JP2005083399A - Shock absorbing member - Google Patents

Shock absorbing member Download PDF

Info

Publication number
JP2005083399A
JP2005083399A JP2003312637A JP2003312637A JP2005083399A JP 2005083399 A JP2005083399 A JP 2005083399A JP 2003312637 A JP2003312637 A JP 2003312637A JP 2003312637 A JP2003312637 A JP 2003312637A JP 2005083399 A JP2005083399 A JP 2005083399A
Authority
JP
Japan
Prior art keywords
absorbing member
rib
impact
height
impact absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003312637A
Other languages
Japanese (ja)
Inventor
Hideaki Tokita
英明 時田
Tetsuya Kato
哲也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2003312637A priority Critical patent/JP2005083399A/en
Publication of JP2005083399A publication Critical patent/JP2005083399A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Vibration Dampers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shock absorbing member having excellent shock absorbing performance. <P>SOLUTION: This shock absorbing member 1 made of foaming thermoplastic resin is provided with a basic part 2 like a flat plate and a slit-like rib structure 3 protruding on at least one face 22 of the basic part 2. The slit-like rib structure 2 is composed of combination of a plurality of ribs 32, 34 having different height of two steps or more. When height h1 of the first rib 32 is 100, height h2 of the second rib 34 is 40 or more and less than 80. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、衝撃荷重が作用したときに、そのエネルギの一部を吸収して、衝撃を緩和する衝撃吸収部材に関し、特に自動車のバンパやドアなどの用途に適した発泡熱可塑性樹脂製の衝撃吸収部材に関する。   TECHNICAL FIELD The present invention relates to an impact absorbing member that absorbs a part of energy when an impact load is applied to mitigate the impact, and more particularly, an impact made of foamed thermoplastic resin suitable for applications such as automobile bumpers and doors. The present invention relates to an absorbent member.

例えば、自動車においては、万一の衝撃時に、その衝撃から乗員を保護するため、客室への衝撃ダメージを最小限に抑えることを目的として、車体を構造的に変形しやすくしたり、バンパや天井、ドアの内部に衝撃吸収部材を設け、この衝撃吸収部材に衝突時の衝撃をできるだけ吸収させることが一般に行われている。   For example, in the case of an automobile, in order to protect the occupant from the impact in the event of an impact, the body can be easily deformed structurally, with bumpers and ceilings to minimize the impact damage to the cabin. In general, an impact absorbing member is provided inside the door, and the impact absorbing member absorbs as much impact as possible at the time of collision.

従来、前記した衝撃吸収部材としては、熱硬化性の発泡ウレタンが多く用いられていた。しかし、熱硬化性の発泡ウレタンは、リサイクルが困難である上、コスト的にも割高であるばかりでなく、耐水性、耐熱性の経時安定性に課題があり、初期衝撃吸収性能の維持が困難であった。   Conventionally, as the above-described impact absorbing member, thermosetting urethane foam has been often used. However, thermosetting urethane foam is difficult to recycle and is not only expensive, but also has problems with stability over time of water resistance and heat resistance, and it is difficult to maintain the initial impact absorption performance. Met.

そこで、近年、リサイクルが容易で、包装用の緩衝材として広く用いられている発泡ポリスチレンや発泡ポリプロピレンなどの発泡熱可塑性樹脂が、上記のような目的の衝撃吸収部材として多く使用されるに至っている。   Therefore, in recent years, foamed thermoplastic resins such as foamed polystyrene and foamed polypropylene, which are easy to recycle and are widely used as cushioning materials for packaging, are often used as impact absorbing members for the above purposes. .

しかしながら、このような発泡熱可塑性樹脂も、衝撃吸収の性能面で以下のような問題がある。すなわち、発泡ポリスチレンや発泡ポリプロピレンなどの発泡熱可塑性樹脂で形成された衝撃吸収部材においては、一度受けた衝撃荷重によって、圧縮ひずみ(衝撃吸収材の元の厚みに対する圧縮変形の割合を意味し、以下の説明ではひずみ量(%)で表す)が50%を超えると、内部に発生する応力(圧縮応力)が急激に上昇し、以後、衝撃吸収部材としての性能が著しく低下する。   However, such foamed thermoplastic resins also have the following problems in terms of impact absorption performance. That is, in an impact absorbing member formed of a foamed thermoplastic resin such as expanded polystyrene or expanded polypropylene, the impact load once received means a compressive strain (the ratio of compressive deformation to the original thickness of the impact absorbing material, When the amount of strain (%) in this explanation is greater than 50%, the stress (compressive stress) generated inside increases rapidly, and thereafter the performance as an impact absorbing member is significantly reduced.

したがって、発泡熱可塑性樹脂製の衝撃吸収部材を自動車バンパーなどの用途に用いる場合は、圧縮ひずみ(ひずみ量)が許容される応力の範囲内で設計されなければならないため、最大許容応力に至るエネルギ量が十分でなくなるという問題がある。   Therefore, when an impact absorbing member made of foamed thermoplastic resin is used for an application such as an automobile bumper, it must be designed within the allowable stress range for compressive strain (amount of strain). There is a problem that the amount is not enough.

また、多様な衝撃荷重に対応し、要求される応力の範囲内で要求される衝撃吸収性能を発現するためには、衝撃吸収部材の肉厚を大きくする必要があり、バンパや天井、ドアなどの各部の寸法を大きくせざるを得ないといった問題がある。   In addition, it is necessary to increase the thickness of the shock absorbing member in order to respond to various impact loads and develop the required shock absorbing performance within the required stress range, such as bumpers, ceilings, doors, etc. There is a problem that the size of each part of the substrate must be increased.

一般に、自動車に用いられる衝撃吸収部材は設置スペースの関係から、衝撃吸収部材の潰れ代は限られており、およそ30〜100mm程度である。他方、衝撃吸収部材は衝突時の乗員保護を目的とすることから、人に加わる応力を、数10N/cm以内に抑えなければならない。 Generally, an impact absorbing member used in an automobile has a limited amount of crushing of the impact absorbing member due to the installation space, and is about 30 to 100 mm. On the other hand, since the impact absorbing member is intended to protect the occupant at the time of collision, the stress applied to the person must be kept within several tens N / cm 2 .

