JP2005082028A - Method and device for controlling vibration of rolling stock - Google Patents

Method and device for controlling vibration of rolling stock Download PDF

Info

Publication number
JP2005082028A
JP2005082028A JP2003317034A JP2003317034A JP2005082028A JP 2005082028 A JP2005082028 A JP 2005082028A JP 2003317034 A JP2003317034 A JP 2003317034A JP 2003317034 A JP2003317034 A JP 2003317034A JP 2005082028 A JP2005082028 A JP 2005082028A
Authority
JP
Japan
Prior art keywords
actuator
damper
vibration
vehicle body
damping force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003317034A
Other languages
Japanese (ja)
Other versions
JP4501380B2 (en
Inventor
Hisashi Negoro
尚志 根来
Osamu Goto
修 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003317034A priority Critical patent/JP4501380B2/en
Publication of JP2005082028A publication Critical patent/JP2005082028A/en
Application granted granted Critical
Publication of JP4501380B2 publication Critical patent/JP4501380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent any increase of the energy consumption of an actuator while controlling the vibration in a vibration controlling method for a rolling stock capable of optimizing the energy consumption of the actuator, and a vibration controlling device to perform the vibration controlling method. <P>SOLUTION: A damper 11 capable of continuously changing the damping force is installed parallel to an actuator 3 in addition to the actuator 3 installed between a rolling stock body 1 and a truck 2. The rolling stock body 1 is vibration-damped by either the actuator 3 or the damper 11 in a tunnel section while the rolling stock body is vibration-damped mainly by the actuator 3 except in the tunnel section. The traveling safety during the fail is not affected thereby, and optimum vibration damping effect can be obtained without employing an actuator of a large capacity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鉄道車両の車体に発生する振動を抑制するに際し、特にアクチュエータでの消費エネルギを最適化できる鉄道車両用の振動制御方法、及び、この振動制御方法を実施する振動制御装置に関するものである。   The present invention relates to a vibration control method for a railway vehicle capable of optimizing energy consumption particularly in an actuator, and a vibration control apparatus for performing the vibration control method, when suppressing vibration generated in a vehicle body of the railway vehicle. is there.

鉄道車両に発生する振動を抑制する方法として、従来は、図12に示すように、車体1と台車2の間に振動方向に合わせてアクチュエータ3を設置し、このアクチュエータ3で車体1の振動に対して逆位相の制御力を発生させることで振動を抑制していた。なお、図12中の4は空気ばね、5は車体1に発生する上下縦方向の加速度を検出する加速度センサー、6はこの加速度センサー5の検出値に基づいてアクチュエータ3の駆動をサーボ弁7を介して制御する制御器を示す。
特開平5−221315号公報
As a method for suppressing vibration generated in a railway vehicle, conventionally, as shown in FIG. 12, an actuator 3 is installed between the vehicle body 1 and the carriage 2 in accordance with the vibration direction. On the other hand, vibration was suppressed by generating a control force with an antiphase. In FIG. 12, 4 is an air spring, 5 is an acceleration sensor for detecting vertical and vertical accelerations generated in the vehicle body 1, and 6 is a servo valve 7 for driving the actuator 3 based on the detected value of the acceleration sensor 5. The controller which controls via is shown.
JP-A-5-221315

また、前記アクチュエータに代えてダンパーを配置し、このダンパーの減衰力を、直線路走行時とカントを有する曲線路走行時の2段階に切り替えることで振動を抑制するものもある。
特開平10−315965号公報
In addition, there is a type in which a damper is disposed in place of the actuator, and vibrations are suppressed by switching the damping force of the damper into two stages of traveling on a straight road and traveling on a curved road having a cant.
JP-A-10-315965

また、アクチュエータとダンパーを並設し、走行中に発生する振動特性や、車両の違いに応じてアクチュエータの制御特性を切り替えるようにしたものもある。
特開平8−207765号公報
In addition, there is an actuator in which an actuator and a damper are provided side by side, and the control characteristics of the actuator are switched according to the vibration characteristics generated during traveling and the difference between vehicles.
JP-A-8-207765

ところで、トンネル内を高速で走行した場合、車体とトンネル内壁との間の空気の挙動により、車体に脈動する圧力が加わり、トンネル外を走行する時よりも大きな振動が発生する。   By the way, when traveling inside the tunnel at a high speed, the pulsating pressure is applied to the vehicle body due to the behavior of the air between the vehicle body and the inner wall of the tunnel, and a larger vibration is generated than when traveling outside the tunnel.

