JP2005081268A - Treatment method and treatment apparatus for organic substance-containing wastewater - Google Patents

Treatment method and treatment apparatus for organic substance-containing wastewater Download PDF

Info

Publication number
JP2005081268A
JP2005081268A JP2003317060A JP2003317060A JP2005081268A JP 2005081268 A JP2005081268 A JP 2005081268A JP 2003317060 A JP2003317060 A JP 2003317060A JP 2003317060 A JP2003317060 A JP 2003317060A JP 2005081268 A JP2005081268 A JP 2005081268A
Authority
JP
Japan
Prior art keywords
membrane
water
membrane separation
wastewater
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003317060A
Other languages
Japanese (ja)
Inventor
Nozomi Ikuno
望 育野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2003317060A priority Critical patent/JP2005081268A/en
Publication of JP2005081268A publication Critical patent/JP2005081268A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform a stable treatment over a long term by preventing flux deterioration and biofouling due to organic substances adhering to a membrane surface in an RO (reverse osmosis) membrane separator when treating and recovering wastewater with high or low concentrations of organic substances, discharged from an electronic device manufacturing plant and other various fields by using the RO membrane separator; to obtain a treated water of high quality by efficiently reducing TOC (trace organic compound) concentration in water. <P>SOLUTION: After an alkali is added to the organic substance-containing wastewater to adjust its pH to 9.5 or higher and the wastewater is passed through the first RO membrane separator 2, the alkali is added thereto to adjust pH to 9.5 or higher again and the wastewater is passed through the second RO membrane separator 3. By adjusting the pH of the water supplied to RO to 9.5 or higher, the biofouling in the RO membrane separators 2, 3 is prevented, and nonionic surfactants are prevented from adhering to the membrane surface to prevent the flux deterioration. A TOC value is reduced by performing the two-stage RO membrane separation treatment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電子デバイス製造工場等から排出される高濃度ないし低濃度有機物(TOC)含有排水を逆浸透(RO)膜分離装置を用いて処理・回収する際、RO膜分離装置内での有機物の膜面付着によるフラックスの低下や、バイオファウリングを防止して長期にわたり安定な処理を行うと同時に、水中TOC濃度を効率的に低減して高水質の処理水を得る有機物含有排水の処理方法及び処理装置に関する。   In the present invention, when wastewater containing high or low concentration organic matter (TOC) discharged from an electronic device manufacturing factory or the like is treated and recovered using a reverse osmosis (RO) membrane separator, organic matter in the RO membrane separator Of organic wastewater containing high-quality treated water by efficiently reducing the TOC concentration in water while simultaneously performing stable treatment over a long period of time by preventing flux reduction and bio-fouling due to film surface adhesion And a processing apparatus.

近年、環境基準ないし水質基準は益々厳しくなる傾向にあり、放流水についても高度に浄化することが望まれている。一方で、水不足解消の目的から、各種の排水を回収して再利用するためにも、高度な水処理技術の開発が望まれている。   In recent years, environmental standards and water quality standards tend to be stricter, and it is desired to purify discharged water to a high degree. On the other hand, for the purpose of eliminating water shortage, development of advanced water treatment technology is also desired in order to collect and reuse various wastewater.

このような状況において、RO膜分離処理は水中の不純物(イオン類、有機物、微粒子など)を効果的に除去することが可能であることから、近年、多くの分野で使用されるようになってきた。例えば、半導体製造プロセスから排出されるアセトン、イソプロピルアルコールなどを含む高濃度TOCあるいは低濃度TOC含有排水を回収して再利用する場合、これをまず生物処理してTOC成分を除去し生物処理水をRO膜処理して浄化する方法が広く採用されている(例えば、特開2002−336886号公報)。   Under such circumstances, RO membrane separation treatment can effectively remove impurities (ions, organic substances, fine particles, etc.) in water, and has recently been used in many fields. It was. For example, when recovering and recycling wastewater containing high-concentration TOC or low-concentration TOC containing acetone, isopropyl alcohol, etc. discharged from the semiconductor manufacturing process, this is first biologically treated to remove the TOC component, A method of purifying by RO membrane treatment is widely adopted (for example, JP-A-2002-336886).

しかしながら、近年、生物処理排水をRO膜分離装置に通水した場合、微生物による有機物分解で生成される生物代謝物により、RO膜の膜面が閉塞され、フラックスが低下するという問題が顕在化し始めるようになってきた。   However, in recent years, when biological treatment wastewater is passed through an RO membrane separation device, the problem that the membrane surface of the RO membrane is clogged and the flux is reduced due to biological metabolites generated by the decomposition of organic matter by microorganisms begins to become apparent. It has become like this.