衝撃吸収部材の働き(すなわち、衝撃吸収エネルギ)は、衝突による衝撃吸収部材の潰れ代と、そのときの応力値の積分値で表されることから、許容できる応力値の範囲内で、より大きい潰れ代を確保することが必要とされる。   The work of the shock absorbing member (that is, the shock absorbing energy) is expressed by the integrated value of the crushing amount of the shock absorbing member due to the collision and the stress value at that time, so it is larger within the allowable stress value range. It is necessary to secure a crushing allowance.

本発明者らは、先に、発泡樹脂からなり、特定のリブ構造を有する発泡成形品が高い衝撃吸収性能を示すことを見出した(特許文献1)。この発泡成型品は比較的短い潰れ代で設計される衝撃吸収材としては有効であるが、より大きい衝撃エネルギを吸収するために、より大きな潰れ代を確保しなければならない衝撃吸収部材には不向きな構造であった。   The present inventors have previously found that a foam molded article made of a foamed resin and having a specific rib structure exhibits high impact absorption performance (Patent Document 1). This foam molded product is effective as a shock absorber designed with a relatively short crushing allowance, but is not suitable for a shock absorbing member that must secure a larger crushing allowance to absorb a larger impact energy. It was a simple structure.

さらに、本発明者らは、発泡樹脂からなり、基部の一方面上に形成される主リブと、この主リブと交わって、基部の同一面上に形成される、主リブと厚さ(基部面からの高さ)の異なる副リブとを組み合わせた構造が、衝撃吸収性能に優れていることを見出した(特許文献2)。
しかしながら、衝撃吸収性能に優れた衝撃吸収材がさらに求められている。
Further, the inventors of the present invention are made of a foamed resin, and a main rib formed on one surface of the base, and the main rib and the thickness (base) formed on the same surface of the base crossing the main rib. It has been found that a structure combining sub-ribs having different heights from the surface is excellent in impact absorption performance (Patent Document 2).
However, there is a further demand for an impact absorbing material having excellent impact absorbing performance.

特願2002−157782号明細書Japanese Patent Application No. 2002-157782 特願2002−261084号明細書Japanese Patent Application No. 2002-261084

本発明は上記の問題点に鑑みてなされたもので、衝撃荷重が作用したときの応力が予め定められた値以下で、予め定められた動的圧縮ひずみの間を推移することで、より高い衝撃吸収エネルギが確保できる衝撃吸収部材であって、特に自動車用の用途に適した衝撃吸収部材を提供することを目的とする。   The present invention has been made in view of the above problems, and the stress when an impact load is applied is not more than a predetermined value and is higher by changing between predetermined dynamic compressive strains. An object of the present invention is to provide a shock absorbing member that can secure shock absorbing energy, and is particularly suitable for use in automobiles.

上記目的を達成するため、本発明者らは鋭意研究を行い、発泡熱可塑性樹脂からなる、基部とこの基部の少なくとも一面側に形成された、衝撃荷重が作用する方向に突出する、高さ(基部面からの距離)の異なる複数のリブ(隔壁)を備えるスリット状リブ構造を有する衝撃吸収部材によれば、スリットを形成している隔壁の高さが一様ではなく、異なっていることにより、衝撃が加わった際、高いリブが横折れしても、高さの低いリブが応力を維持する働きがあることを見出した。これにより、高さの一様なリブからなる単純なスリット状リブ構造で起こり得る、リブ折れによる応力値の低下現象を防ぐことができ、一定の応力値を示すものとすることができることを見出し、本発明を完成させた。   In order to achieve the above object, the present inventors have intensively studied, and formed of a foamed thermoplastic resin, formed on at least one surface side of the base, and projecting in a direction in which an impact load acts, a height ( According to the shock absorbing member having a slit-like rib structure having a plurality of ribs (partitions) having different distances from the base surface), the heights of the partition walls forming the slits are not uniform and are different. When an impact is applied, the present inventors have found that even when a high rib is folded laterally, the low rib has a function of maintaining stress. As a result, it has been found that the stress value lowering phenomenon due to rib breakage, which can occur in a simple slit-like rib structure composed of ribs of uniform height, can be prevented, and a constant stress value can be exhibited. The present invention has been completed.

本発明の第1の態様は、発泡熱可塑性樹脂からなる衝撃吸収部材であって、平板状の基部と、基部の少なくとも1つの面上に突出するスリット状リブ構造とを具備し、スリット状リブ構造が、2段階以上の異なる高さを有する複数のリブの組み合わせからなる衝撃吸収部材を提供する。   A first aspect of the present invention is an impact absorbing member made of a foamed thermoplastic resin, comprising a flat plate-like base portion and a slit-like rib structure protruding on at least one surface of the base portion. Provided is an impact absorbing member whose structure is a combination of a plurality of ribs having two or more different heights.

本発明の第2の態様は、上記の衝撃吸収部材の組合せからなる複合衝撃吸収部材を提供する。   A second aspect of the present invention provides a composite shock absorbing member comprising a combination of the above shock absorbing members.

本発明によれば、衝撃吸収性能に優れた衝撃吸収部材を得ることができる。   According to the present invention, it is possible to obtain an impact absorbing member that is excellent in impact absorbing performance.

