JPS6157504B2 - - Google Patents

Info

Publication number
JPS6157504B2
JPS6157504B2 JP55115637A JP11563780A JPS6157504B2 JP S6157504 B2 JPS6157504 B2 JP S6157504B2 JP 55115637 A JP55115637 A JP 55115637A JP 11563780 A JP11563780 A JP 11563780A JP S6157504 B2 JPS6157504 B2 JP S6157504B2
Authority
JP
Japan
Prior art keywords
bumper
impact
impact energy
foam
energy absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55115637A
Other languages
Japanese (ja)
Other versions
JPS5740136A (en
Inventor
Kazuo Shiotani
Takashi Nishama
Michiaki Izawa
Shunichi Komoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP11563780A priority Critical patent/JPS5740136A/en
Publication of JPS5740136A publication Critical patent/JPS5740136A/en
Publication of JPS6157504B2 publication Critical patent/JPS6157504B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Vibration Dampers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は衝撃エネルギー吸収バンパー、特に車
輌用の衝撃エネルギー吸収バンパーに関する。 近年、自動車バンパーに関しては米国車輌安全
規準(MVSS=Motor Vehicle Safety
Standard)の規定、歩行者保護の社会的ニーズ
の高揚等により衝撃エネルギー吸収性のバンパー
の必要性が高まつている。そして、この要求に対
応する方策として現在までに既に種々のタイプの
バンパーシステムが考案され実用に供されてい
る。 例えば、 (1) 剛性の高い金属製のバンパービームに油圧式
シヨツク・アブソーバーを取付け、金属ビーム
は衝撃により永久変形を生ぜず、衝撃力を該油
圧式シヨツク・アブソーバーに伝達させ、油圧
ピストン中の油の粘性流動で衝撃エネルギーを
吸収するタイプ。 (2) 合成樹脂又は合成ゴム等でできており、表皮
の裏側の所要の必要に応じた数のリブ構造体を
有し、衝撃の際には該リブ構造体の座屈により
衝撃エネルギーを吸収するタイプ(一般に
Hiflex(ハイフレツクス)タイプと呼ばれてお
り、例えば米国特許第3871636号明細書参照) (3) 合成樹脂又は合成ゴムでできた外皮と、その
外皮の内部に配置される射出成形による熱可塑
性樹脂等でできたハニカム構造体と、これらの
後方に位置して、これらを保持するバツクアツ
プ・ビームとで構成されるバンパー・システム
で衝撃に際しては、ハニカム構造体の座屈によ
り衝撃エネルギーを吸収するタイプ(例えば米
国特許第3997207号明細書参照) (4) 合成樹脂又は合成ゴムでできた外皮と、その
内部に配置された比較的低密度(0.1〜0.3g/
cm3程度)の半硬質の衝撃エネルギー吸収性ウレ
タン・フオームと、これらの後方に位置し、こ
れらを保持するバツクアツプ・ビームとで構成
されるバンパー・システムで、衝撃に対しては
半硬質の衝撃エネルギー吸収性ウレタン・フオ
ームが圧縮変形することにより衝撃エネルギー
を吸収するタイプ(例えば米国特許第3866963
号明細書参照)等、種々のタイプの衝撃エネル
ギー吸収バンパー・システムがあり、それぞれ
ある程度までの効果を発揮するが、しかし何れ
も一長一短を有し、未だ十分満足すべき性能を
発揮する衝撃エネルギー吸収バンパーシステム
は提供されるに至つていない。 即ち、(1)の油圧式シヨツク・アブソーバー、タ
イプのバンパーでは衝撃によりバンパービームに
加わつた応力を、バンパー.ビームの永久変形、
破壊を生じることなくシヨツク・アブソーバーに
伝達させるためには、バンパービームは高い強度
を有する剛体でなければならず、従つて高強度の
鋼板が用いられており、バンパーの重量が大きく
なるという欠点があり、該バンパービームは金属
製であるので、錆びるという問題を発生する。 さらにこのような油圧式シヨツク・アブソーバ
ーはその機構上、油圧ピストンの軸方向の応力成
分のみに対してしか有効にその機能を発揮せず、
バンパー正面からの衝撃に対しては有効に機能し
ても斜方向からの衝撃に対しては有効に機能しな
いという欠点をもつている。 (2)のリブ構造体の座屈により衝撃エネルギーを
吸収するハイフレツクス・タイプのバンパーでは
座屈挙動を予測するのが難しく、バンパーとして
の良好な性能を発揮させるための有効なリブ構造
体の形状、配置、数等を設計するのが難解であ
る。また、リブ構造体を有するため、凹凸の多い
複雑な形状となるため、バンパー製造の際の成形
性が良くない。その上、自動車バンパーとしての
装飾面からすると、リブ構造体の位置に相当する
バンパー表面部分にシンクマークと呼ぱれるリブ
構造体に沿つたヒケが発生するので好ましくな
い。またバンパー全体が剛性の高い高分子材料で
できており、材料自体のモジユラスが温度依存性
を有し即ち高温時にはモジユラスが低下し、低温
時にはモジユラスが上昇するため、モジユラスの
温度依存性が大きくなり、ある一定の衝撃エネル
ギーを吸収するのに、高温時は大きな変形を強い
られ、所謂、底づき状態となり発生荷重が大きく
なる。 また、低温時は中程度の変形でもモジユラスが
高くなるため、発生荷重は大きくなる。そして、
バンパーに発生したこの大きな応力が自動車ボデ
イに伝達されるため、このタイプのバンパーを取
付ける車輌はボデイ耐力を大きく設計する必要が
生じるという短所を有する。 (3)のハニカム構造体の座屈により衝撃エネルギ
ーを吸収するタイプのバンパーでは衝撃の際、ハ
ニカム構造体の座屈に伴ない、ハニカム構造の永
久変形、亀裂、破壊を生じ復元性が悪い。また、
ハニカム構造体は通常、熱可塑性樹脂材料で成形
されることが多いが、熱可塑性樹脂は一般にモジ
ユラスの温度依存性が大きく、該ハニカム構造体
においても、高温での衝撃時の挙動と低温での衝
撃時の挙動との差異が大きくなるという欠点を有
している。 更に(4)の合成樹脂又は合成ゴムの外皮と、その
内部に配置された半硬質の衝撃エネルギー吸収性
ウレタン・フオームと、バツクアツプ・ビームと
で構成され、該ウレタン・フオームが圧縮変形す
ることにより衝撃エネルギーを吸収する型式のバ
ンパーでは、外皮の内部に半硬質の衝撃エネルギ
ー吸収性ウレタン・フオームを配置することによ
り、衝撃の際バンパーの局所的に発生した衝撃応
力でも速やかにフオーム全体に均一に分散される
ことになり、その結果、この分散された応力がバ
ツクアツプ・ビームに伝達されるため、バツクア
ツプ・ビームに要求される機械的強度を小さくす
ることが可能となり、バツクアツプ・ビームの重
量を低減することができる。また該衝撃エネルギ
ー吸収性ウレタン・フオームは通常、0.1〜0.3
g/cm3の範囲の低密度のものが使用されることが
多く、その重量も小さくなるため、前述のバツク
アツプ・ビーム重量低減と相俟つて、バンパー全
体の重量が大幅に低減されるという利点を有する
が、一方、しかし、該衝撃エネルギー吸収性ウレ
タン・フオームのモジユラスは温度依存性を有し
高温時にはモジユラスが低下し、低温時にはモジ
ユラスが上昇するため、ある一定の衝撃エネルギ
ーを吸収するのに、高温時は大きな変形を強いら
れ、所謂、底づき状態となり発生荷重が大きくな
る。また低温時は、中程度の変形でもモジユラス
が高くなるため発生荷重が大きくなるという欠点
を避けられない。また、一般に用いられている衝
撃エネルギー吸収性ウレタン・フオームのエネル
ギー吸収効率は通常50〜70%であり、未だ十分満
足すべき性能とはいえない。 以上、述べたように、現在までに提案されてい
る種々の衝撃エネルギー吸収バンパーは、ある程
度までの効果を発揮するものの、夫々十分満足す
べき性能を有するとは言えず、バンパーの重量、
コスト面からみても経済的なものとはいえなかつ
た。 本発明はかかる上述の欠点に着目し、その改善
を図るべく提案されたもので、合成樹脂又は合成
ゴムの外皮と、その内部に配置された衝撃エネル
ギー吸収性フオームと、これらの後方に位置して
これらを保持するバツクアツプ・ビームとで構成
されるバンパーシステムにおいて衝撃エネルギー
吸収性フオームとしてポリスチレンとポリエチレ
ンを成分としてなり、かつポリスチレン/ポリエ
チレンの成分比が90/10〜25/75(重量比)でそ
の見掛け比重が0.02〜0.10g/cm3であり、通常、
常温(23℃)時の5マイル/時の速度での衝撃試
験での20%圧縮応力が5〜10Kg/cm2、エネルギー
吸収効率が65%以上、荷重回復率が40%以上で、
かつ低温時(−20℃)と高温時(60℃)の5マイ
ル/時の速度での衝撃試験での温度倍率が2.0以
下の範囲の発泡プラスチツク・フオームを用い
る、軽量で、かつ優れた衝撃エネルギー吸収性能
をもつバンパー・システムを提供することを特徴
とするものである。 以下、本発明の具体的特徴を添付図面に示す実
施例を参照しつつ更に順次説明する。 第4図は本発明に係る衝撃エネルギー吸収バン
パー1の構成の1例を斜視図で示すもので、2は
同バンパーにおける補強用のバツクアツプ・ビー
ムで、中央部に突出基板3を有しており、このバ
ツクアツプ・ビーム2の前面には細長いブロツク
体をなす衝撃エネルギー吸収性フオーム4が配置
されていると共に、該衝撃エネルギー吸収性フオ
ーム4の外面にはこれを被覆するようにして更に
外皮5が被着されており、端部において前記バツ
クアツプ・ビーム2の突出基板3に取付用ビス6
により固定されている。前記外皮5は衝撃エネル
ギー吸収性フオーム4の変形に追従できるもので
合成樹脂又は合成ゴムからなり、例えば熱可塑性
樹脂の射出成形品が用いられるが、成形性、経済
性及び耐衝撃性からすればRIM(Reaction
Injection Moiding)法によつて成形される高密
度マイクロセルラー.ウレタンが好ましい。 一方、衝撃エネルギー吸収性フオーム4はポリ
スチレン、ポリエチレンを成分とする発泡プラス
チツク.フオームであり、本発明の重要な特徴を
なし、特に限定された物性値を有する。 ポリスチレンとポリエチレンを成分とする発泡
プラスチツク.フオームは従来、高発泡倍率(低
密度)で圧縮応力の小さいものが、主には包装用
緩衝材として使用されているが、常温(23℃)時
の衝撃試験における20%圧縮応力が2〜10Kg/cm2
の比較的高いモジユラスを有する発泡プラスチツ
ク.フオームはその用途が制限されており、これ
を自動車用衝撃エネルギー吸収バンパーの衝撃エ
ネルギー吸収フオームとして使用することは従来
より全く知られていなかつた。 通常、バンパーの最大発生荷重(Fmax)と最
大変位量(Dmax)は、このバンパーが取付けら
れる車輌のボデイ耐力、フロント.エンド、リア
ー.エンドの形状、構造等により、車体に破損、
破壊が生じない範囲である一定の最大許容値以下
に抑えるように制限されている。従つて、ある定
められた衝撃エネルギーを吸収するのにFmax及
びDmaxをともに可及的に小さくすることが車輌
のボデイ耐力を大きくする必要がないという意味
から、また車輌のフロント・エンド、リアー・エ
ンドのデザインの可能性を制限しないという意味
で望ましいとされている。 本発明の衝撃エネルギー吸収バンバーは、常温
(23℃)時の衝撃試験での20%圧縮応力が2〜10
Kg/cm2と車輌用バンパーとして好ましい応力の範
囲を有しており、エネルギー吸収効率が非常に高
く、つまり車輌衝突時のバンパーのFmaxおよび
Dmaxを車輌として許容される範囲に可及的に小
さくするという特性を備えている。更にこの優れ
た衝撃エネルギー吸収性能は一方、広い温度範囲
に亘つて安定で温度依存性が小さいという特徴も
併せ有している。しかもかかる衝撃エネルギー吸
収バンバーは従来技術に比べて大幅に軽量化が可
能であり、車体の軽量化、燃費向上経済性の観点
から現在の社会状況に鑑み、大きな工業上の利点
をなすものである。 前記の如き衝撃エネルギー吸収性フオームはポ
リスチレン/ポリエチレンの成分比が90/10〜
25/75重量部で見掛け比重0.02〜0.10g/cm3の条
件を具備することによつて得ることができる。 前記の如き衝撃エネルギー吸収性フオームとし
てポリスチレン/ポリエチレンを成分とする発泡
プラスチツク.フオームを用いる場合、見掛け比
