JP2005083861A - Measurement method and system of optical pickup, and its regulating apparatus - Google Patents

Measurement method and system of optical pickup, and its regulating apparatus Download PDF

Info

Publication number
JP2005083861A
JP2005083861A JP2003315413A JP2003315413A JP2005083861A JP 2005083861 A JP2005083861 A JP 2005083861A JP 2003315413 A JP2003315413 A JP 2003315413A JP 2003315413 A JP2003315413 A JP 2003315413A JP 2005083861 A JP2005083861 A JP 2005083861A
Authority
JP
Japan
Prior art keywords
lens
aberration
optical pickup
phase
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003315413A
Other languages
Japanese (ja)
Other versions
JP4396193B2 (en
Inventor
Hirokazu Furuta
寛和 古田
和政 ▲高▼田
Kazumasa Takada
Koshu Goto
孝周 後藤
Hidehiko Wada
秀彦 和田
Keiichi Matsuzaki
圭一 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003315413A priority Critical patent/JP4396193B2/en
Publication of JP2005083861A publication Critical patent/JP2005083861A/en
Application granted granted Critical
Publication of JP4396193B2 publication Critical patent/JP4396193B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately detect aberration of optical pickup or lens, without being affected by measurement errors caused by an optical interferometer detecting aberration. <P>SOLUTION: The measurement method has processes of: detecting the inclination quantity of the optical pickup from the light emitted from a light source and correcting the inclination; diffracting the light emitted from the lens, interfering the two diffraction lights with different orders and obtaining a sharing interference image; changing the phase of the diffraction lights; obtaining the phase of light intensity change at a plurality of measuring points on a specific line in the sharing interference image; approximating the phase ϕ by the function of the measurement position X, when the measurement position is X and the above phase is ϕ, and evaluating the aberration of the lens by the coefficient value of the function; rotating the optical pickup around a light axis of the light emitted from the lens; and detecting the measurement error quantity of the interference measurement and the aberration quantity such that the lens has, by redetecting the aberrations of the lens by the interference method at the rotated position. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光ディスク方式の情報記録装置(例えばCDやDVDなど)に情報を記録、再生する光学レンズ、またはディジタルスチールカメラ(DSC)などにおいて、光を結像して光スポットを形成する光ピックアップやレンズの特性を検出する方法および装置に関するものである。   The present invention relates to an optical pickup that forms an optical spot by forming an image of light in an optical lens for recording and reproducing information on an optical disk type information recording apparatus (for example, a CD or a DVD) or a digital still camera (DSC). And a method and an apparatus for detecting the characteristics of a lens.

光ディスク方式の高密度情報記憶媒体から情報を読み取り、またこの高密度情報記憶媒体に情報を記憶するためには、光源から出射された光を目的の場所に精確に照射できる光学系が必要である。そのため、特に光ピックアップの対物レンズは、それ自体に厳格な光学的特性が要求されるだけでなく、目的の場所に精度よく固定されなければならない。従来、光ピックアップや光ピックアップ内の対物レンズの光学特性である収差を検出し、その位置調整を行うための光学特性検出装置として、光学干渉を用いた計測装置が用いられている。その光学干渉計の中で、図6に示すような回折干渉法式が提案され実施されている(特許文献1ご参照のこと)。この回折干渉方式について、図6を参照しながら以下に簡単に説明する。   In order to read information from an optical disk type high-density information storage medium and store information in the high-density information storage medium, an optical system capable of accurately irradiating light emitted from a light source to a target location is required. . Therefore, in particular, the objective lens of the optical pickup is not only required to have strict optical characteristics, but must be accurately fixed at a target location. 2. Description of the Related Art Conventionally, a measurement device using optical interference has been used as an optical property detection device for detecting aberration that is an optical property of an optical pickup or an objective lens in the optical pickup and adjusting its position. Among such optical interferometers, a diffraction interference method as shown in FIG. 6 has been proposed and implemented (see Patent Document 1). This diffraction interference method will be briefly described below with reference to FIG.

図6において、光ピックアップ101内の対物レンズ102から出射された光は、回折格子103入射することで0次光と±1次光が生じ、検出レンズ104上で0次光と+1次光、そして0次光と−1次光が重なり干渉縞が生じる。このパターンを結像レンズ105でCCD105上に結像する。CCD106は信号処理および表示装置107に接続されている。106上では図7に示すような干渉パターンが得られる。0次光と+1次光、そして0次光と−1次光が重なった領域にできる干渉縞を解析して収差を検出する。   In FIG. 6, the light emitted from the objective lens 102 in the optical pickup 101 is incident on the diffraction grating 103 to generate zero-order light and ± first-order light. Then, the 0th order light and the −1st order light are overlapped to generate interference fringes. This pattern is imaged on the CCD 105 by the imaging lens 105. The CCD 106 is connected to a signal processing and display device 107. On 106, an interference pattern as shown in FIG. 7 is obtained. Aberrations are detected by analyzing interference fringes formed in a region where 0th order light and + 1st order light and 0th order light and −1st order light overlap.