以下、本発明の衝撃吸収部材について、図面を参照しながら詳細に説明する。
図1は、本発明の一実施形態である衝撃吸収部材の部分断面図である。
衝撃吸収部材1は、基部2と、スリット状リブ構造3からなる。
基部2は、平板状であり、対向する第1の面22と第2の面24を有する。
スリット状リブ構造3は、基部2の第1の面22上にほぼ垂直に突出し、第1の高さh1を有する第1のリブ32と、第2の高さh2を有する第2のリブ34からなる。
矢印は、衝撃荷重の作用方向を示す。
Hereinafter, the impact absorbing member of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a partial cross-sectional view of an impact absorbing member according to an embodiment of the present invention.
The shock absorbing member 1 includes a base 2 and a slit-like rib structure 3.
The base 2 has a flat plate shape and has a first surface 22 and a second surface 24 that face each other.
The slit-like rib structure 3 protrudes substantially perpendicularly on the first surface 22 of the base 2 and has a first rib 32 having a first height h1 and a second rib 34 having a second height h2. Consists of.
The arrow indicates the direction of action of the impact load.

第1のリブ32は、基部2の第1の面22上にぼぼ等間隔に形成され、さらに、第2のリブ34は、第1のリブ32の間に一定間隔で形成されている。この実施形態では、第1のリブ32の間に図に示されるように形成されていて(図3参照)、第1のリブ32間の間隔w1は、第1のリブ32と第2のリブ34の間隔w2の約2倍である。
第1のリブの高さh1は、スリット状リブ構造3の最大許容高さ以下であり、好ましくは最大許容高さである。第1のリブの高さh1を100としたとき、第2のリブh2の高さは40〜80であることが好ましく、60〜80であることがより好ましい。
ここで、「最大許容高さ」とは、設置スペースの関係から決定される、衝撃吸収材の全厚に対して、スリット状リブ構造を形成できる最大のリブ高さである。自動車等に用いられる場合、通常は30〜100mm程度である。
The first ribs 32 are formed at equal intervals on the first surface 22 of the base 2, and the second ribs 34 are formed at regular intervals between the first ribs 32. In this embodiment, it is formed between the first ribs 32 as shown in the figure (see FIG. 3), and the interval w1 between the first ribs 32 is the first rib 32 and the second rib. It is approximately twice the interval w2 of 34.
The height h1 of the first rib is not more than the maximum allowable height of the slit-like rib structure 3, and is preferably the maximum allowable height. When the height h1 of the first rib is 100, the height of the second rib h2 is preferably 40-80, and more preferably 60-80.
Here, the “maximum allowable height” is the maximum rib height at which the slit-like rib structure can be formed with respect to the total thickness of the shock absorber, which is determined from the relationship of the installation space. When used for an automobile or the like, it is usually about 30 to 100 mm.

高さh1と高さh2の差が小さすぎると、応力が高くなってしまい、逆に差が大きすぎると、リブ折れによる応力の低下を防ぐことができない恐れがある。   If the difference between the height h1 and the height h2 is too small, the stress becomes high. On the other hand, if the difference is too large, it may not be possible to prevent a decrease in stress due to rib breakage.

また、衝撃吸収部材1の総肉厚t3を100としたとき、第1のリブの高さh1は50〜90であることが好ましく、70〜90であることがより好ましい。同様に、基部2の肉厚t4は10〜90であることが好ましく、10〜30であることがより好ましい。第1のリブの高さh1が、衝撃吸収部材1の総肉厚t3に対し、小さすぎると十分な吸収エネルギを得ることができない恐れがある。   When the total thickness t3 of the shock absorbing member 1 is 100, the height h1 of the first rib is preferably 50 to 90, more preferably 70 to 90. Similarly, the thickness t4 of the base 2 is preferably 10 to 90, and more preferably 10 to 30. If the height h1 of the first rib is too small with respect to the total thickness t3 of the shock absorbing member 1, sufficient absorbed energy may not be obtained.

第1及び第2のリブ32,34の幅は、下底部(基部側)の幅t1から上底部(先端側)の幅t2まで、リブの高さに関わらず同一である。   The widths of the first and second ribs 32 and 34 are the same regardless of the height of the ribs, from the width t1 of the lower bottom (base side) to the width t2 of the upper bottom (tip side).

この衝撃吸収部材1は、衝撃が作用する矢印方法に、スリット状リブ構造3が対向するように配置して使用する。衝撃荷重が矢印方法からかかり、たとえ第1のリブ32が横折れしても、第2のリブ34が応力を維持できる。そのため、衝撃吸収部材1は一定の応力値を示して衝撃を吸収できる。   This shock absorbing member 1 is used by being arranged so that the slit-like rib structure 3 faces the arrow method in which an impact acts. Even if the impact load is applied from the arrow method and the first rib 32 is folded sideways, the second rib 34 can maintain the stress. Therefore, the shock absorbing member 1 can absorb a shock with a constant stress value.

尚、上記の実施形態において、衝撃吸収部材1全体の形状、また、基部2とリブ32,24の形状及び/又は数は、使用目的により適宜決定することができる。本発明の効果を損なわない範囲で、以下の変形例が可能である。
(1)上記の実施形態では、第1及び第2のリブ32,24の幅は、高さに沿って同じであるが、図2に示すように、第1及び第2のリブ32,24の幅t1,t2が、基部側から先端側に向かってテーパ状に減少してもよい(すなわち、t1>t2)。このとき、基部2に対する垂線からリブ32,34までの傾斜角度αは、好ましくは、0°<α≦7°である。傾斜角度αが7°より大きいと、圧縮ひずみに対する応力上昇が漸増するものとなるため好ましくない。
このように、テーパ状にすることにより、リブの横折れを防止することができる。
この場合、一部のリブだけがテーパ状でもよい。
In the above embodiment, the overall shape of the shock absorbing member 1 and the shape and / or number of the base 2 and the ribs 32 and 24 can be appropriately determined according to the purpose of use. The following modifications are possible without departing from the effects of the present invention.
(1) In the above embodiment, the widths of the first and second ribs 32, 24 are the same along the height, but as shown in FIG. The widths t1 and t2 may be tapered from the base side toward the tip side (ie, t1> t2). At this time, the inclination angle α from the perpendicular to the base 2 to the ribs 32 and 34 is preferably 0 ° <α ≦ 7 °. When the inclination angle α is larger than 7 °, the stress increase with respect to the compressive strain gradually increases, which is not preferable.
In this manner, the ribs can be prevented from being folded laterally by being tapered.
In this case, only some of the ribs may be tapered.