重0.02g/cm3より小さいと20%圧縮力が小さくな
り、車輌用バンパーの目的に対して柔らかすぎ
て、所定の衝撃エネルギーを加えた際、所謂底づ
き状態となりFmax、Dmaxがともに大きくなり
すぎるという欠点を有し、本発明の目的に適さな
い。また、一方、前記見掛け比重(密度)が0.10
g/cm3よりも大きいと20%圧縮応力が高くなりす
ぎFmaxが大きくなり過ぎるという欠点が生じ
る。 ここでFmaxが大きくなり過ぎるとは、車輌の
ボデイ耐力を超えてしまうということであり、ボ
デイの損傷を生ぜしめることになる。従つて所定
の衝撃エネルギーを吸収する際、Fmax、Dmax
は何れも可及的に小さくするのが好ましい。又、
ポリスチレン/ポリエチレンを成分とする発泡プ
ラスチツク.フオームでポリエチレン成分が10%
重量部より少いと荷重回復率が40%以下となり又
ポリエチレン成分が75%重量部より多いと温度倍
率が2.0以上となつて何れも本発明の目的に適合
する優れた衝撃エネルギー吸収性能をもつバンパ
ーを提供するに至らず、本発明の目的には適さな
い。なお本明細書においてエネルギー吸収効率、
荷重回復率、温度倍率とは夫々以下によつて定義
されるものである。 エネルギー吸収効率 エネルギー吸収効率は第1図に示すように衝撃
時の応力−変位曲線から、次式によつて計算され
る。 エネルギー吸収効率=E/A+E×100(%) (但し、A,Eはそれぞれの部分の面積を示
す。) 荷重回復率 荷重回復率は第2図に示すように第1回目衝撃
とその30分後の第2回目衝撃の応力−変位曲線か
ら、次式によつて計算される。 荷重回復率 =E′(第2回目衝撃)/E(第1回目衝撃)
×100(%) (但し、E,E′は夫々の部分の面積を示す。) 温度倍率 温度倍率は第3図に示すように−20℃と60℃で
の応力−変位曲線から次式によつて計算される。 温度倍率=E(−20℃)/E(60℃) (但し、E1,E2は夫々の部分の面積を示す。) 上記各場合においてEは何れも50%変位までに
吸収するエネルギーを示し、50%変位までの応力
−変位曲線下の面積に等しい。 次に本発明における前記ポリスチレン/ポリエ
チレンを成分とする発泡プラスチツク.フオーム
は、ポリスチレン/ポリエチレンの成分が所定の
成分比になるように、スチレン・モノマーとエチ
レン・モノマー反応させて得られた共重合体の発
泡体であり、その製造は発泡性ビーズによる融着
成形、押出成形、射出成形の何れかの成形方法に
より容易に製造されるが、好まくは発泡性ビーズ
による融着成形により製造することである。 発泡性ビーズによる融着成形はブタン、プロパ
ン、ペンタン、石油エーテル等の低沸点の物質を
発泡剤として含浸させたスチレンとエチレンの共
重合体の粒子を蒸気加熱等で予備発泡して一次発
泡ビーズとし、この一次発泡ビーズを乾燥、熟成
した後、所望の形状の金型内に充填し蒸気等で加
熱して二次発泡させ所望の形状の発泡体を得る既
知の成形方法である。 なお、本発明における合成樹脂又は合成ゴムで
できた外皮としては、例えば前述の如くRIM
(Reaction Injection Molding)法により成形さ
れる高密度マイクロセルラー・ウレタンが好まし
く用いられるが、このRIM法により成形される高
密度マイクロセルラー・ウレタンは、高反応性の
液状原料を用いるため、薄肉の大型製品の成形が
可能で、成形サイクルも速いという成形上の利点
をもつと共に、得られた成形品に関しても優れた
機械的物性を有しするので、衝撃時の耐損傷性に
大きな効果を発揮し、経済的、機能的両面から車
輌用バンパーの外皮として最も好適な材料であ
る。 この場合もその成形法、配合法は当該業者間に
おいて既知であり、目的に応じて選定されるが本
発明の目的には好ましくは密度0.9〜1.15g/cm3
ASTM D―790−66による曲げ弾性率1000〜
4000Kg/cm2の成形武が選ばれる。 又、本発明における前記バツクアツプ・ビーム
2は合成樹脂又は合成ゴムでできた外皮とその内
部に配置された衝撃エネルギー吸収性フオームを
所定の位置に固定する目的を有するが、衝突時の
最大発生荷重に耐え得る機械的強度をもつ材質、
構造として通常、設計される。 次に引続き実施例に基づき本発明バンパーの製
造を含めその具体的な実施の態様を説明するが、
勿論これは一部であり、本発明がこれら実施例に
限定されないことはいう迄もない。又、合成樹脂
又は合成ゴムでできた外皮の形状、衝撃エネルギ
ー吸収性フオームの形状及びその配置、バツクア
ツプ・ビームの形状は、何れも本発明によるバン
パーが取付けられる車輌のデザイン、要求される
衝撃エネルギー吸収性能に応じて任意に選択でき
ることはいう迄もない。 更に以下の実施例において、衝撃試験は寸法40
cm×10cm×10cmの直方体の衝撃試験用試料を所定
の温度に16〜24時間温調した後速やかに第4図と
同様な構造をもつカツトサンプル(長さ40cm×高
さ10cm×巾10cm)を固定台に取付け、衝撃試験用
試料の被衝撃面が全面圧縮されるのに十分な面積
を持つた重量510.3Kgの衝撃子を衝撃速度5マイ
ル/時(8.05Km/時)になるように設定して衝撃
試験を行なつた。又、荷重回復率を求めるための
第2回目の衝撃は、第1回目衝撃30分後に行なつ
た。又、外皮としては本発明の衝撃エネルギー吸
収バンパーの外皮として好ましい物性を有する材
料として、OH価25のポリプロピレン・グリコー
ル(三井日曹ウレタン社製EP−240)100部、エ
チレン.グリコール18部、ダブコ33LV(日本乳
化剤社製)1部、ジブチル錫ジラウレート0.06
部、フレオンー11(ダイキン社製)5部のポリオ
ール成分混合液とジフエニルメタンジイソシアナ
ートから誘導されたプレポリマー(住友バイエル
ウレタン社製 スミジユールPC,NCO%=26
%)106部(何れも重量部)とをRIM注型機を用
いて成形した肉厚,3mm、密度1.10g/cm3、曲げ
弾性率1800Kg/cm3(ASTM D−790−66)のマ
イクロセルラー・ウレタンを以下に述べる実施例
中の衝撃試験に使用した。なお、エネルギー吸収
効率、荷重回復率温度倍率はそれぞれ前記定義に
示す各式によつて計算されたものである。 (実施例 1) ビーズ法により成形して得られた密度0.033
g/cm3の発泡ポリスチレン/ポリエチレン・フオ
ーム(ポリスチレン/ポリエチレン成分比=75/
25(重量比))を前述のRIM成形によるマイクロ
セルラ−・ウレタンの外皮の内部に第4図に示す
ような状態で配置して、前述の方法に従つて衝撃
試験を行なつた。その結果、極めて低密度で第1
表に示されるように優れたエネルギー吸収効率を
示し、温度倍率1.25と優れた温度依存性を有する
衝撃エネルギー吸収バンパー・システムが得られ
た。
The present invention relates to impact energy absorbing bumpers, particularly impact energy absorbing bumpers for vehicles. In recent years, the US Vehicle Safety Standards (MVSS=Motor Vehicle Safety Standards) have been adopted for automobile bumpers.
The need for impact energy-absorbing bumpers is increasing due to regulations such as Japan Standard) and increasing social needs for pedestrian protection. To date, various types of bumper systems have been devised and put into practical use as measures to meet this demand. For example, (1) A hydraulic shock absorber is attached to a highly rigid metal bumper beam, and the metal beam does not undergo permanent deformation due to impact.The impact force is transmitted to the hydraulic shock absorber, and the hydraulic shock absorber in the hydraulic piston is A type that absorbs impact energy using the viscous flow of oil. (2) It is made of synthetic resin or synthetic rubber, and has a number of rib structures on the back side of the skin as required, and in the event of an impact, the impact energy is absorbed by the buckling of the rib structures. type (generally
(3) An outer skin made of synthetic resin or synthetic rubber, and a thermoplastic resin, etc., placed inside the outer skin by injection molding. The bumper system consists of a honeycomb structure made of aluminum and a back-up beam located behind these to hold them.In the event of an impact, the bumper system absorbs the impact energy by buckling the honeycomb structure ( For example, see US Pat. No. 3,997,207) (4) An outer shell made of synthetic resin or synthetic rubber and a relatively low density (0.1 to 0.3 g/
A bumper system consisting of a semi-rigid impact energy-absorbing urethane foam (approximately cm 3 ) and a back-up beam located behind and holding them. A type that absorbs impact energy by compressing and deforming an energy-absorbing urethane foam (for example, U.S. Patent No. 3866963)
There are various types of impact energy absorbing bumper systems such as (see specification), each of which is effective to a certain extent, but each has its own merits and demerits, and there are still impact energy absorbing systems that exhibit satisfactory performance. Bumper systems have not yet been provided. In other words, in the hydraulic shock absorber type bumper (1), the stress applied to the bumper beam due to impact is absorbed by the bumper. permanent deformation of the beam,
In order to transmit the transmission to the shock absorber without causing damage, the bumper beam must be a rigid body with high strength, and therefore high-strength steel plates are used, which has the disadvantage of increasing the weight of the bumper. However, since the bumper beam is made of metal, it has the problem of rusting. Furthermore, due to its mechanism, such a hydraulic shock absorber can only effectively perform its function against stress components in the axial direction of the hydraulic piston.