収差の種類とそれによって生じる干渉縞を図8に示す。   FIG. 8 shows the types of aberration and the interference fringes generated thereby.

同図において、図8(A)はデフォーカスによる縞パターン、図8(B)及び図8(C)は、コマ収差による縞パターン、図8(D)は非点収差による縞パターン、図8(E)は球面収差による縞パターン、図(F)は収差ゼロのときの縞パターンを示す。収差ゼロでは干渉領域内で一様である。   8A is a fringe pattern due to defocus, FIG. 8B and FIG. 8C are fringe patterns due to coma, FIG. 8D is a fringe pattern due to astigmatism, and FIG. (E) shows a fringe pattern due to spherical aberration, and FIG. (F) shows a fringe pattern when the aberration is zero. Zero aberration is uniform in the interference region.

一般に収差は複合して発生し、図8(A)から(F)が混合した縞パターンとなる。このパターンに基づいて各収差を抽出する。収差抽出には位相シフト法を使用している。位相シフト法は回折格子103を回折格子の移動機構108で矢印の方向に微小に移動させることで、干渉させる2つの波面の位相を互いにずらし、縞パターンを変化させ、その変化の仕方の分布、つまり強度変化の位相分布を解析して収差を求める。収差は縞パターンの変化の仕方の分布、つまり光強度変化の位相分布を信号処理部で解析することにより検出するが、干渉領域の全面の位相データを使用せずに、干渉領域内の特定線分上の複数点の位置をA、その位置における位相をφとし、φをAの近似関数で表すことにより得られる位相データを使用している。この収差検出結果に基づいて光学系の調整を行う。   In general, aberrations occur in a composite manner, resulting in a fringe pattern in which FIGS. 8A to 8F are mixed. Each aberration is extracted based on this pattern. A phase shift method is used for aberration extraction. In the phase shift method, the diffraction grating 103 is moved minutely in the direction of the arrow by the diffraction grating moving mechanism 108, thereby shifting the phases of the two wavefronts to interfere with each other, changing the fringe pattern, That is, the aberration is obtained by analyzing the phase distribution of the intensity change. Aberration is detected by analyzing the distribution of how the fringe pattern changes, that is, the phase distribution of the light intensity change, by the signal processor, but without using the phase data of the entire interference area, The phase data obtained by representing the position of a plurality of points on the minute as A, the phase at that position as φ, and representing φ as an approximate function of A is used. The optical system is adjusted based on the aberration detection result.

以上のように、従来の技術では光学干渉を利用して、その対物レンズの光学特性を検出し、評価、調整を行っているというのが現状である。
特開2000−329648号公報
As described above, in the prior art, the optical characteristics of the objective lens are detected, evaluated and adjusted using optical interference.
JP 2000-329648 A

しかしながら、前述したような従来の光学特性検出方法では、以下のような課題を有することになる。   However, the conventional optical characteristic detection method as described above has the following problems.

従来の方法では、光ピックアップの対物レンズから出射された光は回折格子により0次光、±1次光を発生し、それらの光の干渉像を解析することによって収差を検出していた。しかし、この方法では対物レンズや光学干渉計内の回折格子に光が入射する際に生じるフレネル損失によって収差測定ズレが生じ、検出値が誤差を持つことがあった。フレネル損失は光が透明な誘電体表面に斜めに入射することによって透過光と反射光に発生する。それにより回折格子を出射した光の偏光特性が変化し、結果干渉縞の強度変化に位相差を生じさせ、あたかも収差があるように計測される。レンズ開口数(NA)が大きいNA0.8以上の高NA対物レンズになると回折格子への入射角は大きくなるため収差検出誤差が大きくなる。   In the conventional method, the light emitted from the objective lens of the optical pickup generates 0th order light and ± 1st order light by the diffraction grating, and the aberration is detected by analyzing the interference image of these lights. However, in this method, aberration measurement deviation occurs due to Fresnel loss that occurs when light enters the diffraction grating in the objective lens or the optical interferometer, and the detected value may have an error. Fresnel loss occurs in transmitted light and reflected light when light is incident obliquely on a transparent dielectric surface. As a result, the polarization characteristic of the light emitted from the diffraction grating changes, and as a result, a phase difference is generated in the intensity change of the interference fringes, and it is measured as if there is an aberration. When a high NA objective lens with a large numerical aperture (NA) of NA 0.8 or higher is used, the incident angle to the diffraction grating increases, and the aberration detection error increases.

特に近年、DVDなど情報記録装置は多機能化や高密度記録化が進み、対物レンズは高NA化し、光学特性の高精度検出が必要とされる中で、その収差誤差量は評価、調整結果に大きな影響を与えるという課題を有していた。   In particular, in recent years, information recording devices such as DVDs have become multifunctional and high-density recording, objective lenses have high NA, and high-precision detection of optical characteristics is required. It had the problem of having a big impact on

本発明は上記従来の課題を解決するもので、収差の測定誤差を検出することで高精度に光ピックアップの収差を測定する方法および装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method and apparatus for measuring aberration of an optical pickup with high accuracy by detecting aberration measurement errors.

上記問題を解決するために、本発明の光ピックアップの測定方法は、光学特性である収差が大きさと方向を持つベクトル量であることから、光学部品を回転方向に位置を変え、すなわち回転させて収差を検出する。このとき収差値の軌跡は円を描く。その半径はその光学部品が持つ収差の大きさであり、その回転中心位置の原点からのズレ量が測定値の誤差となる。この特性を利用して収差測定誤差を検出することを特徴とする。   In order to solve the above problems, the optical pickup measuring method of the present invention is a vector quantity having a magnitude and a direction in which the aberration as an optical characteristic is a magnitude and direction. Aberration is detected. At this time, the locus of aberration values draws a circle. The radius is the magnitude of the aberration of the optical component, and the amount of deviation from the origin of the rotation center position becomes an error in the measured value. An aberration measurement error is detected using this characteristic.

これにより光学部品の収差の高精度検出を行うことができる。   Thereby, it is possible to detect the aberration of the optical component with high accuracy.

以上のように、本発明の光ピックアップの測定方法によれば、収差の測定誤差を検出することにより高精度に光ピックアップの収差を測定することができる。   As described above, according to the optical pickup measuring method of the present invention, the aberration of the optical pickup can be measured with high accuracy by detecting the aberration measurement error.

以下に、本発明の実施の形態について、図1から図5を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 5.

図1は本発明の実施形態における光ピックアップの測定方法・装置を示す。なお、図1において、図6と同じ構成要素については同じ符号を用い、説明を省略するものとする。   FIG. 1 shows an optical pickup measuring method and apparatus according to an embodiment of the present invention. In FIG. 1, the same components as those in FIG.

図1において、1は光ピックアップの位置基準となるシャフトなどに取り付けられたミラーである。2は光学部品をZ軸周りに回転させるθZステージである。また、3は光ピックアップのX軸周りの傾きを調整するθXステージであり、4は光ピックアップのY軸周りの傾きを調整するθYステージであり、5は1のミラーに光を当てその戻り光より光ピックアップの傾きを検出するための例えばレーザなどの光源である。更に、6は1のミラーよって反射された光を分岐するハーフミラーであり、7はハーフミラーにより分岐された光を集光するレンズであり、8は集光された光を取り込むCCDなどの撮像素子である。なお、9は撮像素子からの映像を写すモニターである。1、5、6、7及び8は光ピックアップの傾きを検出する光テコの光学系である。   In FIG. 1, reference numeral 1 denotes a mirror attached to a shaft or the like that serves as a position reference for the optical pickup. A θZ stage 2 rotates the optical component around the Z axis. Reference numeral 3 denotes a θX stage for adjusting the inclination of the optical pickup about the X axis, reference numeral 4 denotes a θY stage for adjusting the inclination of the optical pickup about the Y axis, and reference numeral 5 denotes a return light applied to the mirror 1. For example, a light source such as a laser for detecting the tilt of the optical pickup. Further, 6 is a half mirror that branches the light reflected by the mirror 1, 7 is a lens that collects the light branched by the half mirror, and 8 is an image pickup such as a CCD that captures the collected light. It is an element. Reference numeral 9 denotes a monitor that captures an image from the image sensor. 1, 5, 6, 7 and 8 are optical lever optical systems for detecting the inclination of the optical pickup.

以下に収差の測定誤差の検出法を説明する。   A method for detecting an aberration measurement error will be described below.

まず、ミラー1を光ピックアップの位置基準となる例えばシャフトに設置する。これによりミラー1は光ピックアップと共に動くようになる。光源5から発せられた光はミラー1に反射し、反射した光はハーフミラー6によって分岐され、レンズ7により集光される。その光の集光点に撮像素子8を設置して集光位置を検出する。光ピックアップがθX方向に傾くとモニター9上のX方向に集光位置がずれる。   First, the mirror 1 is installed on, for example, a shaft that serves as a position reference for the optical pickup. As a result, the mirror 1 moves with the optical pickup. The light emitted from the light source 5 is reflected by the mirror 1, and the reflected light is branched by the half mirror 6 and collected by the lens 7. The image sensor 8 is installed at the light condensing point to detect the condensing position. When the optical pickup is tilted in the θX direction, the condensing position is shifted in the X direction on the monitor 9.

同様に、θYではY方向に集光位置がすれる。検出した光の位置から光ピックアップの傾きを検出し、傾きの無い状態へのステージ3,4により光ピックアップをθX、θY方向の位置調整を行う。光ピックアップの傾きをのぞいた状態で光ピックアップを発光させる。光ピックアップから出射された光は光学干渉計に入り光ピックアップの光学特性である収差を検出する。光ピックアップをθZステージでZ軸周りに所定量(例えば45°ごとに45°,90°,135°・・など)回転させる。θZステージ2を回転させる際、機械的なガタツキなどにより発生する傾きを再度、光テコにより検出し、θX、θYステージを用いて傾きを除去する。これにより光ピックアップを光学干渉計に対して一定の姿勢で測定を行うことができる。   Similarly, the focusing position is shifted in the Y direction at θY. The inclination of the optical pickup is detected from the detected light position, and the position of the optical pickup in the θX and θY directions is adjusted by the stages 3 and 4 to a state where there is no inclination. The optical pickup is caused to emit light in a state where the inclination of the optical pickup is excluded. The light emitted from the optical pickup enters the optical interferometer and detects aberration which is an optical characteristic of the optical pickup. The optical pickup is rotated around the Z axis by a predetermined amount (for example, 45 °, 90 °, 135 °, etc. every 45 °) on the θZ stage. When the θZ stage 2 is rotated, the tilt generated by mechanical backlash or the like is again detected by the optical lever, and the tilt is removed using the θX and θY stages. As a result, the optical pickup can be measured in a fixed posture with respect to the optical interferometer.

再度、光ピックアップからの出射光を光学干渉計で計測し、光ピックアップの収差を検出する。この光ピックアップの干渉計による収差の検出、θZ軸周りの回転を繰り返し行い、光ピックアップを360°回転したときの収差の変化をグラフにプロットすると、図2に示すようにある点を中心に回転する。   Again, the outgoing light from the optical pickup is measured with an optical interferometer, and the aberration of the optical pickup is detected. When this aberration is detected by the interferometer of the optical pickup and the rotation around the θZ axis is repeated, and the change in aberration when the optical pickup is rotated 360 ° is plotted on a graph, it rotates around a point as shown in FIG. To do.

この原理は以下のように示される。レンズの光学特性である波面収差は、一般的にZernike多項式を用いて表される。このZernike多項式において、基本的な収差として扱われる3次収差は次式のような数式で表される。   This principle is shown as follows. Wavefront aberration, which is an optical characteristic of a lens, is generally expressed using a Zernike polynomial. In this Zernike polynomial, the third-order aberration treated as a basic aberration is expressed by the following equation.

ρ(3ρ2−2)cos(θ) ・・・・・・・式(1)
ρ(3ρ2−2)sin(θ) ・・・・・・・式(2)
ρ2cos(2θ) ・・・・・・・式(3)
ρ2sin(2θ) ・・・・・・・式(4)
6ρ4−6ρ2+1 ・・・・・・・式(5)
上式は単位円(半径が1)上の関数で極座標の引数(ρ、θ)を持つ。ここでθは、図3のように対物レンズの開口のXY平面内の回転方向となる。式(1)はX方向成分のコマ収差、式(2)はY方向成分のコマ収差、式(3)はX方向成分の非点収差、式(4)はY方向成分の非点収差、式(5)は球面収差を示す数式である。
ρ (3ρ 2 −2) cos (θ) (1)
ρ (3ρ 2 −2) sin (θ) (2)
ρ 2 cos (2θ) ..... Equation (3)
ρ 2 sin (2θ) ..... Equation (4)
4 -6ρ 2 +1 Equation (5)
The above equation is a function on the unit circle (radius is 1) and has polar coordinate arguments (ρ, θ). Here, θ is the rotational direction in the XY plane of the aperture of the objective lens as shown in FIG. Equation (1) is coma aberration in the X direction component, Equation (2) is coma aberration in the Y direction component, Equation (3) is astigmatism in the X direction component, Equation (4) is astigmatism in the Y direction component, Expression (5) is a mathematical expression indicating spherical aberration.

式(1)及び式(2)に示すようにコマ収差では収差の大きさと向きを持つベクトル量であり、レンズがθ回転すると、その収差量もθ回転する。また、式(3)及び式(4)に示すように非点収差も収差の大きさと向きをもつベクトル量であり、レンズがθ回転すると、その収差量は2θ回転する。つまり、レンズの180°の回転で、収差量は360°回転することとなる。また、式(5)に示すように球面収差は収差の大きさのみを持ち方向を持たない。つまりはレンズの回転方向に依存しない収差である。このようにレンズを円周方向に回転させると、その測定値である非点収差、コマ収差もXY平面内で回転する。その半径がレンズの持つ収差量(大きさ)であり、回転角度はレンズの回転角度によって決定される。   As shown in equations (1) and (2), coma is a vector amount having the magnitude and direction of aberration, and when the lens rotates θ, the amount of aberration also rotates θ. As shown in the equations (3) and (4), astigmatism is also a vector amount having the magnitude and direction of the aberration. When the lens rotates θ, the amount of aberration rotates 2θ. That is, the aberration amount is rotated by 360 ° by rotating the lens by 180 °. Further, as shown in the equation (5), the spherical aberration has only the magnitude of the aberration and has no direction. That is, the aberration does not depend on the rotation direction of the lens. When the lens is thus rotated in the circumferential direction, the astigmatism and coma aberration, which are measured values, are also rotated in the XY plane. The radius is the aberration amount (size) of the lens, and the rotation angle is determined by the rotation angle of the lens.

このとき、本来はその回転中心は座標系原点となるが、高NA対物レンズと光学干渉計内の光学系により測定値に誤差が発生した場合、図4のようにその回転中心が原点とならない。しかし、発生している誤差は測定装置の光学系などにより引き起こされる誤差であり、被検出物である光ピックアップが本質的に持つ収差ではないので、レンズの回転ともにレンズが持つ収差値が回転することを利用してレンズが本質的に持つ収差のみを抽出することができる。   At this time, the center of rotation is originally the origin of the coordinate system, but when an error occurs in the measurement value due to the high NA objective lens and the optical system in the optical interferometer, the center of rotation is not the origin as shown in FIG. . However, the generated error is an error caused by the optical system of the measuring device, and is not an aberration inherent in the optical pickup as the object to be detected. Therefore, the aberration value of the lens rotates as the lens rotates. By utilizing this, it is possible to extract only the aberrations inherent to the lens.

このとき収差値の描く円の回転中心の原点からのずれ量が誤差量であり、その回転半径が光ピックアップのもつ収差量となる。よって、収差値の描く円の回転中心が誤差を含んだ測定での原点(収差=0)にあたり、レンズの位置調整を行う場合には、収差の値がこの回転中心へなるように調整を行えば収差が0の状態へ調整したこととなる。このように光ピックアップを回転させることにより、誤差量を検出することができる。しかし、実際には360°回転させる必要はなく、最低2ポジションでの測定、例えば図5のようにコマ収差では測定開始位置での測定とその位置から180°回転させた2点、非点収差では測定開始位置での測定とその位置から90°回転させた2点で収差を検出すれば、対角をなす2点の収差を検出しているので収差量および誤差量を検出することができる。   At this time, the amount of deviation from the origin of the rotation center of the circle drawn by the aberration value is the error amount, and the rotation radius is the aberration amount of the optical pickup. Therefore, when the position of the lens is adjusted when the rotation center of the circle drawn by the aberration value is the origin (aberration = 0) in the measurement including an error, the adjustment is made so that the aberration value becomes this rotation center. For example, the aberration is adjusted to zero. The amount of error can be detected by rotating the optical pickup in this way. However, in practice, it is not necessary to rotate 360 °, and measurement at a minimum of two positions, for example, coma aberration as shown in FIG. 5, measurement at the measurement start position and two points rotated 180 ° from that position, astigmatism Then, if aberration is detected at two points rotated by 90 ° from the measurement at the measurement start position, the aberration amount and the error amount can be detected because the two diagonal aberrations are detected. .

このときの測定開始位置で測定したときの収差成分を(X0,Y0)、対角をなす位置で測定したときの収差成分を(X1,Y1)とすると、測定誤差成分(Xerror,Yerror)は、
Xerror=(X0+X1)/2
Yerror=(Y0+Y1)/2
となり、誤差を除いた収差量Abeは
Abe=√{(X0−Xerror)2+(Y0−Yerror)2
となる。
If the aberration component measured at the measurement start position at this time is (X0, Y0) and the aberration component measured at the diagonal position is (X1, Y1), the measurement error component (Xerror, Yerror) is ,
Xerror = (X0 + X1) / 2
Yerror = (Y0 + Y1) / 2
The aberration amount Abe excluding the error is: Abe = √ {(X0−Xerror) 2 + (Y0−Yerror) 2 }
It becomes.

以上説明のように、本発明の実施形態によれば、光ピックアップの光学特性である収差を測定する場合は、光ピックアップの収差測定と回転方向移動の行ったときの収差値が描く円の回転半径を求めることにより誤差を取り除いた高精度な測定することができる。また、光ピックアップのレンズなどの位置調整を行う場合には収差値が描く円の回転中心へ調整することにより高精度な調整を行うことが可能となる。   As described above, according to the embodiment of the present invention, when measuring the aberration which is the optical characteristic of the optical pickup, the rotation of the circle drawn by the aberration value when the optical pickup aberration measurement and the rotation direction shift are performed. By obtaining the radius, high-accuracy measurement can be performed without errors. Further, when adjusting the position of the lens of the optical pickup or the like, it is possible to adjust with high accuracy by adjusting to the rotation center of the circle drawn by the aberration value.

なお、本実施形態では、特に被検出物を光ピックアップとして説明したが、レンズ単体でもよいことは言うまでもない。また、本実施の形態において、収差を測定した際に誤差が発生する干渉計を回折干渉計測器としたが、他の干渉計測器例えばマッハツェンダ−干渉計やフィゾー干渉計などでも好適な結果が得られる。   In the present embodiment, the object to be detected is described as an optical pickup. However, it goes without saying that a single lens may be used. In this embodiment, an interferometer that generates an error when measuring aberration is a diffraction interferometer. However, other interferometers such as a Mach-Zehnder interferometer and a Fizeau interferometer can also provide suitable results. It is done.

本発明の光ピックアップの測定方法と装置およびその調整装置は、レンズなどを回転方向移動の行ったときの収差値の描く円の回転半径を求めることにより、誤差を取り除いた高精度な測定することができる機能を有し、DVDなどに搭載される光ピックアップやレンズなどの光学特性検査や位置調整の用途にも適用できる。   The optical pickup measuring method and apparatus of the present invention and the adjusting device thereof are capable of high-accuracy measurement without errors by obtaining the rotational radius of a circle drawn by an aberration value when a lens or the like is moved in the rotational direction. It can be applied to optical characteristic inspection and position adjustment applications such as optical pickups and lenses mounted on DVDs.

本発明の実施の形態の装置構成図Device configuration diagram of an embodiment of the present invention 本発明の実施形態に係るレンズの回転に対する収差の変化を示す図The figure which shows the change of the aberration with respect to rotation of the lens which concerns on embodiment of this invention. 本発明の実施形態に係るレンズと収差の座標系の関係を示す図The figure which shows the relationship between the lens which concerns on embodiment of this invention, and the coordinate system of an aberration 本発明の実施形態に係る誤差と回転中心および収差値の関係を示す図The figure which shows the relationship between the error which concerns on embodiment of this invention, a rotation center, and an aberration value 本発明の実施形態に係る2点の測定点から誤差量を算出を示す図The figure which shows calculation of an error amount from the two measurement points which concern on embodiment of this invention 従来の回折干渉方式の概略図Schematic diagram of conventional diffraction interference method 干渉パターンを示す図Diagram showing interference pattern 各収差により生じる干渉縞を示す図Diagram showing interference fringes caused by each aberration

符号の説明Explanation of symbols

1 ミラー
2 θZステージ
3 θXステージ
4 θYステージ
5 光源
6 ハーフミラー
7 レンズ
8 撮像素子
9 モニター
101 光ピックアップ
102 対物レンズ
103 回折格子
104 検出レンズ
105 結像レンズ
106 CCD
107 表示装置
108 移動機構
1 mirror 2 θZ stage 3 θX stage 4 θY stage 5 light source 6 half mirror 7 lens 8 image sensor 9 monitor 101 optical pickup 102 objective lens 103 diffraction grating 104 detection lens 105 imaging lens 106 CCD
107 display device 108 moving mechanism

Claims (3)

(a)光源から出射された光から光ピックアップの傾き量を検出しその傾きを補正する工程と、
(b)レンズから出射された光を回折し異なる次数の2つの回折光を干渉させてシェアリング干渉像を得る工程と、
(c)前記回折光の位相を変化させる工程と、
(d)前記シェアリング干渉像において特定線分上の複数の測点で光強度変化の位相を求める工程と、
(e)前記測点位置をXとし上記位相をφとしたとき、上記位相のφを測定位置Xの関数で近似し、該関数の係数値で上記レンズの収差を評価する工程と、
(f)前記レンズからの出射光の光軸周りに光ピックアップを回転させる工程と、
(g)回転させた位置で前記干渉法により再度レンズの収差を検出することにより、干渉測定の測定誤差量とレンズが持つ収差量を検出する工程と
を有することを特徴とする光ピックアップ測定方法。
(A) detecting a tilt amount of the optical pickup from the light emitted from the light source and correcting the tilt;
(B) diffracting the light emitted from the lens and interfering two diffracted lights of different orders to obtain a shearing interference image;
(C) changing the phase of the diffracted light;
(D) obtaining a phase of a light intensity change at a plurality of measurement points on a specific line segment in the sharing interference image;
(E) a step of approximating φ of the phase with a function of the measurement position X when the measurement point position is X and the phase is φ, and evaluating the aberration of the lens with a coefficient value of the function;
(F) rotating the optical pickup around the optical axis of the light emitted from the lens;
(G) An optical pickup measuring method comprising: detecting a lens measurement error amount and a lens aberration amount by detecting the lens aberration again by the interference method at the rotated position. .
(a)光源から出射された光から光ピックアップの傾き量を検出しその傾きを補正する手段と、
(b)レンズから出射された光を回折し異なる次数の2つの回折光を干渉させてシェアリング干渉像を得る手段と、
(c)前記回折光の位相を変化させる手段と、
(d)前記シェアリング干渉像において特定線分上の複数の測点で光強度変化の位相を求める手段と、
(e)前記測点位置をXとし上記位相をφとしたとき、上記位相のφを測定位置Xの関数で近似し、該関数の係数値で上記レンズの収差を評価する手段と、
(f)前記レンズからの出射光の光軸周りに光ピックアップを回転させる手段と、
(g)回転させた位置で前記干渉法により再度レンズの収差を検出することにより、干渉測定の測定誤差量とレンズが持つ収差量を検出する手段と
を有することを特徴とする光ピックアップ測定装置。
(A) means for detecting the amount of inclination of the optical pickup from the light emitted from the light source and correcting the inclination;
(B) means for diffracting the light emitted from the lens and interfering two diffracted lights of different orders to obtain a sharing interference image;
(C) means for changing the phase of the diffracted light;
(D) means for obtaining a phase of a light intensity change at a plurality of measuring points on a specific line segment in the sharing interference image;
(E) When the measurement point position is X and the phase is φ, the phase φ is approximated by a function of the measurement position X, and the lens aberration is evaluated by a coefficient value of the function;
(F) means for rotating the optical pickup around the optical axis of the light emitted from the lens;
(G) An optical pickup measuring apparatus comprising: a measurement error amount of interference measurement and a means for detecting the aberration amount of the lens by detecting the aberration of the lens again by the interference method at the rotated position. .
(a)光源から出射された光により光ピックアップの傾き量を検出しその傾きを補正する手段と 、
(b)レンズから出射された複数の光を回折し、異なる次数の2つの回折光を干渉させてシェアリング干渉像を得る手段と、
(c)前記回折光の位相を変化させる手段と、
(d)前記シェアリング干渉像において、特定線分上の複数の測点で光強度変化の位相を求める手段と、
(e)前記測点位置をXとし上記位相をφとしたとき、上記位相のφを測定位置Xの関数で近似し、該関数の係数値で上記レンズの収差を評価する手段と、
(f)前記レンズからの出射光の光軸周りに光ピックアップを回転させる工程と、
(g)回転させた位置で前記干渉法により再度レンズの収差を検出することにより、干渉測定の測定誤差量とレンズが持つ収差量を検出する手段と
を有することを特徴とする光ピックアップ調整装置。
(A) means for detecting the amount of inclination of the optical pickup by the light emitted from the light source and correcting the inclination;
(B) means for diffracting a plurality of lights emitted from the lens and interfering two diffracted lights of different orders to obtain a sharing interference image;
(C) means for changing the phase of the diffracted light;
(D) means for obtaining the phase of the light intensity change at a plurality of measurement points on the specific line segment in the sharing interference image;
(E) When the measurement point position is X and the phase is φ, the phase φ is approximated by a function of the measurement position X, and the lens aberration is evaluated by a coefficient value of the function;
(F) rotating the optical pickup around the optical axis of the light emitted from the lens;
(G) An optical pickup adjusting apparatus comprising: a means for detecting a measurement error amount of interference measurement and an aberration amount of the lens by detecting the aberration of the lens again by the interference method at the rotated position. .
JP2003315413A 2003-09-08 2003-09-08 High NA lens measurement method Expired - Lifetime JP4396193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003315413A JP4396193B2 (en) 2003-09-08 2003-09-08 High NA lens measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003315413A JP4396193B2 (en) 2003-09-08 2003-09-08 High NA lens measurement method

Publications (2)

Publication Number Publication Date
JP2005083861A true JP2005083861A (en) 2005-03-31
JP4396193B2 JP4396193B2 (en) 2010-01-13

Family

ID=34415694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003315413A Expired - Lifetime JP4396193B2 (en) 2003-09-08 2003-09-08 High NA lens measurement method

Country Status (1)

Country Link
JP (1) JP4396193B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505081A (en) * 2005-08-17 2009-02-05 ローデンストック.ゲゼルシャフト.ミット.ベシュレンクテル.ハフツング Tool for calculating the performance of progressive addition lenses
CN103674493A (en) * 2013-12-04 2014-03-26 中国科学院上海光学精密机械研究所 Eliminating method of system errors in raster shearing interferometer wave aberration detecting
CN104819781A (en) * 2015-04-21 2015-08-05 中国科学院上海光学精密机械研究所 Improvement and reconstruction method for reconstructing blocking wavefront with area method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505081A (en) * 2005-08-17 2009-02-05 ローデンストック.ゲゼルシャフト.ミット.ベシュレンクテル.ハフツング Tool for calculating the performance of progressive addition lenses
US8494809B2 (en) 2005-08-17 2013-07-23 Rodenstock Gmbh Tool for calculating the performance of progressive lenses
CN103674493A (en) * 2013-12-04 2014-03-26 中国科学院上海光学精密机械研究所 Eliminating method of system errors in raster shearing interferometer wave aberration detecting
CN103674493B (en) * 2013-12-04 2016-02-10 中国科学院上海光学精密机械研究所 The removing method of the systematic error that grating shearing interferometer wave aberration detects
CN104819781A (en) * 2015-04-21 2015-08-05 中国科学院上海光学精密机械研究所 Improvement and reconstruction method for reconstructing blocking wavefront with area method

Also Published As

Publication number Publication date
JP4396193B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
JP5492796B2 (en) Optical device
JP3918006B2 (en) Holographic ROM player with servo function
JP4396193B2 (en) High NA lens measurement method
JP3667149B2 (en) Lens evaluation method, lens evaluation device, and lens adjustment device
JP2008191105A (en) Instrument for measuring surface shape
JP2005135539A (en) Optical head and optical information recording and reproducing device using the same
JP4127952B2 (en) Aberration measurement method and aberration evaluation apparatus
JP5257166B2 (en) Optical component measuring method and apparatus
JP4167778B2 (en) Method for evaluating aberration of optical element
JP2007033098A (en) Lens measuring method and lens measuring instrument
JP2011185621A (en) Wave front evaluation method and program for wave front evaluation
JP3574765B2 (en) Lens evaluation method and lens evaluation device
JP2005345363A (en) Measuring device of optical equipment and its measuring method
JP2002323406A (en) Evaluation method and device of lens system and production method for optical unit
JP2000214048A (en) Lens aberration measuring instrument and lens tilt adjusting device using same
JP2009110639A (en) Wavefront aberration inspection apparatus, optical pickup assembly adjustment device, lens evaluation device, lens assembly device, objective lens actuator assembly adjustment device, optical pickup, optical disk drive, and optical information recording and reproducing device
JP2753545B2 (en) Shape measurement system
JP2006133058A (en) Point diffraction interference measuring device
JP2005315683A (en) Shearing interferometer and interference measuring device
JP2001116655A (en) Method for evaluating lens and lens evaluating device
WO2005024488A1 (en) Adjustment of optical components in optical devices
TW200403649A (en) Optical head and optical disk drive
JP2000097669A (en) Light-wave interferometer device and its data processing method
JP2002329338A (en) Method and device for adjusting optical head
JP2010218668A (en) Apparatus for inspecting optical pickup, and apparatus for assembling and adjusting optical pickup

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4396193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

EXPY Cancellation because of completion of term