JP2005080457A - Electric power system synchronously paralleling method and synchronously making device - Google Patents

Electric power system synchronously paralleling method and synchronously making device Download PDF

Info

Publication number
JP2005080457A
JP2005080457A JP2003310230A JP2003310230A JP2005080457A JP 2005080457 A JP2005080457 A JP 2005080457A JP 2003310230 A JP2003310230 A JP 2003310230A JP 2003310230 A JP2003310230 A JP 2003310230A JP 2005080457 A JP2005080457 A JP 2005080457A
Authority
JP
Japan
Prior art keywords
value
energy function
systems
synchronously
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003310230A
Other languages
Japanese (ja)
Other versions
JP4098198B2 (en
Inventor
Shintaro Komami
慎太郎 駒見
Norikazu Kanao
則一 金尾
Tomoyuki Ueda
智之 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Power Co
Original Assignee
Hokuriku Electric Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Power Co filed Critical Hokuriku Electric Power Co
Priority to JP2003310230A priority Critical patent/JP4098198B2/en
Publication of JP2005080457A publication Critical patent/JP2005080457A/en
Application granted granted Critical
Publication of JP4098198B2 publication Critical patent/JP4098198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric power system synchronously paralleling method and a synchronously making device that can expand system making conditions while securing the accuracy of synchronous making and that can parallel systems speedily without missing the timing of synchronous paralleling. <P>SOLUTION: In the electric power system synchronously paralleling method in which a plurality of the electric power systems are synchronously paralleled, a frequency difference Δf and a phase difference Δδ of power supplies of two systems to be synchronously paralleled are detected. Using the frequency difference Δf and phase difference Δδ, a value of energy function: U shown in the figure, where M: unit inertial constant (sec) of a single system, Δω: an angular frequency difference of two systems 2πΔf(rad/sec), X: impedance of a single system (p, u based on system capacity), Δδ: a radian value of the phase difference of the two systems 2πΔθ(° )/360(rad/sec), is calculated. On condition that the value of the energy function: U has come into a preset permissible range, a synchronously inputting command is output to a breaker 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は複数の電力系統を同期並列させる電力系統の同期並列方法及び同期投入装置に関し、特に、非常時において分離した電力系統を速やかに並列させる手法に関する。   The present invention relates to a power system synchronous parallel method and a synchronization input device for synchronously paralleling a plurality of power systems, and more particularly to a method for quickly paralleling separated power systems in an emergency.

大規模な電力系統における需給バランスが不均衡な状態で、系統事故により単独系統が発生した場合には、一部負荷の遮断を実施して単独系統を維持する措置が施される。この様な場合に、前記単独系統を再び接続する同期並列に時間がかかると、当該一部負荷地域の停電が長くなり社会の諸活動に悪影響を及ぼすこととなる。   When a single system occurs due to a grid fault while the supply-demand balance in a large-scale power system is unbalanced, measures are taken to maintain a single system by cutting off some loads. In such a case, if it takes time to synchronize and reconnect the single system again, the power outage in the partly loaded area becomes longer and adversely affects social activities.

分離している二つの電力系統(又は発電機)が並列接続しようとする場合は、次の条件が成立していることが望ましい。(1)両者の電圧ができるだけ等しいこと。(2)両者の周波数ができるだけ等しいこと。(3)両者の位相ができるだけ等しいこと。そこで、例えば、分離している電力系統(又は発電機)の電圧差△V、周波数差△f、及び位相差△φが、設定電圧差SV、設定周波数差Sf、設定位相差Sφ以下となったとき、遮断器に投入指令を出し前記両者の同期並列を行うと言った手法が採られている(特許文献1並びに図7(A)(B)参照)。
特開平9−130978号公報
When two separated power systems (or generators) are to be connected in parallel, it is desirable that the following conditions are satisfied. (1) Both voltages should be as equal as possible. (2) Both frequencies should be as equal as possible. (3) Both phases should be as equal as possible. Therefore, for example, the voltage difference ΔV, frequency difference Δf, and phase difference Δφ of the separated power system (or generator) are equal to or less than the set voltage difference SV, the set frequency difference Sf, and the set phase difference Sφ. In this case, a technique is adopted in which a closing instruction is issued to the circuit breaker and the two are synchronized and paralleled (see Patent Document 1 and FIGS. 7A and 7B).
Japanese Patent Laid-Open No. 9-130978

当該手法では、前記電圧、周波数、或いは位相の単なる瞬時値を評価する手法であるから、いったん設定値以下となったとしても、遮断器の動作に要する遅延時間を経て、実際に遮断器が稼働し並列運転となるまでの間に設定値を上回ってしまう場合もあり同期投入の正確さに欠けるという問題がある。   In this method, the mere instantaneous value of the voltage, frequency, or phase is evaluated. Even if the voltage, frequency, or phase falls below the set value, the circuit breaker actually operates after a delay time required for the operation of the circuit breaker. However, there is a case where the set value may be exceeded before the parallel operation is started, and there is a problem that the accuracy of the synchronization input is lacking.

