device that is installed oppositely between remote points and performs communication using a light beam,
A first optical system for converting a divergent light beam into a light beam that is a substantially parallel light beam and sending it to a counterpart device, and for receiving a light beam that is a substantially parallel light beam from the counterpart device and converting it into a convergent light beam And a second optical system for separating the luminous flux sent to the counterpart device and the luminous flux received from the counterpart device, each on the same optical axis and having the opposite direction,
Drive means for changing the relative position of the second optical system with respect to the first optical system (including not only translation but also angular change);
Angle detection means attached to the second optical system for detecting the angle of the light beam received from the counterpart device;
Based on the information from the angle detection means, the light beam transmitted to the counterpart apparatus is always controlled by controlling the drive means so that the angle of the light beam received from the counterpart apparatus becomes a predetermined value. An optical space communication device comprising control means for performing tracking control in a direction.
前記第二の光学系とは別の場所にあって、相手側装置に送出する光信号を発生するための発光素子を持ち、この発光素子と前記第二の光学系の間は光導波路(光ファイバ、ライトガイド等)で結ばれて、発光素子よりの送信光を光導波路により前記第二の光学系に導くことを特徴とする請求項1または請求項2記載の光空間通信装置。   There is a light emitting element for generating an optical signal to be sent to the counterpart device, which is in a different place from the second optical system, and an optical waveguide (optical waveguide) is provided between the light emitting element and the second optical system. 3. The space optical communication apparatus according to claim 1, wherein the optical space communication apparatus is connected by a fiber, a light guide, or the like, and guides transmission light from the light emitting element to the second optical system through an optical waveguide. 前記第二の光学系とは別の場所にあって、相手側装置より受信した光信号を検出するための光信号検出素子を持ち持ち、この光信号検出素子と前記第二の光学系の間は光導波路(光ファイバ、ライトガイド等)で結ばれて、前記第二の光学系よりの受信光を光導波路により光信号検出素子に導くことを特徴とする請求項1または請求項2記載の光空間通信装置。   There is an optical signal detection element for detecting an optical signal received from the counterpart device, which is in a different location from the second optical system, and between the optical signal detection element and the second optical system. The optical fiber is connected by an optical waveguide (optical fiber, light guide, etc.), and the received light from the second optical system is guided to the optical signal detection element by the optical waveguide. Optical space communication device. 前記第二の光学系は、相手側装置に送出する光信号を含む光束を発生するための発光素子を持ち、この発光素子の発光強度を制御する回路と、光信号を発生するためにこの発光素子を送信する信号で変調する回路は、前記第二の光学系とは別の場所に置かれていることを特徴とする請求項1または請求項2記載の光空間通信装置。   The second optical system has a light emitting element for generating a light beam including an optical signal to be transmitted to the counterpart device, a circuit for controlling the light emission intensity of the light emitting element, and this light emission for generating an optical signal. The optical space communication apparatus according to claim 1, wherein the circuit that modulates the signal using a signal to be transmitted is placed at a location different from the second optical system. 前記第二の光学系は、相手側装置より受信した光束に含まれる光信号を検出するための光信号検出素子を持ち、光信号検出素子により検出された電気信号を増幅する回路は、前記第二の光学系とは別の場所に置かれていることを特徴とする請求項1または請求項2記載の光空間通信装置。
The second optical system has an optical signal detection element for detecting an optical signal included in a light beam received from the counterpart device, and a circuit for amplifying an electrical signal detected by the optical signal detection element is the first optical system. 3. The optical space communication apparatus according to claim 1, wherein the optical space communication apparatus is placed at a place different from the second optical system.
JP2003314994A 2003-09-08 2003-09-08 Optical space communication device Withdrawn JP2005086392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003314994A JP2005086392A (en) 2003-09-08 2003-09-08 Optical space communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003314994A JP2005086392A (en) 2003-09-08 2003-09-08 Optical space communication device

Publications (1)

Publication Number Publication Date
JP2005086392A true JP2005086392A (en) 2005-03-31

Family

ID=34415389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003314994A Withdrawn JP2005086392A (en) 2003-09-08 2003-09-08 Optical space communication device

Country Status (1)

Country Link
JP (1) JP2005086392A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504095A (en) * 2005-08-02 2009-01-29 アイティーティー マニュファクチャリング エンタープライジーズ, インコーポレイテッド Communication transceiver architecture
JP2018170647A (en) * 2017-03-30 2018-11-01 東洋電機株式会社 Spatial optical transmission device
US11329721B2 (en) 2020-06-09 2022-05-10 Tamron Co., Ltd. Communication device, optical axis direction adjusting method, and communication system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504095A (en) * 2005-08-02 2009-01-29 アイティーティー マニュファクチャリング エンタープライジーズ, インコーポレイテッド Communication transceiver architecture
JP4753444B2 (en) * 2005-08-02 2011-08-24 アイティーティー マニュファクチャリング エンタープライジーズ, インコーポレイテッド Communication transceiver architecture
JP2018170647A (en) * 2017-03-30 2018-11-01 東洋電機株式会社 Spatial optical transmission device
US11329721B2 (en) 2020-06-09 2022-05-10 Tamron Co., Ltd. Communication device, optical axis direction adjusting method, and communication system

Similar Documents

Publication Publication Date Title
JP5079088B2 (en) Optical interconnect
US6335811B1 (en) Optical space communication apparatus
US6091528A (en) Optical communication system of space propagation type
JP2004015135A (en) Optical space communication unit having direction regulating function
US20100074618A1 (en) Optical path switching device
US6690888B1 (en) Method for establishing and maintaining optical, open-air communications link
US6618177B1 (en) Light space-transmission device
US6751422B2 (en) Spatial light communication equipment comprising angle error detection and alignment units
JP2005086392A (en) Optical space communication device
WO2014122909A1 (en) Light receiving device, optical space communication device, and optical space communication method
JP4446087B2 (en) Photodetector and photodetection system using the same
KR20080065251A (en) Free space optical communication apparatus
US9363015B2 (en) Optical module
US7379674B2 (en) Optical transmission device
JP2007135123A (en) Unit and method for optical space transmission
US20040208598A1 (en) Optical wireless transceiver
JP2006340075A (en) Hybrid optical axis correcting device of optical spatial communication system
US11394461B2 (en) Free space optical communication terminal with actuator system and optical relay system
JP4520414B2 (en) Optical path correction control device for optical space communication system
KR20080065250A (en) Collimator for free space optical communication
JP2004080253A (en) Optical space transmission apparatus and optical space transmission system
KR100263506B1 (en) Optical communication system
JP2005321669A (en) Optical communication apparatus
JP2005229359A (en) Optical space communication apparatus
JP2007093933A (en) Driving system and optical communication device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205