一方、生物処理を用いず、これらのTOC含有排水を直接RO膜分離装置に通水した場合には、RO膜分離装置に流入するTOC濃度が高いため、RO膜分離装置内では微生物が繁殖しやすい環境となる。そこでRO膜分離装置内でのバイオファウリングを抑制する目的から、通常はTOC含有排水にスライムコントロール剤を多量に添加することが行われているが、スライムコントロール剤は高価であるため、より安価なバイオファウリング抑制方法が求められている。   On the other hand, when these TOC-containing wastewater is directly passed through the RO membrane separator without using biological treatment, the TOC concentration flowing into the RO membrane separator is high, so that microorganisms propagate in the RO membrane separator. Easy environment. Therefore, for the purpose of suppressing biofouling in the RO membrane separation apparatus, a large amount of slime control agent is usually added to TOC-containing wastewater. However, since the slime control agent is expensive, it is cheaper. There is a need for a new biofouling suppression method.

また、電子デバイス製造工場から排出される排水には、RO膜分離装置の膜面に付着し、フラックスを低下させる恐れのある非イオン性界面活性剤が混入する場合があるため、従来、このような非イオン性界面活性剤含有排水には、RO膜分離処理を適用することはできなかった。   In addition, the wastewater discharged from the electronic device manufacturing factory may be mixed with a nonionic surfactant that may adhere to the membrane surface of the RO membrane separator and reduce the flux. RO membrane separation treatment could not be applied to such nonionic surfactant-containing wastewater.

なお、特開平11−128923号公報には、ホウ素含有水にアルカリを添加してpH9.2以上とした後RO膜分離処理し、その透過水にアルカリを添加してpH9.2以上とした後RO膜分離処理することによりホウ素を除去する方法が記載されている。しかし、この方法はホウ素濃度の低減を目的とするものであって、有機物の除去については全く記載がなく、しかも、実施例で実際に採用されている調整pH値も9.2であり、本発明の有機物の高度処理技術とは異なるものである。
特開2002−336886号公報 特開平11−128923号公報
In JP-A-11-128923, an alkali is added to boron-containing water to adjust the pH to 9.2 or higher, followed by RO membrane separation treatment, and alkali is added to the permeated water to adjust the pH to 9.2 or higher. A method for removing boron by performing RO membrane separation is described. However, this method is intended to reduce the boron concentration, and there is no description about the removal of organic substances, and the adjusted pH value actually employed in the examples is 9.2. This is different from the advanced organic matter processing technology of the invention.
JP 2002-336886 A Japanese Patent Laid-Open No. 11-128923

本発明は、上記従来の問題点を解決し、電子デバイス製造工場、その他各種の分野から排出される高濃度ないし低濃度有機物含有排水をRO膜分離装置を用いて処理・回収する際、RO膜分離装置内での有機物の膜面付着によるフラックスの低下、バイオファウリングを防止して長期にわたり安定な処理を行うと同時に、水中TOC濃度を効率的に低減して高水質の処理水を得る有機物含有排水の処理方法及び処理装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and when processing / recovering wastewater containing high or low concentration organic matter discharged from an electronic device manufacturing factory and other various fields using an RO membrane separator, Organic matter that obtains high-quality treated water by efficiently reducing the TOC concentration in water while simultaneously performing stable treatment over a long period of time by preventing flux reduction and biofouling due to the membrane surface adhesion of organic matter in the separator It aims at providing the processing method and processing apparatus of contained wastewater.

本発明の有機物含有排水の処理方法は、有機物含有排水にアルカリを添加してpHを9.5以上に調整する第1のpH調整工程と、該第1のpH調整工程で得られたpH調整水を逆浸透膜分離処理する第1の膜分離処理工程と、該第1の膜分離処理工程の透過水にアルカリを添加してpHを9.5以上に調整する第2のpH調整工程と、該第2のpH調整工程で得られたpH調整水を逆浸透膜分離処理する第2の膜分離処理工程と、を備えてなることを特徴とする。   The method for treating organic matter-containing wastewater of the present invention includes a first pH adjustment step of adjusting the pH to 9.5 or more by adding alkali to the organic matter-containing wastewater, and a pH adjustment obtained in the first pH adjustment step. A first membrane separation treatment step for subjecting water to reverse osmosis membrane separation; a second pH adjustment step for adjusting the pH to 9.5 or higher by adding alkali to the permeated water of the first membrane separation treatment step; And a second membrane separation treatment step of performing reverse osmosis membrane separation treatment on the pH adjusted water obtained in the second pH adjustment step.