そこで、それら電圧、周波数、或いは位相のサンプルを定期的に採取し、当該サンプルの経時的変化を用いて位相差ゼロで並列運転出来る様に遮断器へ投入指令を出力するという予測制御を行う手法も紹介されているが、当該手法は、位相差がゼロとなることを前提として予測制御が行われる為に、前記サンプルの経時的変化によっては、位相差がゼロには到底なり得ない場合もあり、その場合には、待機時間が冗長となり系統投入が不可能となる場合が多い。   Therefore, a method of performing a predictive control in which a sample of the voltage, frequency, or phase is periodically taken and a closing command is output to the circuit breaker so that parallel operation can be performed with zero phase difference using the change over time of the sample. However, because this method performs predictive control on the assumption that the phase difference becomes zero, there may be a case where the phase difference cannot reach zero due to the temporal change of the sample. In this case, the standby time is often redundant and the system cannot be turned on in many cases.

この様な問題を解消すべく、先の手法の様に単に瞬時値を比較するだけではなく、分離している二つの電力系統(又は発電機)の電圧差△V、周波数差△f、及び位相差△φが、所定範囲内に一定時間以上滞在した場合に、遮断器に投入指令を出し同期投入を行うと言った手法も採られた。   In order to solve such a problem, not only the instantaneous values are compared as in the previous method, but also the voltage difference ΔV, the frequency difference Δf, and the two separated power systems (or generators), and When the phase difference Δφ stays within a predetermined range for a certain period of time, a method has been adopted in which a closing command is issued to the circuit breaker to perform synchronous charging.

しかしながら、当該手法では、一定時間滞在することが条件となっている為に、滞在時間が短いと系統投入できず、系統分離の状態が長く継続し停電リスクを多大に被るという問題がある。また、電圧、周波数、或いは位相といった個別の要件に着目して制御を行う為に、正常に系統投入出来る条件設定を狭め系統分離の状態を長期化させる要因を含むという問題もある。   However, in this method, since it is necessary to stay for a certain period of time, there is a problem that if the staying time is short, the system cannot be turned on, the system separation state continues for a long time, and there is a great risk of power failure. In addition, since control is performed while paying attention to individual requirements such as voltage, frequency, or phase, there is also a problem that includes a factor that narrows the condition setting that can be normally turned on and prolongs the state of system separation.

本発明の課題は、上記従来手法の問題点を解決し、同期投入の正確さを確保しつつ系統投入条件を拡大でき、且つ同期投入のタイミングを逃さず速やかに同期並列できる電力系統の同期並列方法及び装置の提供にある。   An object of the present invention is to solve the problems of the above-described conventional method, expand the system input conditions while ensuring the accuracy of the synchronization input, and perform synchronous parallel of the power system that can be quickly synchronized in parallel without missing the timing of synchronization input It is in providing a method and apparatus.

上記課題を解決するための手段は、同期並列させる二系統の電源周波数差Δfおよび位相差Δδを用いて、

Figure 2005080457
ここで、M :単独系統の単位慣性定数(sec)
Δω:二系統の角周波数差2πΔf(rad/sec)
X :単独系統のインピーダンス(系統容量ベースのp.u)
Δδ:二系統の位相差のラジアン値:2πΔθ(°)/360(rad/sec)
の値を算出し、当該エネルギー関数:Uの値が予め設定した許容範囲内になったことを条件として遮断器に対し同期投入指令を出力する電力系統の同期並列方法である。 Means for solving the above-described problem is based on the power supply frequency difference Δf and the phase difference Δδ between the two systems that are synchronously paralleled.
Figure 2005080457
Here, M: Unit inertia constant of single system (sec)
Δω: Angular frequency difference between two systems 2πΔf (rad / sec)
X: Impedance of single system (system capacity based pu)
Δδ: Radian value of phase difference between two systems: 2πΔθ (°) / 360 (rad / sec)
This is a synchronous parallel method of a power system that calculates the value of the energy function and outputs a synchronous input command to the circuit breaker on condition that the value of the energy function U is within a preset allowable range.

前記エネルギー関数:Uの値が予め設定した許容範囲内になったことを条件としてとは、例えば、前記エネルギー関数:Uの値が予め設定した許容範囲内になった時に、遮断器に対し同期投入指令を出力する形態でも良いし、前記エネルギー関数:Uの値が予め設定した許容範囲内になったことを条件として、同期並列させる二系統の電源周波数差Δfおよび位相差Δδから前記エネルギー関数:Uの値を3サンプル以上算出し、当該算出された各エネルギー関数:Uの値からエネルギー関数:Uの時間的変化を示す二次関数の近似式:U(t)を導き、当該近似式:U(t)が最小値をとる推定時刻を算出し、当該推定時刻に同期並列となるタイミングで遮断器に対し同期投入指令を出力する形態でも良い。   The condition that the value of the energy function: U is within a preset allowable range is, for example, that the value is synchronized with the circuit breaker when the value of the energy function: U is within a preset allowable range. An input command may be output, or the energy function: the energy function is calculated from the power supply frequency difference Δf and the phase difference Δδ of the two systems to be synchronized in parallel on condition that the value of U is within a preset allowable range. : Calculate the value of U by 3 samples or more, and derive each approximate energy function: U (t) from the calculated energy function: U value and derive an approximate expression U (t) of the quadratic function indicating temporal change of U : It is also possible to calculate an estimated time at which U (t) takes the minimum value, and output a synchronous input command to the circuit breaker at a timing that is synchronously parallel to the estimated time.