(2)上記の実施形態では、第2のリブ34が、第1のリブ32の間に1つおきに存在するが、第2のリブ34を、より多くの間隔をあけて存在させてもよいし、全ての第1のリブ32の間に存在させてもよい。好ましくは、第2のリブ34の数は、第1のリブ32の数の2〜8程度である。
また、上記の実施形態では、w1とw2は異なっているが、同じでもよい。即ち、第1及び第2のリブ32,34を等間隔に配置してもよい。
(2) In the above embodiment, every other second rib 34 is present between the first ribs 32. However, even if the second ribs 34 are present at a larger interval. Alternatively, it may be present between all the first ribs 32. Preferably, the number of second ribs 34 is about 2 to 8 of the number of first ribs 32.
Moreover, in said embodiment, although w1 and w2 differ, they may be the same. That is, you may arrange | position the 1st and 2nd ribs 32 and 34 at equal intervals.

(3)上記の実施形態では、リブ32,34は2つの異なる高さh1,h2を有していたが、3段階以上の異なる高さを有してもよい。その場合は、同様に2番目(次位)に高いリブの高さを100としたとき、次(次次位)に高いリブの高さは、40〜80であることが好ましく、60〜80であることがより好ましい。このように、ある高さのリブとその次に高いリブとの高さが、順次、上記割合となることが好ましい。
また、3段階以上の異なる高さを有するリブの配置は、上記の実施形態における第2のリブ34に置き換えてよい。3段階以上の異なる高さを有するリブの幅も同じでもテーパ状でもよい。
(3) In the above embodiment, the ribs 32 and 34 have two different heights h1 and h2. However, the ribs 32 and 34 may have three or more different heights. In that case, similarly, when the height of the second (secondary) highest rib is 100, the height of the second (secondary) higher rib is preferably 40 to 80, and 60 to 80 It is more preferable that Thus, it is preferable that the height of the rib having a certain height and the next highest rib sequentially reach the above ratio.
Further, the arrangement of the ribs having different heights of three or more stages may be replaced with the second rib 34 in the above-described embodiment. The widths of the ribs having three or more different heights may be the same or tapered.

(4)上記の実施形態では、基部2は平面状であるが、湾曲していてもよい。また、凹凸があってもよい。
(5)上記の実施形態では、スリット状リブ構造3は、基部2の第1の面22だけに形成されているが、第2の面24にも形成してもよい。
(6)上記の実施形態では、リブ32,34の先端は、平らであるが、半円状、三角状でもよい。
各リブ32,24の幅は同じであるが、異なってもよい。リブ32,24の間隔w1,w2は各リブ間で同じであるが、異なってもよい。各リブ32,24は基部2上で同じ長さで延在してもよいし、異なる長さで延在してもよい。また、各リブ32,24は途中で切り欠き部を有していてもよい。
(4) In the above embodiment, the base 2 is planar, but may be curved. There may also be unevenness.
(5) In the above embodiment, the slit-like rib structure 3 is formed only on the first surface 22 of the base 2, but may be formed on the second surface 24.
(6) In the above embodiment, the tips of the ribs 32 and 34 are flat, but they may be semicircular or triangular.
The widths of the ribs 32 and 24 are the same, but may be different. The intervals w1 and w2 between the ribs 32 and 24 are the same between the ribs, but may be different. Each rib 32, 24 may extend with the same length on the base 2 or may extend with a different length. Moreover, each rib 32 and 24 may have a notch partway.

さらに、上記の衝撃吸収部材1を2個以上組み合わせて複合衝撃吸収部材として使用することができる。例えば、二つの衝撃吸収部材1を、衝撃荷重の作用方向と同方向に、基部2の第2の面24同士を合わせて使用できる。また、並べてもよい。このように本発明の衝撃吸収部材1を複数重ね合わせることによって、より大きな衝撃荷重に対して、単独の衝撃吸収部材に比べて、より大きな衝撃吸収性能を発揮することができる。   Further, two or more of the shock absorbing members 1 described above can be combined and used as a composite shock absorbing member. For example, the two impact absorbing members 1 can be used by aligning the second surfaces 24 of the base portion 2 in the same direction as the direction of the impact load. Moreover, you may arrange. In this way, by superposing a plurality of the impact absorbing members 1 of the present invention, it is possible to exert a greater impact absorbing performance with respect to a larger impact load as compared with a single impact absorbing member.

次に、本発明の衝撃吸収部材の構成材料について説明する。
本発明の衝撃吸収部材は、発泡性熱可塑性樹脂粒子を一次発泡させて得られた発泡熱可塑性樹脂粒子を金型に充填し、スチーム等の加熱媒体で加熱することにより得られる発泡樹脂成形品である。
Next, the constituent material of the impact absorbing member of the present invention will be described.
The impact absorbing member of the present invention is a foamed resin molded article obtained by filling foamed thermoplastic resin particles obtained by primary foaming of foamable thermoplastic resin particles into a mold and heating with a heating medium such as steam. It is.