しかしながら、上記の振動制御は、ダンパーの減衰力やアクチュエータの制御特性を2段階に切り替えたり、アクチュエータのみのアクティブ制御であったため、トンネル内などでは振動を抑制するための力が不足し、大きな制振効果を得ることができなかった。   However, the vibration control described above is a two-stage switching of the damper damping force and the actuator control characteristics, or the active control of the actuator only. The vibration effect could not be obtained.

これに対しては、例えばアクチュエータが空気圧駆動である場合、アクチュエータの本数を増やしたり、シリンダ断面積を大きくしたり、供給圧力を増加させたりして、発生力を大きくすることで対処できるが、このような方法では、フェール時の走行安全性に影響がある。加えて、アクチュエータの空気消費量が多くなるという問題がある。   This can be dealt with by increasing the generated force by increasing the number of actuators, increasing the cross-sectional area of the cylinder, increasing the supply pressure, etc. Such a method has an effect on the running safety during a failure. In addition, there is a problem that the air consumption of the actuator increases.

本発明が解決しようとする問題点は、より大きな制振力を得ようとした場合に、フェール時の走行安全性に影響があり、また、アクチュエータの消費エネルギーが多くなるという点である。   The problem to be solved by the present invention is that, when trying to obtain a greater vibration damping force, there is an influence on the traveling safety at the time of failure, and the energy consumption of the actuator increases.

本発明は、振動制御に際し、フェール時の走行安全性に影響を及ぼさず、また、アクチュエータの空気消費量を増加させないために、減衰力を連続的に変更可能なダンパーをアクチュエータと並設し、走行場所等に応じて、例えば図1に示したように、トンネル内ではアクチュエータ或いはダンパーのみで制振を行い、トンネル外ではアクチュエータとダンパーを併用し、かつ、その際のダンパーの減衰力を最適に調整するようにしたことを最も主要な特徴としている。   In the vibration control, the present invention has a damper that can continuously change the damping force in parallel with the actuator so as not to affect the running safety at the time of failure and to increase the air consumption of the actuator. Depending on the travel location, for example, as shown in Fig. 1, vibration is controlled only by the actuator or damper inside the tunnel, and the actuator and damper are used together outside the tunnel, and the damping force of the damper at that time is optimized. The most important feature is that it has been adjusted.

本発明に使用する減衰力を連続的に変更可能なダンパーとは、例えばダンパーに連通する配管に設けたオリフィス径を無段階に変化可能に構成したダンパーをいう。
また、請求項1及び請求項6に係る本発明において、「主として」とは、アクチュエータにより制振する効果の割合が50%以上であることをいい、アクチュエータが最大発生力で制振するかどうかは問題ではない。
The damper capable of continuously changing the damping force used in the present invention refers to a damper configured such that an orifice diameter provided in a pipe communicating with the damper can be changed steplessly.
Further, in the present invention according to claims 1 and 6, “mainly” means that the ratio of the effect of damping by the actuator is 50% or more, and whether or not the actuator is damping with the maximum generated force. Is not a problem.

本発明は、振動制御に際してフェール時の走行安全性に影響を与えず、また、アクチュエータの消費エネルギーを増加させないために、減衰力を連続的に変更可能なダンパーをアクチュエータと並設し、走行場所等に応じて、アクチュエータあるいはダンパーのみで制振を行ったり、アクチュエータとダンパーを併用し、かつ、その際のダンパーの減衰力を最適に調整したりするので、大容量のアクチュエータを採用しなくとも最適な制振効果を得ることができるようになる。   The present invention provides a damper that can continuously change the damping force in parallel with the actuator so as not to affect the running safety at the time of failure during vibration control and to increase the energy consumption of the actuator. Depending on the condition, vibration control is performed only with the actuator or damper, or the actuator and damper are used together, and the damping force of the damper at that time is optimally adjusted. An optimum vibration control effect can be obtained.

以下、本発明を実施するための最良の形態について図2〜図11を用いて説明する。
図2は本発明を説明する図であり、図2中、図12と同一部分或いは相当部分は同一符号を付して詳細な説明を省略する。
Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS.
FIG. 2 is a diagram for explaining the present invention. In FIG. 2, the same or corresponding parts as those in FIG.

図2において、11は例えば流体の動圧抵抗によって車体1に発生する振動を減衰するダンパーであり、アクチュエータ3と並列に配置されている。そして、本発明では、前記ダンパー11に連通する配管に設けたオリフィスの径を変化させることで、その減衰力を連続して調整できるようになっており、例えばその最大減衰力は前記アクチュエータ3の最大発生力よりも大きいものが採用される。   In FIG. 2, 11 is a damper that attenuates vibration generated in the vehicle body 1 by, for example, fluid dynamic pressure resistance, and is arranged in parallel with the actuator 3. In the present invention, the damping force can be continuously adjusted by changing the diameter of the orifice provided in the pipe communicating with the damper 11. For example, the maximum damping force is the maximum damping force of the actuator 3. A thing larger than the maximum generated force is adopted.

そして、本発明では、走行中に車体1に作用する左右方向、上下方向の加速度を車体1に設置した加速度センサー5で検出し、この検出加速度のうちの左右方向の加速度を、図3に示したように、ブロックB1で積分処理した後、ブロックB2でフィルター処理して幅方向の車体速度V2 を算出する。そして、この算出した車体速度V2 と前記検出加速度から、ブロックB3で幅方向の台車速度V1 を推定する。具体的には、車両の運動方程式に基づいたリカッチ方程式の解と、車体1の左右方向の加速度から台車2の左右方向の速度V1 を推定する。   In the present invention, the lateral and vertical accelerations acting on the vehicle body 1 during traveling are detected by the acceleration sensor 5 installed on the vehicle body 1, and the lateral acceleration of the detected accelerations is shown in FIG. As described above, after integration processing in block B1, filter processing is performed in block B2 to calculate the vehicle body speed V2 in the width direction. Then, from the calculated vehicle body speed V2 and the detected acceleration, the carriage speed V1 in the width direction is estimated in block B3. Specifically, the lateral velocity V1 of the carriage 2 is estimated from the solution of the Riccati equation based on the motion equation of the vehicle and the lateral acceleration of the vehicle body 1.

これらの車体速度V2 と台車速度V1 、及び、必要に応じて地点情報を元に、以下のようにアクチュエータ3とダンパー11の切り換え、アクチュエータ3の発生力やダンパーの減衰力を決定し車体の制振を行う。   Based on the vehicle body speed V2 and the carriage speed V1 and the point information as required, the actuator 3 and the damper 11 are switched as follows, and the generated force of the actuator 3 and the damping force of the damper are determined to control the vehicle body. Shake.

図4は本発明に係る車体振動制御方法の一例を説明するフロー図であり、先ず、地点情報等により現在走行している位置がトンネル内か否かを判断する。
そして、トンネル内であれば、前記加速度センサー5から推定される車体1の振動速度方向と、前記アクチュエータ3と並列に配置したダンパー11の発生減衰力方向が一致するか否かを制御器6で判断する。
FIG. 4 is a flowchart for explaining an example of the vehicle body vibration control method according to the present invention. First, it is determined from the point information or the like whether the currently traveling position is within the tunnel.
If it is inside the tunnel, the controller 6 determines whether the vibration speed direction of the vehicle body 1 estimated from the acceleration sensor 5 and the direction of the generated damping force of the damper 11 arranged in parallel with the actuator 3 match. to decide.

図4の場合は、車体1の振動速度方向とダンパー11の発生減衰力方向が一致するか否かの判断を、前記車体速度V2 から台車速度V1 を減算したものに車体速度V2 を乗算した値(V2 ×(V2 −V1 ))が正か負で判断するものを示している。   In the case of FIG. 4, it is determined whether or not the vibration speed direction of the vehicle body 1 and the direction of the damping force generated by the damper 11 coincide with each other by subtracting the carriage speed V1 from the vehicle body speed V2 and multiplying the vehicle body speed V2. (V2 × (V2−V1)) is determined to be positive or negative.

そして、車体1の振動速度方向とダンパー11の発生減衰力方向が一致しない場合、すなわち、V2 ×(V2 −V1 )が負の場合は、ダンパー11による制振が不可能なため、ダンパー11の減衰係数Cを0又は可能な限り小さくして、アクチュエータ3により制振する。   If the vibration velocity direction of the vehicle body 1 does not coincide with the generated damping force direction of the damper 11, that is, if V 2 × (V 2 −V 1) is negative, the damper 11 cannot be controlled, so that the damper 11 The damping coefficient C is reduced to 0 or as small as possible, and vibration is controlled by the actuator 3.

この場合、必要な制振力Fを得るのに必要なアクチュエータ3の制御力Fact は、従来の制御と同様、H∞(無限大)制御理論のような、車体1の加速度をフィードバックし、多変数デジタル制御器により構築した制御によって求めたものを使用する。   In this case, the control force Fact of the actuator 3 necessary for obtaining the necessary vibration control force F feeds back the acceleration of the vehicle body 1 as in the case of conventional control, as in the H∞ (infinite) control theory. Use the one obtained by the control constructed by the variable digital controller.

一方、車体1の振動速度方向とダンパー11の発生減衰力方向が一致する場合、すなわち、V2 ×(V2 −V1 )が正の場合は、図2に示したような、スカイフックダンパー12を用いた制御装置を設定し、現実のデータをこの制御装置のデータに置き換えて振動抑制制御を行う、スカイフック理論で導かれるダンパ減衰係数Cskを、前記ダンパ11の減衰係数Cに置き換える為、前記車体速度V2 と台車速度V1 から得られる車体1と台車2間の相対速度V2 −V1 と車体速度V2 から、前記ダンパ11の減衰係数Cを、
C={V2 /(V2 −V1 )}×Csk
で算出し、必要なダンパー11の減衰力Fdmp を得る。
以上の本発明例のアクチュエータ3とダンパー11による作用を説明した図を図5に示す。
On the other hand, when the vibration velocity direction of the vehicle body 1 coincides with the direction of the generated damping force of the damper 11, that is, when V2 × (V2−V1) is positive, the skyhook damper 12 as shown in FIG. In order to replace the damper damping coefficient Csk derived by the Skyhook theory with the damping coefficient C of the damper 11, the vibration control is performed by replacing the actual data with the data of this control apparatus. From the relative speed V2-V1 between the vehicle body 1 and the vehicle 2 obtained from the velocity V2 and the vehicle velocity V1 and the vehicle vehicle velocity V2, the damping coefficient C of the damper 11 is calculated as follows:
C = {V2 / (V2-V1)} * Csk
To obtain the necessary damping force Fdmp of the damper 11.
FIG. 5 is a diagram illustrating the operation of the actuator 3 and the damper 11 according to the above-described example of the present invention.

これに対し、トンネル外であれば、アクチュエータ3とダンパー11を併用した制御を行う。この場合、ダンパー11の減衰力を必要な制振力Fの50%未満、例えば20%程度に固定し、残りをアクチュエータ3で得るようにする。   On the other hand, if it is outside the tunnel, control using both the actuator 3 and the damper 11 is performed. In this case, the damping force of the damper 11 is fixed to less than 50% of the necessary damping force F, for example, about 20%, and the rest is obtained by the actuator 3.

ところで、通常、アクチュエータ3による制振制御では、上記のように、H∞制御理論で導かれた制御力を発生させる方向に制御器6からアクチュエータ3にその指令が出力される。この場合、制御器6からの指令は、アクチュエータ3の最大出力までの間で出力されることは言うまでもない。   By the way, normally, in the vibration suppression control by the actuator 3, as described above, the command is output from the controller 6 to the actuator 3 in the direction in which the control force derived by the H∞ control theory is generated. In this case, needless to say, the command from the controller 6 is output until the maximum output of the actuator 3.

従って、アクチュエータ3の能力によっては、アクチュエータ3だけでは車体1の振動を抑制するために必要な制振力が得られない場合が起こり得る。例えば図6に示したように、アクチュエータ3の制振能力が車体1の左右方向(図6の紙面上下方向)に6KNとした場合に、車体1の振動を抑制するために必要な制振力が6KNを超えている場合(図6の斜線部分)である。   Therefore, depending on the ability of the actuator 3, there may occur a case where the actuator 3 alone cannot obtain the damping force necessary for suppressing the vibration of the vehicle body 1. For example, as shown in FIG. 6, when the damping capacity of the actuator 3 is 6 KN in the left-right direction of the vehicle body 1 (the vertical direction in the drawing of FIG. 6), the damping force required to suppress the vibration of the vehicle body 1. Is over 6KN (shaded area in FIG. 6).

かかる場合、本発明で採用する上記ダンパー11は、図7に示したように、その能力内であれば連続的に減衰力を変化できるので、アクチュエータ3で足りない不足分の制振力の値がどのような値であっても、制御器6からその値を指定してダンパー11の減衰力で補えるようになる。このように構成すれば、さらに良好な振動制御の効果が得られるようになる。
この本発明例のアクチュエータ3とダンパー11による作用を説明した図を図8に示す。
In this case, as shown in FIG. 7, the damper 11 employed in the present invention can continuously change the damping force as long as it is within its capacity. Can be compensated by the damping force of the damper 11 by designating the value from the controller 6. If comprised in this way, the effect of a more favorable vibration control will be acquired.
FIG. 8 is a diagram illustrating the operation of the actuator 3 and the damper 11 according to the present invention.

但し、このダンパー11の減衰力でアクチュエータ3による制振力の不足分を補うに際し、車体1に発生する振動は、例えば図6に示したようなコサインカーブとなるので、アクチュエータ3で得られる制振力の上下限を超えた部分(図6の斜線部分)のうちの、仮に前半の半分がダンパー11の減衰力を得ることができる方向と一致するとした場合、後半の半分はダンパー11の減衰力を得ることができる方向と反対になる。   However, when the dampening force of the damper 11 compensates for the deficiency of the damping force by the actuator 3, the vibration generated in the vehicle body 1 becomes a cosine curve as shown in FIG. If the first half of the portion exceeding the upper and lower limits of the vibration force (shaded portion in FIG. 6) coincides with the direction in which the damping force of the damper 11 can be obtained, the second half is the damping of the damper 11. Opposite to the direction in which the force can be obtained.

かかる場合、図9の右肩上がりの斜線で示した前半の半分はダンパー11の減衰力でアクチュエータ3による制振力の不足分を補えることになるものの、図9の右肩下がりの斜線で示した後半の半分ではダンパー11がかえって、アクチュエータ3による制振力を減少させる方向に働くことになる。   In this case, the first half shown by the slanting line of the right shoulder in FIG. 9 can compensate for the deficiency of the damping force by the actuator 3 by the damping force of the damper 11, but is shown by the slanting line of the right shoulder in FIG. In the other half of the second half, the damper 11 is changed to work in a direction to reduce the damping force by the actuator 3.

従って、アクチュエータ3で足りない不足分の制振力をダンパー11の減衰力で補う場合には、図10に示すように、アクチュエータ3で得られる制振力の上下限を超えた部分のうちの前半のみをダンパー11の減衰力で補い、後半はダンパー11の減衰力は0又は可能な限り小さくするように制御器6で指令を出すようにすることが望ましい。   Therefore, when the insufficient damping force of the actuator 3 is supplemented by the damping force of the damper 11, as shown in FIG. 10, of the portions exceeding the upper and lower limits of the damping force obtained by the actuator 3 It is desirable that the controller 6 issues a command so that only the first half is supplemented by the damping force of the damper 11 and the damping force of the damper 11 is zero or as small as possible in the second half.

上述の説明は、車体1に発生する振動を、主としてアクチュエータ3によって抑制し、その不足分をダンパー11で補うものについてのものであるが、反対に、可能な限りダンパー11で車体1に発生する振動を抑制し、その不足分をアクチュエータ3で補うようにしても良い。この場合のアクチュエータ3とダンパー11による作用を説明した図を図11に示す。   In the above description, the vibration generated in the vehicle body 1 is mainly suppressed by the actuator 3 and the deficiency is compensated by the damper 11. On the contrary, the vibration is generated in the vehicle body 1 by the damper 11 as much as possible. The vibration may be suppressed and the shortage may be compensated by the actuator 3. FIG. 11 is a diagram illustrating the action of the actuator 3 and the damper 11 in this case.

上記の本発明例では、全てトンネル内とトンネル外の走行に分けて振動制御を行うものについて説明しているが、請求項3,5,7〜9については、本発明の技術的思想の範囲内であるならば、他の要因で分けて振動制御を行なう等、適宜の設計変更は任意である。   In the above-described examples of the present invention, the vibration control is divided into traveling inside and outside the tunnel, but claims 3, 5, 7 to 9 are within the scope of the technical idea of the present invention. If it is within the range, an appropriate design change such as performing vibration control by other factors is arbitrary.

本発明は、振動制御に際してフェール時の走行安全性に影響を与えず、仮にアクチュエータが空気圧駆動であれば、車体に発生する振動の抑制に必要な空気の消費流量を減少できるので、空気源や空気の供給機構を小容量化でき、鉄道車両の小型化が必要な用途に適用できる。そして、消費エネルギーの削減が可能となる。   The present invention does not affect the running safety at the time of failure during vibration control, and if the actuator is pneumatically driven, the consumption flow rate of air required for suppressing vibration generated in the vehicle body can be reduced. The capacity of the air supply mechanism can be reduced, and the present invention can be applied to applications that require miniaturization of railway vehicles. And energy consumption can be reduced.

請求項1の本発明のアクチュエータとダンパーによる作用を説明した図である。It is a figure explaining the effect | action by the actuator and damper of this invention of Claim 1. 本発明を説明する図である。It is a figure explaining this invention. 本発明に使用する車体速度の演算方法及び台車速度の推定方法の一例を説明するブロック図である。It is a block diagram explaining an example of the calculation method of the vehicle body speed used for this invention, and the estimation method of a trolley | bogie speed. 本発明に係る車体振動制御方法の一例を説明するフロー図である。It is a flowchart explaining an example of the vehicle body vibration control method which concerns on this invention. 図4に示した例のアクチュエータとダンパーによる作用を説明した図である。It is the figure explaining the effect | action by the actuator and damper of the example shown in FIG. 車体を制振するのに必要な力とアクチュエータの能力との関係の一例を説明する図である。It is a figure explaining an example of the relationship between the force required to control a vehicle body, and the capability of an actuator. 本発明に使用するダンパーのピストン速度と減衰力の関係を示した図である。It is the figure which showed the relationship between the piston speed and damping force of the damper used for this invention. アクチュエータで足りない不足分の制振力をダンパーの減衰力で補う場合のアクチュエータとダンパーによる作用を説明した図である。It is the figure explaining the effect | action by an actuator and a damper in the case of compensating the insufficient damping force with an actuator with the damping force of a damper. アクチュエータとダンパーの制振力の和と本発明に使用するダンパーアクチュエータの不足分を補う場合の問題を説明する図である。It is a figure explaining the problem in the case of supplementing the shortage of the sum of the damping force of an actuator and a damper, and the damper actuator used for the present invention. アクチュエータとダンパーの制振力の和と本発明に使用するダンパーアクチュエータの不足分を補う場合の例を説明する図である。It is a figure explaining the example in the case of supplementing the shortage of the sum of the damping force of an actuator and a damper, and the damper actuator used for the present invention. 可能な限りダンパーで車体に発生する振動を抑制し、その不足分をアクチュエータで補う場合のアクチュエータとダンパーによる作用を説明した図である。It is the figure explaining the effect | action by an actuator and a damper at the time of suppressing the vibration which generate | occur | produces in a vehicle body with a damper as much as possible, and supplementing the shortage with an actuator. 従来の鉄道車両の振動制御装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the vibration control apparatus of the conventional railway vehicle.

符号の説明Explanation of symbols

1 車体
2 台車
3 アクチュエータ
4 空気ばね
5 加速度センサー
6 制御器
7 サーボ弁
11 ダンパー
12 スカイフックダンパー
DESCRIPTION OF SYMBOLS 1 Car body 2 Cart 3 Actuator 4 Air spring 5 Acceleration sensor 6 Controller 7 Servo valve 11 Damper 12 Skyhook damper

Claims (9)

鉄道車両の車体と台車間に設置したアクチュエータに加えて、このアクチュエータと並列に、減衰力を連続的に変化可能なダンパーを設置し、
トンネル区間では前記アクチュエータ或いは前記ダンパーのどちらか一方で車体の制振を行い、
トンネル区間以外では主として前記アクチュエータで車体の制振を行うことを特徴とする鉄道車両用振動制御方法。
In addition to the actuator installed between the body of the railway vehicle and the carriage, a damper that can continuously change the damping force is installed in parallel with this actuator.
In the tunnel section, either the actuator or the damper controls the vehicle body,
A vibration control method for railway vehicles, characterized in that the vehicle body is mainly controlled by the actuator outside the tunnel section.
トンネル区間において、
車体の振動速度方向とダンパーの発生減衰力方向が異なる場合は、アクチュエータで車体の制振を行い、
前記両方向が一致する場合は、ダンパーで車体の制振を行うことを特徴とする請求項1記載の鉄道車両用振動制御方法。
In the tunnel section,
If the vibration speed direction of the vehicle body is different from the direction of the damping force generated by the damper, the body is controlled by the actuator,
The railway vehicle vibration control method according to claim 1, wherein when the two directions coincide with each other, the vehicle body is controlled by a damper.
鉄道車両の車体と台車間に設置したアクチュエータに加えて、このアクチュエータと並列に、減衰力を連続的に変化可能なダンパーを設置し、
前記アクチュエータの発生力で制振できない振動量を前記ダンパーの減衰力で補うことを特徴とする鉄道車両用振動制御方法。
In addition to the actuator installed between the body of the railway vehicle and the carriage, a damper that can continuously change the damping force is installed in parallel with this actuator.
A vibration control method for a railway vehicle, wherein a vibration amount that cannot be controlled by a force generated by the actuator is compensated by a damping force of the damper.
前記トンネル区間以外において、
前記アクチュエータの発生力で制振できない振動量を前記ダンパーの減衰力で補うことを特徴とする請求項1記載の鉄道車両用振動制御方法。
Outside the tunnel section,
The railroad vehicle vibration control method according to claim 1, wherein a vibration amount that cannot be controlled by the generated force of the actuator is compensated by a damping force of the damper.
鉄道車両の車体と台車間に設置したアクチュエータに加えて、このアクチュエータと並列に、減衰力を連続的に変化可能なダンパーを設置し、
前記車体の振動速度方向と前記ダンパーの発生減衰力方向が一致する場合は、可能な限り前記ダンパーで車体の制振を行い、ダンパーで制振できない振動のみを前記アクチュエータで制振する一方、
前記方向が異なる場合は、前記アクチュエータのみにより車体の制振を行うことを特徴とする鉄道車両用振動制御方法。
In addition to the actuator installed between the body of the railway vehicle and the carriage, a damper that can continuously change the damping force is installed in parallel with this actuator.
When the vibration speed direction of the vehicle body and the direction of the generated damping force of the damper coincide with each other, the vehicle body is controlled by the damper as much as possible, and only the vibration that cannot be controlled by the damper is controlled by the actuator,
When the directions are different, the vibration control method for a railway vehicle is characterized by damping the vehicle body only by the actuator.
鉄道車両の車体と台車間に設置したアクチュエータ及びこのアクチュエータの駆動機構と、車体の振動を検知するセンサーと、このセンサーからの信号に基づき前記駆動機構に制御信号を出す制御器を備え、車体に発生する振動を制御する鉄道車両の振動制御装置において、
前記アクチュエータと並列に、減衰力を連続的に変化可能なダンパーを設置し、
トンネル区間では前記アクチュエータ或いは前記ダンパーのどちらか一方で、
トンネル区間以外では主として前記アクチュエータにより車体の制振を行うように構成したことを特徴とする鉄道車両用振動制御装置。
The vehicle body includes an actuator installed between the body of the railway vehicle and the carriage, a drive mechanism for the actuator, a sensor for detecting vibration of the vehicle body, and a controller for outputting a control signal to the drive mechanism based on a signal from the sensor. In a railway vehicle vibration control device for controlling generated vibrations,
In parallel with the actuator, a damper capable of continuously changing the damping force is installed,
In the tunnel section, either the actuator or the damper,
A railway vehicle vibration control apparatus characterized in that a vehicle body is mainly controlled by the actuator outside a tunnel section.
鉄道車両の車体と台車間に設置したアクチュエータ及びこのアクチュエータの駆動機構と、車体の振動を検知するセンサーと、このセンサーからの信号に基づき前記駆動機構に制御信号を出す制御器を備え、車体に発生する振動を制御する鉄道車両の振動制御装置において、
前記アクチュエータと並列に、減衰力を連続的に変化可能なダンパーを設置し、
前記アクチュエータの発生力で制振できない振動量を前記ダンパーの減衰力で補うように構成したことを特徴とする鉄道車両用振動制御装置。
The vehicle body includes an actuator installed between the body of the railway vehicle and the carriage, a drive mechanism for the actuator, a sensor for detecting vibration of the vehicle body, and a controller for outputting a control signal to the drive mechanism based on a signal from the sensor. In a railway vehicle vibration control device for controlling generated vibrations,
In parallel with the actuator, a damper capable of continuously changing the damping force is installed,
A vibration control device for a railway vehicle, wherein a vibration amount that cannot be controlled by the generated force of the actuator is compensated by a damping force of the damper.
前記ダンパーの最大減衰力は前記アクチュエータの最大発生力よりも大きいことを特徴とする請求項6又は7記載の鉄道車両用振動制御装置。   The railway vehicle vibration control device according to claim 6 or 7, wherein a maximum damping force of the damper is larger than a maximum generated force of the actuator. 鉄道車両の車体と台車間に設置したアクチュエータ及びこのアクチュエータの駆動機構と、車体の振動を検知するセンサーと、このセンサーからの信号に基づき前記駆動機構に制御信号を出す制御器を備え、車体に発生する振動を制御する鉄道車両の振動制御装置において、
前記アクチュエータと並列に、減衰力を連続的に変化可能なダンパーを設置し、
車体の振動速度方向とダンパーの発生減衰力方向が一致する場合は、可能な限り前記ダンパーで車体の制振を行い、ダンパーで制振できない振動のみを前記アクチュエータで制振する一方、
前記方向が異なる場合は、前記アクチュエータのみにより車体の制振を行うように構成したことを特徴とする鉄道車両用振動制御装置。
The vehicle body includes an actuator installed between the body of the railway vehicle and the carriage, a drive mechanism for the actuator, a sensor for detecting vibration of the vehicle body, and a controller for outputting a control signal to the drive mechanism based on a signal from the sensor. In a railway vehicle vibration control device for controlling generated vibrations,
In parallel with the actuator, a damper capable of continuously changing the damping force is installed,
When the vibration speed direction of the vehicle body and the direction of the damping force generated by the damper coincide, the vehicle body is controlled by the damper as much as possible, and only the vibration that cannot be controlled by the damper is controlled by the actuator,
When the directions are different, the vibration control device for a railway vehicle is configured to perform vibration suppression of the vehicle body only by the actuator.
JP2003317034A 2003-09-09 2003-09-09 Railway vehicle vibration control system Expired - Lifetime JP4501380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003317034A JP4501380B2 (en) 2003-09-09 2003-09-09 Railway vehicle vibration control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003317034A JP4501380B2 (en) 2003-09-09 2003-09-09 Railway vehicle vibration control system

Publications (2)

Publication Number Publication Date
JP2005082028A true JP2005082028A (en) 2005-03-31
JP4501380B2 JP4501380B2 (en) 2010-07-14

Family

ID=34416749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003317034A Expired - Lifetime JP4501380B2 (en) 2003-09-09 2003-09-09 Railway vehicle vibration control system

Country Status (1)

Country Link
JP (1) JP4501380B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327529A (en) * 2005-05-30 2006-12-07 Kawasaki Heavy Ind Ltd Vehicle body vibration control device and vehicle body vibration control method
JP2007131204A (en) * 2005-11-11 2007-05-31 Railway Technical Res Inst Damping device for railway vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04287763A (en) * 1991-03-15 1992-10-13 Sumitomo Metal Ind Ltd Vibration control device for railroad car
JPH0826110A (en) * 1994-07-15 1996-01-30 Sumitomo Metal Ind Ltd Device and method for controlling neutral position of vehicle body of railway rolling stock
JPH08207765A (en) * 1995-02-06 1996-08-13 Sumitomo Metal Ind Ltd Vibration control device for rolling stock
JPH11139310A (en) * 1997-11-12 1999-05-25 Sumitomo Metal Ind Ltd Vibration control method of rolling stock
JP2001010324A (en) * 1999-06-30 2001-01-16 Tokico Ltd Suspension control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04287763A (en) * 1991-03-15 1992-10-13 Sumitomo Metal Ind Ltd Vibration control device for railroad car
JPH0826110A (en) * 1994-07-15 1996-01-30 Sumitomo Metal Ind Ltd Device and method for controlling neutral position of vehicle body of railway rolling stock
JPH08207765A (en) * 1995-02-06 1996-08-13 Sumitomo Metal Ind Ltd Vibration control device for rolling stock
JPH11139310A (en) * 1997-11-12 1999-05-25 Sumitomo Metal Ind Ltd Vibration control method of rolling stock
JP2001010324A (en) * 1999-06-30 2001-01-16 Tokico Ltd Suspension control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327529A (en) * 2005-05-30 2006-12-07 Kawasaki Heavy Ind Ltd Vehicle body vibration control device and vehicle body vibration control method
JP2007131204A (en) * 2005-11-11 2007-05-31 Railway Technical Res Inst Damping device for railway vehicle

Also Published As

Publication number Publication date
JP4501380B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP5662881B2 (en) Vibration control device for railway vehicles
US9162688B2 (en) Vibrational component acceleration estimation device and vibrational component acceleration estimation method for railway vehicle
JP5181323B2 (en) Railway vehicle vibration control system
WO2017022318A1 (en) Vibration suppression device for railcar
JP6571264B2 (en) Suspension control device
JP5662880B2 (en) Vibration control device for railway vehicles
JP3541967B2 (en) Vehicle body neutral position control method for railway vehicles
JP5522549B2 (en) Railway vehicle vibration control system
TWI558593B (en) Method for reducing lateral pressure of railway vehicles
JP2018083556A (en) Height adjustment device of railway vehicle
JP5427072B2 (en) Vibration control device for railway vehicles
WO2018155329A1 (en) Actuator device
JPH08536B2 (en) Vehicle vibration control device
JP4501380B2 (en) Railway vehicle vibration control system
JP5497333B2 (en) Railway vehicle vibration control device
JP2012179970A (en) Suspension control device
JP4779832B2 (en) Railway vehicle body tilt control device and control method
JP5812591B2 (en) Railway vehicle vibration control system
JP2006335160A (en) Vibration control system and vibration control method for vehicle body
JPH06247299A (en) Rolling stock vibration controlling device
JP6399590B2 (en) Damping force adjustable shock absorber and vehicle system using the same
JP5874584B2 (en) Railway vehicle anti-sway control device
JPH05262233A (en) Vibration control device for rolling stock

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Ref document number: 4501380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term