また、上記同期並列方法を具現化する装置として、前記エネルギー関数:Uの値を算出する現状演算手段と、当該エネルギー関数:Uの値が予め設定した許容範囲内にあるか否かを判断する現状判定手段と、当該現状判定手段によって前記エネルギー関数:Uの値が予め設定した許容範囲内にあることを条件として遮断器に対し同期投入指令を出力する指令出力手段とを備えた電力系統の同期投入装置が挙げられる。   In addition, as a device that embodies the synchronous parallel method, the current calculation means for calculating the value of the energy function: U, and whether the value of the energy function: U is within a preset allowable range are determined. A power system comprising: a current state determination unit; and a command output unit that outputs a synchronous input command to the circuit breaker on condition that the value of the energy function U is within a preset allowable range by the current state determination unit. A synchronous input device may be mentioned.

そして、同期投入する条件を具体的に定め、例えば、前記エネルギー関数:Uの値が予め設定した許容範囲内になった時点で、遮断器に対し同期投入指令を出力する前記同期投入指令出力手段を備えた形態や、前記エネルギー関数:Uの値が予め設定した許容範囲内にあることを条件として、同期並列させる二系統の電源周波数差Δfおよび位相差Δδをそれぞれ算出すると共に、当該各サンプルにおける前記エネルギー関数:Uの値を3サンプル分以上それぞれ算出する前記推定演算手段と、当該各エネルギー関数:Uの値からエネルギー関数:Uの時間的変化を示す二次関数の近似式:U(t)を導くと共に、当該近似式:U(t)が最小値をとる推定時刻を算出する投入時算定手段と、当該推定時刻に同期並列となるタイミングで遮断器に対し同期投入指令を出力する前記指令出力手段を備えた形態が採られることとなる。   Then, the condition for performing the synchronous input is specifically determined, for example, the synchronous input command output means for outputting a synchronous input command to the circuit breaker when the value of the energy function: U falls within a preset allowable range. And the power function frequency difference Δf and the phase difference Δδ of the two systems to be synchronously paralleled on the condition that the value of the energy function: U is within a preset allowable range, and each sample In the energy function: U, the estimation calculation means for calculating the value of U for three samples or more, and each energy function: an approximate expression of a quadratic function indicating a temporal change of the energy function: U from the value of U: U ( t), and at the same time, the approximate equation: U (t) calculates the estimated time at which the estimated value takes the minimum value, and the circuit breaker at the timing synchronously parallel to the estimated time Forms with said command output means for outputting the synchronous closing command against the possible is employed.

本発明による電力系統の同期並列方法及び装置によれば、同期投入に適したタイミングを逃さず系統投入を行う事が出来るため、停電時間が短縮され当該停電によって生じる悪影響を最小限に止めることが可能となる。   According to the synchronous parallel method and apparatus of the power system according to the present invention, the system can be switched on without missing the timing suitable for synchronous switching, so that the power failure time can be shortened and adverse effects caused by the power failure can be minimized. It becomes possible.

以下、本発明による電力系統の同期並列方法の実施の形態を図面に基づき説明する。
以下に示す電力系統の同期並列方法は、同期並列させる二系統の周波数差Δfや位相差Δδがゼロにならない場合であっても、系統並列後に生じる動揺を許容範囲内に収めることを条件とする適当な系統投入の機会を造り出すものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a power system synchronous parallel method according to the present invention will be described below with reference to the drawings.
The power system synchronous parallel method shown below is based on the condition that even if the frequency difference Δf or phase difference Δδ between the two systems to be synchronized in parallel does not become zero, the fluctuations generated after the system parallel are within the allowable range. It creates an opportunity for appropriate system introduction.

前記許容範囲は、系統投入時における電力系統の発電機動揺(以下、系統動揺と記す。)の度合いを表す下記(1式)のエネルギー関数:U(Δω,Δδ)で定められる。

Figure 2005080457
ここで、M :単独系統の単位慣性定数(sec)
Δω:二系統の角周波数差2πΔf(rad/sec)
X :単独系統のインピーダンス(系統容量ベースのp.u)
Δδ:二系統の位相差のラジアン値:2πΔθ(°)/360(rad/sec) The permissible range is defined by the following energy function U (Δω, Δδ) that represents the degree of generator oscillation (hereinafter referred to as system oscillation) of the power system when the system is turned on.
Figure 2005080457
Here, M: Unit inertia constant of single system (sec)
Δω: Angular frequency difference between two systems 2πΔf (rad / sec)
X: Impedance of single system (system capacity based pu)
Δδ: Radian value of phase difference between two systems: 2πΔθ (°) / 360 (rad / sec)

前記系統動揺は、異系統投入時の相差角Δδと周波数差Δfが大きい場合に大きくなり、場合によっては過度の電圧低下や脱調に至る可能性がある。ここで、図3(B)においてスイッチを入れた後の系統動揺を考える。簡略化のために制動効果を無視すれば、前記系統動揺の方程式は下記(2式)のように与えられる。

Figure 2005080457
ここで、ω=2πf The system fluctuation increases when the phase difference angle Δδ 0 and the frequency difference Δf 0 when a different system is turned on are large, and may cause an excessive voltage drop or step-out in some cases. Here, consider the system fluctuation after the switch is turned on in FIG. If the braking effect is ignored for the sake of simplification, the system oscillation equation is given by the following equation (2).
Figure 2005080457
Where ω n = 2πf

sinΔδ≒Δδとし、前記(2式)の両辺に

Figure 2005080457
を掛けると、
Figure 2005080457
となる。 sinΔδ ≒ Δδ, and on both sides of the above (Formula 2)
Figure 2005080457
Multiply
Figure 2005080457
It becomes.

