JP2005082840A - Method for producing hot-forged non-heattreated part excellent in machinability - Google Patents

Method for producing hot-forged non-heattreated part excellent in machinability Download PDF

Info

Publication number
JP2005082840A
JP2005082840A JP2003314500A JP2003314500A JP2005082840A JP 2005082840 A JP2005082840 A JP 2005082840A JP 2003314500 A JP2003314500 A JP 2003314500A JP 2003314500 A JP2003314500 A JP 2003314500A JP 2005082840 A JP2005082840 A JP 2005082840A
Authority
JP
Japan
Prior art keywords
machinability
forging
temperature
steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003314500A
Other languages
Japanese (ja)
Other versions
JP4112464B2 (en
Inventor
Shoji Iwaki
昭二 岩城
Kazue Nomura
一衛 野村
Tatsuo Tanaka
達夫 田中
Naohito Ono
尚仁 大野
Kinsei Kino
欣成 嬉野
Masahiro Toda
正弘 戸田
Osamu Kada
修 加田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Aichi Steel Corp
Original Assignee
Nippon Steel Corp
Toyota Motor Corp
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyota Motor Corp, Aichi Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003314500A priority Critical patent/JP4112464B2/en
Publication of JP2005082840A publication Critical patent/JP2005082840A/en
Application granted granted Critical
Publication of JP4112464B2 publication Critical patent/JP4112464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new forging method capable of improving the machinability of a forged product independently of a machinability improving element. <P>SOLUTION: A steel material, which contains, by mass%, of 0.20-0.60% C, 0.10-2.00% Si, 0.30-2.00% Mn, 0.01-0.20% S, 0.05-2.00% Cr, ≤0.060% Al, 0.01-0.05% V, 0.003-0.020% N and if necessary, one or more kinds of Ti, Pb, Te, Ca, Bi, Mg, Zr and the balance Fe with impurity elements, is heated to either higher temperature of (solidus temperature) × 0.94 or 1,250°C as the lower limit temperature and in the range of ≤(liquidus temperature) × 0.98 as the upper limit temperature, and a hot-forging at the super-high temperature is applied so that ≥85% of the surface of a blank is brought into contact with dies in the range of the temperature to make the hot-forged product having ferrite and pearite structure and ≤No.25 average austenitic crystal grain size number. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば自動車のエンジン部品、建設機械部品等の熱間鍛造により製造して使用される部品であって、鍛造後の仕上加工が容易な、優れた被削性を有する熱間鍛造非調質部品の製造方法に関する。   The present invention is a part that is manufactured and used by hot forging such as automobile engine parts and construction machine parts, for example, and is easy to finish after forging and has excellent machinability. The present invention relates to a tempered part manufacturing method.

自動車のエンジン部品や建設機械部品等では、数多くの部品が熱間鍛造により製造されている。これはクランクシャフト、コンロッド等比較的大きな部品が多く、かつ形状が複雑なため、熱間鍛造による成形がコスト面で最も有利となるためである。しかしながら、熱間鍛造は、粗形状を製造するにすぎず、当然熱間鍛造後には、最終製品形状に加工するために、機械加工等で仕上加工が施される。従って、これらの部品では、大量生産が容易にできるレベルの優れた被削性を有していることが要求される。   In automobile engine parts and construction machine parts, many parts are manufactured by hot forging. This is because there are many relatively large parts such as a crankshaft and a connecting rod, and the shape is complicated, so that forming by hot forging is the most advantageous in terms of cost. However, hot forging only produces a rough shape. Naturally, after hot forging, finishing is performed by machining or the like in order to process into a final product shape. Therefore, these parts are required to have excellent machinability at a level that facilitates mass production.

熱間鍛造に使用される鋼材としては、昭和50年代前半までは、炭素鋼や、炭素鋼に若干量のCr、Mo等を添加した低合金鋼を用いて鍛造後に焼入焼もどし(調質)することにより、必要な強度を確保していた。しかしながら、この方法は熱処理に多大なエネルギーを必要とすることから、鍛造後に空冷するのみで、必要な強度が得られ、熱処理を省略することが可能な非調質鋼が、数多く使用されるようになり、多数の材料が開発され、今日に到っている。   As steel materials used for hot forging, until the first half of the Showa 50s, quenching and tempering was performed after forging using carbon steel or low alloy steel with a slight amount of Cr, Mo, etc. added to carbon steel (tempering) ) To ensure the necessary strength. However, since this method requires a large amount of energy for heat treatment, a lot of non-tempered steel that can obtain the required strength and can omit heat treatment only by air cooling after forging seems to be used. Many materials have been developed and reached today.

この多数の非調質鋼の開発の際において、熱処理せずに必要な強度を得るという強度面での性能が重視されてきたことは勿論であるが、鍛造品は、機械加工が必須の工程となることから、被削性の改善も同時に重視され、強度を確保するための元素の添加量についても、被削性を考慮して上下限の範囲が決定されるとともに、被削性改善元素として知られているPb等の元素を有効活用して、例えば特許文献1〜3に示す大量生産可能な被削性を有する熱間鍛造用非調質鋼が開発されてきた。   In the development of this large number of non-tempered steels, it is a matter of course that the strength performance of obtaining the required strength without heat treatment has been emphasized. Therefore, improvement of machinability is also emphasized at the same time, and the upper and lower limits of the addition amount of elements for securing strength are determined in consideration of machinability, and machinability improving elements Non-tempered steel for hot forging having machinability that can be mass-produced shown in Patent Documents 1 to 3, for example, has been developed by effectively utilizing an element such as Pb known as Pb.