本発明の有機物含有排水の処理装置は、有機物含有排水にアルカリを添加してpHを9.5以上に調整する第1のpH調整手段と、該第1のpH調整手段で得られたpH調整水が導入される第1の逆浸透膜分離装置と、該第1の逆浸透膜分離装置の透過水にアルカリを添加してpHを9.5以上に調整する第2のpH調整手段と、該第2のpH調整手段で得られたpH調整水が導入される第2の逆浸透膜分離装置と、を備えてなることを特徴とする。   The treatment apparatus for organic matter-containing wastewater of the present invention includes a first pH adjusting means for adjusting the pH to 9.5 or more by adding alkali to the organic matter-containing wastewater, and a pH adjustment obtained by the first pH adjusting means. A first reverse osmosis membrane separation device into which water is introduced; a second pH adjusting means for adjusting the pH to 9.5 or more by adding alkali to the permeated water of the first reverse osmosis membrane separation device; And a second reverse osmosis membrane separation device into which pH adjusted water obtained by the second pH adjusting means is introduced.

本発明においては、第1のRO膜分離装置に導入する被処理水(以下「第1RO給水」と称す場合がある。)のpHを9.5以上に調整して第1段目のRO膜分離装置(以下「第1RO膜分離装置」と称す場合がある。)に通水した後、この第1RO膜分離装置の透過水(以下「第1RO透過水」と称す場合がある。)にアルカリを添加してpHを9.5以上に調整し、この水を第2段目のRO膜分離装置(以下「第2RO膜分離装置」と称す場合がある。)の給水(以下「第2RO給水」と称す場合がある。)に通水する。   In the present invention, the pH of the water to be treated introduced into the first RO membrane separation device (hereinafter sometimes referred to as “first RO water supply”) is adjusted to 9.5 or more to adjust the first stage RO membrane. After passing water through a separation device (hereinafter sometimes referred to as “first RO membrane separation device”), the permeated water of this first RO membrane separation device (hereinafter sometimes referred to as “first RO permeated water”) is alkali. Is added to adjust the pH to 9.5 or higher, and this water is supplied to the second stage RO membrane separator (hereinafter sometimes referred to as “second RO membrane separator”) (hereinafter “second RO water supply”). ).).

第1RO給水のpHを9.5以上に調整する理由は以下の通りである。   The reason why the pH of the first RO feed water is adjusted to 9.5 or higher is as follows.

即ち、微生物はアルカリ性域では生息することができない。そのため、RO給水のpHを9.5以上調整することにより、RO膜分離装置内において、栄養源はあるが微生物が生息できない環境を作り出すことが可能となり、従来のような高価なスライムコントロール剤の添加を必要とすることなく、RO膜分離装置でのバイオファウリングを抑制することができる。   That is, microorganisms cannot live in the alkaline region. Therefore, by adjusting the pH of the RO feed water to 9.5 or more, it becomes possible to create an environment where there are nutrient sources but microorganisms cannot live in the RO membrane separation device. Biofouling in the RO membrane separator can be suppressed without the need for addition.

また、フラックスを低下させる恐れのある非イオン性界面活性剤はアルカリ性領域では膜面から脱着することが知られており、RO給水のpHを9.5以上にすることによりRO膜面へのこれらの成分の付着を抑制することが可能となる。   In addition, nonionic surfactants that may lower the flux are known to be desorbed from the membrane surface in the alkaline region. By increasing the pH of the RO water supply to 9.5 or higher, these are applied to the RO membrane surface. It becomes possible to suppress adhesion of these components.

また、第2RO給水のpHを9.5以上に調整する理由は以下の通りである。   The reason for adjusting the pH of the second RO water supply to 9.5 or higher is as follows.