本発明の衝撃吸収部材の素材である発泡熱可塑性樹脂は、発泡性を有する熱可塑性樹脂粒子を一次発泡させて発泡熱可塑性樹脂粒子とし、これを所望の形状を有する金型に充填して加熱することによって得られる。発泡熱可塑性樹脂としては、発泡性を有し、かつ、熱可塑性を有するものであれば特に限定されない。具体的には、例えば、ポリスチレンやスチレンとアクリロニトリル、メタクリロニトリル、α−メチルスチレン、無水マレイン酸、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系単量体、アクリル酸、アクリル酸エステル等のアクリル酸系単量体、メタクリル酸、メタクリル酸エステル等のメタクリル酸系単量体を共重合させたスチレン系共重合体、メタクリル酸系単量体の単独重合体、メタクリル酸系単量体及びアクリル酸系単量体の2種類以上の組合せによる共重合体、ポリエチレン、ポリプロピレン等のオレフィン系樹脂などが挙げられる。   The foamed thermoplastic resin, which is the material of the impact absorbing member of the present invention, is obtained by first foaming thermoplastic resin particles having foamability into foamed thermoplastic resin particles, filling the mold with a desired shape, and heating. It is obtained by doing. The foamed thermoplastic resin is not particularly limited as long as it has foamability and thermoplasticity. Specifically, for example, maleimide monomers such as polystyrene, styrene and acrylonitrile, methacrylonitrile, α-methylstyrene, maleic anhydride, phenylmaleimide, cyclohexylmaleimide, and acrylic acids such as acrylic acid and acrylate esters. Monomers, styrene copolymers copolymerized with methacrylic monomers such as methacrylic acid and methacrylic acid esters, homopolymers of methacrylic monomers, methacrylic monomers and acrylic acids Examples thereof include copolymers by a combination of two or more monomers, and olefin resins such as polyethylene and polypropylene.

上記発泡熱可塑性樹脂のうち、製造コスト、リサイクル性、発泡成形性等の点から、スチレン系共重合体が好ましく、そのうち、耐熱性、耐油性に優れるアクリロニトリル・スチレン共重合体が特に好適である。なお、発泡性アクリロニトリル・スチレン共重合体の樹脂の市販品として、日立化成工業(株)製の『HIBEADS GR』(商品名)を好適に用いることができる。もちろん、上記物性を備えるものであって、例えば、自動車用の衝撃吸収部材として用いることができるものであれば、他の樹脂を用いてもよい。発泡スチレン系重合体で製造された本発明の衝撃吸収部材は、自動車のバンパや天井、ドアに好適に使用できる。   Of the above-mentioned foamed thermoplastic resins, styrene copolymers are preferable from the viewpoint of production cost, recyclability, foam moldability, etc. Among them, acrylonitrile / styrene copolymers having excellent heat resistance and oil resistance are particularly preferable. . In addition, “HIBEADS GR” (trade name) manufactured by Hitachi Chemical Co., Ltd. can be suitably used as a commercially available resin of foamable acrylonitrile / styrene copolymer. Of course, other resins may be used as long as they have the above-described physical properties and can be used as, for example, an impact absorbing member for automobiles. The impact absorbing member of the present invention produced from a foamed styrenic polymer can be suitably used for automobile bumpers, ceilings, and doors.

上記発泡性熱可塑性樹脂粒子を一次発泡(予備発泡ともいう)させるには、発泡性スチレン系樹脂などの製造に一般に用いられている発泡剤を用い、スチームなどの加熱媒体で加熱する。使用しうる発泡剤としては、常温常圧下で気体又は液体であり、かつ上記熱可塑性樹脂を溶解しないような易揮発性有機化合物が挙げられる。このような有機化合物の具体例としては、ブタン、プロパン、ペンタンなどの脂肪族炭化水素、シクロペンタン、シクロヘキサンなどの環式脂肪族炭化水素などが挙げられる。また、発泡の際、必要に応じて熱可塑性樹脂を溶解又は膨潤させることができるエチルベンゼン、トルエン、スチレン、キシレンなどの有機溶剤やエポキシ化大豆油、植物油などを可塑剤として添加することもできる。   In order to perform primary foaming (also referred to as pre-foaming), the foamable thermoplastic resin particles are heated with a heating medium such as steam using a foaming agent generally used in the production of foamable styrene resins and the like. Examples of the foaming agent that can be used include readily volatile organic compounds that are gases or liquids at normal temperature and pressure and do not dissolve the thermoplastic resin. Specific examples of such an organic compound include aliphatic hydrocarbons such as butane, propane, and pentane, and cyclic aliphatic hydrocarbons such as cyclopentane and cyclohexane. Further, when foaming, an organic solvent such as ethylbenzene, toluene, styrene, xylene or the like, which can dissolve or swell the thermoplastic resin, epoxidized soybean oil, vegetable oil or the like can be added as a plasticizer.

一次発泡された発泡熱可塑性樹脂粒子の密度は、樹脂の種類にもよるが、通常、0.033〜0.2g/mL(発泡倍数:5〜30倍)の範囲であることが好ましく、0.05〜0.1g/mL(発泡倍数:10〜20倍)の範囲であることがより好ましい。   The density of the primary foamed thermoplastic resin particles is usually preferably in the range of 0.033 to 0.2 g / mL (foaming factor: 5 to 30 times), although it depends on the type of resin. More preferably, it is in the range of 0.05 to 0.1 g / mL (foaming factor: 10 to 20 times).

本発明の衝撃吸収部材を構成する発泡熱可塑性樹脂は、衝撃荷重が作用したときに、衝撃吸収部材の用途に応じた適度な圧縮応力を生じさせるものでなければならない。この圧縮応力が大き過ぎると、衝撃荷重が作用した際の反発力が大きくなり過ぎて衝撃を十分に吸収することができない。また、小さ過ぎると、衝撃荷重に耐えられず、容易に破壊してしまい、所望の衝撃吸収性能を得ることができない。   The foamed thermoplastic resin constituting the impact absorbing member of the present invention must generate an appropriate compressive stress according to the use of the impact absorbing member when an impact load is applied. If this compressive stress is too large, the repulsive force when the impact load is applied becomes too large to absorb the impact sufficiently. On the other hand, if it is too small, it will not be able to withstand the impact load and will be easily destroyed, making it impossible to obtain the desired impact absorption performance.