また、

Figure 2005080457
であるから、
Figure 2005080457
となる。 Also,
Figure 2005080457
Because
Figure 2005080457
It becomes.

これをt=0〜tまでで積分すると、

Figure 2005080457
Figure 2005080457
Figure 2005080457
となる。尚、ここで、t=0時のΔω及びΔδは、Δω及びΔδであって、t=t時のΔω及びΔδは、Δωt及びΔδtである。 If this is integrated from t = 0 to t,
Figure 2005080457
Figure 2005080457
Figure 2005080457
It becomes. Here, Δω and Δδ at t = 0 are Δω 0 and Δδ 0 , and Δω and Δδ at t = t are Δωt and Δδt.

これより、系統動揺中は、動揺の減衰を無視すれば、系統投入前後における系統動揺の大きさは、前記(1式)として記したエネルギー関数:Uの値で一定に保たれることになる。即ち、前記エネルギー関数:Uの値が出来るだけ小さくなるタイミングで系統投入させることによって、同期並列後の系統動揺を小さくすることが出来るものである。   From this, during the system oscillation, if the attenuation of the oscillation is ignored, the magnitude of the system oscillation before and after the system is turned on is kept constant at the value of the energy function: U described as (Equation 1). . That is, the system fluctuation after the synchronous parallel can be reduced by introducing the system at the timing when the value of the energy function U becomes as small as possible.

また、前記エネルギー関数:Uは、前記のごとく前記電源周波数差Δf及び位相差Δδを変数とし、且つ(Δω,Δδ)=(0,0)を中心とする楕円軌道の関数を呈しているので(図4参照)、周波数及び位相に個別の許容値範囲を設定して行う制御と比較すると、前記周波数又は位相のいずれか一方のみが許容値範囲にあって十分に正常な系統投入が行える範囲を含んだ広範な条件設定が可能となり、その結果、より早く系統分離状態を解消できる確率が大きくなるという利点がある。   The energy function U is an elliptic orbit function centered on (Δω, Δδ) = (0, 0) with the power supply frequency difference Δf and the phase difference Δδ as variables as described above. Compared to control performed by setting individual tolerance ranges for frequency and phase (see FIG. 4), only one of the frequency or phase is within the tolerance range and a sufficiently normal system can be entered. As a result, there is an advantage that the probability that the system separation state can be resolved more quickly is increased.

上記原理に基づき、図1に示す電力系統の同期投入装置の例は、二つの電力系統の並列及び遮断を行う遮断器(図3参照)3に対して同期投入指令を出力するものであって、前記遮断器の周波数検出部7及び位相検出部8より、当該遮断器3が備える接点に各々接続された二つの電力系統の各サンプリング時における電源周波数及び位相を取り込む入力手段9と、当該電源周波数及び位相から前記二つの電力系統間の電源周波数差Δf及び位相差Δδを算出すると共に、当該電源周波数差Δf及び位相差Δδを用いて前記(1式)のエネルギー関数:Uの値を算出する現状演算手段1と、当該エネルギー関数:Uの値が予め設定した許容範囲内にあるか否かを判断する現状判定手段2と、当該現状判定手段2によって、前記エネルギー関数:Uの値が予め設定した許容範囲内になったことを条件として遮断器3に対し同期投入指令を出力する指令出力手段4とを備えている。   Based on the above principle, the example of the power system synchronous input device shown in FIG. 1 is to output a synchronous power supply command to the circuit breaker (see FIG. 3) 3 for paralleling and disconnecting the two power systems. The input means 9 for taking in the power frequency and phase at the time of each sampling of the two power systems connected to the contacts provided in the circuit breaker 3 from the frequency detection unit 7 and the phase detection unit 8 of the circuit breaker, and the power supply The power frequency difference Δf and the phase difference Δδ between the two power systems are calculated from the frequency and phase, and the value of the energy function: U in (Expression 1) is calculated using the power frequency difference Δf and the phase difference Δδ. Current state calculation means 1, current state determination means 2 for determining whether or not the value of the energy function: U is within a preset allowable range, and the current state determination means 2, the energy function: U There has been an instruction output unit 4 for outputting a synchronous closing command to the circuit breaker 3 on condition that falls within the allowable range set in advance.