即ち、被処理水のTOC濃度が高くなればなるほど第1RO透過水のTOC値は悪化し、この透過水を回収、再利用するにあたりTOCが無視できない程度となる。そこで、本発明では、よりTOCが低減化された処理水を得る手段として、RO膜分離装置を2段直列に並べ、2段RO処理方式を採用するが、pH9.5以上に調整した第1RO給水を第1RO膜分離装置で処理して得られた第1RO透過水をそのまま第2RO膜分離装置に通水すると、第2RO膜分離装置が微生物によるバイオファウリング又は非イオン性界面活性剤の膜面付着により膜面閉塞を起こす恐れがある。即ち、pH9.5以上の第1RO給水をRO膜分離処理して得られる第1RO透過水のpHは通常8.0〜9.0程度であり、バイオファウリングや非イオン性界面活性剤の膜面付着を引き起こす。そこで、このようなトラブルを抑制する目的から、第1RO透過水のpHを再び9.5以上に調整して第2RO給水とする必要がある。   That is, the higher the TOC concentration of the water to be treated, the worse the TOC value of the first RO permeated water, and the TOC cannot be ignored when recovering and reusing this permeated water. Therefore, in the present invention, as a means for obtaining treated water with further reduced TOC, the RO membrane separation devices are arranged in two stages in series, and the two-stage RO treatment method is adopted, but the first RO adjusted to pH 9.5 or higher. When the first RO permeated water obtained by treating the feed water with the first RO membrane separation device is passed through the second RO membrane separation device as it is, the second RO membrane separation device is biofouling by microorganisms or a membrane of a nonionic surfactant There is a risk of film surface clogging due to surface adhesion. That is, the pH of the first RO permeate obtained by subjecting the first RO feedwater having a pH of 9.5 or higher to the RO membrane separation treatment is usually about 8.0 to 9.0, and biofouling or a nonionic surfactant membrane Causes surface adhesion. Therefore, for the purpose of suppressing such trouble, it is necessary to adjust the pH of the first RO permeated water to 9.5 or higher again to provide the second RO water supply.

本発明の有機物含有排水の処理方法及び処理装置によれば、電子デバイス製造工場、その他各種の分野から排出される高濃度ないし低濃度有機物含有排水、特に非イオン性界面活性剤を含有する排水をRO膜分離装置を用いて処理・回収する際、RO膜分離装置内での有機物の膜面付着によるフラックスの低下、バイオファウリングを防止して長期にわたり安定な処理を行うと同時に、水中TOC濃度を効率的に低減して高水質の処理水を得ることができる。   According to the method and apparatus for treating organic matter-containing wastewater of the present invention, wastewater containing high-concentration or low-concentration organic matter discharged from an electronic device manufacturing factory and other various fields, particularly wastewater containing a nonionic surfactant. When processing / recovering using RO membrane separators, the TOC concentration in the water is reduced at the same time as performing stable treatment over a long period of time by preventing flux reduction and biofouling due to organic membrane adhesion in the RO membrane separator. Can be efficiently reduced to obtain high-quality treated water.

以下に図面を参照して本発明の有機物含有排水の処理方法及び処理装置の実施の形態を詳細に説明する。   DESCRIPTION OF EMBODIMENTS Embodiments of a method and apparatus for treating organic matter-containing wastewater according to the present invention will be described in detail below with reference to the drawings.

図1は本発明の有機物含有排水の処理方法及び処理装置の実施の形態を示す系統図である。   FIG. 1 is a system diagram showing an embodiment of the method and apparatus for treating wastewater containing organic matter according to the present invention.

タンク1を経て導入される原水(有機物含有排水)に、まずアルカリ剤を添加してpH9.5以上、好ましくは10以上、より好ましくは10.5以上、例えばpH10.5〜11に調整して第1RO膜分離装置2に導入する。ここで使用するアルカリ剤としては水酸化ナトリウム、水酸化カリウムなど、原水のpHを9.5以上に調整できる無機物系アルカリ剤であれば良く、特に限定されない。   First, an alkaline agent is added to the raw water (organic matter-containing wastewater) introduced through the tank 1 to adjust the pH to 9.5 or more, preferably 10 or more, more preferably 10.5 or more, for example, pH 10.5 to 11. The first RO membrane separation device 2 is introduced. The alkaline agent used here is not particularly limited as long as it is an inorganic alkaline agent that can adjust the pH of raw water to 9.5 or higher, such as sodium hydroxide and potassium hydroxide.

第1RO膜分離装置2の透過水は、次いでアルカリ剤を添加してpH9.5以上、好ましくは10以上、より好ましくは10.5以上、例えばpH10.5〜11に調整して第2RO膜分離装置3に導入する。ここで使用するアルカリ剤としても水酸化ナトリウム、水酸化カリウムなど、原水のpHを9.5以上に調整できる無機物系アルカリ剤であれば良く、特に限定されない。   Next, the permeated water of the first RO membrane separation device 2 is adjusted to pH 9.5 or more, preferably 10 or more, more preferably 10.5 or more, for example, pH 10.5 to 11 by adding an alkali agent to the second RO membrane separation. Introduced into the apparatus 3. The alkaline agent used here is not particularly limited as long as it is an inorganic alkaline agent that can adjust the pH of raw water to 9.5 or higher, such as sodium hydroxide and potassium hydroxide.

なお、第1,第2RO膜分離装置2,3の濃縮水は必要に応じて酸を添加してpH中性に調整した後、系外へ排出される。   The concentrated water in the first and second RO membrane separation devices 2 and 3 is discharged to the outside of the system after adjusting to pH neutrality by adding acid as necessary.

第1,第2RO膜分離装置2,3のRO膜としては耐アルカリ性を有するもの、例えば、ポリエーテルアミド複合膜、ポリビニルアルコール複合膜、芳香族ポリアミド膜などが好適に使用される。このRO膜は、スパイラル型、中空糸型、管状型等、いかなる型式のものであっても良い。   As the RO membranes of the first and second RO membrane separation devices 2 and 3, those having alkali resistance, for example, polyetheramide composite membranes, polyvinyl alcohol composite membranes, aromatic polyamide membranes and the like are preferably used. This RO membrane may be of any type such as a spiral type, a hollow fiber type, and a tubular type.

図1に示すように、原水をpH9.5以上に調整した後RO膜分離処理し、その後再びpHを9.5以上に調整して2段目RO膜分離処理することにより、RO膜分離装置2,3におけるフラックスの低下を引き起こすことなく、長期に亘り安定な処理を行って、TOCが高度に除去された高水質処理水を得ることができる。   As shown in FIG. 1, RO membrane separation treatment is performed by adjusting the raw water to pH 9.5 or higher and then performing RO membrane separation treatment, and then adjusting the pH to 9.5 or higher again and performing second-stage RO membrane separation treatment. A high quality treated water from which the TOC is highly removed can be obtained by performing a stable treatment over a long period of time without causing a decrease in the flux at 2 and 3.

なお、図1は、本発明の実施の形態の一例を示すものであって、本発明はその要旨を超えない限り、何ら図示のものに限定されるものではない。例えば、RO膜分離装置による処理は2段処理に限らず、3段以上の多段処理であっても良い。また、電子デバイス製造工場から排出されるTOC含有排水等では、基本的にはスケールの原因となるカルシウムイオンなどが混入するケースは少ないが、原水中にカルシウムイオンなどが混入する場合は、RO膜分離装置の前段に軟化装置を設置しても良い。また、pH調整のための混合槽を設けても良い。   FIG. 1 shows an example of an embodiment of the present invention, and the present invention is not limited to the illustrated one as long as the gist of the present invention is not exceeded. For example, the process by the RO membrane separation apparatus is not limited to the two-stage process, and may be a multi-stage process having three or more stages. Moreover, in TOC-containing wastewater discharged from electronic device manufacturing factories, there are few cases where calcium ions, etc., which cause scales are basically mixed, but when raw materials contain calcium ions, RO membranes You may install a softening apparatus in the front | former stage of a separation apparatus. Moreover, you may provide the mixing tank for pH adjustment.

以下に実施例、比較例及び実験例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples, comparative examples, and experimental examples.

実施例1
非イオン系界面活性剤を含む電子デバイス製造工場排水(pH7.2,TOC10mg)を原水としてNaOHを添加してpH10.5とした後、RO膜分離装置(日東電工製低圧芳香族ポリアミド型RO膜「NTR−759」)で回収率90%の条件で1段目RO膜分離処理を行った。このRO透過水(pH9.2)にNaOHを添加して再びpH10.5に調整した後、RO膜分離装置(日東電工製超低圧芳香族ポリアミド型RO膜「ES−20」)で回収率90%の条件で2段目RO膜分離処理を行った。
Example 1
After adding NaOH to the electronic device manufacturing factory waste water (pH 7.2, TOC 10 mg) containing nonionic surfactant as raw water to make the pH 10.5, RO membrane separator (low pressure aromatic polyamide RO membrane manufactured by Nitto Denko) The first stage RO membrane separation treatment was performed under the conditions of “NTR-759”) with a recovery rate of 90%. After adding NaOH to this RO permeate (pH 9.2) and adjusting the pH to 10.5 again, the RO membrane separation device (Nitto Denko ultra-low pressure aromatic polyamide RO membrane “ES-20”) has a recovery rate of 90 The second-stage RO membrane separation treatment was performed under the condition of%.

このときの第1段目RO膜分離装置のフラックスとRO濃縮水中の生菌数の経時変化を調べ、結果を図2,3に示した。   Changes over time in the flux of the first stage RO membrane separation apparatus and the viable cell count in the RO concentrated water at this time were examined, and the results are shown in FIGS.

なお、各ポイントでのTOC値は表1に示す通りであった。   The TOC value at each point is as shown in Table 1.

Figure 2005081268
Figure 2005081268

比較例1
第1,第2RO給水のpHを7としたこと以外は実施例1と同条件で処理を行い、第1段目RO膜分離装置の膜フラックスとRO濃縮水中の生菌数の経時変化をそれぞれ図2,3に示した。
Comparative Example 1
The treatment is performed under the same conditions as in Example 1 except that the pH of the first and second RO feed water is set to 7. The time course changes in the membrane flux of the first stage RO membrane separator and the number of viable bacteria in the RO concentrated water are respectively shown. This is shown in FIGS.

比較例2
第1,第2RO給水のpHを7とし、第1RO給水にイソチアゾリン系スライムコントロール剤(栗田工業(株)製「クリバータEC−503」)を5mg/L添加したこと以外は実施例1と同条件で処理を行い、RO膜分離装置の膜フラックスと生菌数の経時変化をそれぞれ図2,3に示した。
Comparative Example 2
The same conditions as in Example 1 except that the pH of the first and second RO feed water was 7, and 5 mg / L of the isothiazoline slime control agent ("Kuriverta EC-503" manufactured by Kurita Kogyo Co., Ltd.) was added to the first RO feed water. FIGS. 2 and 3 show the changes over time in membrane flux and viable cell count of the RO membrane separator.

図2より明らかな通り、実施例1においては通水開始500hr後においてもフラックスの低下は観測されなかったのに対し、比較例1では通水開始300hr後ですでに初期フラックスに対し半分程度に減少した。また、スライムコントロール剤を添加した比較例2においても通水開始300hrで初期フラックスの60%程度に低下した。   As is clear from FIG. 2, in Example 1, no decrease in flux was observed even after the start of water flow for 500 hours, whereas in Comparative Example 1, it was already about half of the initial flux after the start of water flow for 300 hours. Diminished. Moreover, also in the comparative example 2 which added the slime control agent, it fell to about 60% of the initial flux by 300 hours of water flow start.

また、図3より、実施例1及び比較例2においては、生菌数の増加は観測されなかったのに対し、比較例1では通水時間の増加と共に生菌数が増加している。   From FIG. 3, in Example 1 and Comparative Example 2, no increase in the number of viable bacteria was observed, whereas in Comparative Example 1, the number of viable bacteria increased with an increase in water passage time.

以上の結果から、比較例1においてはRO膜内での微生物の繁殖及び非イオン性界面活性剤の膜面付着の相乗効果によりフラックスが低下し、比較例2ではスライムコントロール剤の添加により微生物の繁殖は抑制できても、非イオン性界面活性剤の膜面付着によりフラックスが低下するが、本発明に係る実施例1では、RO膜分離装置内での微生物の繁殖及び非イオン性界面活性剤の膜面付着の両方を同時に抑制できることが明らかである。   From the above results, in Comparative Example 1, the flux decreased due to the synergistic effect of the propagation of microorganisms in the RO membrane and the adhesion of the nonionic surfactant to the membrane surface, and in Comparative Example 2, the addition of the slime control agent caused the microbial activity. Even though the propagation can be suppressed, the flux decreases due to the adhesion of the nonionic surfactant to the membrane surface. However, in Example 1 according to the present invention, the propagation of microorganisms in the RO membrane separation apparatus and the nonionic surfactant It is clear that both film surface adhesion can be suppressed simultaneously.

なお、図2,3は、第1段目RO膜分離装置のフラックスと生菌数の経時変化を示したが、第2段目RO膜分離装置についても、第1段目RO膜分離装置とほぼ同様の傾向を示し、第2RO給水のpHを10.5とした実施例1では、第2段目RO膜分離装置においても、微生物の繁殖及び非イオン性界面活性剤の膜面付着の両方を同時に抑制でき、フラックスは通水開始500hr後においても低下しなかったが、第2RO給水のpHを7とした比較例1,2では経時によるフラックスの低下、生菌数の増加が認められ、通水開始300hr後にはフラックスは初期フラックスの80%程度にまで低下した。   2 and 3 show the change over time in the flux and viable cell count of the first stage RO membrane separation apparatus, the second stage RO membrane separation apparatus is the same as the first stage RO membrane separation apparatus. In Example 1, which showed almost the same tendency and the pH of the second RO feed water was 10.5, both the growth of microorganisms and the adhesion of the nonionic surfactant to the membrane surface were also observed in the second stage RO membrane separation apparatus. At the same time, the flux did not decrease even after 500 hours from the start of water flow, but in Comparative Examples 1 and 2 in which the pH of the second RO water supply was 7, a decrease in flux with time and an increase in the number of viable bacteria were observed, After 300 hours from the start of water flow, the flux decreased to about 80% of the initial flux.

また、表1より明らかな通り、第1RO透過水中には0.5mg/LあったTOC値が、2段目RO膜分離処理により0.05mg/L程度に低減しており、2段RO膜分離処理を行うことにより、更なるTOC値の低減化を図れることが分かる。   Further, as apparent from Table 1, the TOC value that was 0.5 mg / L in the first RO permeated water was reduced to about 0.05 mg / L by the second-stage RO membrane separation treatment, and the second-stage RO membrane It can be seen that the TOC value can be further reduced by performing the separation process.

実験例1
非イオン系界面活性剤を含む電子デバイス製造工場排水(pH7.2,TOC10mg)を原水としてNaOHを添加してpHを9.5(No.1)、9.2(No.2)、9(No.3)又は8.5(No.4)とした後、RO膜分離装置(日東電工製低圧芳香族ポリアミド型RO膜「NTR−759」)で回収率90%の条件でRO膜分離処理を行った。このときの各RO膜分離装置におけるフラックスの経時変化を調べ、結果を図4に示した。
Experimental example 1
NaOH was added using waste water (pH 7.2, TOC 10 mg) containing electronic device manufacturing factory containing nonionic surfactant as raw water to adjust the pH to 9.5 (No. 1), 9.2 (No. 2), 9 ( No. 3) or 8.5 (No. 4), then RO membrane separation treatment with RO membrane separation device (Nitto Denko low pressure aromatic polyamide RO membrane “NTR-759”) under the condition of 90% recovery rate Went. The change with time of the flux in each RO membrane separation device at this time was examined, and the result is shown in FIG.

図4よりRO給水のpHを9.5以上とすることにより非イオン性界面活性剤の膜面付着及び微生物の増殖によるバイオファウリングを抑え、RO膜分離装置のフラックスの低下を抑制できることがわかる。なお、RO給水をpH9.2としたNo.2の結果から、前述の特開平11−128923号公報の技術を適用しても、有機物含有排水の長期安定処理は不可能であることが分かる。   From FIG. 4, it can be seen that by setting the pH of the RO water supply to 9.5 or more, it is possible to suppress non-ionic surfactant membrane surface adhesion and biofouling due to microbial growth, and to suppress a decrease in the flux of the RO membrane separator. . In addition, No. which made RO water supply into pH9.2. From the results of 2, it can be seen that long-term stable treatment of organic matter-containing wastewater is impossible even when the technique disclosed in JP-A-11-128923 is applied.

本発明は、電子デバイス製造分野、半導体製造分野、その他の各種産業分野で排出される高濃度ないし低濃度TOC含有排水の放流、又は回収・再利用のための水処理に有効に適用される。   INDUSTRIAL APPLICABILITY The present invention is effectively applied to water treatment for discharging, collecting or reusing wastewater containing high or low concentration TOC discharged in the electronic device manufacturing field, semiconductor manufacturing field, and other various industrial fields.

本発明の有機物含有排水の処理方法及び処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method and processing apparatus of the organic substance containing waste_water | drain of this invention. 実施例1及び比較例1,2における第1段目RO膜分離装置のフラックスの経時変化を示すグラフである。It is a graph which shows the time-dependent change of the flux of the 1st step | paragraph RO membrane separator in Example 1 and Comparative Examples 1 and 2. FIG. 実施例1及び比較例1,2における第1段目RO膜分離装置の生菌数の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the viable cell count of the 1st step | paragraph RO membrane separator in Example 1 and Comparative Examples 1 and 2. FIG. 実験例1におけるRO膜分離装置のフラックスの経時変化を示すグラフである。6 is a graph showing a change with time in flux of the RO membrane separation device in Experimental Example 1.

符号の説明Explanation of symbols

1 タンク
2 第1RO膜分離装置
3 第2RO膜分離装置
DESCRIPTION OF SYMBOLS 1 Tank 2 1st RO membrane separation apparatus 3 2nd RO membrane separation apparatus

Claims (4)

有機物含有排水にアルカリを添加してpHを9.5以上に調整する第1のpH調整工程と、
該第1のpH調整工程で得られたpH調整水を逆浸透膜分離処理する第1の膜分離処理工程と、
該第1の膜分離処理工程の透過水にアルカリを添加してpHを9.5以上に調整する第2のpH調整工程と、
該第2のpH調整工程で得られたpH調整水を逆浸透膜分離処理する第2の膜分離処理工程と、
を備えてなる有機物含有排水の処理方法。
A first pH adjusting step of adjusting the pH to 9.5 or higher by adding alkali to the organic matter-containing wastewater;
A first membrane separation treatment step of reverse osmosis membrane separation treatment of the pH adjusted water obtained in the first pH adjustment step;
A second pH adjusting step of adjusting the pH to 9.5 or more by adding an alkali to the permeated water of the first membrane separation treatment step;
A second membrane separation treatment step of reverse osmosis membrane separation treatment of the pH adjusted water obtained in the second pH adjustment step;
An organic matter-containing wastewater treatment method comprising:
請求項1において、該第1のpH調整工程及び/又は第2のpH調整工程において、pHを10.5以上に調整することを特徴とする有機物含有排水の処理方法。   In Claim 1, pH is adjusted to 10.5 or more in this 1st pH adjustment process and / or 2nd pH adjustment process, The processing method of the organic substance containing waste_water | drain characterized by the above-mentioned. 有機物含有排水にアルカリを添加してpHを9.5以上に調整する第1のpH調整手段と、
該第1のpH調整手段で得られたpH調整水が導入される第1の逆浸透膜分離装置と、
該第1の逆浸透膜分離装置の透過水にアルカリを添加してpHを9.5以上に調整する第2のpH調整手段と、
該第2のpH調整手段で得られたpH調整水が導入される第2の逆浸透膜分離装置と、
を備えてなる有機物含有排水の処理装置。
First pH adjusting means for adjusting pH to 9.5 or higher by adding alkali to organic matter-containing wastewater;
A first reverse osmosis membrane separation device into which pH adjusted water obtained by the first pH adjusting means is introduced;
Second pH adjusting means for adjusting the pH to 9.5 or higher by adding alkali to the permeated water of the first reverse osmosis membrane separation device;
A second reverse osmosis membrane separation device into which the pH adjusted water obtained by the second pH adjusting means is introduced;
An organic matter-containing wastewater treatment apparatus comprising:
請求項3において、該第1のpH調整手段及び/又は第2のpH調整手段において、pHを10.5以上に調整することを特徴とする有機物含有排水の処理装置。   4. The organic matter-containing wastewater treatment apparatus according to claim 3, wherein the first pH adjusting means and / or the second pH adjusting means adjusts the pH to 10.5 or more.
JP2003317060A 2003-09-09 2003-09-09 Treatment method and treatment apparatus for organic substance-containing wastewater Pending JP2005081268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003317060A JP2005081268A (en) 2003-09-09 2003-09-09 Treatment method and treatment apparatus for organic substance-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003317060A JP2005081268A (en) 2003-09-09 2003-09-09 Treatment method and treatment apparatus for organic substance-containing wastewater

Publications (1)

Publication Number Publication Date
JP2005081268A true JP2005081268A (en) 2005-03-31

Family

ID=34416764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003317060A Pending JP2005081268A (en) 2003-09-09 2003-09-09 Treatment method and treatment apparatus for organic substance-containing wastewater

Country Status (1)

Country Link
JP (1) JP2005081268A (en)

Similar Documents

Publication Publication Date Title
JP5757089B2 (en) Method and apparatus for treating water containing organic matter
KR101464022B1 (en) Method and apparatus for treating water containing organic matter
JP2007253115A (en) Organic matter-containing wastewater treatment method and apparatus
JP5050605B2 (en) Organic substance processing method and organic substance processing apparatus
JP4496795B2 (en) Method and apparatus for treating wastewater containing organic matter
JP2010017614A (en) Method and apparatus for treating organic wastewater
JP2010017615A (en) Method and apparatus for treating dmso-containing wastewater
JP6123840B2 (en) Organic wastewater treatment method
JP2012205997A (en) Treatment method of organic wastewater by membrane separation activated sludge apparatus
JP2009000591A (en) Water treatment method of organic matter-containing wastewater
JP4899565B2 (en) Water treatment apparatus and water treatment method
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP2007244930A (en) Treatment method and treatment apparatus for organic substance-containing waste water
JP3906855B2 (en) Method and apparatus for treating wastewater containing organic matter and oxidizing agent
JP2012205992A (en) Treatment apparatus and treatment method of organic matter containing wastewater
JP2009189943A (en) Water treatment method and apparatus
JP6106943B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment apparatus
JP2016185514A (en) Cleaning method of permeable membrane, and cleaner
JP2010005560A (en) Method and apparatus for treating organic alkali wastewater
JP2005081269A (en) Treatment method and treatment apparatus for organic substance-containing wastewater
JP6614175B2 (en) Organic wastewater treatment method
JP2005081268A (en) Treatment method and treatment apparatus for organic substance-containing wastewater
JP2008302333A (en) Method and apparatus for production of fresh water
KR20060052370A (en) Apparatus and process for recovering water from organic containing water
KR101098679B1 (en) Method of treating waste water containing organic substance and treating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A977 Report on retrieval

Effective date: 20080425

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Effective date: 20080613

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20091006

Free format text: JAPANESE INTERMEDIATE CODE: A02