特開平1−165749号公報Japanese Patent Laid-Open No. 1-165749 特開平1−176055号公報Japanese Patent Laid-Open No. 1-176055

しかしながら、前記特許文献に記載の鋼には以下の問題がある。
前記した通り、従来の熱間鍛造用非調質鋼においても被削性は開発の際に最重要視され、開発が行われてきた。しかし、従来の被削性改善方法は基本的に成分元素の最適化によって、被削性等の要求事項を満足させようとするものである。そして、化学成分は、要求される機械的特性に合わせて、非常に大きく変化する。そのため、強度確保のための基本的成分元素であるC、Mn、Cr量の変動によって、得られる被削性のレベルが変化し、添加しなければならない被削性向上元素の量が変化する。従って、新しい開発鋼を開発する度に性能確認のための多数の試作実験を行わなければならず、開発に伴う工数は多大なものとなっている。
However, the steel described in the patent document has the following problems.
As described above, machinability is regarded as the most important factor in the conventional non-heat treated steel for hot forging and has been developed. However, the conventional machinability improving method basically attempts to satisfy requirements such as machinability by optimizing component elements. And a chemical component changes very greatly according to the required mechanical characteristic. Therefore, the level of machinability to be obtained changes depending on the amount of C, Mn, and Cr, which are basic component elements for ensuring strength, and the amount of the machinability improving element to be added changes. Therefore, every time a newly developed steel is developed, a large number of trials for performance confirmation must be performed, and the number of man-hours associated with the development is enormous.

また、最近さらなる軽量化の要求が強くなっていることから、より硬度の高い鍛造品で必要な被削性を達成することが要求されるようになってきており、従来の成分元素最適型の被削性改善方法では限界にきている。従って、成分の改善のみでなく、製造方法の改善
による被削性改善方法の開発が強く望まれていた。
In addition, as the demand for further weight reduction has recently increased, it has been required to achieve the required machinability with a forged product with higher hardness. The machinability improvement method has reached its limit. Therefore, development of a machinability improving method not only by improving the components but also by improving the manufacturing method has been strongly desired.

本発明は以上説明した課題を解決するために成されたものであり、その目的は、製造方法の面からの新しい被削性改善方法を提案し、これと従来の成分最適型の被削性改善対策とを組合せることによって、より短期間での開発を可能にするとともに、高硬度の鍛造品でも被削性を確実に改善することのできる熱間鍛造用非調質部品の製造方法を提供することにある。   The present invention has been made to solve the above-described problems, and its purpose is to propose a new machinability improving method from the viewpoint of the manufacturing method, and this and the conventional component optimum type machinability. A method for manufacturing non-heat treated parts for hot forging that can be developed in a shorter period of time by combining improvement measures, and can reliably improve machinability even for forged products with high hardness. It is to provide.

前記課題を解決するためになされた請求項1記載の発明は、質量%で、C:0.20〜0.60%、Si:0.10〜2.00%、Mn:0.30〜2.00%、S:0.01〜0.20%、Cr:0.05〜2.00%、Al:0.060%以下、V:0.01〜0.50%、N:0.003〜0.020%を含有し、残部Fe及び不純物元素からなる鋼材を、下限温度を固相線温度×0.94又は1250℃の何れか高い方とし、上限温度を液相線温度×0.98以下とする範囲に加熱し、該範囲の温度域で、素材表面の85%以上が金型に接触するように、超高温熱間鍛造加工して、組織がフェライトパーライトであって、平均オーステナイト結晶粒度番号が2.5番以下である熱間鍛造品とすることを特徴とする被削性の優れた熱間鍛造非調質部品の製造方法である。   The invention according to claim 1, which has been made to solve the above-mentioned problems, is mass%, C: 0.20 to 0.60%, Si: 0.10 to 2.00%, Mn: 0.30 to 2 0.00%, S: 0.01 to 0.20%, Cr: 0.05 to 2.00%, Al: 0.060% or less, V: 0.01 to 0.50%, N: 0.003 The lower limit temperature is set to the higher one of the solidus temperature × 0.94 or 1250 ° C., and the upper limit temperature is set to the liquidus temperature × 0. Heated to a range of 98 or less, and subjected to ultra-high temperature hot forging so that 85% or more of the material surface is in contact with the mold in the temperature range of the range, the structure is ferrite pearlite, and the average austenite Hot forging with excellent machinability characterized by being a hot forged product having a grain size number of 2.5 or less This is a manufacturing method for non-heat treated parts.

本発明において注目すべきことは、通常の温度に比べ高温に加熱及び鍛造する超高温鍛造を実施することにより、2.5番以下というより粗大化した結晶粒を有する鍛造品を製造し、粒粗大化の効果という被削性向上元素の添加とは別の方法によって、被削性を改善し、仕上加工を容易にできることを見出した点にある。   What should be noted in the present invention is that by performing ultra-high temperature forging which is heated and forged to a higher temperature than normal temperature, a forged product having coarser crystal grains of 2.5 or less is manufactured, It is the point that it was found that the machinability can be improved and finishing can be facilitated by a method different from the addition of the machinability improving element, which is the effect of coarsening.

前記したように、成分の最適化を特徴とする熱間鍛造用非調質鋼は、既に多数の特許が出願されており、それにより、熱間鍛造後熱処理せずに必要な強度を確保でき、かつ必要な被削性を確保した鋼が既に提案されている。   As mentioned above, a number of patents have already been filed for non-heat treated steel for hot forging, which is characterized by optimization of the components, thereby ensuring the necessary strength without heat treatment after hot forging. Steels that ensure the necessary machinability have already been proposed.

一方、超高温鍛造については、例えば特開平5−15935号に記載されており、複雑な形状の部品をより小さい変形抵抗で加工可能とすることが可能な技術として、既に公知となっている。   On the other hand, ultra-high temperature forging is described in, for example, Japanese Patent Application Laid-Open No. 5-15935, and has already been known as a technique capable of processing a component having a complicated shape with a smaller deformation resistance.

しかしながら、後者の超高温鍛造は、本発明の目的である製造面からの被削性の改善とは全く無関係に開発された技術であり、被削性の改善のために、積極的に利用されるという考え方は皆無であった。また、前記した化学成分の最適化による被削性の改善のみでは、特に硬さがHv300以上となる場合においては、大量生産可能な被削性を得ることが難しくなり、成分の最適化以外の方法による改善の必要があった。   However, the latter ultra-high temperature forging is a technology developed completely independent of the improvement in machinability from the manufacturing surface, which is the object of the present invention, and is actively used for improving machinability. There was no idea that. In addition, only by improving the machinability by optimizing the chemical components described above, it becomes difficult to obtain machinability that can be mass-produced, particularly when the hardness is Hv 300 or more. There was a need for improvement by the method.