図2は、前記電力系統の同期投入装置の実施の形態を、CPU、メモリ、或いは入出力ポート等で構成されるコンピュータシステムを用いて実現する場合に用いるソフトウエアによる一連の処理を示すフローチャートである。前記入力手段9は、前記遮断器3の周波数検出部7及び位相検出部8とデータ通信を行うことより、同期並列しようとする二つの電力系統の電源周波数及び位相を一定の周期で当該同期投入装置に取り込む(ステップ0)。続いて、前記現状演算手段1は、前記二つの電力系統間の電源周波数及び位相の差として前記電源周波数差Δf及び位相差Δδを算出する(ステップ1)と共に、前記(1式)に前記電源周波数差Δf(Δω)及び位相差Δδを代入することによって前記二つの電力系統間の前記エネルギー関数:Uの値(以下、現状値と記す。)が算出する(ステップ2)。前記現状判定手段2は、前記現状値が、許容範囲として定めた前記楕円軌道の内側にあるか否か、即ち、エネルギー関数:Uの値が前記楕円軌道の半径に相当する閾値よりも小さいか否かを判定する(ステップ3)。   FIG. 2 is a flowchart showing a series of processes by software used when the embodiment of the power system synchronous input device is realized by using a computer system constituted by a CPU, a memory, an input / output port or the like. is there. The input means 9 performs data communication with the frequency detection unit 7 and the phase detection unit 8 of the circuit breaker 3 so that the power supply frequencies and phases of the two power systems to be synchronized in parallel are synchronized with each other at a constant cycle. Capture to the device (step 0). Subsequently, the current state calculation means 1 calculates the power supply frequency difference Δf and the phase difference Δδ as a difference between the power supply frequency and the phase between the two power systems (step 1), and the power supply frequency is expressed in the equation (1). By substituting the frequency difference Δf (Δω) and the phase difference Δδ, the value of the energy function U between the two power systems (hereinafter referred to as the current value) is calculated (step 2). Whether or not the current value is inside the elliptical orbit determined as the allowable range, that is, whether or not the value of the energy function U is smaller than a threshold corresponding to the radius of the elliptical orbit. It is determined whether or not (step 3).

当該判定の結果、前記許容範囲として定めた閾値よりも前記現状値が小さければ、許容範囲内にあると判断し、その判断に基づき指令出力手段4によりデータ通信を以て前記遮断器3に対する同期投入指令を出力することとなる。   As a result of the determination, if the current value is smaller than the threshold value set as the allowable range, it is determined that the current value is within the allowable range, and based on the determination, the command output means 4 performs data communication with the circuit breaker 3 through data communication. Will be output.

この様に、前記現状値が予め設定した許容範囲より小さくなった時点で、前記指令出力手段4から遮断器3に対し、即座に同期投入指令を出力する形態としても良い。しかしながら、系統並列を更に動揺の少ない確実なものとするために、前記エネルギー関数:Uの値が予め設定した許容範囲内になったことを条件として、当該同期並列させる二系統の電源周波数差Δfおよび位相差Δδをそれぞれ算出すると共に、当該各サンプルにおける前記エネルギー関数:Uの値を3サンプル分以上それぞれ算出する前記推定演算手段5と、当該3サンプル以上のエネルギー関数:Uの値からエネルギー関数:Uの時間的変化を示す二次関数の近似式:U(t)を導くと共に、当該近似式:U(t)が最小値をとる推定時刻を算出する投入時算定手段6と、当該推定時刻に同期並列となるタイミングで遮断器3に対し同期投入指令を出力する前記指令出力手段4を備えた形態を採っても良い。   In this way, when the current value becomes smaller than the preset allowable range, the command output means 4 may immediately output a synchronous input command to the circuit breaker 3. However, in order to further ensure system parallelism with less fluctuation, the power frequency difference Δf between the two systems to be synchronized in parallel is provided on condition that the value of the energy function U is within a preset allowable range. And the phase difference Δδ and the estimation function means 5 for calculating the value of the energy function U in each sample for three samples or more, and the energy function for the three samples or more: the energy function from the value of U : Approximate expression of a quadratic function indicating temporal change of U: U (t), and at the same time, the input calculation means 6 for calculating the estimated time when the approximate expression: U (t) takes the minimum value, and the estimation You may take the form provided with the said command output means 4 which outputs a synchronous injection | throwing-in instruction | command with respect to the circuit breaker 3 at the timing which becomes synchronous parallel at time.

即ち、当該判定の結果、前記許容範囲として定めた閾値よりも前記現状値が小さければ、許容範囲内にあると判断し、更に、前記入力手段9を以て前記遮断器3の周波数検出部7及び位相検出部8から二つの電力系統の電源周波数及び位相を取り込み(ステップ4)、前記推定演算手段5は、続いて取り込まれた二つの電力系統の電源周波数及び位相から、当該同期並列させる二系統の電源周波数差Δfおよび位相差Δδを算出する(ステップ5)と共に、当該各サンプルにおける前記エネルギー関数:Uの値をそれぞれ算出する(ステップ6)。   That is, if the current value is smaller than the threshold value determined as the allowable range as a result of the determination, it is determined that the current value is within the allowable range, and the frequency detecting unit 7 and the phase of the circuit breaker 3 are further determined by the input means 9. The power supply frequency and phase of the two power systems are fetched from the detection unit 8 (step 4), and the estimation calculation means 5 then uses the two power grids of the two power systems that have been fetched to determine the two systems to be synchronized in parallel. The power supply frequency difference Δf and the phase difference Δδ are calculated (step 5), and the value of the energy function U in each sample is calculated (step 6).

前記投入時算定手段6は、この様に算出されたエネルギー関数:Uの値や、前記現状値が前記閾値より小さいという条件を満たす前に算出されたエネルギー関数:Uの値の中から3サンプル分以上抽出して、当該抽出されたエネルギー関数:Uの値、及び各サンプルが得られた時刻tからエネルギー関数:Uの値の時間的変化を示す二次関数の近似式

Figure 2005080457
を導く(ステップ7)と共に、当該二次関数が最小値を採る前記推定時刻tを導く(ステップ8)。そして、前記指令出力手段4は、前記同期投入指令の送出から前記遮断器3の接点が閉じ、実際に二つの電力系統の並列が開始されるまでの遅延時間(例えば、150ms程度)を考慮した早めの同期投入指令の出力時を算定し(ステップ9)、そのタイミングを逃すことなく同期投入指令を出力する(ステップ10)。 The charging time calculation means 6 calculates the energy function: U calculated in this way, and three samples from the energy function: U calculated before satisfying the condition that the current value is smaller than the threshold. Approximate expression of the quadratic function indicating the time variation of the extracted energy function: U value and the energy function: U value from the time t when each sample was obtained.
Figure 2005080457
(Step 7) and the estimated time t at which the quadratic function takes the minimum value (Step 8). Then, the command output means 4 takes into account a delay time (for example, about 150 ms) from when the synchronous input command is sent until the contact of the circuit breaker 3 is closed and the two power systems are actually started in parallel. The time of outputting an early synchronous input command is calculated (step 9), and the synchronous input command is output without missing the timing (step 10).

例えば、周波数差Δfが0.6Hz付近で位相差Δδが0点を通過する場合(図5参照)や、周波数差Δfが+0.02Hzから−0.02Hzへ変化し、位相差Δδが0とならない場合(図6参照)のいずれであってもエネルギー関数:Uの時間的変化は二次関数でほぼ近似できることがわかる。   For example, when the frequency difference Δf is around 0.6 Hz and the phase difference Δδ passes through the zero point (see FIG. 5), the frequency difference Δf changes from +0.02 Hz to −0.02 Hz, and the phase difference Δδ is zero. It can be seen that the temporal change of the energy function: U can be approximated by a quadratic function in any of the cases where it does not (see FIG. 6).

前者の様に周波数差Δfが比較的大きい場合には、前記エネルギー関数:Uの時間的変化が大きく得られるので二次関数の近似式を得るためのサンプリング時間は小さくなるが、約10ms〜20ms程度のサンプリング時間で十分である。また、後者の様に周波数差Δfが比較的小さい場合には、前記エネルギー関数:Uの時間的変化は小さく、サンプリング時間は大きくできるが、約10ms〜20ms程度のサンプリング時間に設定すれば、先のいずれにあっても、前記推定時刻の算出に必要な二次関数の近似式を得ることができる。   When the frequency difference Δf is relatively large as in the former, since the time change of the energy function: U can be obtained largely, the sampling time for obtaining the approximate expression of the quadratic function becomes small, but about 10 ms to 20 ms. A degree of sampling time is sufficient. Further, when the frequency difference Δf is relatively small as in the latter, the temporal change of the energy function: U is small and the sampling time can be increased, but if the sampling time is set to about 10 ms to 20 ms, In any case, an approximate expression of a quadratic function necessary for calculating the estimated time can be obtained.

また、場合によっては、同期前記遮断器としての機能、即ち、前記周波数検出部7及び位相検出部8を備えると共に、前記同期投入指令を受けて実際に二つの電力系統の同期並列を行う同期投入手段を備えた同期投入装置として構成することも可能である。   In some cases, the function as a synchronous circuit breaker, that is, the frequency detection unit 7 and the phase detection unit 8 are provided, and the synchronous input for actually performing the synchronous parallel of the two power systems in response to the synchronous input command. It is also possible to configure as a synchronous input device provided with means.

電力系統の事故の復旧において停電時間の短縮に利用できる。   It can be used to reduce power outage time in the recovery of power system accidents.

本発明による電力系統の同期投入装置及び遮断器の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of the synchronous injection | throwing-in apparatus of a power system and a circuit breaker by this invention. 本発明による電力系統の同期並列方法及び同期投入装置における処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process in the synchronous parallel method of a power system by this invention, and a synchronous injection | throwing-in apparatus. (A)は、本発明による電力系統の同期並列方法の実施態様例を示すブロック図、(B)は、本発明による電力系統の同期並列方法の実施態様例を示す等価回路図である。(A) is a block diagram showing an embodiment example of the synchronous parallel method of the power system according to the present invention, and (B) is an equivalent circuit diagram showing an embodiment example of the synchronous parallel method of the power system according to the present invention. 本発明による電力系統の同期並列方法での投入許容範囲と、従来の投入許容範囲とを比較した説明図である。It is explanatory drawing which compared the making allowable range in the synchronous parallel method of the electric power system by this invention, and the conventional making allowable range. (A)は、位相差Δδが0点を通過する例における周波数差Δfと位相差Δδとの関係を示すチャート、(B)は、当該位相差Δδが0点を通過する例におけるエネルギー関数:Uの値の時間的変化を示すチャートである。(A) is a chart showing the relationship between the frequency difference Δf and the phase difference Δδ in an example in which the phase difference Δδ passes through the zero point, and (B) is an energy function in an example in which the phase difference Δδ passes through the zero point: It is a chart which shows the time change of the value of U. (A)は、位相差Δδが0点を通過しない例における周波数差Δfと位相差Δδとの関係を示すチャート、(B)は、当該位相差Δδが0点を通過しない例におけるエネルギー関数:Uの値の時間的変化を示すチャートである。(A) is a chart showing the relationship between the frequency difference Δf and the phase difference Δδ in an example where the phase difference Δδ does not pass through the zero point, and (B) is an energy function in an example where the phase difference Δδ does not pass through the zero point: It is a chart which shows the time change of the value of U. 従来の電力系統の同期並列方法での投入許容範囲の例を示した説明図である。It is explanatory drawing which showed the example of the input tolerance | permissible_range in the conventional synchronous parallel method of an electric power system.

符号の説明Explanation of symbols

1 現状演算手段,2 現状判断手段,3 遮断器,4 指令出力手段,
5 推定演算手段,6 投入時算定手段,
7 周波数検出部,8 位相検出部,
9 入力手段,
1 current calculation means, 2 current determination means, 3 circuit breaker, 4 command output means,
5 Estimate calculation means, 6 Input calculation means,
7 frequency detector, 8 phase detector,
9 input means,

Claims (4)

複数の電力系統を同期並列させる電力系統の同期並列方法において、
同期並列させる二系統の電源周波数差Δfおよび位相差Δδを検出し、当該電源周波数差Δfおよび位相差Δδを用いて
Figure 2005080457
ここで、M :単独系統の単位慣性定数(sec)
Δω:二系統の角周波数差2πΔf(rad/sec)
X :単独系統のインピーダンス(系統容量ベースのp.u)
Δδ:二系統の位相差のラジアン値:2πΔθ(°)/360(rad/sec)
の値を算出し、当該エネルギー関数:Uの値が予め設定した許容範囲内になったことを条件として遮断器(3)に対し同期投入指令を出力する電力系統の同期並列方法。
In a synchronous parallel method of a power system that synchronously parallelizes a plurality of power systems,
The power supply frequency difference Δf and the phase difference Δδ of the two systems to be synchronously paralleled are detected, and the power supply frequency difference Δf and the phase difference Δδ are used.
Figure 2005080457
Here, M: Unit inertia constant of single system (sec)
Δω: Angular frequency difference between two systems 2πΔf (rad / sec)
X: Impedance of single system (system capacity based pu)
Δδ: Radian value of phase difference between two systems: 2πΔθ (°) / 360 (rad / sec)
A parallel parallel method of a power system that calculates the value of the energy function and outputs a synchronous input command to the circuit breaker (3) on condition that the value of the energy function U is within a preset allowable range.
前記エネルギー関数:Uの値が予め設定した許容範囲内になったことを条件として、同期並列させる二系統の電源周波数差Δfおよび位相差Δδから前記エネルギー関数:Uの値を3サンプル以上算出し、当該算出された各エネルギー関数:Uの値からエネルギー関数:Uの時間的変化を示す二次関数の近似式:U(t)を導き、当該近似式:U(t)が最小値をとる推定時刻を算出し、当該推定時刻に同期並列となるタイミングで遮断器(3)に対し同期投入指令を出力する前記請求項1に記載の電力系統の同期並列方法。   On the condition that the value of the energy function: U falls within a preset allowable range, three or more samples of the value of the energy function: U are calculated from the power supply frequency difference Δf and the phase difference Δδ of the two systems to be synchronized in parallel. Then, an approximate expression U (t) of a quadratic function indicating a temporal change of the energy function U is derived from the calculated energy function U, and the approximate expression U (t) takes a minimum value. The synchronous parallel method of the electric power system according to claim 1, wherein an estimated time is calculated, and a synchronous input command is output to the circuit breaker (3) at a timing that becomes synchronous parallel at the estimated time. 複数の電力系統を同期並列させる電力系統の同期投入装置において、
同期並列させる二系統の電源周波数f及び位相δから電源周波数差Δf及び位相差Δδを算出すると共に、当該電源周波数差Δf及び位相差Δδを用いて
Figure 2005080457
ここで、M :単独系統の単位慣性定数(sec)
Δω:二系統の角周波数差2πΔf(rad/sec)
X :単独系統のインピーダンス(系統容量ベースのp.u)
Δδ:二系統の位相差のラジアン値:2πΔθ(°)/360(rad/sec)
の値を算出する現状演算手段(1)と、当該エネルギー関数:Uの値が予め設定した許容範囲内にあるか否かを判断する現状判定手段(2)と、当該現状判定手段(2)によって前記エネルギー関数:Uの値が予め設定した許容範囲内にあることを条件として遮断器(3)に対し同期投入指令を出力する指令出力手段(4)とを備えた電力系統の同期投入装置。
In a power system synchronous input device for synchronously paralleling multiple power systems,
The power supply frequency difference Δf and phase difference Δδ are calculated from the power supply frequency f and phase δ of the two systems that are synchronously paralleled, and the power supply frequency difference Δf and phase difference Δδ are used.
Figure 2005080457
Here, M: Unit inertia constant of single system (sec)
Δω: Angular frequency difference between two systems 2πΔf (rad / sec)
X: Impedance of single system (system capacity based pu)
Δδ: Radian value of phase difference between two systems: 2πΔθ (°) / 360 (rad / sec)
Current state calculating means (1) for calculating the value of the energy function: current state determining means (2) for determining whether or not the value of the energy function U is within a preset allowable range, and the current state determining means (2) By means of the above-mentioned energy function: command output means (4) for outputting a synchronous input command to the circuit breaker (3) on condition that the value of U is within a preset allowable range, the synchronous input device for the electric power system .
前記エネルギー関数:Uの値が予め設定した許容範囲内にあることを条件として、同期並列させる二系統の電源周波数差Δfおよび位相差Δδをそれぞれ算出すると共に、当該各サンプルにおける前記エネルギー関数:Uの値を3サンプル分以上それぞれ算出する前記推定演算手段(5)と、当該各エネルギー関数:Uの値からエネルギー関数:Uの時間的変化を示す二次関数の近似式:U(t)を導くと共に、当該近似式:U(t)が最小値をとる推定時刻を算出する投入時算定手段(6)と、当該推定時刻に同期並列となるタイミングで遮断器(3)に対し同期投入指令を出力する前記指令出力手段(4)を備えた前記請求項3に記載の電力系統の同期投入装置。
On the condition that the value of the energy function: U is within a preset allowable range, the power supply frequency difference Δf and the phase difference Δδ of the two systems to be synchronously paralleled are calculated, and the energy function: U for each sample is calculated. The estimation calculation means (5) for calculating the value of each of three samples or more, and the approximate function: U (t) of the quadratic function indicating the temporal change of the energy function: U from the value of each energy function: U At the same time, the on-time calculation means (6) for calculating the estimated time at which the approximate expression: U (t) takes the minimum value, and the synchronous on-command to the circuit breaker (3) at the timing that is synchronously parallel to the estimated time The apparatus for synchronously turning on the electric power system according to claim 3, further comprising the command output means (4) for outputting the power.
JP2003310230A 2003-09-02 2003-09-02 Power system synchronous parallel method and synchronous input device Expired - Fee Related JP4098198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003310230A JP4098198B2 (en) 2003-09-02 2003-09-02 Power system synchronous parallel method and synchronous input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003310230A JP4098198B2 (en) 2003-09-02 2003-09-02 Power system synchronous parallel method and synchronous input device

Publications (2)

Publication Number Publication Date
JP2005080457A true JP2005080457A (en) 2005-03-24
JP4098198B2 JP4098198B2 (en) 2008-06-11

Family

ID=34412161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003310230A Expired - Fee Related JP4098198B2 (en) 2003-09-02 2003-09-02 Power system synchronous parallel method and synchronous input device

Country Status (1)

Country Link
JP (1) JP4098198B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522784A (en) * 2004-02-10 2007-08-09 リーバート・コーポレイシヨン Changeover switch device and method
JP2013055743A (en) * 2011-09-01 2013-03-21 Toyo Electric Mfg Co Ltd Power supply switching system
CN111884339A (en) * 2020-07-24 2020-11-03 贵州电网有限责任公司 Judgment method and system based on self-adaptive switch action

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522784A (en) * 2004-02-10 2007-08-09 リーバート・コーポレイシヨン Changeover switch device and method
JP2013055743A (en) * 2011-09-01 2013-03-21 Toyo Electric Mfg Co Ltd Power supply switching system
CN111884339A (en) * 2020-07-24 2020-11-03 贵州电网有限责任公司 Judgment method and system based on self-adaptive switch action

Also Published As

Publication number Publication date
JP4098198B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP6530508B2 (en) Uninterruptible power system
JP5645622B2 (en) Isolated operation detection device and isolated operation detection method
CN103814500A (en) Power supply system
JP2007228661A (en) Uninterruptible power supply
JP2010104158A (en) Uninterruptible power supply unit and method for selectively interrupting uninterruptible power supply unit
JP4098198B2 (en) Power system synchronous parallel method and synchronous input device
JP2006340515A (en) Uninterruptible power supply unit
US9285410B2 (en) Control circuit, and power generation device having the same
JP5155364B2 (en) Method of detecting phase jump of distributed power source and system interconnection protection device
JP2014158418A (en) Uninterruptible power supply system
JP6620937B2 (en) Power storage system, operation method
JP2010226871A (en) Power supply system
JP5639752B2 (en) Uninterruptible power supply system
JP5444774B2 (en) Uninterruptible power supply system
JP2006254522A (en) System switching device
US10754317B2 (en) Control of an electrical power network
JP6141138B2 (en) Power system control device and control system
JPH1090314A (en) Power failure detection method
JP2016197947A (en) Failure detector, circuit breaker including failure detector, and system parallel off detection method
JP7147667B2 (en) Power supply device, relay welding determination device, and relay welding determination method
JP2012100494A (en) Distributed power supply device
Medhekar et al. A New Method for Detecting Stable and Unstable Power Swings
JPH09130978A (en) Emergency power supply unit
JP4506602B2 (en) Synchronous input control device and synchronous input method
RU208087U1 (en) DEVICE FOR AUTOMATIC STANDBY STANDBY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees