JP2005082654A - Method for de-adhesion of fluorine rubber molding, fluorine rubber molding and sealant - Google Patents

Method for de-adhesion of fluorine rubber molding, fluorine rubber molding and sealant Download PDF

Info

Publication number
JP2005082654A
JP2005082654A JP2003314095A JP2003314095A JP2005082654A JP 2005082654 A JP2005082654 A JP 2005082654A JP 2003314095 A JP2003314095 A JP 2003314095A JP 2003314095 A JP2003314095 A JP 2003314095A JP 2005082654 A JP2005082654 A JP 2005082654A
Authority
JP
Japan
Prior art keywords
plasma
fluororubber
fluororubber molded
molded article
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003314095A
Other languages
Japanese (ja)
Inventor
Hitoshi Yamada
山田  均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2003314095A priority Critical patent/JP2005082654A/en
Publication of JP2005082654A publication Critical patent/JP2005082654A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform de-adhesion of a fluorine rubber molding widely used in semiconductor manufacturing apparatuses and vacuum apparatuses without deteriorating other properties in a more effective way. <P>SOLUTION: The de-adhesion of the fluorine rubber molding is performed by irradiating the fluorine rubber molding with a non-equilibrium plasma of a fluorinated olefin or of a gas containing a fluorinated alkane having a ratio of the number of fluorine atoms to the number of carbon atoms of ≤2 at a pressure of ≤1,000 Pa. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、フッ素ゴム成形体の非粘着化方法、それによって非粘着化されたフッ素ゴム成形体及び前記フッ素ゴム成形体からなる半導体製造装置用、ウエハー搬送容器用及び真空容器用の各シール材に関する。   The present invention relates to a non-adhesive method for a fluororubber molded article, a fluororubber molded article made non-adhesive thereby, and a sealing material for a semiconductor manufacturing apparatus, wafer transport container and vacuum container comprising the fluororubber molded article About.

ゴム材料は各種機器のシール材料として必須である。特に、半導体製造装置や真空装置には、フッ素ゴム製のシール材が多用されている。しかし、ゴム材料はシールすべき相手金属面にしばしば粘着し、メンテナンス時等に不具合を来す。特に半導体製造装置や真空装置では、シール材が真空や高温に暴露される機会が多い故、この問題が顕著となる。交換時にシール材が剥がせないほど強く粘着し、無理に剥がした結果、ゴム粉がこすれ落ちて、後々装置に悪影響を及ぼすことさえある。ゴム材料の粘着は、特に開閉の多い部位においては、装置の正常動作を阻害する等の致命的な問題をもたらす。そのため、有効な非粘着化技術が、特にシール材料において求められている。   Rubber materials are essential as sealing materials for various devices. In particular, fluororubber sealing materials are frequently used in semiconductor manufacturing equipment and vacuum equipment. However, rubber materials often stick to the mating metal surface to be sealed, causing problems during maintenance. In particular, in a semiconductor manufacturing apparatus and a vacuum apparatus, this problem becomes significant because the sealing material is often exposed to vacuum and high temperature. The sealant sticks so strongly that it cannot be peeled off at the time of replacement, and as a result of forcibly peeling it off, the rubber powder may be rubbed off and may even adversely affect the device later. The adhesion of the rubber material causes a fatal problem such as hindering the normal operation of the apparatus, particularly in a portion where the opening and closing is frequently performed. Therefore, an effective non-adhesive technology is demanded particularly for sealing materials.

ゴム材料の非粘着化法として、1)ゴム中へのオイルの配合、2)表面処理剤による処理(例えば、特許文献1等参照)、3)ゴム材料の表面近傍に架橋剤を含浸させて加熱し、表面近傍の架橋密度を高める処理法(例えば、特許文献2参照)、4)シリコーンゴムのブレンド(例えば、特許文献3参照)、5)樹脂等によるゴム材料表面の被覆(例えば、特許文献4参照)、6)ゴム中へのフッ素樹脂粉末等の充填(例えば、特許文献5参照)等が知られている。   Non-adhesive methods for rubber materials include 1) blending oil into rubber, 2) treatment with a surface treatment agent (see, for example, Patent Document 1), 3) impregnating a rubber material near the surface with a crosslinking agent. Treatment method for heating and increasing the crosslink density in the vicinity of the surface (for example, see Patent Document 2), 4) Blend of silicone rubber (for example, see Patent Document 3), 5) Covering the surface of rubber material with resin or the like (for example, Patent 6) Filling rubber with fluororesin powder or the like (see, for example, Patent Document 5) is known.

しかしながら、1)の方法ではオイル滲出による汚染、材料自体の強度低下と言った問題を生じる。2)の方法においても、表面処理剤の脱離による非粘着性の低下、シール面や流体の汚染等の問題が無視できない。3)の方法によればある程度非粘着化出来るが、煩雑な処理操作を必要とする。また、後記する実施例(比較例)にも示すように、その効果は必ずしも満足し得るものではない。4)の方法にも、非粘着性が不十分、フッ素ゴム材料の強度が低下する等の欠点がある。5)の方法には、樹脂層の脱離・剥離、樹脂層の存在によるゴム弾性の低下と言った問題がある。また、6)のような単純充填法では、表面層に現れる樹脂粉末は少なく、十分な非粘着性が発揮されない。この点を解決すべく樹脂粉末充填量を増すと、ゴム材料の弾性及び強度の低下、架橋成形性の悪化と言った問題を生じる。   However, the method 1) causes problems such as contamination due to oil leaching and a decrease in strength of the material itself. Even in the method 2), problems such as a decrease in non-adhesiveness due to the removal of the surface treatment agent and contamination of the seal surface and fluid cannot be ignored. According to the method 3), it can be made non-adhesive to some extent, but it requires a complicated processing operation. In addition, as shown in examples (comparative examples) described later, the effects are not always satisfactory. The method 4) also has drawbacks such as insufficient non-adhesiveness and reduced strength of the fluororubber material. The method 5) has problems such as detachment / peeling of the resin layer and a decrease in rubber elasticity due to the presence of the resin layer. Further, in the simple filling method as in 6), the resin powder that appears on the surface layer is small, and sufficient non-adhesiveness cannot be exhibited. If the resin powder filling amount is increased in order to solve this point, problems such as a decrease in the elasticity and strength of the rubber material and a deterioration in the crosslinkability are caused.

また、上記の問題を回避しつつ非粘着化するために、ゴム材料に特定種のプラズマを照射することも行われている。例えば、ゴム材料の表面を窒素プラズマで処理する方法(特許文献6参照)、ニトリルゴム表面を酸素プラズマで灰化させる処理法(特許文献7参照)、シリコンゴムをプラズマで処理して非粘着化させる方法(特許文献8参照)等が知られている。
特開平1-301725号公報 特公平5-21931号公報 特開平5-339456号公報 特開平1-141909号公報 特許第3009676号公報 特開昭59-71336号公報 特公平1-57136号公報 特開平4-209633号公報
In addition, in order to avoid the above problem and to make it non-adhesive, the rubber material is also irradiated with a specific kind of plasma. For example, a method of treating the surface of a rubber material with nitrogen plasma (see Patent Document 6), a treatment method of ashing a nitrile rubber surface with oxygen plasma (see Patent Document 7), and treating silicon rubber with plasma to make it non-adhesive And the like (see Patent Document 8).
JP-A-1-301725 Japanese Patent Publication No.5-21931 JP-A-5-339456 Japanese Unexamined Patent Publication No. 1-141909 Japanese Patent No. 3009676 JP 59-71336 A Japanese Patent Publication No.1-57136 JP-A-4-209633

しかしながら、従来のプラズマ照射による非粘着化方法では、ゴム材料とプラズマの種類によっては非粘着化効果が発現しないことがある。例えば、特公平6-025261号公報や特開平5-202208号公報、特開平5-309787号公報等には、ゴムに酸素やHe等のプラズマを照射すると、接着性がむしろ増すとの記載がある。同じプラズマ処理であっても、ガス種類と被照射物の組み合わせ、照射条件等によって、発現する効果は全く異なる。後記する実施例にも示すように、フッ素ゴムのプラズマ処理においても、照射条件が不適当だと非粘着化効果が発現しない。さらに、プラズマ種の選定を誤ると、表面が非粘着化される一方でシール性が低下する問題を生じる。   However, in the conventional non-adhesion method using plasma irradiation, the non-adhesion effect may not be exhibited depending on the rubber material and the type of plasma. For example, in Japanese Patent Publication No. 6-025261, Japanese Patent Laid-Open No. 5-220208, Japanese Patent Laid-Open No. 5-309787, etc., there is a description that the adhesiveness rather increases when the rubber is irradiated with plasma such as oxygen or He. is there. Even in the same plasma treatment, the effect to be manifested is completely different depending on the combination of the gas type and the object to be irradiated, the irradiation conditions and the like. As shown in the examples described later, even in the plasma treatment of fluororubber, if the irradiation conditions are inappropriate, the non-tackifying effect does not appear. Furthermore, if the selection of the plasma type is wrong, there arises a problem that the sealing property is lowered while the surface is made non-adhesive.

本発明はこのような状況に鑑みてなされたものであり、半導体製造装置や真空装置等に多用されるフッ素ゴム成形体の非粘着化を、他の特性を損なうことなく、より効果的に行うことを目的とする。   The present invention has been made in view of such a situation, and performs non-adhesion of a fluororubber molded product frequently used in a semiconductor manufacturing apparatus, a vacuum apparatus or the like more effectively without impairing other characteristics. For the purpose.

本発明者らは上記課題を解決すべく検討を重ね、特定のフッ化炭素化合物プラズマをフッ素ゴム成形体に照射する、あるいはフッ素ゴム成形体に特定のフッ化炭素化合物を塗布または含浸させた後にアルゴンまたは酸素プラズマを照射することによって、フッ素ゴム成形体が非粘着化され、しかもそのシール性が低下しないことを見出した。   The present inventors have repeatedly studied to solve the above problems, and after irradiating the fluororubber molded product with a specific fluorocarbon compound plasma, or applying or impregnating a specific fluorocarbon compound to the fluororubber molded product It has been found that by irradiating with argon or oxygen plasma, the fluororubber molded article becomes non-tacky and the sealing performance does not deteriorate.

すなわち本発明は、フッ素ゴム成形体に、フッ化オレフィンまたはフッ素原子数/炭素原子数の比が2以下のフッ化アルカンを含む、圧力1000Pa以下のガスの非平衡プラズマを照射することを特徴とするフッ素ゴム成形体の非粘着化方法である。   That is, the present invention is characterized by irradiating a fluororubber molded article with non-equilibrium plasma of a gas having a pressure of 1000 Pa or less containing a fluorinated olefin or a fluorinated alkane having a ratio of fluorine atoms / carbon atoms of 2 or less. This is a non-adhesive method for a fluororubber molded product.

本発明はまた、フッ素ゴム成形体に、フッ化オレフィンまたはフッ素原子数/炭素原子数の比が2以下のフッ化アルカンを塗布するか、含浸させた後、非平衡プラズマを照射することを特徴とするフッ素ゴム成形体の非粘着化方法である。   The present invention is also characterized in that the fluororubber molded article is coated with or impregnated with a fluoroolefin or a fluoroalkane having a ratio of fluorine atoms / carbon atoms of 2 or less, and then irradiated with non-equilibrium plasma. This is a non-adhesive method for the fluororubber molded article.

本発明はさらに、上記非粘着化方法によって得られるフッ素ゴム成形体、並びに前記フッ素ゴム成形体からなる半導体製造装置用、ウエハー搬送容器用及び真空容器用の各シール材を包含する。   The present invention further includes a fluororubber molded article obtained by the above-described non-adhesive method, and each sealing material for a semiconductor manufacturing apparatus, wafer transport container and vacuum container made of the fluororubber molded article.

本発明に従う処理法によれば、フッ素ゴム成形体を、シール性等の物性を損なうことなく非粘着化することが出来る。従来の処理法ではこれら物性の両立が困難であったことに鑑み、本発明の効果は顕著である。   According to the treatment method according to the present invention, the fluororubber molded article can be made non-adhesive without impairing physical properties such as sealing properties. The effects of the present invention are remarkable in view of the fact that it is difficult to achieve both of these physical properties with conventional treatment methods.

以下、本発明に関して詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において、特定のフッ化炭素化合物の使用及び非平衡プラズマの使用の二点が重要な要件である。   In the present invention, two important points are the use of a specific fluorocarbon compound and the use of non-equilibrium plasma.

プラズマは電子、イオン、ラジカル、励起分子等の独立した集まりで、粒子間の平均衝突時間の何倍もの間、集合状態を保持しているものであるが、これらの中で気体温度と電子温度とが平衡に達しておらず、前者のみが高温となった状態のものを「非平衡プラズマ」または「低温プラズマ」と呼ぶ(例えば、長田義仁編著、産業図書発行、低温プラズマ材料化学参照)。この非平衡プラズマは、平衡プラズマと異なり、気体温度が低温であるためフッ素ゴム成形体の内部組織が変化して物性低下を来すおそれが少ない。   Plasma is an independent collection of electrons, ions, radicals, excited molecules, etc., and maintains an aggregated state for many times the average collision time between particles. Among these, gas temperature and electron temperature Those in which only the former is at a high temperature are referred to as “non-equilibrium plasma” or “low temperature plasma” (see, for example, edited by Yoshihito Nagata, published by Industrial Books, Low Temperature Plasma Material Chemistry). Unlike the equilibrium plasma, this non-equilibrium plasma has a low gas temperature, so that the internal structure of the fluororubber molded article is less likely to cause deterioration in physical properties.

非平衡プラズマは、所望の気体中での直流放電または低周波、高周波、マイクロ波の照射等により、グロー放電、コロナ放電、アーク放電もしくは暗放電等の形で容易に得ることが出来る。中でも低真空状態でのグロー放電は、均一なプラズマを発生し得るため、多用されている。特に、13.56MHzのラジオ波等の高周波を用いた装置が一般的であり、本発明でも容量結合型、誘導結合型のいずれの方式の高周波プラズマをも使用することが出来る。勿論、種々の市販のプラズマ発生装置を使用することも可能である。しかしながら本発明においては、フッ素ゴムのエッチングを抑制する目的から、例えば1〜500kHz、特に10〜100kHzの低周波電源を用いるのが好ましい。非平衡プラズマは樹脂や繊維の親水化(特開平11-314310等)、接着性付与(特開平6-248098、特開平10-30761等)、炭化水素系ゴムのフッ化処理(特開平6-9803、特開平6-192453等)、半導体デバイス上でのフッ化炭素保護膜形成(特開2002-220668)等に用いられており、当業者であれば適当なプラズマ発生法あるいはプラズマ発生装置を選択することは容易であろう。   The non-equilibrium plasma can be easily obtained in the form of glow discharge, corona discharge, arc discharge, dark discharge, or the like by direct current discharge in a desired gas or irradiation with low frequency, high frequency, or microwave. Among them, glow discharge in a low vacuum state is frequently used because it can generate uniform plasma. In particular, an apparatus using a high frequency such as a radio wave of 13.56 MHz is general, and in the present invention, either high frequency plasma of a capacitive coupling type or an inductive coupling type can be used. Of course, it is possible to use various commercially available plasma generators. However, in the present invention, it is preferable to use a low-frequency power source of 1 to 500 kHz, particularly 10 to 100 kHz, for the purpose of suppressing the etching of fluororubber. Non-equilibrium plasma is used to hydrophilize resins and fibers (JP-A-11-314310, etc.), impart adhesion (JP-A-62-248098, JP-A-10-30761, etc.), and fluorination treatment of hydrocarbon rubber (JP-A-6-314 9803, Japanese Patent Laid-Open No. 6-19453, etc.) and a fluorocarbon protective film formation on a semiconductor device (Japanese Patent Laid-Open No. 2002-220668). It will be easy to choose.

本発明の第一の態様においては、フッ化オレフィンまたはフッ素原子数/炭素原子数の比が2以下のフッ化アルカンを含むガスを、プラズマガスとして使用する。後記する実施例でも示すように、非フッ化炭素系プラズマ、あるいはフッ素原子数/炭素原子数>2で二重結合を有しないフッ化炭素のプラズマを用いても、フッ素ゴム成形体は非粘着化されない。または、シール性が著しく低下する。一方、本発明に従い、特定のフッ化炭素化合物を含むガスの非平衡プラズマを用いることにより、シール性を殆ど低下させることなくフッ素ゴム成形体を非粘着化させることが出来る。   In the first aspect of the present invention, a fluorinated olefin or a gas containing a fluorinated alkane having a ratio of fluorine atoms / carbon atoms of 2 or less is used as the plasma gas. As shown in the examples described later, the fluororubber molded article is non-adhesive even when non-fluorinated carbon-based plasma or fluorocarbon plasma having the number of fluorine atoms / number of carbon atoms> 2 and having no double bond is used. It is not converted. Or the sealing performance is significantly reduced. On the other hand, by using non-equilibrium plasma of a gas containing a specific fluorocarbon compound according to the present invention, the fluororubber molded article can be made non-adhesive with almost no deterioration in sealing performance.

フッ化オレフィン自体は公知である。本発明において「オレフィン」とは、ジオレフィンのような二重結合を複数有する化合物をも包含する。フッ化オレフィンの具体例として、ヘキサフロロプロピレン(C36)、ヘキサフロロブタジエン(C46)等が挙げられるが、これらに限定されない。これら化合物は、ダイキン工業(株)、昭和電工(株)等から市販されており、本発明でも使用できる。 Fluorinated olefins are known per se. In the present invention, the “olefin” includes a compound having a plurality of double bonds such as diolefin. Specific examples of the fluorinated olefin include, but are not limited to, hexafluoropropylene (C 3 F 6 ) and hexafluorobutadiene (C 4 F 6 ). These compounds are commercially available from Daikin Industries, Ltd., Showa Denko Co., Ltd., etc., and can also be used in the present invention.

フッ素原子数/炭素原子数の比が2以下のフッ化アルカンもまた、公知である。例としてCH22、C224、C233、C242、パーフロロシクロブタン、CHClF2等が挙げられるが、これらに限定されない。これら化合物は、ダイキン工業(株)、旭硝子(株)等から市販されており、本発明でも使用できる。 Fluorinated alkanes having a fluorine atom / carbon atom ratio of 2 or less are also known. Examples include, but are not limited to, CH 2 F 2 , C 2 H 2 F 4 , C 2 H 3 F 3 , C 2 H 4 F 2 , perfluorocyclobutane, CHClF 2 and the like. These compounds are commercially available from Daikin Industries, Ltd., Asahi Glass Co., Ltd., etc., and can also be used in the present invention.

本発明においては、上記化合物(以下、「フッ化炭素化合物」と総称する)を単独で、または複数種混合して用いることが出来る。所望により、H2、O2、CF4等のガスと混合して用いても良い。好ましくはヘキサフロロプロピレン、ヘキサフロロブタジエン、CH22、CH3CF3、CH3CHF2、CF3CH2F、CHClF2を使用する。特に、ヘキサフロロブタジエンが好ましい。 In the present invention, the above compounds (hereinafter collectively referred to as “fluorinated carbon compounds”) can be used alone or in combination. If desired, it may be mixed with a gas such as H 2 , O 2 , CF 4 or the like. Preferably, hexafluoropropylene, hexafluorobutadiene, CH 2 F 2 , CH 3 CF 3 , CH 3 CHF 2 , CF 3 CH 2 F, or CHCl 2 is used. In particular, hexafluorobutadiene is preferable.

これらのガスから、例えば低周波放電によって所望の非平衡プラズマを作ることが出来る。周波数に特に制限はないが、約1〜500kHz、特に約10〜100kHzが好ましい。他の照射条件も特に限定されず、目的とする非粘着特性の度合い、使用するガス種類に応じて任意に設定することが出来る。ここで、放電出力(プラズマパワー)が低過ぎると、非粘着化効果が発現しない場合がある。一方、高出力の非平衡プラズマを長時間照射すると、シール性が低下する場合がある。好ましくは1〜500W、より好ましくは5〜200W、特に好ましくは10〜100W程度のパワーで0.1〜30分間、特に0.5〜10分間照射すれば、シール性を殆ど低下させずに非粘着化することが出来る。   From these gases, a desired non-equilibrium plasma can be created, for example, by low frequency discharge. The frequency is not particularly limited, but is preferably about 1 to 500 kHz, particularly about 10 to 100 kHz. Other irradiation conditions are not particularly limited, and can be arbitrarily set according to the desired degree of non-adhesive properties and the type of gas used. Here, if the discharge output (plasma power) is too low, the non-adhesive effect may not be exhibited. On the other hand, when high-power non-equilibrium plasma is irradiated for a long time, the sealing performance may be lowered. Preferably, when irradiated at a power of about 1 to 500 W, more preferably 5 to 200 W, particularly preferably 10 to 100 W for 0.1 to 30 minutes, particularly 0.5 to 10 minutes, the sealability is hardly reduced. Can be tackified.

上記プラズマ照射時のガス圧は、1000Pa以下とする。照射時の圧力がこれ以上だと、非粘着化効果が発現し難くなる、あるいは照射毎にフッ素ゴム成形体の物性に大きなばらつきが発生するおそれがある。プラズマ照射時のガス圧は、好ましくは0.01〜500Pa、より好ましくは0.1〜100Paである。   The gas pressure during the plasma irradiation is 1000 Pa or less. If the pressure at the time of irradiation is more than this, the non-adhesive effect is hardly exhibited, or there is a possibility that a large variation occurs in the physical properties of the fluororubber molded body for each irradiation. The gas pressure at the time of plasma irradiation is preferably 0.01 to 500 Pa, more preferably 0.1 to 100 Pa.

本発明の第二の態様においては、初めにフッ化オレフィンまたはフッ素原子数/炭素原子数の比が2以下のフッ化アルカンを、フッ素ゴム成形体に塗布するか、あるいは含浸させる。このフッ化オレフィンまたはフッ素原子数/炭素原子数の比が2以下のフッ化アルカンとして、先に挙げたフッ化炭素化合物のいずれをも使用し得る。それら以外にも、より高沸点の化合物、例えばオクタフロロシクロペンテン(C58)、パーフロロブチルエチレン(C49CH=CH2) 、パーフロロヘキシルエチレン(C613CH=CH2)等を用いることも可能である。これらフッ化炭素化合物は、単独でまたは複数種混合して、あるいは溶剤で希釈してフッ素ゴム成形体に塗布または含浸される。塗布方法や含浸方法に特に制限はなく、種々の慣用の方法を用いることが出来る。例えば、はけ塗り、スプレーコーティング、ディッピング(浸漬)等が挙げられるが、これらに限定されない。 In the second embodiment of the present invention, first, a fluorinated olefin or a fluorinated alkane having a ratio of fluorine atoms / carbon atoms of 2 or less is applied to or impregnated on the fluororubber molded article. As the fluorinated olefin or the fluorinated alkane having a fluorine atom / carbon atom ratio of 2 or less, any of the fluorocarbon compounds listed above can be used. Other than these, compounds having higher boiling points such as octafluorocyclopentene (C 5 F 8 ), perfluorobutyl ethylene (C 4 F 9 CH═CH 2 ), perfluorohexyl ethylene (C 6 F 13 CH═CH 2). ) Etc. can also be used. These fluorocarbon compounds may be applied to or impregnated into a fluororubber molded product, alone or in combination of a plurality of types, or diluted with a solvent. There are no particular limitations on the coating method and impregnation method, and various conventional methods can be used. For example, brush coating, spray coating, dipping (immersion) and the like can be mentioned, but not limited thereto.

しかしながら、好ましくはディッピングを採用する。また、処理後のフッ素成形体の清浄度を高める観点から、溶剤による希釈は出来るだけ避けるべきである。特に好ましくは、上記のフッ化炭素化合物の中でも沸点が常温以下のものに、フッ素ゴム成形体を直接浸漬する。浸漬条件に特に制限はないが、低沸点のフッ化炭素化合物を用いる場合には、圧力容器を使用するのが好ましい。浸漬温度や時間は、フッ素ゴム成形体とフッ化炭素化合物の種類に応じて任意に設定することが出来る。但し、汎用フッ素ゴムは上記フッ化炭素化合物への浸漬によって強度低下を来す場合がある故、常温で1分〜24時間程度浸漬するのが好ましい。   However, dipping is preferably employed. Further, from the viewpoint of increasing the cleanliness of the treated fluoro molded article, dilution with a solvent should be avoided as much as possible. Particularly preferably, the fluororubber molded article is directly immersed in a fluorocarbon compound having a boiling point not higher than room temperature. There is no particular limitation on the immersion conditions, but when a low-boiling fluorocarbon compound is used, it is preferable to use a pressure vessel. The immersion temperature and time can be arbitrarily set according to the types of the fluororubber molded product and the fluorocarbon compound. However, since general-purpose fluororubber may cause a decrease in strength when immersed in the fluorocarbon compound, it is preferably immersed at room temperature for about 1 minute to 24 hours.

本発明の第二の態様においては、こうしてフッ化炭素化合物を塗布または含浸したフッ素ゴム成形体に非平衡プラズマを照射する。ここで使用するプラズマガス種に特に制限はないが、好ましくは酸素、アルゴン、窒素、水、CF4等を使用する。特に、アルゴンプラズマが好ましい。照射条件に特に制限はなく、用いたフッ化炭素化合物の種類に応じて任意に設定することが出来る。但し、プラズマの出力が低過ぎると非粘着化効果が発現しない場合があり、高過ぎるとシール性が低下する場合がある。1〜200W、特に10〜100Wの非平衡プラズマを0.1〜30分間、特に0.5〜5分間照射すれば、シール性を殆ど低下させずに非粘着化することが出来る。第一の態様と異なり、照射時のガス圧に特に制限はないが、好ましくは1000Pa以下、より好ましくは0.01〜500Pa、特に好ましくは0.1〜100Paとする。 In the second embodiment of the present invention, the non-equilibrium plasma is irradiated to the fluororubber molded article thus coated or impregnated with the fluorocarbon compound. No particular limitation is imposed on the plasma gas species used here, preferably using oxygen, argon, nitrogen, water, a CF 4 or the like. In particular, argon plasma is preferable. There is no restriction | limiting in particular in irradiation conditions, According to the kind of used fluorocarbon compound, it can set arbitrarily. However, if the plasma output is too low, the non-adhesive effect may not be exhibited, and if it is too high, the sealing performance may be reduced. When non-equilibrium plasma of 1 to 200 W, particularly 10 to 100 W, is irradiated for 0.1 to 30 minutes, particularly 0.5 to 5 minutes, non-adhesion can be achieved without substantially reducing the sealing property. Unlike the first embodiment, the gas pressure at the time of irradiation is not particularly limited, but is preferably 1000 Pa or less, more preferably 0.01 to 500 Pa, and particularly preferably 0.1 to 100 Pa.

本発明は特定の理論に限定されるものではないが、本発明が効果を奏する理由として、プラズマ重合による表面フッ化被膜の形成が考えられる。フッ化炭素化合物がプラズマ雰囲気下で重合し、フッ素ゴム成形体表面に高フッ化ポリマー皮膜が形成されて非粘着化が発現しているのであろう。また、本発明で使用するフッ化炭素化合物は、CF4等のプラズマに比べて重合性が高く、しかもエッチング作用が小さいため、フッ素ゴム成形体のシール性を低下することがないのであろう。尚、本発明の第一の態様では狭義のプラズマ重合が、第二の態様ではプラズマ開始重合が進行していると推定される。 Although this invention is not limited to a specific theory, formation of the surface fluoride film by plasma polymerization can be considered as a reason where this invention has an effect. The fluorocarbon compound will be polymerized in a plasma atmosphere, and a highly fluorinated polymer film will be formed on the surface of the fluororubber molded product, which will cause non-adhesion. In addition, the fluorocarbon compound used in the present invention has higher polymerizability than plasma such as CF 4 and has a small etching action, so that the sealing property of the fluororubber molded article will not be lowered. In the first aspect of the present invention, it is presumed that plasma polymerization in a narrow sense is proceeding, and in the second aspect, plasma-initiated polymerization is proceeding.

本発明の非粘着化方法は、種々の公知のフッ素ゴム成形体全てに適用することが出来る。原料フッ素ゴムの例として、ヘキサフロロプロピレン/フッ化ビニリデン二元共重合体、テトラフロロエチレン/ヘキサフロロプロピレン/フッ化ビニリデン三元共重合体、テトラフロロエチレン/プロピレン共重合体、テトラフロロエチレン/プロピレン/フッ化ビニリデン共重合体及びそれらに二重結合を付したポリマー、パーフロロアルコキシ基を有するポリマー、フロロシリコーンゴム等が挙げられるが、これらに限定されない。これらフッ素ゴムはまた、ポリオール、ポリアミン、過酸化物、γ線等、どのような方法で架橋成形されたものであっても良い。   The detackifying method of the present invention can be applied to all of various known fluororubber molded articles. Examples of the raw material fluororubber include hexafluoropropylene / vinylidene fluoride binary copolymer, tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride terpolymer, tetrafluoroethylene / propylene copolymer, tetrafluoroethylene / A propylene / vinylidene fluoride copolymer, a polymer having a double bond attached thereto, a polymer having a perfluoroalkoxy group, a fluorosilicone rubber, and the like are exemplified, but the invention is not limited thereto. These fluororubbers may also be crosslinked by any method such as polyols, polyamines, peroxides, and γ rays.

尚、本発明の効果をより確実なものとする上で、本発明の非粘着処理前にフッ素ゴム成形体を洗浄しておくことが好ましい。洗浄方法は任意である。例えばフッ素ゴム成形体をエタノール、プロパノール、水等の溶媒に浸漬する方法、さらに攪拌洗浄または超音波洗浄する方法、前記溶媒等をフッ素ゴム成形体の表面に流すまたは吹き付ける方法、フッ素ゴム成形体を払拭する方法等が挙げられるが、これらに限定されない。一般的用途ではエタノール、プロパノールによる超音波洗浄を、特別な清浄度を要求される用途では超純水洗浄を行うのが適当であろう。   In order to secure the effect of the present invention, it is preferable to wash the fluororubber molded product before the non-adhesive treatment of the present invention. The cleaning method is arbitrary. For example, a method of immersing the fluororubber molded body in a solvent such as ethanol, propanol, water, a method of further washing with stirring or ultrasonic cleaning, a method of flowing or spraying the solvent etc. on the surface of the fluororubber molded body, Although the method of wiping off is mentioned, it is not limited to these. For general applications, it may be appropriate to perform ultrasonic cleaning with ethanol or propanol, and ultrapure water cleaning for applications that require special cleanliness.

本発明の非粘着化処理は、シール性の低下を殆ど伴わず、しかもゴム成形体を汚染しない。そのため、半導体製造装置、あるいは食品、医療用に好適なゴム材料が得られる。本発明はまた、上記フッ素ゴム成形体からなる半導体製造装置用シール材、ウエハー搬送容器用シール材及び真空容器用のシール材をも包含する。   The non-tackifying treatment of the present invention is hardly accompanied by a decrease in sealing performance and does not contaminate the rubber molded body. Therefore, a rubber material suitable for a semiconductor manufacturing apparatus, food, or medical use can be obtained. The present invention also includes a sealing material for a semiconductor manufacturing apparatus, a sealing material for a wafer transfer container, and a sealing material for a vacuum container, which are made of the fluororubber molded article.

以下、本発明を実施例によりさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1〜9、比較例1〜4]
(サンプル作製)
フローレルFC-2145(住友3M(株)製のフッ化ビニリデン/ヘキサフロロプロピレン共重合体)100重量部に、酸化マグネシウム5重量部、MT-CB(CANCARB社製のカーボンブラック)30重量部、キュラティブ20(デュポン・ダウ・エラストマー社製のポリオール架橋促進剤、主成分:トリフェニルベンジルホスホニウム塩)2重量部、及びキュラティブ30(デュポン・ダウ・エラストマー社製のポリオール架橋剤、主成分:ビスフェノールAF)4重量部を、二軸ロールにて練り込んだ。このものを200℃の金型内に配し、200℃のプレスで15分間、200kgf/cm2にて加圧してP-26 Oリングへと架橋成形した。さらに、オーブン中で、200℃×20時間の二次架橋を行った後、エタノール中で15分間超音波洗浄した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example.
[Examples 1 to 9, Comparative Examples 1 to 4]
(Sample preparation)
100 parts by weight of Florel FC-2145 (vinylidene fluoride / hexafluoropropylene copolymer manufactured by Sumitomo 3M), 5 parts by weight of magnesium oxide, 30 parts by weight of MT-CB (carbon black manufactured by CANCARB), curative 20 (polyol crosslinking accelerator manufactured by DuPont Dow Elastomer Co., Ltd., main component: triphenylbenzylphosphonium salt) and curative 30 (polyol crosslinker manufactured by DuPont Dow Elastomer Co., Ltd., main component: bisphenol AF) 4 parts by weight was kneaded with a biaxial roll. This was placed in a 200 ° C. mold and pressed at 200 kgf / cm 2 with a 200 ° C. press for 15 minutes to form a P-26 O-ring. Further, after secondary crosslinking at 200 ° C. for 20 hours in an oven, ultrasonic cleaning was performed in ethanol for 15 minutes.

得られたOリングに、発振周波数40kHzの非平衡プラズマを表1に示す条件で照射した。プラズマ照射装置としては、Tetra30-LF(Deiner Electronic製)を使用し、電極間隔を200mmとした。照射後のOリングをエタノール中で3分間超音波洗浄し、乾燥した後、下記の評価を行った(実施例1〜9、比較例1〜4)。また、比較のために、得られたOリングに非平衡プラズマを照射することなく(対照例)、下記の評価を行った。
(粘着性評価)
粘着性を評価すべく、Oリング3体を用い、JIS K6854に準じる引張剥離試験を行った。即ち、図1に示すように、60mm×45mm×2.5mm厚のアルミ板を断面L字状に折り曲げてなる一対の治具10a,10bでOリング1を挟み、更に治具10a,10bの平面部分全体をSUS板(図示せず)で挟んで30%圧縮し、圧縮状態を維持してオーブン中で200℃に22時間保持した。解圧、放冷後、矢印の方向に100mm/分で引張り、剥離に要した荷重を測定してその中央値を接着力とした。
(シール性評価)
また、シール性を評価すべく、JIS Z2331に準じるHeリーク試験を行った。即ち、図2に示すように、リーク試験装置100のハウジング110のホルダー120にOリング1を収容し、内部を1.6〜1.8Paに減圧した後、Heボンベ130からHeガスを送って1.0kgf/cm2のHe圧を付した。Oリング1は、Heディテクター140(LEYBOLD社製UL-200)の測定部140aに外嵌されており、この測定部140aに流入するHeガス量を計測した。そして、120分後にほぼ安定した値をHeリーク量として採用した。
The obtained O-ring was irradiated with non-equilibrium plasma having an oscillation frequency of 40 kHz under the conditions shown in Table 1. Tetra30-LF (manufactured by Deiner Electronic) was used as the plasma irradiation apparatus, and the electrode spacing was 200 mm. The O-ring after irradiation was subjected to ultrasonic cleaning in ethanol for 3 minutes and dried, and then the following evaluation was performed (Examples 1 to 9, Comparative Examples 1 to 4). Further, for comparison, the following evaluation was performed without irradiating the obtained O-ring with non-equilibrium plasma (control example).
(Adhesion evaluation)
In order to evaluate adhesiveness, a tensile peel test according to JIS K6854 was performed using three O-rings. That is, as shown in FIG. 1, the O-ring 1 is sandwiched between a pair of jigs 10a and 10b formed by bending a 60 mm × 45 mm × 2.5 mm thick aluminum plate into an L-shaped cross section, and the jigs 10a and 10b The entire flat portion was sandwiched between SUS plates (not shown) and compressed by 30%, and maintained in a compressed state at 200 ° C. for 22 hours. After releasing pressure and allowing to cool, it was pulled in the direction of the arrow at 100 mm / min, the load required for peeling was measured, and the median value was taken as the adhesive strength.
(Sealability evaluation)
In addition, a He leak test according to JIS Z2331 was performed in order to evaluate the sealing performance. That is, as shown in FIG. 2, the O-ring 1 is accommodated in the holder 120 of the housing 110 of the leak test apparatus 100, the inside is decompressed to 1.6 to 1.8 Pa, and then He gas is sent from the He cylinder 130. A He pressure of 1.0 kgf / cm 2 was applied. The O-ring 1 is fitted on the measuring unit 140a of the He detector 140 (UL-200 manufactured by LEYBOLD), and the amount of He gas flowing into the measuring unit 140a was measured. Then, a substantially stable value after 120 minutes was adopted as the amount of He leak.

プラズマ照射条件及び評価結果を、表1に示す。   Table 1 shows the plasma irradiation conditions and the evaluation results.

Figure 2005082654
Figure 2005082654

表1に示すように、本発明に従い、フッ化オレフィンまたはフッ素原子数/炭素原子数の比が2以下のフッ化アルカンを用いて非平衡プラズマ照射した実施例のOリングは、何れもシール性が低下することなく、粘着力が低減している。一方、他のプラズマで処理した比較例のOリングは、非粘着化効果が殆ど発現しないか、あるいはHeリーク量が著しく増大している。
[実施例10]
実施例1〜9と同様にして作製したOリング7体を圧力容器中に入れ、そこにヘキサフロロブタジエン60gを注入した。16時間放置後、解圧してOリングを取り出し、5分後に100WのArプラズマを30±5Paの圧力下で照射した。照射時間は、片面3分、1分間放置後、裏返して再度3分とした。処理後のOリングをエタノール中で3分間超音波洗浄した後、同様にして粘着力評価及び密封性評価を行った。結果を表2に示す。
[実施例11]
ヘキサフロロブタジエンの代わりにCF3CH2Fを用いた以外は、実施例10と同じ操作を行った。結果を表2に示す。
As shown in Table 1, according to the present invention, all of the O-rings of the examples irradiated with non-equilibrium plasma using fluorinated olefins or fluorinated alkanes having a ratio of fluorine atoms / carbon atoms of 2 or less are sealable. The adhesive strength is reduced without decreasing. On the other hand, in the O-ring of the comparative example treated with other plasma, the non-sticking effect is hardly exhibited or the amount of He leak is remarkably increased.
[Example 10]
Seven O-rings produced in the same manner as in Examples 1 to 9 were placed in a pressure vessel, and 60 g of hexafluorobutadiene was injected therein. After standing for 16 hours, the pressure was released and the O-ring was taken out. Five minutes later, 100 W Ar plasma was irradiated under a pressure of 30 ± 5 Pa. The irradiation time was 3 minutes on one side, left for 1 minute, then turned over and again 3 minutes. The treated O-ring was ultrasonically cleaned in ethanol for 3 minutes, and then the adhesive strength evaluation and the sealing performance evaluation were performed in the same manner. The results are shown in Table 2.
[Example 11]
The same operation as in Example 10 was performed except that CF 3 CH 2 F was used instead of hexafluorobutadiene. The results are shown in Table 2.

Figure 2005082654
Figure 2005082654

表2に示すように、本発明に従い、フッ化オレフィンまたはフッ素原子数/炭素原子数の比が2以下のフッ化アルカンを含浸させた後、非平衡プラズマを照射することにより、シール性の低下をそれほど伴わずに非粘着化が発現していることが明らかである。   As shown in Table 2, in accordance with the present invention, after impregnating a fluorinated olefin or a fluorinated alkane having a ratio of fluorine atoms / carbon atoms of 2 or less, the non-equilibrium plasma is irradiated to reduce the sealing performance. It is clear that non-adhesion is manifested without much.

実施例において粘着性評価に用いた試験装置の概念図である。It is a conceptual diagram of the testing apparatus used for adhesive evaluation in an Example. 実施例において密封性評価に用いたリーク試験装置の概念図である。It is a conceptual diagram of the leak test apparatus used for sealing performance evaluation in the Example.

符号の説明Explanation of symbols

1 Oリング
10a,10b 治具
100 リーク試験装置
110 ハウジング
120 ホルダー
130 Heボンベ
140 Heディテクター
1 O-ring 10a, 10b Jig 100 Leak test device 110 Housing 120 Holder 130 He cylinder 140 He detector

Claims (7)

フッ素ゴム成形体に、フッ化オレフィンまたはフッ素原子数/炭素原子数の比が2以下のフッ化アルカンを含む、圧力1000Pa以下のガスの非平衡プラズマを照射することを特徴とするフッ素ゴム成形体の非粘着化方法。 Fluororubber molded article characterized by irradiating a non-equilibrium plasma of a gas having a pressure of 1000 Pa or less, containing a fluorinated olefin or a fluoroalkane having a fluorine atom / carbon atom ratio of 2 or less. Non-sticking method. フッ素ゴム成形体に、フッ化オレフィンまたはフッ素原子数/炭素原子数の比が2以下のフッ化アルカンを塗布するか、含浸させた後、非平衡プラズマを照射することを特徴とするフッ素ゴム成形体の非粘着化方法。 Fluororubber molding characterized by irradiating non-equilibrium plasma after applying or impregnating a fluororubber molding with a fluoroolefin or a fluoroalkane having a ratio of fluorine atoms / carbon atoms of 2 or less A method of non-adhesion of the body. フッ化オレフィンまたはフッ素原子数/炭素原子数の比が2以下のフッ化アルカンがヘキサフロロブタジエン、CH22、CH3CF3、CH3CHF2、CF3CH2F及びCHClF2から選択される一以上の化合物であることを特徴とする請求項1または2記載のゴム成形体の非粘着化方法。 Fluorinated olefins or fluorinated alkanes having a fluorine atom / carbon atom ratio of 2 or less are selected from hexafluorobutadiene, CH 2 F 2 , CH 3 CF 3 , CH 3 CHF 2 , CF 3 CH 2 F and CHCl 2 The method for detackifying a rubber molded article according to claim 1 or 2, wherein the compound is one or more compounds. 請求項1〜3のいずれか一項に記載の非粘着化方法によって処理されたことを特徴とするフッ素ゴム成形体。 A fluororubber molded article treated by the detackifying method according to any one of claims 1 to 3. 請求項4記載のフッ素ゴム成形体からなることを特徴とする半導体製造装置用シール材。 A sealing material for semiconductor manufacturing equipment, comprising the fluororubber molded product according to claim 4. 請求項4記載のフッ素ゴム成形体からなることを特徴とするウエハー搬送容器用シール材。 A sealing material for a wafer transfer container, comprising the fluororubber molded product according to claim 4. 請求項4記載のフッ素ゴム成形体からなることを特徴とする真空容器用シール材。 A sealing material for a vacuum vessel, comprising the fluororubber molded product according to claim 4.
JP2003314095A 2003-09-05 2003-09-05 Method for de-adhesion of fluorine rubber molding, fluorine rubber molding and sealant Pending JP2005082654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003314095A JP2005082654A (en) 2003-09-05 2003-09-05 Method for de-adhesion of fluorine rubber molding, fluorine rubber molding and sealant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003314095A JP2005082654A (en) 2003-09-05 2003-09-05 Method for de-adhesion of fluorine rubber molding, fluorine rubber molding and sealant

Publications (1)

Publication Number Publication Date
JP2005082654A true JP2005082654A (en) 2005-03-31

Family

ID=34414818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003314095A Pending JP2005082654A (en) 2003-09-05 2003-09-05 Method for de-adhesion of fluorine rubber molding, fluorine rubber molding and sealant

Country Status (1)

Country Link
JP (1) JP2005082654A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138107A (en) * 2006-12-04 2008-06-19 Nichias Corp Fluororubber molded article, and rubber material and o-ring using the same
JP2009269613A (en) * 2008-04-30 2009-11-19 Univ Nagoya Rubber plug for vial
WO2013123156A1 (en) 2012-02-15 2013-08-22 3M Innovative Properties Company Fluoropolymer composition comprising a cross - linkable fluorinated elastomer and a ptfe of low melting point

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138107A (en) * 2006-12-04 2008-06-19 Nichias Corp Fluororubber molded article, and rubber material and o-ring using the same
JP2009269613A (en) * 2008-04-30 2009-11-19 Univ Nagoya Rubber plug for vial
WO2013123156A1 (en) 2012-02-15 2013-08-22 3M Innovative Properties Company Fluoropolymer composition comprising a cross - linkable fluorinated elastomer and a ptfe of low melting point
US9458314B2 (en) 2012-02-15 2016-10-04 3M Innovative Properties Company Fluoropolymer composition

Similar Documents

Publication Publication Date Title
TWI237047B (en) Elastomer molded article and crosslinkable fluorine-containing elastomer composition for semiconductor production apparatuses
JP2007077286A (en) Method for modifying surface of fluorine-containing elastomer, fluorine-containing elastomer subjected to surface modification by the same method and sealing material and seal using the same surface-modified fluorine-containing elastomer
JP2001079948A (en) Production of composite material and obtained composite material
TWI381015B (en) Fluororubber composition, fluororubber material using the composition and method for producing the fluororubber molding
JPS6393650A (en) Rubber for wiper blade
WO1997008239A1 (en) Sealing composition and sealant
JP4992897B2 (en) Seal material, component for plasma processing apparatus having the seal material, and method for producing the seal material
JP2005082654A (en) Method for de-adhesion of fluorine rubber molding, fluorine rubber molding and sealant
JP2008177479A (en) Component used for plasma processing apparatus and its manufacturing method
JP5100097B2 (en) Fluoro rubber molded body, rubber material using the same, and O-ring
JP4749673B2 (en) Non-sticking perfluoroelastomer molded body and method for producing the same
JPWO2018221665A1 (en) Laminated body and method for producing the same
US20060292373A1 (en) Elastomer molded article, rubber material and O-ring using same
JP2007170634A (en) Valve element of valve for semiconductor-manufacturing device and its production method
JP6709620B2 (en) Method for manufacturing rubber-metal laminated gasket
JP2003286357A (en) Fluororubber molding and treatment method for endowing the same with non-adhesive property
JP2005272674A (en) Molded article of perfluoro-elastomer and method for producing the same
WO2022177653A1 (en) Porous plug bonding
JP2002161264A (en) Plasma-resistant seal
JPS5931458B2 (en) sliding material
JPH02127442A (en) Surface treatment of molded article of fluorinated olefin polymer
JP3206337B2 (en) Manufacturing method of laminate
JP3232017B2 (en) Sealing material for etching equipment
JP5697781B1 (en) Manufacturing method of valve body
JPH06286079A (en) Resin hose for automobile and continuous manufacture thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325