本発明者等は、多数の実験を繰り返し、調査検討を重ねた結果、超高温鍛造によって、結晶粒度を粗大化させ、2.5番以下のオーステナイト結晶粒度を有する鍛造品とした場合に、通常の3〜6番の鍛造品に比べて、成分を変えなくても被削性の改善が可能になることを新規に見出したものである。   As a result of repeating a number of experiments and repeated investigations and studies, the inventors of the present invention usually coarsened the crystal grain size by ultra-high temperature forging, and obtained a forged product having an austenite crystal grain size of 2.5 or less. As a result, it has been found that the machinability can be improved without changing the components as compared with Nos. 3-6.

さらに、具体的に説明すると、Hv200以下程度の比較的硬度が低い場合には、フェライトの変形が容易であるために、機械加工時に炭化物が破断、変形し、切粉の生成するのに必要なエネルギーが結晶粒度によって大きく変化することはなく、その効果はあるものの、それほど大きくはない。しかし、硬度が高くなって、Hv240程度以上になると、結晶粒が大きいほど機械加工時の炭化物の破断、変形に伴うエネルギーが小さくなり、加工時に発生するエネルギーも小さくなって、工具寿命が改善することが明らかとなった。実際に機械加工が問題となるのは、後者の硬さが高くなった場合であり、本発明を適用
することによって被削性を大きく改善することができる。
More specifically, when the hardness is relatively low, such as about Hv 200 or less, ferrite is easily deformed, so that the carbide is broken and deformed during machining, and is necessary for generating chips. The energy does not change greatly depending on the crystal grain size, and although it is effective, it is not so large. However, when the hardness is increased to about Hv240 or more, the larger the crystal grains, the smaller the energy associated with the breaking and deformation of the carbide during machining, the less energy generated during machining, and the tool life is improved. It became clear. Machining actually becomes a problem when the hardness of the latter increases, and the machinability can be greatly improved by applying the present invention.

次に本発明である被削性の優れた熱間鍛造非調質部品の製造方法で使用される鋼材の成分範囲の限定理由について説明する。   Next, the reason for limiting the component range of the steel material used in the method for producing a hot forged non-heat treated part excellent in machinability according to the present invention will be described.

なお、言うまでもなく、本発明は、化学成分の範囲の限定を特徴とする発明ではない。従って、以下に示す成分範囲は、熱間鍛造後非調質で使用でき、かつ本発明の超高温鍛造によって被削性の改善効果を確実に得ることのできる成分範囲を示すものである。   Needless to say, the present invention is not an invention characterized by limiting the range of chemical components. Therefore, the component ranges shown below indicate component ranges that can be used in non-tempering after hot forging, and that the machinability improving effect can be reliably obtained by the ultra-high temperature forging of the present invention.

C:0.20〜0.60%
Cは、侵入型元素であって固溶強化により強度向上に効果のある元素であり、鍛造後に必要な強度を確保するためには、少なくとも0.20%以上含有させる必要がある。しかし、その含有量が増加すると、硬さが高くなって被削性が低下し、本発明の方法を適用しても鍛造後の仕上加工が難しくなるので、上限を0.60%とした。
C: 0.20 to 0.60%
C is an interstitial element that is effective in improving the strength by solid solution strengthening. In order to ensure the necessary strength after forging, it is necessary to contain at least 0.20% or more. However, when the content is increased, the hardness is increased, the machinability is lowered, and finishing after forging becomes difficult even when the method of the present invention is applied, so the upper limit was made 0.60%.

Si:0.10〜2.00%
Siは、鋼の製造時に脱酸剤として使用するのに有効な元素である。従って、最低でも0.10%以上の含有が必要である。しかしながら、多量に添加しすぎると、脱炭しやすくなるとともに、熱間加工性、靭性が低下するので、上限を2.00%とした。望ましくは0.70未満とするのが良い。
Si: 0.10 to 2.00%
Si is an effective element for use as a deoxidizer during the production of steel. Therefore, the content must be at least 0.10%. However, too much addition facilitates decarburization and decreases hot workability and toughness, so the upper limit was made 2.00%. Desirably, it should be less than 0.70.

Mn:0.30〜2.00%
Mnは、鋼材の焼入性を高め、必要な強度を確保するための基本元素であり、0.30%以上の含有が必要である。しかしながら、多量の含有は被削性を低下させて、鍛造後の仕上加工が難しくなるため、その上限を2.00%とした。
Mn: 0.30 to 2.00%
Mn is a basic element for enhancing the hardenability of the steel material and ensuring the required strength, and it is necessary to contain 0.30% or more. However, a large amount reduces machinability and makes it difficult to finish after forging, so the upper limit was made 2.00%.

S:0.01〜0.20%
Sは被削性を向上させるために必要な元素であり、0.01%以上の含有が必要である。しかし、多量の含有は靭性を低下させるので、上限を0.20%とした。
S: 0.01-0.20%
S is an element necessary for improving the machinability and needs to be contained in an amount of 0.01% or more. However, since a large amount reduces toughness, the upper limit was made 0.20%.

Cr:0.05〜2.00%
Crは、Mnと同様に鋼材の焼入性を高め、必要な強度を確保するための基本元素であり、0.05%以上の含有が必要である。しかしながら、多量の含有は靭性を低下させるため、上限を2.00%とした。
Cr: 0.05-2.00%
Cr, like Mn, is a basic element for enhancing the hardenability of the steel material and ensuring the necessary strength, and it is necessary to contain 0.05% or more. However, since a large amount reduces toughness, the upper limit was made 2.00%.

Al:0.060%以下
Alは、脱酸のために必要な元素である。しかしながら、Alは鋼中でアルミナとなって存在し、被削性に悪影響を及ぼすとともに、疲労破壊の起点となって疲労特性を低下させるため、脱酸のための最低限の添加に抑える必要があり、上限を0.060%とした。被削性を重視するのであれば、できるだけ添加量を抑えることが好ましい。
なお、脱酸効果の点より下限は0.002%とすることが好ましい。
Al: 0.060% or less Al is an element necessary for deoxidation. However, Al exists in the form of alumina in steel, which adversely affects machinability and lowers fatigue properties as a starting point for fatigue failure. Therefore, it is necessary to suppress the addition to the minimum for deoxidation. Yes, the upper limit was made 0.060%. If importance is attached to machinability, it is preferable to suppress the addition amount as much as possible.
The lower limit is preferably 0.002% from the viewpoint of the deoxidation effect.

V:0.01〜0.50%
Vは熱間鍛造後の冷却時に鋼中でV炭窒化物となって析出し、析出強化によって疲労強度を向上させる元素であり、非調質で使用可能とするために不可欠となる元素である。従って、その含有率の下限を0.01%とした。しかしながら、多量に含有しても効果が飽和し、コスト高となるため、上限を0.50%とした。
V: 0.01 to 0.50%
V is an element that precipitates as V carbonitride in steel during cooling after hot forging, improves fatigue strength by precipitation strengthening, and is an indispensable element for enabling use in non-tempered steel . Therefore, the lower limit of the content is set to 0.01%. However, even if contained in a large amount, the effect is saturated and the cost is increased, so the upper limit was made 0.50%.

N:0.003〜0.020%
Nは、鋼中でV等と結合して炭窒化物となって存在し、この炭窒化物によって鋼を析出強化させ、強度向上に効果のある元素であり、含有率の下限を0.003%とした。しかしながら、多量に含有させると、鋳片、鋼塊内にブローホ−ルが生成し、鍛造時における割れ発生の原因となるため、上限を0.020%とした。
N: 0.003-0.020%
N is a carbonitride that is combined with V and the like in the steel and is precipitated and strengthened by this carbonitride, and is effective in improving the strength. The lower limit of the content is 0.003. %. However, if it is contained in a large amount, blow holes are generated in the slab and the steel ingot and cause cracking during forging, so the upper limit was made 0.020%.

また、本発明で使用する鋼は、上記元素以外に不可避不純物としてPを含有する場合がある。しかし、その量は多くても0.04%未満である。   Moreover, the steel used by this invention may contain P as an unavoidable impurity other than the said element. However, the amount is at most less than 0.04%.

次に、請求項1の発明の化学成分以外の条件の限定理由について説明する。
組織をフェライトパーライトとしたのは、本発明である超高温鍛造による被削性の改善効果がフェライトパーライト組織である場合に最も効果的となるからである。
Next, the reasons for limiting the conditions other than the chemical components of the invention of claim 1 will be described.
The reason why the structure is ferrite pearlite is that the machinability improving effect by the ultra-high temperature forging according to the present invention is most effective when the structure is a ferrite pearlite structure.

また、平均結晶粒度番号を2.5番以下としたのは、2.5番以下の粗粒にしないと、通常の鍛造温度による加工で得られる3〜6番程度の結晶粒からなる鍛造品と比較して、明確な被削性の改善効果が得られないためである。なお、本発明で規定している結晶粒度とは、JISG0551で規定された方法によって測定することのできるオーステナイト結晶粒度を意味する。
なお、結晶粒度の下限は、靱性が大きく低下しないようにするため、1番程度とすることが好ましい。
The average grain size number of 2.5 or less is a forged product consisting of about 3 to 6 crystal grains obtained by processing at a normal forging temperature unless coarse grains of 2.5 or less are used. This is because a clear machinability improving effect cannot be obtained. In addition, the crystal grain size prescribed | regulated by this invention means the austenite crystal grain size which can be measured by the method prescribed | regulated by JISG0551.
The lower limit of the crystal grain size is preferably about 1 so that the toughness is not greatly lowered.

次に、請求項1に記載した製造方法における製造条件の限定理由について説明する。
通常の熱間鍛造では、1000〜1200℃程度の温度にて加熱及び鍛造されることが普通である。しかしながら、それでは、平均結晶粒度番号が安定して2番以下となる鍛造品を製造することはできない。粗大粒からなる鍛造品を製造するには、通常に比べ温度の高い超高温度領域で加熱、鍛造することによって可能となる。具体的には、下限温度が固相線温度×0.94又は1250℃の何れか高い方、上限温度が液相線温度×0.98となる温度で加熱及び鍛造するという超高温鍛造を実施することにより達成される。
Next, the reasons for limiting the manufacturing conditions in the manufacturing method described in claim 1 will be described.
In normal hot forging, heating and forging are usually performed at a temperature of about 1000 to 1200 ° C. However, it is not possible to produce a forged product having an average grain size number that is stably 2 or less. In order to manufacture a forged product composed of coarse grains, heating and forging can be performed in an ultra-high temperature region where the temperature is higher than usual. Specifically, ultra high temperature forging is performed in which heating and forging are performed at a temperature at which the lower limit temperature is the solidus temperature × 0.94 or 1250 ° C., whichever is higher, and the upper limit temperature is the liquidus temperature × 0.98. Is achieved.

なお、鍛造する鋼材の液相線温度及び後述の固相線温度は、棒状素材を用い、一方向凝固試験を行うことにより求めることができる。   In addition, the liquidus temperature of the steel material to forge and the below-mentioned solidus line temperature can be calculated | required by performing a unidirectional solidification test using a rod-shaped raw material.

ここで、下限温度を固相線温度×0.94又は1250℃の何れか高い方としたのは、これより低い温度では、結晶粒度番号を2.5番以下とすることが難しくなり、通常温度における鍛造部品と、被削性における明確な差異を得ることが難しくなるためである。   Here, the lower limit temperature is set to the higher one of the solidus temperature × 0.94 or 1250 ° C., and at a temperature lower than this, it becomes difficult to make the crystal grain size number 2.5 or less. This is because it becomes difficult to obtain a clear difference between the forged part at the temperature and the machinability.

また、より結晶粒が粗大化した鍛造品を得るためには、加熱炉から抽出した被加工材を抽出後、可能な限り短時間で鍛造する必要がある。温度低下は表面の方が大きくなることと、鍛造後の機械加工は、当然の如く表面から加工することとなるため、表面の温度低下が大きくならないように、加熱終了後すばやく鍛造する必要があるからである。   Further, in order to obtain a forged product with coarser crystal grains, it is necessary to forge in as short a time as possible after extracting the workpiece extracted from the heating furnace. Because the temperature drop is larger on the surface and the machining after forging is naturally processed from the surface, it is necessary to forge quickly after the heating is completed so that the temperature drop on the surface does not become large. Because.

一方、上限温度を液相線温度×0.98としたのは、この温度を越える温度での加熱及び鍛造は、溶融してしまう部分が多くなり、鍛造により目的とする形状の鍛造品を仕上げること自体が困難となるためである。   On the other hand, the upper limit temperature is set to the liquidus temperature × 0.98. Heating and forging at a temperature exceeding this temperature causes many parts to melt, and forgings of the desired shape are finished by forging. This is because it becomes difficult.

但し、本発明において、結晶粒が粗大化した組織を得るために、通常に比べ高温に加熱し、固相線に近い温度まで加熱すると、鍛造素材の一部が溶融しはじめ、固相線温度を越えて加熱すると、溶融する部位が増加していく。このような素材を鍛造すると、鍛造後に空孔が残留し、必要な強度の確保が難しくなる。そのため、超高温鍛造時においては、素材表面の大部分(85%以上、特に固相線を超える温度に加熱する場合には、90%以上)が金型に接触しているような高い静水圧状態で鍛造することにより、空孔が減少するように工夫して鍛造することが必要である。   However, in the present invention, in order to obtain a structure in which crystal grains are coarsened, when heated to a higher temperature than usual and heated to a temperature close to the solidus, a part of the forging material starts to melt, the solidus temperature When heated beyond the range, the number of melting sites increases. When such a material is forged, voids remain after forging, making it difficult to ensure the required strength. Therefore, at the time of ultra-high temperature forging, a high hydrostatic pressure such that most of the material surface (85% or more, especially 90% or more when heated to a temperature exceeding the solidus) is in contact with the mold. By forging in a state, it is necessary to devise and forge so that the number of holes is reduced.

また、本発明の製造方法により得られる鍛造部品では、請求項2に記載した発明のように、請求項1の製造方法で使用される鋼に加えてさらにTiを添加して、析出強化により強度向上を図ることができる。以下、その限定理由について説明する。
Ti:0.003〜0.05%
Tiは炭化物を生成し、微細分散して析出強化により鋼の強度向上に有効である。従って、少量の添加であれば、非調質部品の性能向上に効果的であり、下限を0.003%とした。しかしながら、Tiは析出強化に効果がある一方で、窒化物を生成し、加熱時の結晶粒粗大化を防止する効果がある。結晶粒粗大化防止は、通常であれば鋼の性能向上に有
効であるが、本発明は、逆に粗大化による被削性向上を目的としているので、その添加量を少量に抑える必要があり、上限を0.05%とした。
Moreover, in the forged part obtained by the manufacturing method of the present invention, as in the invention described in claim 2, in addition to the steel used in the manufacturing method of claim 1, Ti is further added to increase the strength by precipitation strengthening. Improvements can be made. Hereinafter, the reason for limitation will be described.
Ti: 0.003 to 0.05%
Ti produces carbide, is finely dispersed, and is effective for improving the strength of the steel by precipitation strengthening. Therefore, if a small amount is added, it is effective for improving the performance of the non-tempered part, and the lower limit is set to 0.003%. However, while Ti is effective for precipitation strengthening, it has an effect of generating nitrides and preventing crystal grain coarsening during heating. Prevention of grain coarsening is usually effective in improving the performance of steel, but the present invention is intended to improve machinability by coarsening, so it is necessary to keep the amount added to a small amount. The upper limit was made 0.05%.

さらに、本発明の製造方法により得られる鍛造部品では、請求項3に記載した発明のように、さらにPb、Te、Ca、Bi、Mg、Zr等の元素を添加した鋼を使用することによって、超高温鍛造により得られた優れた被削性をさらに改善することができる。以下、その限定理由について説明する。   Furthermore, in the forged part obtained by the manufacturing method of the present invention, as in the invention described in claim 3, by using steel further added with elements such as Pb, Te, Ca, Bi, Mg, Zr, The excellent machinability obtained by ultra high temperature forging can be further improved. Hereinafter, the reason for limitation will be described.

Pb、Te、Ca、Bi、Mg、Zrは、被削性を改善する効果のある元素である。本発明により得られた鍛造品は、前記した超高温鍛造を行うことによって、通常温度による鍛造を行った場合と比較して優れた被削性を有している。しかしながら、本発明による鍛造品も従来鋼と同様に、被削性改善元素を添加することによって、超高温鍛造により得られた被削性をさらに改善することが可能となるので、必要に応じ添加できるものとした。但し、添加量が多すぎても、熱間加工性が低下する原因となるため、上限をPb、Te、Biは0.30%、Ca、Mg、Zrは0.01%とした。   Pb, Te, Ca, Bi, Mg, and Zr are elements that have an effect of improving machinability. The forged product obtained by the present invention has excellent machinability by performing ultra-high temperature forging as described above as compared with the case of forging at normal temperature. However, the forged product according to the present invention can also improve the machinability obtained by ultra-high temperature forging by adding a machinability improving element, as in the case of conventional steel. It was supposed to be possible. However, even if the addition amount is too large, the hot workability is lowered, so the upper limit is set to 0.30% for Pb, Te, Bi, and 0.01% for Ca, Mg, Zr.

このように、請求項1又は2の発明で使用する鋼に、Pb、Te、Ca、Bi、Mg、Zr等の被削性向上元素を追加した鋼を用いることによって、さらに被削性を改善することができる。なお、超高温鍛造の方法、得られる非調質部品の組織、結晶粒度番号の範囲及びその限定理由については、前記した請求項1と全く同一である。   Thus, the machinability is further improved by using the steel used in the invention of claim 1 or 2 to which a machinability improving element such as Pb, Te, Ca, Bi, Mg, Zr is added. can do. The ultra-high temperature forging method, the structure of the non-tempered part to be obtained, the range of the crystal grain size number, and the reason for the limitation are exactly the same as in the first aspect.

また、不純物としてPを含有する点については、請求項2、3で使用する鋼についても、請求項1の場合と全く同様である。   Further, regarding the point of containing P as an impurity, the steel used in claims 2 and 3 is exactly the same as in the case of claim 1.

次に、本発明の実施例について説明する。表1は供試材として用いた鋼の化学成分を示すものである。   Next, examples of the present invention will be described. Table 1 shows the chemical composition of the steel used as the test material.

Figure 2005082840
Figure 2005082840

また、表1には、固相線温度、液相線温度を併記するが、これは、後述のφ75の鍛伸丸棒をさらに鍛伸し、機械加工して準備したφ15×250mmの棒状素材を用い、一方向凝固試験を行って、測定した温度である。   Table 1 also shows the solidus temperature and the liquidus temperature. This is a rod-shaped material of φ15 × 250 mm prepared by further forging and machining a φ75 forged round bar described later. Is a temperature measured by conducting a unidirectional solidification test.

供試材は、表1に示す成分からなる鋼をVIM溶解炉にて溶解し、製造された鋼塊を直径75mmの丸棒に鍛伸し、空冷することにより準備した。得られた材料を用い、後述の超高温鍛造を実施し、被削性の評価を行った。   The test material was prepared by melting steel composed of the components shown in Table 1 in a VIM melting furnace, forging the manufactured steel ingot into a round bar having a diameter of 75 mm, and air cooling. Using the obtained material, ultra-high temperature forging described later was performed, and machinability was evaluated.

超高温鍛造は、前記鍛伸材から、直径70mm、長さ90mmの円柱型試験片を準備し、これを横置きし、後述の表3に示す加熱温度、鍛造前温度の条件で、高さが35mmと
なるまで鍛造した。また、鍛造は金型の試験材と接触する部分の形状を調整して、試験片の側面が加工の進行とともに接触していくようにし、高さが35mmとなるまで加工した時点で91%の表面が金型と接触するような条件で実施した。鍛造後、粗大化の程度を正確に把握するため、JISG0551に準拠した方法で結晶粒度を調査した。鍛造は、後述の表2に示す通り2水準の温度条件での超高温鍛造(加熱温度、鍛造前温度とも全て規定し範囲内)と、本発明の効果を明確にするために、比較として通常条件での鍛造も同時に実施した。
In the ultra high temperature forging, a cylindrical test piece having a diameter of 70 mm and a length of 90 mm is prepared from the forged material, and this is placed horizontally, and the height is set under the conditions of heating temperature and pre-forging temperature shown in Table 3 to be described later. Was forged to 35 mm. In addition, forging is performed by adjusting the shape of the portion of the mold that comes into contact with the test material so that the side surface of the test piece comes into contact with the progress of processing, and when the processing is performed until the height reaches 35 mm, 91% The conditions were such that the surface was in contact with the mold. After forging, in order to accurately grasp the degree of coarsening, the crystal grain size was investigated by a method based on JISG0551. Forging is usually performed as a comparison in order to clarify the effects of ultra high temperature forging under the two levels of temperature conditions (within both the heating temperature and the temperature before forging both within the specified range) as shown in Table 2 below. Forging was also performed at the same time.

但し、本発明による超高温鍛造を実施すると、通常温度での鍛造に比べ当然の如く結晶粒が粗大化するため、初析フェライトの生成サイトが減少し、フェライト率が低下して硬さが上昇するという傾向を示す。硬さが上昇すると、当然の結果として被削性が低下するため、その低下分を考慮しないと公平な評価とならない。そこで、超高温鍛造した場合に通常鍛造の場合と鍛造後の硬さが同等となるよう、あらかじめ炭素当量を若干低めに調整した材料を準備して、実験を行った。   However, when ultra-high temperature forging according to the present invention is performed, the crystal grains naturally become coarser than forging at normal temperature, so the number of proeutectoid ferrite formation sites decreases, the ferrite rate decreases, and the hardness increases. The tendency to do. If the hardness increases, the machinability decreases as a matter of course. Therefore, a fair evaluation cannot be made unless the decrease is taken into consideration. Therefore, an experiment was conducted by preparing a material in which the carbon equivalent was adjusted to be slightly lower in advance so that the hardness after forging was equivalent to that in normal forging when ultra-high temperature forging was performed.

表1に示す鋼No.1、2、3、4のそれぞれの材料に対し、1’、2’、3’、4’が超高温鍛造時に硬さが同等となるように準備した材料である。また、成分が変化すると、当然の如く、得られる被削性は変化するため、成分が異なる鋼材を同じ条件で比較するのは、公平な比較とはならない。そこで、鋼No.1〜4の通常鍛造時の被削性試験(試験方法は後述)による寿命をそれぞれ100とし、寿命比で示すこととした。すなわち、後述する表3に示す鋼1’の寿命の数値は、鋼1の通常鍛造の場合の被削性試験で得られた寿命との比を意味し、鋼No.2〜4及び鋼No.2’〜4’の寿命の値とは全く関連がない値である。従って、表3に示すそれぞれの鋼の寿命の数字と100との差異が、本発明の方法による被削性改善効果の大きさを意味する。   Steel No. shown in Table 1 1 ', 2', 3 'and 4' are materials prepared so as to have the same hardness during ultra high temperature forging. Moreover, since machinability obtained naturally changes when the component changes, it is not a fair comparison to compare steel materials having different components under the same conditions. Therefore, Steel No. The life by the machinability test (test method will be described later) during normal forging 1 to 4 is assumed to be 100, and the life ratio is shown. That is, the numerical value of the life of steel 1 'shown in Table 3 to be described later means the ratio with the life obtained in the machinability test in the case of normal forging of steel 1. 2 to 4 and Steel No. It is a value that has no relation to the lifetime values of 2 'to 4'. Therefore, the difference between the steel life number shown in Table 3 and 100 means the machinability improving effect by the method of the present invention.

次に、被削性評価試験の方法について示す。   Next, the machinability evaluation test method will be described.

被削性の評価は、外周旋削試験と穴加工試験を行うことにより実施した。試験は、前記した鍛造試験片から、φ32の丸棒試験片を作製して実施した。具体的な試験条件は、表2に、試験結果を表3に示す。   The machinability was evaluated by performing a peripheral turning test and a drilling test. The test was carried out by producing a φ32 round bar test piece from the forged test piece described above. Specific test conditions are shown in Table 2, and test results are shown in Table 3.

Figure 2005082840
Figure 2005082840

Figure 2005082840
Figure 2005082840

表3から明らかなように、通常鍛造した場合と超高温鍛造した場合とを比較すると、同じ鋼材で比較すると、超高温鍛造により硬さが上昇してしまうため、それによる被削性の低下分が、粒粗大化による被削性改善分と相殺されて、特に大きな効果が得られていないかのようにみえる。しかしながら、実際に製造する際には、硬さは重要な管理項目であり、当然の如く狙いとする硬さが得られるように成分も含めて調整がされる。従って、被削性改善効果は、同一硬さで比較する必要がある。   As is clear from Table 3, when compared to the case of normal forging and the case of ultra-high temperature forging, the hardness increases due to ultra-high temperature forging when compared with the same steel material, and therefore the machinability reduction due to it However, it seems that the effect of machinability improvement due to grain coarsening is offset and a particularly large effect is not obtained. However, in actual manufacturing, hardness is an important management item, and it is adjusted including the components so that the desired hardness can be obtained. Therefore, it is necessary to compare the machinability improving effect with the same hardness.

この点を考慮し、例えば通常鍛造での鋼No.2の被削性評価結果と、超高温鍛造することによる硬さ上昇分を考慮し、No.2に比べ炭素当量を若干低減した供試材No.2’の超高温鍛造品の被削性評価結果を比較すると、硬さは同等であるが、被削性が大きく改善していることがわかる。他の鋼No.1、3、4についても同様の比較をすることにより、本発明による被削性改善効果の大きさを把握することができる。   Considering this point, for example, steel No. in normal forging. In consideration of the machinability evaluation result of No. 2 and the increase in hardness due to ultra-high temperature forging, No. 2 Specimen No. 2 with a slightly reduced carbon equivalent compared to 2. Comparing the machinability evaluation results of the 2 'ultra high temperature forged product, it can be seen that the machinability is greatly improved although the hardness is equal. Other steel No. By performing the same comparison for 1, 3, and 4, the magnitude of the machinability improving effect according to the present invention can be grasped.

但し、表3の結果から明らかなように、得られる被削性改善効果は、硬さが比較的低いHv200程度の鋼No.4に比べ、硬さが比較的高い鋼No.2の方が大きな効果が得られている。しかしながら、実際に被削性が問題となるのは、硬さの高い場合であり、本
発明による効果は、硬さが比較的高くなると予想される鍛造品に対して、工具寿命改善に大きな効果を得ることができる。
However, as is clear from the results in Table 3, the machinability improving effect obtained is a steel No. about Hv200 having a relatively low hardness. Steel No. 4 having a relatively high hardness compared to No. 4. 2 is more effective. However, the machinability actually becomes a problem when the hardness is high, and the effect of the present invention is a significant effect on the improvement of the tool life for a forged product that is expected to have a relatively high hardness. Can be obtained.

以上、試験片レベルの評価によって大きな効果を得られることが確認できたので、実際に自動車用足廻り部品に適用し、前記した供試材No.2’に相当する鋼材を用いて効果の確認実験を行った。実験は、超高温鍛造品については、加熱温度1380℃、鍛造前温度1340℃の条件で実施した。この鍛造の際、鍛造品の空孔の発生を防止するため、鍛造時の被加工材の表面が型と接触する面積率が91%と鍛造時に静水圧が高くなるように配慮して実施した。また、比較として前記した供試材No.2に相当する鋼材を用いて、通常温度(加熱温度1240℃、鍛造前温度1200℃)で鍛造を行った。   As described above, since it was confirmed that a large effect can be obtained by the evaluation of the test piece level, the test material No. An effect confirmation experiment was conducted using a steel material corresponding to 2 '. The experiment was carried out under the conditions of a heating temperature of 1380 ° C. and a pre-forging temperature of 1340 ° C. for ultra-high temperature forged products. In this forging, in order to prevent the generation of voids in the forged product, the area ratio where the surface of the work material during forging was in contact with the die was 91%, and the hydrostatic pressure was increased during forging. . For comparison, the above-mentioned specimen No. Forging was performed at a normal temperature (heating temperature 1240 ° C., pre-forging temperature 1200 ° C.) using a steel material corresponding to 2.

その後、得られた鍛造品から、実際に機械加工が行われる部位を切り出して、丸棒試験片を作製し、前記した試験と同様の被削性評価試験を実施した。その結果、硬さは、通常鍛造品がHV280に対し、超高温鍛造品もHV283とほぼ同等であったが、被削性は、旋削試験での工具寿命は166、ドリル寿命が172(どちらも通常鍛造品での寿命を100とした場合の値)と優れた結果が得られた。   Then, the site | part where machining is actually performed was cut out from the obtained forged product, the round bar test piece was produced, and the machinability evaluation test similar to the above-mentioned test was implemented. As a result, the hardness of the normal forged product was almost the same as that of the HV283 for the ultra-high temperature forged product, but the machinability was 166 for the tool life in the turning test and 172 for the drill life (both A value obtained when the life of a normal forged product is 100) was obtained.

そこで、この試験片の結晶粒度を測定した結果、通常鍛造品の4.8に対し、超高温鍛造品は2.0と極端に粒が粗大化していた。結晶粒度調査時に空孔の有無についても同時に確認したが、空孔は十分に潰れており、良好であった。従って、超高温鍛造することによる粒の粗大化が、被削性の改善に効果的であることが確認できたとともに、鍛造時の型と被加工材との接触面積を高めて、高い静水圧状態での鍛造を実施することにより、空孔が少ない良好な鍛造品が得られることがわかった。   Therefore, as a result of measuring the crystal grain size of this test piece, the ultra-high temperature forged product was extremely coarse as 2.0, compared to 4.8 for the normal forged product. The presence or absence of vacancies was also confirmed at the time of the grain size investigation, but the vacancies were sufficiently crushed and good. Therefore, it was confirmed that the coarsening of grains by ultra-high temperature forging was effective in improving machinability, and the contact area between the die and work material during forging was increased, resulting in high hydrostatic pressure. It was found that a good forged product with few voids can be obtained by performing forging in a state.

上記のごとく、本発明における上記超高温鍛造は、鍛造荷重低下と複雑形状製品の製造を可能にするために開発された技術であり、従来は被削性改善を主な目的として、積極的に適用されることはなかった。しかし、前記したように、超高温鍛造を利用して粗大粒からなる鍛造部品を製造することによって、被削性改善元素に頼らなくても、被削性を大幅に改善できることが明らかになった。   As described above, the ultra-high temperature forging in the present invention is a technique developed to enable forging load reduction and production of complex shaped products. Conventionally, mainly for the purpose of improving machinability, It was never applied. However, as described above, it became clear that the machinability can be greatly improved without relying on the machinability improving element by manufacturing forged parts made of coarse grains using ultra-high temperature forging. .

従って、S、Pb等の添加に頼ることなく鍛造品の被削性改善に大きく貢献することができ、その効果は極めて大なるものがある。
Therefore, it can greatly contribute to the improvement of the machinability of the forged product without depending on the addition of S, Pb, etc., and the effect is extremely large.

Claims (3)

質量%で、C:0.20〜0.60%、Si:0.10〜2.00%、Mn:0.30〜2.00%、S:0.01〜0.20%、Cr:0.05〜2.00%、Al:0.060%以下、V:0.01〜0.50%、N:0.003〜0.020%を含有し、残部Fe及び不純物元素からなる鋼材を、下限温度を固相線温度×0.94又は1250℃の何れか高い方とし、上限温度を液相線温度×0.98以下とする範囲に加熱し、該範囲の温度域で、素材表面の85%以上が金型に接触するように、超高温熱間鍛造加工して、組織がフェライトパーライトであって、平均オーステナイト結晶粒度番号が2.5番以下である熱間鍛造品とすることを特徴とする被削性の優れた熱間鍛造非調質部品の製造方法。   In mass%, C: 0.20 to 0.60%, Si: 0.10 to 2.00%, Mn: 0.30 to 2.00%, S: 0.01 to 0.20%, Cr: Steel containing 0.05 to 2.00%, Al: 0.060% or less, V: 0.01 to 0.50%, N: 0.003 to 0.020%, and the balance being Fe and impurity elements The lower limit temperature is set to the higher one of the solidus temperature × 0.94 or 1250 ° C., and the upper limit temperature is heated to a range where the liquidus temperature × 0.98 or less. Ultra-high temperature hot forging is performed so that 85% or more of the surface is in contact with the mold, and a hot forged product having a microstructure of ferrite pearlite and an average austenite grain size number of 2.5 or less is obtained. A method for producing a hot forged non-tempered part having excellent machinability. 請求項1に記載の熱間鍛造非調質部品の製造方法で使用する鋼材に加えて、質量%でTi:0.003〜0.05%を含有する鋼材に請求項1記載の方法を施すことを特徴とする被削性の優れた熱間鍛造非調質部品の製造方法。   In addition to the steel used in the method for producing a hot-forged non-tempered part according to claim 1, the method according to claim 1 is applied to a steel containing Ti: 0.003-0.05% by mass. A method for producing a hot forged non-tempered part having excellent machinability. 請求項1又は2に記載の熱間鍛造非調質部品の製造方法で使用する鋼材に加えて、さらに質量%でPb:0.30%以下、Te:0.30%以下、Ca:0.01%以下、Bi:0.30%以下、Mg:0.01%以下、Zr:0.01%以下の1種または2種以上を含有する鋼材に請求項1記載の方法を施すことを特徴とする被削性の優れた熱間鍛造非調質部品の製造方法。   In addition to the steel material used in the method for producing a hot forged non-tempered part according to claim 1 or 2, Pb: 0.30% or less, Te: 0.30% or less, Ca: 0. The method according to claim 1 is applied to a steel material containing one or more of 01% or less, Bi: 0.30% or less, Mg: 0.01% or less, and Zr: 0.01% or less. A method for producing hot forged non-tempered parts with excellent machinability.
JP2003314500A 2003-09-05 2003-09-05 Method for manufacturing hot forged non-tempered parts with excellent machinability Expired - Fee Related JP4112464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003314500A JP4112464B2 (en) 2003-09-05 2003-09-05 Method for manufacturing hot forged non-tempered parts with excellent machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003314500A JP4112464B2 (en) 2003-09-05 2003-09-05 Method for manufacturing hot forged non-tempered parts with excellent machinability

Publications (2)

Publication Number Publication Date
JP2005082840A true JP2005082840A (en) 2005-03-31
JP4112464B2 JP4112464B2 (en) 2008-07-02

Family

ID=34415078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003314500A Expired - Fee Related JP4112464B2 (en) 2003-09-05 2003-09-05 Method for manufacturing hot forged non-tempered parts with excellent machinability

Country Status (1)

Country Link
JP (1) JP4112464B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553141U (en) * 1991-12-24 1993-07-13 松下電工株式会社 Terminal block cover mounting structure

Also Published As

Publication number Publication date
JP4112464B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP5618978B2 (en) Steel, steel blank manufacturing method, and method of manufacturing this steel part
JP2008169411A (en) Steel for die materials
CN114086063A (en) Method for producing high-speed tool steel material, method for producing high-speed tool steel product, and high-speed tool steel product
KR20180099865A (en) Large crankshaft
JP4797673B2 (en) Hot forging method for non-tempered parts
EP2154260B1 (en) Free-cutting alloy tool steel
EP3168319B1 (en) Microalloyed steel for heat-forming high-resistance and high-yield-strength parts
JP6620490B2 (en) Age-hardening steel
KR20120102081A (en) Steel with high temper resistance
JP4086734B2 (en) Ultra-high temperature hot forged non-heat treated parts for connecting rods with easy fracture separation and manufacturing method thereof
EP3272896B1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
JPH11199924A (en) Manufacture of non-heat treated steel part with high strength and low ductility
JP4112464B2 (en) Method for manufacturing hot forged non-tempered parts with excellent machinability
JP5437669B2 (en) Hot and hot forging die
JP5345415B2 (en) Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics
JP2008144211A (en) V-containing non-heat treated steel
JP4997709B2 (en) Material for nitride parts with excellent broachability and method for producing the same
JPH0578786A (en) Austenitic high-temperature processed steel of precipitation hardenability and treatment thereof
CN109715839B (en) Shaft component
WO2009082328A1 (en) High speed steel
JP3738501B2 (en) Steel for cold forging
JP4020842B2 (en) Non-tempered hot forged part excellent in low ductility and machinability and method for producing the part
CN114651080B (en) Crankshaft and method for manufacturing blank for crankshaft
JPH07207414A (en) Steel for aluminum casting mold
JP2004018990A (en) Method for warm-forging precipitation-hardening martensitic stainless steel, and forged parts manufactured by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees