JP2005083966A - Metal fuel fast reactor - Google Patents

Metal fuel fast reactor Download PDF

Info

Publication number
JP2005083966A
JP2005083966A JP2003318052A JP2003318052A JP2005083966A JP 2005083966 A JP2005083966 A JP 2005083966A JP 2003318052 A JP2003318052 A JP 2003318052A JP 2003318052 A JP2003318052 A JP 2003318052A JP 2005083966 A JP2005083966 A JP 2005083966A
Authority
JP
Japan
Prior art keywords
fuel
core
metal
pin
metal fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003318052A
Other languages
Japanese (ja)
Inventor
Kazuteru Sugino
和輝 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Nuclear Cycle Development Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Nuclear Cycle Development Institute filed Critical Japan Nuclear Cycle Development Institute
Priority to JP2003318052A priority Critical patent/JP2005083966A/en
Publication of JP2005083966A publication Critical patent/JP2005083966A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a coolant void reactivity by reducing a coolant volume ratio in an inner region of a core. <P>SOLUTION: Metal fuel is used and the core 10 is partitioned in a plurality of regions for flattening power distribution. For the metal fuel, TRU-Zr ternary alloy with U-Pu or Pu as a main composition is used. All fuel pins have a uniform Pu enrichment in the fuel and the same pin diameter. A Zr content in metal fuel slug in inner core fuel pins 22 has larger value than that of outer fuel pins 24. Fuel assemblies have a structure installed with a multitude of fuel pins in a wrapper tube with the same array. Individual fuel pins are kept at a constant interval by wire type spacers. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属燃料としてU、PuもしくはPuを主体とするTRU(超ウラン)、及びZrからなる三元合金を使用し、燃料のPu富化度とピン径を単一とし、金属燃料スラグのZr含有率の違いにより複数の炉心領域に区分し、出力分布の平坦化を図った金属燃料高速炉に関するものである。   The present invention uses TRU (super uranium) mainly composed of U, Pu or Pu as a metal fuel, and a ternary alloy composed of Zr, with a single Pu enrichment and a pin diameter, and a metal fuel slag. This relates to a metal fuel fast reactor that is divided into a plurality of core regions according to the difference in the Zr content of each of them and the power distribution is flattened.

高速炉で用いる核燃料物質の形態として、現在はU−Pu混合酸化物が主流であるが、近年、金属燃料についても高燃焼度が達成可能な合金の開発が進んでいる。その代表的な例は、U−Pu−Zr三元合金である。この合金は、スエリングや被覆管との共晶反応の緩和の点で優れた特性を有し、また定常照射や炉内過渡試験が実施されており、照射挙動や破損挙動に関する情報も多く整備されている。   Currently, U-Pu mixed oxides are the mainstream of nuclear fuel materials used in fast reactors, but in recent years, the development of alloys that can achieve high burn-up is also progressing for metal fuels. A typical example is U-Pu-Zr ternary alloy. This alloy has excellent properties in terms of swelling and relaxation of eutectic reaction with the cladding tube, and steady irradiation and in-furnace transient tests have been conducted, and a lot of information on irradiation behavior and failure behavior has been prepared. ing.

ところで、高速炉用の燃料として金属燃料を採用した場合、燃料と被覆管の接触部における液相形成を防止する必要があることから、酸化物燃料を用いた場合と比較して、被覆管最大温度を抑制する必要がある。その結果、原子炉出口温度も低下することから、熱効率の減少が見られる。その弱点補強策として、燃料のPu富化度を単一とし、炉心出力分布平坦化のためにピン径の異なる数種類の燃料ピンを用い、グリッド型スペーサ方式の燃料集合体を採用することが提案されており、それによって冷却材流量配分を合理化でき、酸化物燃料炉心と同等の出口温度達成の見通しが得られている。   By the way, when metal fuel is used as the fuel for the fast reactor, it is necessary to prevent liquid phase formation at the contact portion between the fuel and the cladding tube. It is necessary to suppress the temperature. As a result, the reactor outlet temperature also decreases, and a decrease in thermal efficiency is observed. As a measure to strengthen the weak point, it is proposed to adopt a fuel assembly of grid type with a single Pu enrichment of fuel, using several types of fuel pins with different pin diameters to flatten the core power distribution. As a result, the coolant flow distribution can be rationalized, and the prospect of achieving an outlet temperature equivalent to that of an oxide fuel core is obtained.

しかしながら、そのような仕様では内側炉心領域において相対的に細径の燃料ピンを使用することになるため、その領域では燃料ピン間ギャップが大きくなる。その結果、冷却材体積比が大きくなり、炉心安全上重要である冷却材ボイド反応度が大きくなる傾向が生じる。また、グリッド型スペーサ方式については、高速炉での使用実績が殆ど無いことから、工学的成立性のための技術課題の解決が必要である。   However, in such a specification, a fuel pin having a relatively small diameter is used in the inner core region, so that the gap between the fuel pins becomes large in that region. As a result, the coolant volume ratio increases and the coolant void reactivity, which is important for core safety, tends to increase. Moreover, since there is almost no track record in a fast reactor about a grid type spacer system, it is necessary to solve the technical problem for engineering feasibility.

本発明が解決しようとする課題は、内側炉心領域において冷却材体積比が大きくなり、冷却材ボイド反応度が大きくなる点である。   The problem to be solved by the present invention is that the coolant volume ratio increases in the inner core region and the coolant void reactivity increases.

本発明は、金属燃料を使用し、出力分布平坦化のために複数の炉心領域に区分されている高速炉において、金属燃料としてU、PuもしくはPuを主体とするTRU、及びZrからなる三元合金を使用し、全ての燃料ピンは、燃料のPu富化度が単一で且つピン径も同一であって、金属燃料スラグのZr含有率を変化させることにより領域区分が行われていることを特徴とする金属燃料高速炉である。   The present invention uses a metallic fuel, a fast reactor that is divided into a plurality of core regions for flattening the power distribution, and is composed of TRU mainly composed of U, Pu, or Pu as metallic fuel, and Zr. The alloy is used, and all fuel pins have a single Pu enrichment and the same pin diameter, and are divided into regions by changing the Zr content of the metal fuel slag. A metal fuel fast reactor characterized by

また本発明は、金属燃料を使用し、出力分布平坦化のために内側炉心領域と外側炉心領域に区分されている2領域型高速炉において、金属燃料としてU、PuもしくはPuを主体とするTRU、及びZrからなる三元合金を使用し、全ての燃料ピンは、燃料のPu富化度が単一で且つピン径も同一であって、内側炉心燃料ピンの方が外側炉心燃料ピンよりも金属燃料スラグのZr含有率が大きな値に設定されていることを特徴とする金属燃料高速炉である。   Further, the present invention uses a TRU mainly composed of U, Pu or Pu as a metal fuel in a two-zone fast reactor that uses a metal fuel and is divided into an inner core region and an outer core region in order to flatten the power distribution. , And Zr, and all the fuel pins have a single fuel Pu enrichment and the same pin diameter, and the inner core fuel pin is better than the outer core fuel pin. The metal fuel fast reactor is characterized in that the Zr content of the metal fuel slag is set to a large value.

更に本発明は、金属燃料を使用し、出力分布平坦化のために内側炉心領域と中間炉心領域と外側炉心領域とに区分されている3領域型高速炉において、金属燃料としてU、PuもしくはPuを主体とするTRU、及びZrからなる三元合金を使用し、全ての燃料ピンは、燃料のPu富化度が単一で且つピン径も同一であって、中間炉心燃料ピンの方が外側炉心燃料ピンよりも金属燃料スラグのZr含有率が大きな値に設定され、且つ内側炉心燃料ピンの方が中間炉心燃料ピンよりも金属燃料スラグのZr含有率が大きな値に設定されていることを特徴とする金属燃料高速炉である。   Furthermore, the present invention uses U, Pu or Pu as a metal fuel in a three-zone type fast reactor that uses a metal fuel and is divided into an inner core region, an intermediate core region, and an outer core region for leveling the power distribution. All the fuel pins have the same Pu enrichment and the same pin diameter, and the intermediate core fuel pins are on the outer side. The Zr content rate of the metal fuel slag is set to a larger value than the core fuel pin, and the Zr content rate of the metal fuel slag is set to a larger value than the intermediate core fuel pin. It is a featured metal fuel fast reactor.

これらにおいて、炉心領域に装荷される全ての燃料集合体は、ラッパ管内に多数の燃料ピンを同じ配列で装填した構造であり、各燃料ピン同士はワイヤ型スペーサで一定間隔に保たれている構造とするのが好ましい。   In these, all fuel assemblies loaded in the core region have a structure in which a large number of fuel pins are loaded in a trumpet tube in the same arrangement, and each fuel pin is maintained at a constant interval by a wire type spacer. Is preferable.

本発明に係る金属燃料高速炉炉心は、単一Pu富化度で且つ単一ピン径とし、金属燃料スラグのZr含有率を変化させることにより炉心出力分布を平坦化しているため、炉心内側領域の燃料ピン間ギャップ縮小が図られるので、冷却材体積比が減少し、冷却材ボイド反応度を低減できる。更に、高速炉で使用実績が豊富にあるワイヤ型スペーサの適用が可能となるために、開発課題が大幅に減り、概念の実現性が飛躍的に向上する。また、燃料被覆管が1種類となるので、燃料製造工程の簡素化が可能となる。   The metal fuel fast reactor core according to the present invention has a single Pu enrichment and a single pin diameter, and the core power distribution is flattened by changing the Zr content of the metal fuel slag. Since the gap between the fuel pins is reduced, the coolant volume ratio is reduced, and the coolant void reactivity can be reduced. Furthermore, since it is possible to apply a wire-type spacer that has been used in the fast reactor, development problems are greatly reduced, and the feasibility of the concept is dramatically improved. Further, since there is only one type of fuel cladding tube, the fuel manufacturing process can be simplified.

本発明は、出力分布平坦化のために2〜3の炉心領域に区分されている金属燃料高速炉である。金属燃料としては、U、PuもしくはPuを主体とするTRU、及びZrからなる三元合金を使用する。全ての燃料ピンは、燃料のPu富化度が単一で且つピン径も同一であって、内側の炉心燃料ピンの方が外側の炉心燃料ピンよりも金属燃料スラグのZr含有率が大きな値に設定されている。炉心領域に装荷される全ての燃料集合体は、ラッパ管内に多数の燃料ピンを同じ配列で装填した構造であり、各燃料ピン同士はワイヤ型スペーサで一定間隔に保たれている構造とする。   The present invention is a metal fuel fast reactor that is divided into two or three core regions in order to flatten the power distribution. As the metal fuel, ternary alloy composed of TRU mainly composed of U, Pu or Pu and Zr is used. All fuel pins have a single fuel Pu enrichment and the same pin diameter, and the inner core fuel pin has a higher Zr content of metal fuel slag than the outer core fuel pin. Is set to All the fuel assemblies loaded in the core region have a structure in which a number of fuel pins are loaded in the same arrangement in a trumpet tube, and each fuel pin is maintained at a constant interval by a wire type spacer.

図1は、本発明に係る金属燃料高速炉の一実施例を示す説明図であり、炉心構成と燃料集合体の横断面を模式的に示している。この高速炉の炉心10は、金属燃料としてU、Pu、及びZrからなる三元合金を使用する。Puに代えてPuを主体とするTRUを用いる場合もある。使用済燃料からPuを回収する際に、MA(マイナーアクチニド)も随伴するからである。炉心10は、出力分布平坦化のために、内側炉心領域と外側炉心領域との2領域に区分されており、内側炉心領域には内側炉心燃料集合体12が、外側炉心領域には外側炉心燃料集合体14が、それぞれ装荷されている。内側炉心燃料集合体12及び外側炉心燃料集合体14は、ともに六角筒状のラッパ管16内に多数の燃料ピンを装填した構造であり、それら全ての燃料ピンは、燃料のPu富化度が単一で且つピン径も同一(1種類)となっている。従って、炉心領域に装荷される全ての燃料集合体は、ラッパ管内に燃料ピンを同じ配列で装填した構造である(つまり、内側炉心燃料集合体12と外側炉心燃料集合体14は、形状的には同一である)。ここでは、燃料集合体内において、燃料ピン同士はワイヤ型スペーサ(図示せず)で一定間隔に保たれており、それらの間が冷却材流路18となる。   FIG. 1 is an explanatory view showing an embodiment of a metal fuel fast reactor according to the present invention, schematically showing a core structure and a cross section of a fuel assembly. The core 10 of this fast reactor uses a ternary alloy made of U, Pu, and Zr as a metal fuel. A TRU mainly composed of Pu may be used instead of Pu. This is because MA (minor actinide) is also accompanied when recovering Pu from spent fuel. The core 10 is divided into two regions, an inner core region and an outer core region, for the purpose of flattening the power distribution. The inner core fuel assembly 12 is provided in the inner core region, and the outer core fuel is provided in the outer core region. Each of the aggregates 14 is loaded. Both the inner core fuel assembly 12 and the outer core fuel assembly 14 have a structure in which a large number of fuel pins are loaded in a hexagonal tubular trumpet tube 16, and all of these fuel pins have a Pu enrichment of fuel. It is single and has the same pin diameter (one type). Accordingly, all the fuel assemblies loaded in the core region have a structure in which fuel pins are loaded in the same arrangement in the trumpet tube (that is, the inner core fuel assembly 12 and the outer core fuel assembly 14 are shaped in shape. Are the same). Here, in the fuel assembly, the fuel pins are kept at regular intervals by a wire-type spacer (not shown), and the coolant channel 18 is formed between them.

本発明では、内側炉心燃料ピン22におけるU−Pu−Zr三元合金中のZrの含有率が、外側炉心燃料ピン24におけるU−Pu−Zr三元合金中のZrの含有率よりも大きな値に設定されている。内側炉心燃料ピン22と外側炉心燃料ピン24におけるU−Pu−Zr三元合金中のZrの含有率の関係を、図2の円グラフで示す。Aは内側炉心燃料であり、Bは外側炉心燃料である。   In the present invention, the Zr content in the U-Pu-Zr ternary alloy in the inner core fuel pin 22 is larger than the Zr content in the U-Pu-Zr ternary alloy in the outer core fuel pin 24. Is set to The relationship between the Zr content in the U-Pu-Zr ternary alloy in the inner core fuel pin 22 and the outer core fuel pin 24 is shown by a pie chart in FIG. A is the inner core fuel and B is the outer core fuel.

図2に示すように、金属燃料スラグのZr含有率を変化させることにより、ラッパ管内に多数の燃料ピンを同じ配列で装填した構造の燃料集合体を用いても炉心出力分布を平坦化できる。この結果、ピン径の異なる2種類の燃料ピンを用いた場合と比較して、内側炉心燃料集合体における燃料ピン間ギャップ縮小を図ることができるので、冷却材体積比が減少し、冷却材ボイド反応度を低減できる。それに加えて、高速増殖炉で使用実績が豊富にあるワイヤ型スペーサの適用が可能になるために、開発課題が大幅に減り、概念の実現性が飛躍的に向上する。更に、燃料被覆管が1種類で済むので、燃料製造工程を簡素化できる。   As shown in FIG. 2, by changing the Zr content of the metal fuel slag, the core power distribution can be flattened even if a fuel assembly having a structure in which a number of fuel pins are loaded in the same arrangement in the trumpet tube is used. As a result, the gap between the fuel pins in the inner core fuel assembly can be reduced compared with the case where two types of fuel pins having different pin diameters are used, so that the coolant volume ratio is reduced and the coolant voids are reduced. Reactivity can be reduced. In addition, since it is possible to apply wire type spacers that have been used in fast breeder reactors, development issues are greatly reduced, and the feasibility of the concept is dramatically improved. Furthermore, since only one type of fuel cladding tube is required, the fuel production process can be simplified.

本発明を適用した中型の内外2領域型炉心について、具体的な燃料仕様、炉心仕様、及び核特性評価結果の一例を以下に示す。表1は燃料仕様を示している。この仕様に基づいた解析により、表2に示すような所要の炉心特性が得られた。出力分布の平坦化が十分に図られ、原子炉出入口温度を酸化物燃料炉心並に設定できる見通しが得られた。   An example of specific fuel specifications, core specifications, and nuclear characteristic evaluation results for a medium-sized inner / outer two-region core to which the present invention is applied is shown below. Table 1 shows the fuel specifications. The required core characteristics as shown in Table 2 were obtained by analysis based on this specification. The power distribution was sufficiently flattened, and the prospect of setting the reactor inlet / outlet temperature to the level of an oxide fuel core was obtained.

Figure 2005083966
Figure 2005083966

Figure 2005083966
Figure 2005083966

なお本発明において、Pu富化度は炉心サイズに依存し、炉心が大型化するほどPu富化度は減少するが、およそ10〜15wt%である。表1−2に示す中規模の炉心では、12wt%程度としている。   In the present invention, the Pu enrichment depends on the core size, and the Pu enrichment decreases as the core becomes larger, but is approximately 10 to 15 wt%. In the medium-scale core shown in Table 1-2, it is about 12 wt%.

また本発明において、中性子経済を良くし核特性を向上させるためには、Zr含有率をできるだけ低く抑えることが望ましい。しかし、U−PuもしくはPuを主体とするTRU−Zr三元合金が燃料として十分な強度をもつためには、Zr含有率を10wt%以上とする必要がある。そこで表1に示す燃料仕様では、外側炉心燃料のZr含有率を10wt%とし、内側炉心燃料のZr含有率は出力分布が適切となるように調整している。ここでは内側炉心燃料のZr含有率を14.4wt%に設定している。   In the present invention, it is desirable to keep the Zr content as low as possible in order to improve the neutron economy and improve the nuclear characteristics. However, in order for the TRU-Zr ternary alloy mainly composed of U-Pu or Pu to have sufficient strength as a fuel, the Zr content needs to be 10 wt% or more. Therefore, in the fuel specifications shown in Table 1, the Zr content of the outer core fuel is 10 wt%, and the Zr content of the inner core fuel is adjusted so that the power distribution is appropriate. Here, the Zr content of the inner core fuel is set to 14.4 wt%.

上記の実施例は2領域型の場合であったが、内側炉心領域と中間炉心領域と外側炉心領域との3領域型であってもよい。その場合には、中間炉心燃料ピンにおける金属燃料スラグのZr含有率(U−Pu−Zr三元合金中のZrの含有率)を、外側炉心燃料ピンにおける金属燃料スラグのZr含有率よりも大きな値に設定し、且つ内側炉心燃料ピンにおける金属燃料スラグのZr含有率を、中間炉心燃料ピンにおける金属燃料スラグのZr含有率よりも大きな値に設定する。   The above embodiment is a case of the two-region type, but it may be a three-region type including an inner core region, an intermediate core region, and an outer core region. In that case, the Zr content of the metal fuel slag in the intermediate core fuel pin (the Zr content in the U-Pu-Zr ternary alloy) is larger than the Zr content of the metal fuel slag in the outer core fuel pin. The Zr content of the metal fuel slag in the inner core fuel pin is set to a value larger than the Zr content of the metal fuel slag in the intermediate core fuel pin.

なお、上記の実施例ではワイヤ型スペーサを用いており、高速炉で使用実績が豊富にあるために、開発課題が大幅に減り概念の実現性が飛躍的に向上するが、場合によってはグリッド型スペーサを使用することも可能である。   In the above embodiment, wire type spacers are used, and since there are abundant use results in fast reactors, development problems are greatly reduced and the concept is dramatically improved, but in some cases grid type It is also possible to use spacers.

本発明に係る金属燃料高速炉の一実施例を示す説明図。Explanatory drawing which shows one Example of the metal fuel fast reactor which concerns on this invention. 内側/外側炉心燃料のZr含有率を示すグラフ。The graph which shows the Zr content rate of an inner / outer core fuel.

符号の説明Explanation of symbols

10 高速炉の炉心
12 内側炉心燃料集合体
14 外側炉心燃料集合体
16 ラッパ管
18 冷却材流路
22 内側炉心燃料ピン
24 外側炉心燃料ピン
DESCRIPTION OF SYMBOLS 10 Core of fast reactor 12 Inner core fuel assembly 14 Outer core fuel assembly 16 Trumpet pipe 18 Coolant flow path 22 Inner core fuel pin 24 Outer core fuel pin

Claims (4)

金属燃料を使用し、出力分布平坦化のために複数の炉心領域に区分されている高速炉において、金属燃料としてU、PuもしくはPuを主体とするTRU、及びZrからなる三元合金を使用し、全ての燃料ピンは、燃料のPu富化度が単一で且つピン径も同一であって、金属燃料スラグのZr含有率を変化させることにより領域区分が行われていることを特徴とする金属燃料高速炉。 In a fast reactor that uses metal fuel and is divided into a plurality of core regions for flattening power distribution, TRU mainly composed of U, Pu or Pu, and ternary alloy consisting of Zr are used as the metal fuel. All fuel pins have a single Pu enrichment and the same pin diameter, and are characterized by changing the Zr content of the metal fuel slag. Metal fuel fast reactor. 金属燃料を使用し、出力分布平坦化のために内側炉心領域と外側炉心領域に区分されている2領域型高速炉において、金属燃料としてU、PuもしくはPuを主体とするTRU、及びZrからなる三元合金を使用し、全ての燃料ピンは、燃料のPu富化度が単一で且つピン径も同一であって、内側炉心燃料ピンの方が外側炉心燃料ピンよりも金属燃料スラグのZr含有率が大きな値に設定されていることを特徴とする金属燃料高速炉。 In a two-zone type fast reactor that uses metal fuel and is divided into an inner core region and an outer core region for flattening the power distribution, it consists of TRU and Zr mainly composed of U, Pu or Pu as the metal fuel Using ternary alloys, all fuel pins have a single fuel Pu enrichment and the same pin diameter, and the inner core fuel pin has a higher Zr of metal fuel slug than the outer core fuel pin. Metal fuel fast reactor characterized in that the content is set to a large value. 金属燃料を使用し、出力分布平坦化のために内側炉心領域と中間炉心領域と外側炉心領域とに区分されている3領域型高速炉において、金属燃料としてU、PuもしくはPuを主体とするTRU、及びZrからなる三元合金を使用し、全ての燃料ピンは、燃料のPu富化度が単一で且つピン径も同一であって、中間炉心燃料ピンの方が外側炉心燃料ピンよりも金属燃料スラグのZr含有率が大きな値に設定され、且つ内側炉心燃料ピンの方が中間炉心燃料ピンよりも金属燃料スラグのZr含有率が大きな値に設定されていることを特徴とする金属燃料高速炉。 In a three-zone fast reactor that uses metallic fuel and is divided into an inner core region, an intermediate core region, and an outer core region for leveling the power distribution, TRU mainly composed of U, Pu, or Pu as the metallic fuel , And Zr, and all the fuel pins have a single fuel Pu enrichment and the same pin diameter, and the intermediate core fuel pin is better than the outer core fuel pin. A metal fuel characterized in that the Zr content of the metal fuel slag is set to a larger value, and the inner core fuel pin is set to a larger value of the Zr content of the metal fuel slag than the intermediate core fuel pin. Fast reactor. 炉心領域に装荷される全ての燃料集合体は、ラッパ管内に多数の燃料ピンを同じ配列で装填した構造であり、各燃料ピン同士はワイヤ型スペーサで一定間隔に保たれている請求項2又は3記載の金属燃料高速炉。
All the fuel assemblies loaded in the core region have a structure in which a large number of fuel pins are loaded in a trumpet tube in the same arrangement, and each fuel pin is maintained at a constant interval by a wire type spacer. 3. The metal fuel fast reactor according to 3.
JP2003318052A 2003-09-10 2003-09-10 Metal fuel fast reactor Pending JP2005083966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003318052A JP2005083966A (en) 2003-09-10 2003-09-10 Metal fuel fast reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003318052A JP2005083966A (en) 2003-09-10 2003-09-10 Metal fuel fast reactor

Publications (1)

Publication Number Publication Date
JP2005083966A true JP2005083966A (en) 2005-03-31

Family

ID=34417436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003318052A Pending JP2005083966A (en) 2003-09-10 2003-09-10 Metal fuel fast reactor

Country Status (1)

Country Link
JP (1) JP2005083966A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11725411B2 (en) 2020-08-17 2023-08-15 Terrapower, Llc Nuclear fuel assembly with multi-pitch wire wrap

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11725411B2 (en) 2020-08-17 2023-08-15 Terrapower, Llc Nuclear fuel assembly with multi-pitch wire wrap

Similar Documents

Publication Publication Date Title
JP2016517964A (en) Fuel assembly
JP2006226905A (en) Metallic fuel fast reactor core
US3215607A (en) Multi-region neutronic fuel element
JPS61223582A (en) Fuel aggregate for nuclear reactor
JP2005083966A (en) Metal fuel fast reactor
JPS6171389A (en) Fuel aggregate
JP2020003244A (en) Fast reactor core
Colton et al. Assessment of near-breeding heterogeneous seed/blanket cores in pressure-tube heavy water reactors with thorium-based fuels
JPS62194494A (en) Fuel aggregate
JPH1082879A (en) Nuclear reactor core
JP4409191B2 (en) Fuel assemblies for boiling water reactors
JP2002082191A (en) Fuel assembly and fuel assembly group for boiling water reactor
JP2012220325A (en) Fast reactor
JPWO2017195241A1 (en) Fuel assemblies and reactor cores loaded with them
JPH0769447B2 (en) Fuel assembly
JP2001091682A (en) Fuel assembly and core for fast reactor
Carelli et al. Preliminary thermal-hydraulic design and predicted performance of the Clinch River Breeder Reactor core
JPH03267794A (en) Nuclear fuel
JPS6031087A (en) Core for fast breeder reactor
JP5002622B2 (en) Uranium enrichment sequencing method for boiling water reactor fuel assemblies.
JPS58131588A (en) Boiling-water reactor
JPS6247115Y2 (en)
JPS61153587A (en) Fuel aggregate for pressure tube type reactor
JP2003262692A (en) Boiling water reactor fuel assembly and determination method for fuel arrangement in the fuel assembly
Lee et al. MARS-GCR/CAPP Coupled Calculation of Reactivity Feedback Transients for the OECD/NEA PBMR-400 Benchmark

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070410