Although it functions effectively against impact from the front of the bumper, it does not function effectively against impact from an oblique direction. (2) In the case of a high-flex type bumper that absorbs impact energy through buckling of the rib structure, it is difficult to predict the buckling behavior, so it is difficult to predict the buckling behavior, so the shape of the rib structure is effective in order to exhibit good performance as a bumper. , arrangement, number, etc. are difficult to design. Furthermore, since the bumper has a rib structure, it has a complicated shape with many unevenness, which results in poor moldability when manufacturing the bumper. Furthermore, from the decorative point of view of an automobile bumper, sink marks along the rib structure, called sink marks, occur on the bumper surface portion corresponding to the position of the rib structure, which is undesirable. In addition, the entire bumper is made of a highly rigid polymeric material, and the modulus of the material itself is temperature dependent, meaning that the modulus decreases at high temperatures and increases at low temperatures, so the temperature dependence of the modulus becomes large. In order to absorb a certain amount of impact energy, it is forced to undergo large deformations at high temperatures, resulting in a so-called bottoming out state and an increase in the generated load. Furthermore, at low temperatures, the modulus becomes high even with moderate deformation, so the generated load becomes large. and,
Since this large stress generated in the bumper is transmitted to the automobile body, a vehicle to which this type of bumper is installed has the disadvantage that it is necessary to design the body to have a large strength. In the type of bumper (3) that absorbs impact energy by buckling the honeycomb structure, upon impact, the buckling of the honeycomb structure causes permanent deformation, cracking, and destruction of the honeycomb structure, resulting in poor recovery. Also,
Honeycomb structures are usually molded from thermoplastic resin materials, but thermoplastic resins generally have a large modulus dependence on temperature, and even in honeycomb structures, there are differences between impact behavior at high temperatures and low temperature. This has the disadvantage that there is a large difference in behavior from impact. Furthermore, it is composed of (4) a synthetic resin or synthetic rubber outer shell, a semi-rigid impact energy absorbing urethane foam placed inside the outer shell, and a back-up beam, and when the urethane foam is compressively deformed, In impact energy absorbing types of bumpers, a semi-rigid impact energy absorbing urethane foam is placed inside the outer skin, so that the impact stress generated locally in the bumper during an impact is quickly distributed evenly over the entire foam. As a result, this distributed stress is transferred to the backup beam, reducing the required mechanical strength of the backup beam and reducing the weight of the backup beam. can do. The impact energy absorbing urethane foam is typically 0.1 to 0.3
Low densities in the range of g/cm 3 are often used, and their weight is also small, which, combined with the aforementioned back-up beam weight reduction, significantly reduces the overall weight of the bumper. However, the modulus of the impact energy absorbing urethane foam is temperature dependent, and the modulus decreases at high temperatures and increases at low temperatures, so it is difficult to absorb a certain amount of impact energy. , at high temperatures, it is forced to undergo large deformations, resulting in a so-called bottoming out state, and the generated load increases. Furthermore, at low temperatures, the modulus increases even with moderate deformation, so the disadvantage that the generated load increases cannot be avoided. Furthermore, the energy absorption efficiency of commonly used impact energy absorbing urethane foams is usually 50 to 70%, which is still not a fully satisfactory performance. As mentioned above, although the various impact energy absorbing bumpers that have been proposed to date are effective to a certain extent, they cannot be said to have sufficiently satisfactory performance, and the weight of the bumper,
It could not be said to be economical from a cost standpoint. The present invention has focused on the above-mentioned drawbacks and has been proposed to improve the problem, and includes a synthetic resin or synthetic rubber outer skin, an impact energy absorbing foam disposed inside the outer skin, and a shock energy absorbing foam located behind the outer skin. In the bumper system, which consists of a back-up beam that holds these, the impact energy absorbing foam is composed of polystyrene and polyethylene, and the polystyrene/polyethylene component ratio is 90/10 to 25/75 (weight ratio). Its apparent specific gravity is 0.02 to 0.10g/ cm3 , and it is usually
A 20% compressive stress of 5 to 10 Kg/cm 2 in an impact test at a speed of 5 mph at room temperature (23°C), an energy absorption efficiency of 65% or more, and a load recovery rate of 40% or more.
Lightweight and superior impact performance using expanded plastic foam with a temperature multiplier of less than 2.0 when tested at 5 mph impact speeds at low temperatures (-20°C) and high temperatures (60°C). The present invention is characterized by providing a bumper system with energy absorption performance. Hereinafter, specific features of the present invention will be further explained in sequence with reference to embodiments shown in the accompanying drawings. FIG. 4 is a perspective view showing an example of the structure of the impact energy absorbing bumper 1 according to the present invention. Reference numeral 2 denotes a back-up beam for reinforcement in the bumper, which has a protruding substrate 3 in the center. An impact energy absorbing foam 4 in the form of an elongated block is disposed on the front surface of the backup beam 2, and an outer skin 5 is further provided on the outer surface of the impact energy absorbing foam 4 to cover it. At the end, a mounting screw 6 is attached to the protruding base plate 3 of the backup beam 2.
Fixed by The outer skin 5 can follow the deformation of the impact energy absorbing foam 4, and is made of synthetic resin or synthetic rubber. For example, an injection molded product of thermoplastic resin is used, but from the viewpoint of moldability, economy, and impact resistance, RIM (Reaction
High-density microcellular molded using the Injection Moiding method. Urethane is preferred. On the other hand, the impact energy absorbing foam 4 is made of foamed plastic containing polystyrene or polyethylene. It is a foam, which is an important feature of the present invention, and has particularly limited physical property values. Foamed plastic consisting of polystyrene and polyethylene. Conventionally, foams with a high expansion ratio (low density) and low compressive stress are mainly used as cushioning materials for packaging, but the 20% compressive stress in the impact test at room temperature (23℃) is 2 to 2. 10Kg/ cm2
A foamed plastic with a relatively high modulus. The use of this foam is limited, and the use of this foam as an impact energy absorbing foam for an impact energy absorbing bumper for automobiles has not been known at all. Normally, the maximum load (Fmax) and maximum displacement (Dmax) of a bumper are determined by the body strength of the vehicle to which the bumper is installed, and the front load. End, rear. Damage to the car body may occur due to the shape and structure of the end.
It is limited to below a certain maximum allowable value that does not cause damage. Therefore, making both Fmax and Dmax as small as possible to absorb a certain specified impact energy means that there is no need to increase the vehicle's body strength, and it also reduces the front end, rear, and This is desirable in the sense that it does not limit the design possibilities of the end. The impact energy absorbing bumper of the present invention has a 20% compressive stress of 2 to 10 in an impact test at room temperature (23°C).
Kg/cm 2 and has a stress range suitable for a vehicle bumper, and has very high energy absorption efficiency, which means that the bumper's Fmax and
It has the characteristic of keeping Dmax as small as possible within the allowable range for the vehicle. Furthermore, this excellent impact energy absorption performance is also characterized by stability over a wide temperature range and low temperature dependence. Moreover, such an impact energy absorbing bumper can be significantly lighter than conventional technology, and has great industrial advantages in light of the current social situation from the viewpoint of reducing the weight of the vehicle body, improving fuel efficiency, and economical efficiency. . The above-mentioned impact energy absorbing foam has a polystyrene/polyethylene component ratio of 90/10 or more.
It can be obtained by satisfying the following conditions: 25/75 parts by weight and an apparent specific gravity of 0.02 to 0.10 g/cm 3 . Foamed plastics containing polystyrene/polyethylene as impact energy absorbing foams as described above. When using foam, if the apparent specific gravity is less than 0.02g/ cm3 , the compressive force will be 20% smaller, and it will be too soft for the purpose of a vehicle bumper, and when a certain impact energy is applied, it will bottom out and the Fmax will be lowered. , Dmax are both too large, and are not suitable for the purpose of the present invention. On the other hand, the apparent specific gravity (density) is 0.10
If it is larger than g/cm 3 , the 20% compressive stress becomes too high, resulting in a disadvantage that Fmax becomes too large. Here, if Fmax becomes too large, it means that it exceeds the vehicle's body strength, resulting in damage to the body. Therefore, when absorbing a given impact energy, Fmax, Dmax
It is preferable to make both of them as small as possible. or,
Foamed plastic made of polystyrene/polyethylene. Foam with 10% polyethylene content
If the polyethylene component is less than 75% by weight, the load recovery rate will be 40% or less, and if the polyethylene component is more than 75% by weight, the temperature multiplier will be 2.0 or more, both of which provide a bumper with excellent impact energy absorption performance that meets the objectives of the present invention. However, it is not suitable for the purpose of the present invention. Note that in this specification, energy absorption efficiency,
The load recovery rate and temperature magnification are defined as follows. Energy Absorption Efficiency Energy absorption efficiency is calculated from the stress-displacement curve upon impact as shown in FIG. 1 using the following equation. Energy absorption efficiency = E / A + E × 100 (%) (However, A and E indicate the area of each part.) Load recovery rate The load recovery rate is the first impact and its 30 minutes as shown in Figure 2. It is calculated from the stress-displacement curve of the subsequent second impact using the following equation. Load recovery rate = E' (2nd impact) / E (1st impact)
×100 (%) (However, E and E' indicate the area of each part.) Temperature multiplier The temperature multiplier is calculated from the stress-displacement curves at -20℃ and 60℃ as shown in Figure 3 using the following formula. It is calculated accordingly. Temperature magnification = E 1 (-20°C) / E 2 (60°C) (However, E 1 and E 2 indicate the area of each part.) In each of the above cases, E absorbs up to 50% displacement. represents the energy and is equal to the area under the stress-displacement curve up to 50% displacement. Next, a foamed plastic containing the polystyrene/polyethylene as a component according to the present invention. Foam is a copolymer foam obtained by reacting styrene monomer and ethylene monomer so that the polystyrene/polyethylene components have a predetermined component ratio, and is manufactured by fusion molding using expandable beads. It can be easily manufactured by any of the following molding methods: , extrusion molding, and injection molding, but it is preferably manufactured by fusion molding using expandable beads. Fusion molding using expandable beads is performed by pre-foaming particles of a copolymer of styrene and ethylene impregnated with a low boiling point substance such as butane, propane, pentane, or petroleum ether as a blowing agent using steam heating, etc. to produce primary foam beads. This is a known molding method in which the primary foamed beads are dried and matured, then filled into a mold of a desired shape, heated with steam or the like, and subjected to secondary foaming to obtain a foamed product of the desired shape. In addition, as the outer skin made of synthetic resin or synthetic rubber in the present invention, for example, as mentioned above, RIM
High-density microcellular urethane molded by the (Reaction Injection Molding) method is preferably used, but high-density microcellular urethane molded by the RIM method uses a highly reactive liquid raw material, so it is thin-walled and large-sized. It has the advantages of being able to be molded into products and has a fast molding cycle, and the resulting molded product also has excellent mechanical properties, so it has a great effect on damage resistance during impact. It is the most suitable material for the outer skin of vehicle bumpers from both economical and functional perspectives. In this case as well, the molding method and compounding method are known among those skilled in the art and are selected depending on the purpose, but for the purpose of the present invention, the density is preferably 0.9 to 1.15 g/cm 3
Flexural modulus 1000~ according to ASTM D-790-66
A molded piece of 4000Kg/cm 2 is selected. Further, the back-up beam 2 in the present invention has the purpose of fixing an outer shell made of synthetic resin or synthetic rubber and an impact energy absorbing foam disposed inside the outer shell in a predetermined position, but the maximum load generated in the event of a collision is Materials with mechanical strength that can withstand
Usually designed as a structure. Next, specific embodiments of the bumper of the present invention including manufacturing thereof will be explained based on Examples.
Of course, these are just a few examples, and it goes without saying that the present invention is not limited to these examples. In addition, the shape of the outer skin made of synthetic resin or synthetic rubber, the shape and arrangement of the impact energy absorbing foam, and the shape of the back-up beam all depend on the design of the vehicle to which the bumper according to the present invention is installed and the required impact energy. Needless to say, it can be selected arbitrarily depending on the absorption performance. Furthermore, in the following examples, the impact test was carried out using a dimension 40
A rectangular parallelepiped impact test sample measuring cm x 10 cm x 10 cm was heated to the specified temperature for 16 to 24 hours, and then immediately cut into a sample having a structure similar to that shown in Figure 4 (40 cm length x 10 cm height x 10 cm width). was mounted on a fixed stand, and an impactor with a weight of 510.3 kg, which had a sufficient area to compress the entire impact surface of the impact test sample, was placed at an impact speed of 5 miles/hour (8.05 km/hour). I set it up and conducted an impact test. Further, the second impact to determine the load recovery rate was performed 30 minutes after the first impact. For the outer skin, 100 parts of polypropylene glycol (EP-240 manufactured by Mitsui Nisso Urethane Co., Ltd.) with an OH value of 25, ethylene. 18 parts glycol, 1 part DABCO 33LV (manufactured by Nippon Nyukazai Co., Ltd.), 0.06 dibutyltin dilaurate
5 parts of Freon-11 (manufactured by Daikin) and a prepolymer derived from diphenylmethane diisocyanate (manufactured by Sumitomo Bayer Urethane) Sumidyur PC, NCO% = 26
%) 106 parts (all parts by weight) were molded using a RIM casting machine with a wall thickness of 3 mm, a density of 1.10 g/cm 3 , and a flexural modulus of 1800 Kg/cm 3 (ASTM D-790-66). Cellular urethane was used for impact testing in the examples described below. Note that the energy absorption efficiency and the load recovery rate temperature magnification were calculated using the respective formulas shown in the definitions above. (Example 1) Density 0.033 obtained by molding by bead method
g/ cm3 expanded polystyrene/polyethylene foam (polystyrene/polyethylene component ratio = 75/
25 (weight ratio)) was placed inside the microcellular urethane shell formed by RIM molding as shown in FIG. 4, and an impact test was conducted according to the method described above. As a result, the first
As shown in the table, an impact energy absorbing bumper system was obtained that exhibited excellent energy absorption efficiency and had a temperature multiplier of 1.25 and excellent temperature dependence.

【表】 (実施例 2) ビーズ法により成形して得られた密度0.05g/
cm3の発泡ポリスチレン/ポリエチレン・フオーム
(ポリスチレン/ポリエチレン成分比=50/50
(重量比)を実施例1と同様の方法で衝撃試験を
行なつた。その結果、極めて低密度で第2表に示
されるように優れたエネルギー吸収効率を示す、
温度倍率1・72と優れた温度依存性を有する衝撃
エネルギー吸収バンパー・システムが得られた。
[Table] (Example 2) Density 0.05g/obtained by molding by bead method
cm 3 of expanded polystyrene/polyethylene foam (polystyrene/polyethylene component ratio = 50/50
(weight ratio) was subjected to an impact test in the same manner as in Example 1. As a result, it exhibits excellent energy absorption efficiency at extremely low density as shown in Table 2.
An impact energy absorbing bumper system with a temperature multiplier of 1.72 and excellent temperature dependence was obtained.

【表】 (比較例 1) 一方、比較のためビーズ法により密度0.033
g/cm3のスチレン成分100%のフオームを成形
し、これに対し実施例1と同様の方法で衝撃試験
を行なつた。その結果は第3表に示すようにエネ
ルギー吸収効率、温度倍率は良好であるが荷重回
復率が34.3%と低く、バンパーシステムとして充
分とはいえない状況であつた。
[Table] (Comparative Example 1) On the other hand, for comparison, the density was 0.033 using the bead method.
A 100% styrene foam with a weight of 100 g/cm 3 was molded and subjected to an impact test in the same manner as in Example 1. As shown in Table 3, the results showed that the energy absorption efficiency and temperature multiplier were good, but the load recovery rate was low at 34.3%, which could not be said to be sufficient as a bumper system.

【表】 (比較例 2) 同じく比較のためビーズ法により成形して得ら
れた密度0.056g/cm3のエチレン成分100%のフオ
ームを実施例1と同様の方法で衝撃試験したとこ
ろ、第4表に示すような結果が見られ、常温(23
℃)での20%圧縮応力が1.72Kg/cm2と低く、エネ
ルギー吸収効率も小さく、温度倍率も2.22と大き
く温度依存性も悪いため、60℃での最大応力が非
常に大きくなるという欠点を有するバンパーシス
テムであつた。
[Table] (Comparative Example 2) For comparison, a 100% ethylene foam with a density of 0.056 g/cm 3 obtained by molding by the bead method was subjected to an impact test in the same manner as in Example 1. The results shown in the table are seen, and the temperature (23
The 20% compressive stress at 60°C is as low as 1.72Kg/cm 2 , the energy absorption efficiency is low, and the temperature multiplier is 2.22, which means that the temperature dependence is poor, so the maximum stress at 60°C is extremely large. It was a bumper system with

【表】 (比較例 3) OH価28のポリプロピレン.グリコール.アク
リロニトリル.スチレ.グラフト共重合体(三井
日曹ウレタン社製ポリマー.ポリオール34−28)
75部、OH価45の水酸基末端液状ポリブタジエン
(出光石油化学社製 Poly bd R−45HT)30
部、OH価488のソルビトール誘導ポリエーテル
(BASF−ワイアンドツト 社製 PA−14635)
15部、水1.0部、トリエチレンジアミン1.0部、シ
リコン系界面活性剤(日本ユニカー社製 L−
5303)1.0部を均一に混合した液に液状のジフエ
ニルメタンジイソシアナート誘導プレポリマー
(モーベイ.ケミカルス社製 E−451、NCO%
27%)50.9部(部数は何れも重量部)を添加し、
均一に撹拌後、内容量4000cm3(たて40cm×よこ10
cm×たかさ10cm)の金型に注型して密度0.11g/
cm3のポリウレタン.フオームを得た。このポリウ
レタン.フオームについて実施例1と同様の方法
で衝撃試験を行なつたところ、その結果は第5表
に示す如くであつた。
[Table] (Comparative Example 3) Polypropylene with an OH value of 28. Glycol. Acrylonitrile. Steele. Graft copolymer (polymer manufactured by Mitsui Nisso Urethane Co., Ltd. Polyol 34-28)
75 parts, hydroxyl-terminated liquid polybutadiene with an OH value of 45 (Poly bd R-45HT manufactured by Idemitsu Petrochemical Co., Ltd.) 30
sorbitol-derived polyether with an OH value of 488 (PA-14635 manufactured by BASF-WY&D)
15 parts, 1.0 part of water, 1.0 part of triethylenediamine, silicone surfactant (manufactured by Nippon Unicar L-
5303) 1.0 part of liquid diphenylmethane diisocyanate-derived prepolymer (manufactured by Mauvay Chemicals, E-451, NCO%)
27%) 50.9 parts (all parts are by weight),
After stirring evenly, the inner volume is 4000cm 3 (vertical 40cm x horizontal 10
cm×height 10cm) with a density of 0.11g/
cm 3 polyurethane. I got the form. This polyurethane. When the foam was subjected to an impact test in the same manner as in Example 1, the results were as shown in Table 5.

【表】【table】

【表】 上記第5表からもわかるように密度が0.11g/
cm3と実施例中のサンプルに比べて高密度にも拘ら
ず23℃での20%圧縮応力は比較的小さく、最大応
力、最大変位も大きくなる。又、エネルギー吸収
効率も実施例に比べて小さくなり、温度倍率も大
きいものであつた。 以上のように本発明衝撃エネルギー吸収特性を
もつたバンパーは車輌用として極めて優れた特性
をもつものであり、安全対策上、社会のニーズを
充足する役割は頗る大きく、実際面での効果が期
待されるものである。
[Table] As can be seen from Table 5 above, the density is 0.11g/
cm 3 and higher density than the samples in Examples, the 20% compressive stress at 23°C is relatively small, and the maximum stress and maximum displacement are also large. In addition, the energy absorption efficiency was also lower than in Examples, and the temperature multiplier was also large. As described above, the bumper with impact energy absorption characteristics of the present invention has extremely excellent characteristics for use in vehicles, and plays an extremely important role in meeting the needs of society in terms of safety measures, and is expected to have practical effects. It is something that will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は代表的な衝撃時の応力一変位曲線例、
第2図は第1回目衝撃と第2回目衝撃との代表的
な応力一変位曲線例、第3図は−20℃と60℃での
代表的な応力−変位曲線例、第4図は本発明バン
パーの構成例を示す車輌用衝撃エネルギー吸収バ
ンパーの斜視図である。 1……衝撃エネルギー吸収バンパー、2……補
強用バツクアツプ・ビーム、3……突出基板、4
……衝撃エネルギー吸収性フオーム、5……外
皮。
Figure 1 shows an example of a typical stress-displacement curve during impact.
Figure 2 is an example of a typical stress-displacement curve for the first and second impact, Figure 3 is an example of a typical stress-displacement curve at -20℃ and 60℃, and Figure 4 is a typical example of the stress-displacement curve for the first and second impacts. FIG. 1 is a perspective view of a vehicular impact energy absorbing bumper showing a configuration example of the invention bumper. 1... Impact energy absorbing bumper, 2... Backup beam for reinforcement, 3... Protruding board, 4
... Shock energy absorbing foam, 5 ... Outer skin.

Claims (1)

【特許請求の範囲】 1 バンパー補強用のバツクアツプ・ビームの前
面に衝撃エネルギー吸収性フオームを配置し、か
つ該フオームを被覆するように合成樹脂又は合成
ゴムからなる外皮を該バツクアツプ・ビームに固
定してなる車輌用衝撃エネルギー吸収バンパーに
おいて、前記衝撃エネルギー吸収性フオームとし
てポリスチレンとポリエチレンを成分とし、ポリ
スチレン/ポリエチレンの成分比を90/10〜25/
75重量部にして見掛け比重を0.02〜0.10g/cm3
した発泡プラスチツク・フオームを用いることを
特徴とする車輌用衝撃エネルギー吸収バンパ−。 2 ポリスチレンとポリエチレンを成分とする発
泡プラスチツク・フオームが常温時(23℃)の衝
撃試験(速度;5マイル/時間)での20%圧縮応
力が2〜10Kg/cm2、エネルギー吸収効率が65%以
上、荷重回復率が40%以上、かつ−20℃と60℃の
衝撃試験(速度;5マイル/時間)での温度倍率
が2以下である特許請求の範囲第1項記載の車輌
用衝撃エネルギー吸収バンパー。
[Claims] 1. An impact energy absorbing foam is arranged on the front surface of a back-up beam for reinforcing the bumper, and an outer skin made of synthetic resin or synthetic rubber is fixed to the back-up beam so as to cover the foam. In the impact energy absorbing bumper for vehicles, the impact energy absorbing foam is composed of polystyrene and polyethylene, and the polystyrene/polyethylene component ratio is 90/10 to 25/2.
An impact energy absorbing bumper for a vehicle characterized by using expanded plastic foam having an apparent specific gravity of 75 parts by weight from 0.02 to 0.10 g/cm 3 . 2. Expanded plastic foam composed of polystyrene and polyethylene has a 20% compressive stress of 2 to 10 Kg/cm 2 and an energy absorption efficiency of 65% in an impact test (speed: 5 miles/hour) at room temperature (23°C). The impact energy for a vehicle according to claim 1, which has a load recovery rate of 40% or more and a temperature multiplier of 2 or less in an impact test at -20°C and 60°C (speed: 5 miles/hour). Absorbent bumper.
JP11563780A 1980-08-21 1980-08-21 Shock energy absorbing bumper for vehicle Granted JPS5740136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11563780A JPS5740136A (en) 1980-08-21 1980-08-21 Shock energy absorbing bumper for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11563780A JPS5740136A (en) 1980-08-21 1980-08-21 Shock energy absorbing bumper for vehicle

Publications (2)

Publication Number Publication Date
JPS5740136A JPS5740136A (en) 1982-03-05
JPS6157504B2 true JPS6157504B2 (en) 1986-12-06

Family

ID=14667567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11563780A Granted JPS5740136A (en) 1980-08-21 1980-08-21 Shock energy absorbing bumper for vehicle

Country Status (1)

Country Link
JP (1) JPS5740136A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221745A (en) * 1982-06-19 1983-12-23 Japan Styrene Paper Co Ltd Core material of bumper of car
JPS5940962A (en) * 1982-09-01 1984-03-06 Toyo Tire & Rubber Co Ltd Bumper for unmanned conveyance truck
JPS60189660A (en) * 1984-03-08 1985-09-27 Japan Styrene Paper Co Ltd Core material for automobile bumper
JPS6146744A (en) * 1984-08-14 1986-03-07 Kanegafuchi Chem Ind Co Ltd Car bumper core member
JPS62256636A (en) * 1986-04-30 1987-11-09 Kanegafuchi Chem Ind Co Ltd Preparation of core material for vehicular bumper and mold therefor
US6109598A (en) * 1999-06-29 2000-08-29 Bridgestone/Firestone, Inc. Air spring bumper utilizing a combination of materials
DE10243460A1 (en) * 2002-09-19 2004-04-01 Rehau Ag + Co. Polymer energy absorber for motor vehicles and bumper system
JP2011208067A (en) * 2010-03-30 2011-10-20 Sekisui Plastics Co Ltd Core material for bumper and bumper obtained using the same
JP5722564B2 (en) * 2010-07-27 2015-05-20 積水化成品工業株式会社 Automotive exterior materials
JP6399702B2 (en) * 2014-03-26 2018-10-03 株式会社ジェイエスピー Shock absorber

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866963A (en) * 1973-08-13 1975-02-18 Mccord Corp Energy absorbing bumper assembly
JPS5112074A (en) * 1974-07-18 1976-01-30 Toyo Tire & Rubber Co
JPS5146138A (en) * 1974-08-22 1976-04-20 Crosfield Electronics Ltd Entomenni reezakoo sosasurusochi
JPS5230870A (en) * 1975-09-03 1977-03-08 Sekisui Plastics Process for manufacturing expandable polystyrene particles
JPS5233156A (en) * 1975-09-09 1977-03-14 Sanko Kuki Sochi Kk Work environment cleaning method
JPS5311993A (en) * 1976-07-20 1978-02-02 Daicel Chem Ind Ltd Preparation of polyester
JPS5349731A (en) * 1976-02-23 1978-05-06 Berol Kemi Ab Bumper
JPS5730642A (en) * 1980-07-29 1982-02-18 Toyo Kagaku Kk Car bumper
JPS6027059U (en) * 1983-08-01 1985-02-23 ユニチカ株式会社 Tei-Batsugu
JPH047977U (en) * 1990-05-10 1992-01-24

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866963A (en) * 1973-08-13 1975-02-18 Mccord Corp Energy absorbing bumper assembly
JPS5112074A (en) * 1974-07-18 1976-01-30 Toyo Tire & Rubber Co
JPS5146138A (en) * 1974-08-22 1976-04-20 Crosfield Electronics Ltd Entomenni reezakoo sosasurusochi
JPS5230870A (en) * 1975-09-03 1977-03-08 Sekisui Plastics Process for manufacturing expandable polystyrene particles
JPS5233156A (en) * 1975-09-09 1977-03-14 Sanko Kuki Sochi Kk Work environment cleaning method
JPS5349731A (en) * 1976-02-23 1978-05-06 Berol Kemi Ab Bumper
JPS5311993A (en) * 1976-07-20 1978-02-02 Daicel Chem Ind Ltd Preparation of polyester
JPS5730642A (en) * 1980-07-29 1982-02-18 Toyo Kagaku Kk Car bumper
JPS6027059U (en) * 1983-08-01 1985-02-23 ユニチカ株式会社 Tei-Batsugu
JPH047977U (en) * 1990-05-10 1992-01-24

Also Published As

Publication number Publication date
JPS5740136A (en) 1982-03-05

Similar Documents

Publication Publication Date Title
Suh et al. Lightweight cellular plastics
JP4163615B2 (en) Energy absorption unit
EP2809556B1 (en) Energy absorbing assembly and methods of making and using the same
US7977396B2 (en) Impact-absorbing members for dynamic impact applications
US20060103044A1 (en) Composite foam structure having an isotropic strength region and anisotropic strength region
RU2395538C2 (en) Improved foamed materials for absorbing energy of vehicle
US6326077B1 (en) Composite polymeric material having high resistance to impact energy
JP2003127796A (en) Shock absorbing floor spacer for automobile
JPS6157504B2 (en)
EP1055701B1 (en) Polycarbonate resin foam and shock absorber using the same
JPH0716867A (en) Shock absorbing structure of interior member for automobile
US20020064643A1 (en) Composite polymeric material having high resistance to impact energy
JP2003118460A (en) Automobile floor spacer
US7300698B2 (en) Composite polymeric material having high resistance to impact energy
JPH07117471A (en) Cushioning member for door of automobile
JP4021929B2 (en) Shock-absorbing automotive floor spacer
JP4053578B2 (en) Shock-absorbing automotive floor spacer
JP2003267166A (en) Core material for automobile bumper
JP2006068905A (en) Energy absorbing material using composite resin molded product
JP2007083904A (en) Vehicle floor spacer
JPH07137067A (en) Manufacture of core material for automobile bumper
JP2001019788A (en) Buffer
JP2007131826A (en) Pre-expanded resin particle, formed product of expanded resin and manufacturing method thereof