例えば、本発明の衝撃吸収部材を、自動車に適用する場合、JIS−Z0235に規定される方法に準じて測定した50%圧縮応力が0.01〜2.5MPaの範囲であることが好ましく、0.05〜2.0MPaの範囲であることがより好ましく、0.1〜1.5MPaの範囲であることがさらに好ましい。50%圧縮応力が0.01MPa未満では、圧縮応力が小さすぎて、十分な衝撃吸収性能を得ることができない。また、2.5MPaよりも大きいと、圧縮応力が大きすぎて、衝撃荷重に対する反発力が大きくなり、衝撃を吸収しにくくなって衝撃吸収性能が低下する不具合があるからである。   For example, when the impact absorbing member of the present invention is applied to an automobile, the 50% compressive stress measured according to the method defined in JIS-Z0235 is preferably in the range of 0.01 to 2.5 MPa. The range is more preferably in the range of 0.05 to 2.0 MPa, and still more preferably in the range of 0.1 to 1.5 MPa. If the 50% compressive stress is less than 0.01 MPa, the compressive stress is too small to obtain sufficient impact absorbing performance. On the other hand, when the pressure is larger than 2.5 MPa, the compressive stress is too large, the repulsive force against the impact load is increased, and it is difficult to absorb the impact and the impact absorption performance is deteriorated.

本発明の衝撃吸収部材を構成する発泡熱可塑性樹脂の密度は、0.03g/mL〜0.2g/mLであることが好ましく、0.05g/mL〜0.1g/mLであることがより好ましい。樹脂の密度が0.033g/mL未満では、要求される応力を達成する物性を得ることが難しく、0.2g/mLを超えると、応力値が高くなるばかりでなく、衝撃吸収部材の重量の低減が困難になる。   The density of the foamed thermoplastic resin constituting the impact absorbing member of the present invention is preferably 0.03 g / mL to 0.2 g / mL, more preferably 0.05 g / mL to 0.1 g / mL. preferable. When the density of the resin is less than 0.033 g / mL, it is difficult to obtain physical properties that achieve the required stress. When the resin density exceeds 0.2 g / mL, not only the stress value increases, but also the weight of the impact absorbing member. Reduction becomes difficult.

本発明の衝撃吸収部材を構成する発泡熱可塑性樹脂のひずみ率が25%のときの静的圧縮応力は、35N/cm〜350N/cmであることが好ましく、
50N/cm〜150N/cmであることがより好ましい。
The static compressive stress when the strain rate of the foamed thermoplastic resin constituting the shock absorbing member of the present invention is 25% is preferably 35 N / cm 2 to 350 N / cm 2 ,
And more preferably 50N / cm 2 ~150N / cm 2 .

静的圧縮応力を上記範囲とするためには、例えば、衝撃吸収剤を構成する発泡熱化塑性樹脂の密度を0.03〜0.2gm/mLとなるように調整する。   In order to make a static compressive stress into the said range, it adjusts so that the density of the foaming thermoplastic resin which comprises an impact absorber may be 0.03-0.2 gm / mL, for example.

本発明の衝撃吸収部材は、上記一次発泡させた発泡熱可塑性樹脂粒子を、所望の形状を有する金型に充填し、スチーム等の加熱媒体で加熱して、所望の形状とした発泡樹脂成形品である。   The impact-absorbing member of the present invention is a foamed resin molded product in which the first foamed foamed thermoplastic resin particles are filled in a mold having a desired shape and heated with a heating medium such as steam. It is.

本発明の衝撃吸収部材は、上記発泡熱可塑性樹脂によって構成され、上記のようなスリット状リブ構造を有することにより、より高い衝撃吸収エネルギが確保でき、特に自動車用の用途、例えば、バンパ、天井、ドア、側突バッドに適している。   The impact absorbing member of the present invention is composed of the above-mentioned foamed thermoplastic resin, and has a slit-like rib structure as described above, so that higher impact absorbing energy can be secured, and particularly for automotive applications such as bumpers and ceilings. Suitable for doors, side bumps.

以下、実施例および比較例により本発明を更に具体的に説明するが、本発明はこれらにより限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited by these.

実施例1
(1)発泡性熱可塑性樹脂粒子の一次発泡
発泡性アクリロニトリル・スチレン共重合樹脂粒子(日立化成工業(株)製:HIBEADS GR)を発泡スチロール用のバッチ式発泡機(日立化成テクノプラント(株)製:HBP−500LW)を用い、嵩密度0.057g/mL(発泡倍数:17.5倍)に一次発泡した後、成形までの18時間、通気性の良いサイロに保管した。
Example 1
(1) Primary foaming of expandable thermoplastic resin particles Expandable acrylonitrile / styrene copolymer resin particles (manufactured by Hitachi Chemical Co., Ltd .: HIBEADS GR) are used as a batch type foaming machine for polystyrene foam (manufactured by Hitachi Chemical Technoplant Co., Ltd.). : HBP-500LW), and first foamed to a bulk density of 0.057 g / mL (foaming factor: 17.5 times), and then stored in a silo with good ventilation for 18 hours until molding.

(2)衝撃吸収部材の製造(成形)
発泡スチロール用成形機(日立化成工業(株)製:モルデックス10VS)に、下記表1及び図3に示すスリット状リブ構造となる形状を有する金型をセットし、型締めした。図3(a)は衝撃吸収部材の平面図、図3(b)はその断面図である。上記(1)で一次発泡した樹脂粒子を金型に充填し、0.08MPaのゲージ圧の水蒸気で25秒間加熱し、金型ごと水冷し、真空冷却した後、成形品を金型から取り出した。このとき、成形品を構成する発泡熱可塑性樹脂の密度は0.057g/mLであり、ひずみ率25%時の静的圧縮応力は、57N/cmであった。ひずみ率25%時の静的圧縮応力はJISZ0235に準拠して測定した。
(2) Manufacture (molding) of impact absorbing members
A mold having a shape having a slit-like rib structure shown in Table 1 and FIG. 3 was set in a polystyrene foam molding machine (manufactured by Hitachi Chemical Co., Ltd .: Moldex 10VS) and clamped. 3A is a plan view of the shock absorbing member, and FIG. 3B is a cross-sectional view thereof. The resin particles primarily foamed in the above (1) are filled in a mold, heated with 0.08 MPa gauge water vapor for 25 seconds, cooled together with the mold and vacuum cooled, and then the molded product is taken out from the mold. . At this time, the density of the foamed thermoplastic resin constituting the molded product was 0.057 g / mL, and the static compressive stress at a strain rate of 25% was 57 N / cm 2 . The static compressive stress at a strain rate of 25% was measured according to JISZ0235.

(3)衝撃吸収部材の衝撃吸収性能評価
上記(2)で得られた発泡樹脂成形品を、縦140mm×横140mm×厚み46mmの試験体とし、衝撃荷重試験を行った。衝撃荷重試験は、試験体より広い平面を有する質量可変のおもりを、試験体のスリット状リブ構造を有する側の表面に垂直に規定速度で落下させ、おもりに生じた加速度(G値)と試験体の厚さ変化量(圧縮ひずみ量)とを測定し、衝撃吸収部材の衝撃吸収性能を評価した。なお、おもりは4.5kg、落下高さは2.5mとした。
(3) Impact absorbing performance evaluation of impact absorbing member The foamed resin molded product obtained in (2) above was used as a test body having a length of 140 mm, a width of 140 mm, and a thickness of 46 mm, and an impact load test was performed. In the impact load test, a mass variable weight having a plane wider than the specimen is dropped at a specified speed perpendicularly onto the surface of the specimen having the slit-like rib structure, and the acceleration (G value) generated in the weight and the test are tested. The amount of change in body thickness (compression strain) was measured, and the impact absorbing performance of the impact absorbing member was evaluated. The weight was 4.5 kg and the drop height was 2.5 m.

実施例2
金型を交換した他は、実施例1と同様にして、下記表1に示す形状を有する衝撃吸収部材を作製し、実施例1と同様にして衝撃吸収性能を評価した。
Example 2
Except that the mold was replaced, an impact absorbing member having the shape shown in Table 1 below was produced in the same manner as in Example 1, and the impact absorbing performance was evaluated in the same manner as in Example 1.

比較例1
金型を交換した他は、実施例1と同様にして、下記表1及び図4に示す一様な高さのリブからなるスリット状リブ構造を有する衝撃吸収部材を作製し、実施例1と同様にして衝撃吸収性能を評価した。尚、図4(a)は比較例1の衝撃吸収部材の平面図であり、図4(b)はその断面図である。
Comparative Example 1
Except for replacing the mold, a shock absorbing member having a slit-like rib structure composed of ribs having a uniform height as shown in Table 1 and FIG. Similarly, the impact absorption performance was evaluated. 4A is a plan view of the impact absorbing member of Comparative Example 1, and FIG. 4B is a cross-sectional view thereof.

実施例1、2及び比較例1で製造した衝撃吸収部材の衝撃吸収性能を、動的圧縮応力に対する圧縮ひずみ(%)を示すグラフとして図5に示す。   FIG. 5 shows the impact absorbing performance of the impact absorbing members manufactured in Examples 1 and 2 and Comparative Example 1 as a graph showing compressive strain (%) with respect to dynamic compressive stress.

Figure 2005083399
Figure 2005083399

図5のグラフから、圧縮ひずみ量に対する動的圧縮応力の変化が小さいことがわかる。   From the graph of FIG. 5, it can be seen that the change in dynamic compressive stress with respect to the amount of compressive strain is small.

本発明は衝撃吸収部材として使用できる。衝撃吸収性能に優れているため、特に、自動車用の用途、例えば、バンパ、天井、ドア、側突バッドに使用するのに適している。   The present invention can be used as an impact absorbing member. Since it has excellent shock absorbing performance, it is particularly suitable for use in automobiles, for example, bumpers, ceilings, doors, and side impact pads.

本発明の一実施形態の衝撃吸収部材の部分断面図である。It is a fragmentary sectional view of the impact-absorbing member of one Embodiment of this invention. 本発明の他の実施形態の衝撃吸収部材の部分断面図である。It is a fragmentary sectional view of the shock absorption member of other embodiments of the present invention. 図3(a)は実施例1で製造した衝撃吸収部材の平面図であり、図3(b)はその断面図である。FIG. 3A is a plan view of the impact absorbing member manufactured in Example 1, and FIG. 3B is a cross-sectional view thereof. 図4(a)は比較例1で製造した衝撃吸収部材の平面図であり、図4(b)はその断面図である。4A is a plan view of the impact absorbing member manufactured in Comparative Example 1, and FIG. 4B is a cross-sectional view thereof. 実施例1、2及び比較例1で製造した衝撃吸収部材における、動的圧縮応力(N/cm)に対する圧縮ひずみ(%)の関係を示すグラフである。It is a graph which shows the relationship of the compressive strain (%) with respect to the dynamic compressive stress (N / cm < 2 >) in the impact-absorbing member manufactured in Example 1, 2 and Comparative Example 1. FIG.

符号の説明Explanation of symbols

1 衝撃吸収部材
2 基部
22 基部の第1の面
24 基部の第2の面
3 スリット状リブ構造
32 第1のリブ
34 第2のリブ
t1 リブの下底部の幅
t2 リブの上底部の幅
t3 部材全厚
t4 基部の厚さ
h1 第1のリブの高さ
h2 第2のリブの高さ
W1 第1のリブの間隔
W2 第1のリブと第2のリブとの間隔
α リブの傾斜角度
DESCRIPTION OF SYMBOLS 1 Shock absorption member 2 Base 22 First surface of base 24 Second surface of base 3 Slit-like rib structure 32 First rib 34 Second rib t1 Width of bottom bottom portion of rib t2 Width of top bottom portion of rib t3 Total member thickness t4 Base thickness h1 First rib height h2 Second rib height W1 First rib spacing W2 First rib to second rib spacing α Rib angle of inclination

Claims (9)

発泡熱可塑性樹脂からなる衝撃吸収部材であって、
平板状の基部と、
前記基部の少なくとも1つの面上に突出するスリット状リブ構造とを具備し、
前記スリット状リブ構造が、2段階以上の異なる高さを有する複数のリブの組み合わせからなる衝撃吸収部材。
An impact absorbing member made of foamed thermoplastic resin,
A flat base, and
A slit-like rib structure protruding on at least one surface of the base,
An impact absorbing member comprising a combination of a plurality of ribs in which the slit-like rib structure has two or more different heights.
最大の高さを有するリブの高さを100としたとき、2番目に高いリブの高さが40〜80であり、
さらに、3段階以上の異なる高さを有する場合は、2番目に高いリブの高さを100としたとき、次に高いリブの高さが40〜80である請求項1に記載の衝撃吸収部材。
When the height of the rib having the maximum height is 100, the height of the second highest rib is 40 to 80,
The shock absorbing member according to claim 1, wherein the height of the second highest rib is 100 when the height of the second highest rib is 100 when the height is different in three or more stages. .
前記最大の高さを有するリブの高さが、前記スリット状リブ構造の最大許容高さである請求項2に記載の衝撃吸収部材。   The shock absorbing member according to claim 2, wherein a height of the rib having the maximum height is a maximum allowable height of the slit-like rib structure. 衝撃吸収部材の全厚を100としたとき、前記スリット状リブ構造の最大の高さが50〜90、かつ、前記基部の厚さが10〜90である請求項1〜3のいずれかに記載の衝撃吸収部材。   The maximum height of the slit-like rib structure is 50 to 90, and the thickness of the base is 10 to 90 when the total thickness of the shock absorbing member is 100. 4. Shock absorbing member. 前記スリット状リブ構造を構成する各リブの幅が、基部側から先端側まで同一である請求項1〜4のいずれかに記載の衝撃吸収部材。   The impact absorbing member according to any one of claims 1 to 4, wherein the width of each rib constituting the slit-like rib structure is the same from the base side to the tip side. 前記スリット状リブ構造を構成する各リブの幅が、基部側から先端側に向かってテーパ状に減少し、かつ、前記基部に対する垂線から前記リブまでの傾斜角度αが、0°<α≦7°の範囲内である請求項1〜4のいずれかに記載の衝撃吸収部材。   The width of each rib constituting the slit-like rib structure decreases in a tapered manner from the base side toward the tip side, and the inclination angle α from the perpendicular to the base portion to the rib is 0 ° <α ≦ 7 The impact-absorbing member according to any one of claims 1 to 4, which is within a range of °. 衝撃吸収部材を構成する発泡熱可塑性樹脂の密度が、0.033g/mL〜0.2g/mLであり、かつ、ひずみ率25%時の静的圧縮応力が、35N/cm〜350N/cmである請求項1〜6のいずれかに記載の衝撃吸収部材。 The density of the foamed thermoplastic resin constituting the impact absorbing member is 0.033 g / mL to 0.2 g / mL, and the static compressive stress when the strain rate is 25% is 35 N / cm 2 to 350 N / cm. The impact absorbing member according to claim 1, which is 2 . 発泡熱可塑性樹脂が発泡スチレン系共重合体である請求項1〜7のいずれかに記載の衝撃吸収部材。   The impact-absorbing member according to any one of claims 1 to 7, wherein the foamed thermoplastic resin is a foamed styrene copolymer. 複数の、請求項1〜8のいずれかに記載の衝撃吸収部材の組合せからなる複合衝撃吸収部材。   A composite impact absorbing member comprising a combination of a plurality of impact absorbing members according to claim 1.
JP2003312637A 2003-09-04 2003-09-04 Shock absorbing member Pending JP2005083399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003312637A JP2005083399A (en) 2003-09-04 2003-09-04 Shock absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003312637A JP2005083399A (en) 2003-09-04 2003-09-04 Shock absorbing member

Publications (1)

Publication Number Publication Date
JP2005083399A true JP2005083399A (en) 2005-03-31

Family

ID=34413835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003312637A Pending JP2005083399A (en) 2003-09-04 2003-09-04 Shock absorbing member

Country Status (1)

Country Link
JP (1) JP2005083399A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151312A (en) * 2006-12-20 2008-07-03 Hitachi Chem Co Ltd Impact absorbing member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151312A (en) * 2006-12-20 2008-07-03 Hitachi Chem Co Ltd Impact absorbing member

Similar Documents

Publication Publication Date Title
RU2388946C2 (en) Impact energy absorbing element for use in conditions of impact loads
JP5810201B2 (en) FIBER-REINFORCED COMPOSITE, MEMBER FOR TRANSPORTATION DEVICE, AND METHOD FOR PRODUCING FIBER-REINFORCED COMPOSITE
US20080299379A1 (en) Composite material and method of making the composite material
JP2003127796A (en) Shock absorbing floor spacer for automobile
WO2016027488A1 (en) Resin composite and process for producing resin composite
JP5190190B2 (en) Shock absorbing member
JP4082095B2 (en) Shock absorbing member
JP4082145B2 (en) Shock absorbing member
WO2020031617A1 (en) Layered body
JP2005083399A (en) Shock absorbing member
JP4951164B2 (en) Shock absorbing member
JPS6157504B2 (en)
JP4202716B2 (en) Thermoplastic resin foam molding and method for producing the same
JP2008231175A (en) Foamable polystyrenic resin particle and polystyrenic resin foam molded product composed of the foamable polystyrenic resin particle
JP5329698B2 (en) Shock absorbing member
JP2002333047A (en) Shock absorbing material for automobile
JP3173912U (en) Shock absorbing member
JP2009040294A (en) Impact absorption member
JP7236425B2 (en) bumper absorber
JP5933248B2 (en) Shock absorbing member for vehicle
JP6215167B2 (en) Fiber reinforced composite and method for producing fiber reinforced composite
JP4021929B2 (en) Shock-absorbing automotive floor spacer
JP2002302064A (en) Shock absorbing material for automobile
JP4452022B2 (en) Composite material with noise prevention and shock absorption performance
JP6236294B2 (en) Floor spacer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080526

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090825